iommu/arm-smmu: Don't fail device attach if already attached to a domain
[deliverable/linux.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2 * IOMMU API for ARM architected SMMUv3 implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 *
16 * Copyright (C) 2015 ARM Limited
17 *
18 * Author: Will Deacon <will.deacon@arm.com>
19 *
20 * This driver is powered by bad coffee and bombay mix.
21 */
22
23 #include <linux/delay.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/iommu.h>
28 #include <linux/iopoll.h>
29 #include <linux/module.h>
30 #include <linux/msi.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_platform.h>
34 #include <linux/pci.h>
35 #include <linux/platform_device.h>
36
37 #include "io-pgtable.h"
38
39 /* MMIO registers */
40 #define ARM_SMMU_IDR0 0x0
41 #define IDR0_ST_LVL_SHIFT 27
42 #define IDR0_ST_LVL_MASK 0x3
43 #define IDR0_ST_LVL_2LVL (1 << IDR0_ST_LVL_SHIFT)
44 #define IDR0_STALL_MODEL_SHIFT 24
45 #define IDR0_STALL_MODEL_MASK 0x3
46 #define IDR0_STALL_MODEL_STALL (0 << IDR0_STALL_MODEL_SHIFT)
47 #define IDR0_STALL_MODEL_FORCE (2 << IDR0_STALL_MODEL_SHIFT)
48 #define IDR0_TTENDIAN_SHIFT 21
49 #define IDR0_TTENDIAN_MASK 0x3
50 #define IDR0_TTENDIAN_LE (2 << IDR0_TTENDIAN_SHIFT)
51 #define IDR0_TTENDIAN_BE (3 << IDR0_TTENDIAN_SHIFT)
52 #define IDR0_TTENDIAN_MIXED (0 << IDR0_TTENDIAN_SHIFT)
53 #define IDR0_CD2L (1 << 19)
54 #define IDR0_VMID16 (1 << 18)
55 #define IDR0_PRI (1 << 16)
56 #define IDR0_SEV (1 << 14)
57 #define IDR0_MSI (1 << 13)
58 #define IDR0_ASID16 (1 << 12)
59 #define IDR0_ATS (1 << 10)
60 #define IDR0_HYP (1 << 9)
61 #define IDR0_COHACC (1 << 4)
62 #define IDR0_TTF_SHIFT 2
63 #define IDR0_TTF_MASK 0x3
64 #define IDR0_TTF_AARCH64 (2 << IDR0_TTF_SHIFT)
65 #define IDR0_TTF_AARCH32_64 (3 << IDR0_TTF_SHIFT)
66 #define IDR0_S1P (1 << 1)
67 #define IDR0_S2P (1 << 0)
68
69 #define ARM_SMMU_IDR1 0x4
70 #define IDR1_TABLES_PRESET (1 << 30)
71 #define IDR1_QUEUES_PRESET (1 << 29)
72 #define IDR1_REL (1 << 28)
73 #define IDR1_CMDQ_SHIFT 21
74 #define IDR1_CMDQ_MASK 0x1f
75 #define IDR1_EVTQ_SHIFT 16
76 #define IDR1_EVTQ_MASK 0x1f
77 #define IDR1_PRIQ_SHIFT 11
78 #define IDR1_PRIQ_MASK 0x1f
79 #define IDR1_SSID_SHIFT 6
80 #define IDR1_SSID_MASK 0x1f
81 #define IDR1_SID_SHIFT 0
82 #define IDR1_SID_MASK 0x3f
83
84 #define ARM_SMMU_IDR5 0x14
85 #define IDR5_STALL_MAX_SHIFT 16
86 #define IDR5_STALL_MAX_MASK 0xffff
87 #define IDR5_GRAN64K (1 << 6)
88 #define IDR5_GRAN16K (1 << 5)
89 #define IDR5_GRAN4K (1 << 4)
90 #define IDR5_OAS_SHIFT 0
91 #define IDR5_OAS_MASK 0x7
92 #define IDR5_OAS_32_BIT (0 << IDR5_OAS_SHIFT)
93 #define IDR5_OAS_36_BIT (1 << IDR5_OAS_SHIFT)
94 #define IDR5_OAS_40_BIT (2 << IDR5_OAS_SHIFT)
95 #define IDR5_OAS_42_BIT (3 << IDR5_OAS_SHIFT)
96 #define IDR5_OAS_44_BIT (4 << IDR5_OAS_SHIFT)
97 #define IDR5_OAS_48_BIT (5 << IDR5_OAS_SHIFT)
98
99 #define ARM_SMMU_CR0 0x20
100 #define CR0_CMDQEN (1 << 3)
101 #define CR0_EVTQEN (1 << 2)
102 #define CR0_PRIQEN (1 << 1)
103 #define CR0_SMMUEN (1 << 0)
104
105 #define ARM_SMMU_CR0ACK 0x24
106
107 #define ARM_SMMU_CR1 0x28
108 #define CR1_SH_NSH 0
109 #define CR1_SH_OSH 2
110 #define CR1_SH_ISH 3
111 #define CR1_CACHE_NC 0
112 #define CR1_CACHE_WB 1
113 #define CR1_CACHE_WT 2
114 #define CR1_TABLE_SH_SHIFT 10
115 #define CR1_TABLE_OC_SHIFT 8
116 #define CR1_TABLE_IC_SHIFT 6
117 #define CR1_QUEUE_SH_SHIFT 4
118 #define CR1_QUEUE_OC_SHIFT 2
119 #define CR1_QUEUE_IC_SHIFT 0
120
121 #define ARM_SMMU_CR2 0x2c
122 #define CR2_PTM (1 << 2)
123 #define CR2_RECINVSID (1 << 1)
124 #define CR2_E2H (1 << 0)
125
126 #define ARM_SMMU_IRQ_CTRL 0x50
127 #define IRQ_CTRL_EVTQ_IRQEN (1 << 2)
128 #define IRQ_CTRL_PRIQ_IRQEN (1 << 1)
129 #define IRQ_CTRL_GERROR_IRQEN (1 << 0)
130
131 #define ARM_SMMU_IRQ_CTRLACK 0x54
132
133 #define ARM_SMMU_GERROR 0x60
134 #define GERROR_SFM_ERR (1 << 8)
135 #define GERROR_MSI_GERROR_ABT_ERR (1 << 7)
136 #define GERROR_MSI_PRIQ_ABT_ERR (1 << 6)
137 #define GERROR_MSI_EVTQ_ABT_ERR (1 << 5)
138 #define GERROR_MSI_CMDQ_ABT_ERR (1 << 4)
139 #define GERROR_PRIQ_ABT_ERR (1 << 3)
140 #define GERROR_EVTQ_ABT_ERR (1 << 2)
141 #define GERROR_CMDQ_ERR (1 << 0)
142 #define GERROR_ERR_MASK 0xfd
143
144 #define ARM_SMMU_GERRORN 0x64
145
146 #define ARM_SMMU_GERROR_IRQ_CFG0 0x68
147 #define ARM_SMMU_GERROR_IRQ_CFG1 0x70
148 #define ARM_SMMU_GERROR_IRQ_CFG2 0x74
149
150 #define ARM_SMMU_STRTAB_BASE 0x80
151 #define STRTAB_BASE_RA (1UL << 62)
152 #define STRTAB_BASE_ADDR_SHIFT 6
153 #define STRTAB_BASE_ADDR_MASK 0x3ffffffffffUL
154
155 #define ARM_SMMU_STRTAB_BASE_CFG 0x88
156 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT 0
157 #define STRTAB_BASE_CFG_LOG2SIZE_MASK 0x3f
158 #define STRTAB_BASE_CFG_SPLIT_SHIFT 6
159 #define STRTAB_BASE_CFG_SPLIT_MASK 0x1f
160 #define STRTAB_BASE_CFG_FMT_SHIFT 16
161 #define STRTAB_BASE_CFG_FMT_MASK 0x3
162 #define STRTAB_BASE_CFG_FMT_LINEAR (0 << STRTAB_BASE_CFG_FMT_SHIFT)
163 #define STRTAB_BASE_CFG_FMT_2LVL (1 << STRTAB_BASE_CFG_FMT_SHIFT)
164
165 #define ARM_SMMU_CMDQ_BASE 0x90
166 #define ARM_SMMU_CMDQ_PROD 0x98
167 #define ARM_SMMU_CMDQ_CONS 0x9c
168
169 #define ARM_SMMU_EVTQ_BASE 0xa0
170 #define ARM_SMMU_EVTQ_PROD 0x100a8
171 #define ARM_SMMU_EVTQ_CONS 0x100ac
172 #define ARM_SMMU_EVTQ_IRQ_CFG0 0xb0
173 #define ARM_SMMU_EVTQ_IRQ_CFG1 0xb8
174 #define ARM_SMMU_EVTQ_IRQ_CFG2 0xbc
175
176 #define ARM_SMMU_PRIQ_BASE 0xc0
177 #define ARM_SMMU_PRIQ_PROD 0x100c8
178 #define ARM_SMMU_PRIQ_CONS 0x100cc
179 #define ARM_SMMU_PRIQ_IRQ_CFG0 0xd0
180 #define ARM_SMMU_PRIQ_IRQ_CFG1 0xd8
181 #define ARM_SMMU_PRIQ_IRQ_CFG2 0xdc
182
183 /* Common MSI config fields */
184 #define MSI_CFG0_ADDR_SHIFT 2
185 #define MSI_CFG0_ADDR_MASK 0x3fffffffffffUL
186 #define MSI_CFG2_SH_SHIFT 4
187 #define MSI_CFG2_SH_NSH (0UL << MSI_CFG2_SH_SHIFT)
188 #define MSI_CFG2_SH_OSH (2UL << MSI_CFG2_SH_SHIFT)
189 #define MSI_CFG2_SH_ISH (3UL << MSI_CFG2_SH_SHIFT)
190 #define MSI_CFG2_MEMATTR_SHIFT 0
191 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE (0x1 << MSI_CFG2_MEMATTR_SHIFT)
192
193 #define Q_IDX(q, p) ((p) & ((1 << (q)->max_n_shift) - 1))
194 #define Q_WRP(q, p) ((p) & (1 << (q)->max_n_shift))
195 #define Q_OVERFLOW_FLAG (1 << 31)
196 #define Q_OVF(q, p) ((p) & Q_OVERFLOW_FLAG)
197 #define Q_ENT(q, p) ((q)->base + \
198 Q_IDX(q, p) * (q)->ent_dwords)
199
200 #define Q_BASE_RWA (1UL << 62)
201 #define Q_BASE_ADDR_SHIFT 5
202 #define Q_BASE_ADDR_MASK 0xfffffffffffUL
203 #define Q_BASE_LOG2SIZE_SHIFT 0
204 #define Q_BASE_LOG2SIZE_MASK 0x1fUL
205
206 /*
207 * Stream table.
208 *
209 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
210 * 2lvl: 128k L1 entries,
211 * 256 lazy entries per table (each table covers a PCI bus)
212 */
213 #define STRTAB_L1_SZ_SHIFT 20
214 #define STRTAB_SPLIT 8
215
216 #define STRTAB_L1_DESC_DWORDS 1
217 #define STRTAB_L1_DESC_SPAN_SHIFT 0
218 #define STRTAB_L1_DESC_SPAN_MASK 0x1fUL
219 #define STRTAB_L1_DESC_L2PTR_SHIFT 6
220 #define STRTAB_L1_DESC_L2PTR_MASK 0x3ffffffffffUL
221
222 #define STRTAB_STE_DWORDS 8
223 #define STRTAB_STE_0_V (1UL << 0)
224 #define STRTAB_STE_0_CFG_SHIFT 1
225 #define STRTAB_STE_0_CFG_MASK 0x7UL
226 #define STRTAB_STE_0_CFG_ABORT (0UL << STRTAB_STE_0_CFG_SHIFT)
227 #define STRTAB_STE_0_CFG_BYPASS (4UL << STRTAB_STE_0_CFG_SHIFT)
228 #define STRTAB_STE_0_CFG_S1_TRANS (5UL << STRTAB_STE_0_CFG_SHIFT)
229 #define STRTAB_STE_0_CFG_S2_TRANS (6UL << STRTAB_STE_0_CFG_SHIFT)
230
231 #define STRTAB_STE_0_S1FMT_SHIFT 4
232 #define STRTAB_STE_0_S1FMT_LINEAR (0UL << STRTAB_STE_0_S1FMT_SHIFT)
233 #define STRTAB_STE_0_S1CTXPTR_SHIFT 6
234 #define STRTAB_STE_0_S1CTXPTR_MASK 0x3ffffffffffUL
235 #define STRTAB_STE_0_S1CDMAX_SHIFT 59
236 #define STRTAB_STE_0_S1CDMAX_MASK 0x1fUL
237
238 #define STRTAB_STE_1_S1C_CACHE_NC 0UL
239 #define STRTAB_STE_1_S1C_CACHE_WBRA 1UL
240 #define STRTAB_STE_1_S1C_CACHE_WT 2UL
241 #define STRTAB_STE_1_S1C_CACHE_WB 3UL
242 #define STRTAB_STE_1_S1C_SH_NSH 0UL
243 #define STRTAB_STE_1_S1C_SH_OSH 2UL
244 #define STRTAB_STE_1_S1C_SH_ISH 3UL
245 #define STRTAB_STE_1_S1CIR_SHIFT 2
246 #define STRTAB_STE_1_S1COR_SHIFT 4
247 #define STRTAB_STE_1_S1CSH_SHIFT 6
248
249 #define STRTAB_STE_1_S1STALLD (1UL << 27)
250
251 #define STRTAB_STE_1_EATS_ABT 0UL
252 #define STRTAB_STE_1_EATS_TRANS 1UL
253 #define STRTAB_STE_1_EATS_S1CHK 2UL
254 #define STRTAB_STE_1_EATS_SHIFT 28
255
256 #define STRTAB_STE_1_STRW_NSEL1 0UL
257 #define STRTAB_STE_1_STRW_EL2 2UL
258 #define STRTAB_STE_1_STRW_SHIFT 30
259
260 #define STRTAB_STE_1_SHCFG_INCOMING 1UL
261 #define STRTAB_STE_1_SHCFG_SHIFT 44
262
263 #define STRTAB_STE_2_S2VMID_SHIFT 0
264 #define STRTAB_STE_2_S2VMID_MASK 0xffffUL
265 #define STRTAB_STE_2_VTCR_SHIFT 32
266 #define STRTAB_STE_2_VTCR_MASK 0x7ffffUL
267 #define STRTAB_STE_2_S2AA64 (1UL << 51)
268 #define STRTAB_STE_2_S2ENDI (1UL << 52)
269 #define STRTAB_STE_2_S2PTW (1UL << 54)
270 #define STRTAB_STE_2_S2R (1UL << 58)
271
272 #define STRTAB_STE_3_S2TTB_SHIFT 4
273 #define STRTAB_STE_3_S2TTB_MASK 0xfffffffffffUL
274
275 /* Context descriptor (stage-1 only) */
276 #define CTXDESC_CD_DWORDS 8
277 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT 0
278 #define ARM64_TCR_T0SZ_SHIFT 0
279 #define ARM64_TCR_T0SZ_MASK 0x1fUL
280 #define CTXDESC_CD_0_TCR_TG0_SHIFT 6
281 #define ARM64_TCR_TG0_SHIFT 14
282 #define ARM64_TCR_TG0_MASK 0x3UL
283 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT 8
284 #define ARM64_TCR_IRGN0_SHIFT 8
285 #define ARM64_TCR_IRGN0_MASK 0x3UL
286 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT 10
287 #define ARM64_TCR_ORGN0_SHIFT 10
288 #define ARM64_TCR_ORGN0_MASK 0x3UL
289 #define CTXDESC_CD_0_TCR_SH0_SHIFT 12
290 #define ARM64_TCR_SH0_SHIFT 12
291 #define ARM64_TCR_SH0_MASK 0x3UL
292 #define CTXDESC_CD_0_TCR_EPD0_SHIFT 14
293 #define ARM64_TCR_EPD0_SHIFT 7
294 #define ARM64_TCR_EPD0_MASK 0x1UL
295 #define CTXDESC_CD_0_TCR_EPD1_SHIFT 30
296 #define ARM64_TCR_EPD1_SHIFT 23
297 #define ARM64_TCR_EPD1_MASK 0x1UL
298
299 #define CTXDESC_CD_0_ENDI (1UL << 15)
300 #define CTXDESC_CD_0_V (1UL << 31)
301
302 #define CTXDESC_CD_0_TCR_IPS_SHIFT 32
303 #define ARM64_TCR_IPS_SHIFT 32
304 #define ARM64_TCR_IPS_MASK 0x7UL
305 #define CTXDESC_CD_0_TCR_TBI0_SHIFT 38
306 #define ARM64_TCR_TBI0_SHIFT 37
307 #define ARM64_TCR_TBI0_MASK 0x1UL
308
309 #define CTXDESC_CD_0_AA64 (1UL << 41)
310 #define CTXDESC_CD_0_R (1UL << 45)
311 #define CTXDESC_CD_0_A (1UL << 46)
312 #define CTXDESC_CD_0_ASET_SHIFT 47
313 #define CTXDESC_CD_0_ASET_SHARED (0UL << CTXDESC_CD_0_ASET_SHIFT)
314 #define CTXDESC_CD_0_ASET_PRIVATE (1UL << CTXDESC_CD_0_ASET_SHIFT)
315 #define CTXDESC_CD_0_ASID_SHIFT 48
316 #define CTXDESC_CD_0_ASID_MASK 0xffffUL
317
318 #define CTXDESC_CD_1_TTB0_SHIFT 4
319 #define CTXDESC_CD_1_TTB0_MASK 0xfffffffffffUL
320
321 #define CTXDESC_CD_3_MAIR_SHIFT 0
322
323 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
324 #define ARM_SMMU_TCR2CD(tcr, fld) \
325 (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK) \
326 << CTXDESC_CD_0_TCR_##fld##_SHIFT)
327
328 /* Command queue */
329 #define CMDQ_ENT_DWORDS 2
330 #define CMDQ_MAX_SZ_SHIFT 8
331
332 #define CMDQ_ERR_SHIFT 24
333 #define CMDQ_ERR_MASK 0x7f
334 #define CMDQ_ERR_CERROR_NONE_IDX 0
335 #define CMDQ_ERR_CERROR_ILL_IDX 1
336 #define CMDQ_ERR_CERROR_ABT_IDX 2
337
338 #define CMDQ_0_OP_SHIFT 0
339 #define CMDQ_0_OP_MASK 0xffUL
340 #define CMDQ_0_SSV (1UL << 11)
341
342 #define CMDQ_PREFETCH_0_SID_SHIFT 32
343 #define CMDQ_PREFETCH_1_SIZE_SHIFT 0
344 #define CMDQ_PREFETCH_1_ADDR_MASK ~0xfffUL
345
346 #define CMDQ_CFGI_0_SID_SHIFT 32
347 #define CMDQ_CFGI_0_SID_MASK 0xffffffffUL
348 #define CMDQ_CFGI_1_LEAF (1UL << 0)
349 #define CMDQ_CFGI_1_RANGE_SHIFT 0
350 #define CMDQ_CFGI_1_RANGE_MASK 0x1fUL
351
352 #define CMDQ_TLBI_0_VMID_SHIFT 32
353 #define CMDQ_TLBI_0_ASID_SHIFT 48
354 #define CMDQ_TLBI_1_LEAF (1UL << 0)
355 #define CMDQ_TLBI_1_VA_MASK ~0xfffUL
356 #define CMDQ_TLBI_1_IPA_MASK 0xfffffffff000UL
357
358 #define CMDQ_PRI_0_SSID_SHIFT 12
359 #define CMDQ_PRI_0_SSID_MASK 0xfffffUL
360 #define CMDQ_PRI_0_SID_SHIFT 32
361 #define CMDQ_PRI_0_SID_MASK 0xffffffffUL
362 #define CMDQ_PRI_1_GRPID_SHIFT 0
363 #define CMDQ_PRI_1_GRPID_MASK 0x1ffUL
364 #define CMDQ_PRI_1_RESP_SHIFT 12
365 #define CMDQ_PRI_1_RESP_DENY (0UL << CMDQ_PRI_1_RESP_SHIFT)
366 #define CMDQ_PRI_1_RESP_FAIL (1UL << CMDQ_PRI_1_RESP_SHIFT)
367 #define CMDQ_PRI_1_RESP_SUCC (2UL << CMDQ_PRI_1_RESP_SHIFT)
368
369 #define CMDQ_SYNC_0_CS_SHIFT 12
370 #define CMDQ_SYNC_0_CS_NONE (0UL << CMDQ_SYNC_0_CS_SHIFT)
371 #define CMDQ_SYNC_0_CS_SEV (2UL << CMDQ_SYNC_0_CS_SHIFT)
372
373 /* Event queue */
374 #define EVTQ_ENT_DWORDS 4
375 #define EVTQ_MAX_SZ_SHIFT 7
376
377 #define EVTQ_0_ID_SHIFT 0
378 #define EVTQ_0_ID_MASK 0xffUL
379
380 /* PRI queue */
381 #define PRIQ_ENT_DWORDS 2
382 #define PRIQ_MAX_SZ_SHIFT 8
383
384 #define PRIQ_0_SID_SHIFT 0
385 #define PRIQ_0_SID_MASK 0xffffffffUL
386 #define PRIQ_0_SSID_SHIFT 32
387 #define PRIQ_0_SSID_MASK 0xfffffUL
388 #define PRIQ_0_PERM_PRIV (1UL << 58)
389 #define PRIQ_0_PERM_EXEC (1UL << 59)
390 #define PRIQ_0_PERM_READ (1UL << 60)
391 #define PRIQ_0_PERM_WRITE (1UL << 61)
392 #define PRIQ_0_PRG_LAST (1UL << 62)
393 #define PRIQ_0_SSID_V (1UL << 63)
394
395 #define PRIQ_1_PRG_IDX_SHIFT 0
396 #define PRIQ_1_PRG_IDX_MASK 0x1ffUL
397 #define PRIQ_1_ADDR_SHIFT 12
398 #define PRIQ_1_ADDR_MASK 0xfffffffffffffUL
399
400 /* High-level queue structures */
401 #define ARM_SMMU_POLL_TIMEOUT_US 100
402
403 static bool disable_bypass;
404 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
405 MODULE_PARM_DESC(disable_bypass,
406 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
407
408 enum pri_resp {
409 PRI_RESP_DENY,
410 PRI_RESP_FAIL,
411 PRI_RESP_SUCC,
412 };
413
414 enum arm_smmu_msi_index {
415 EVTQ_MSI_INDEX,
416 GERROR_MSI_INDEX,
417 PRIQ_MSI_INDEX,
418 ARM_SMMU_MAX_MSIS,
419 };
420
421 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
422 [EVTQ_MSI_INDEX] = {
423 ARM_SMMU_EVTQ_IRQ_CFG0,
424 ARM_SMMU_EVTQ_IRQ_CFG1,
425 ARM_SMMU_EVTQ_IRQ_CFG2,
426 },
427 [GERROR_MSI_INDEX] = {
428 ARM_SMMU_GERROR_IRQ_CFG0,
429 ARM_SMMU_GERROR_IRQ_CFG1,
430 ARM_SMMU_GERROR_IRQ_CFG2,
431 },
432 [PRIQ_MSI_INDEX] = {
433 ARM_SMMU_PRIQ_IRQ_CFG0,
434 ARM_SMMU_PRIQ_IRQ_CFG1,
435 ARM_SMMU_PRIQ_IRQ_CFG2,
436 },
437 };
438
439 struct arm_smmu_cmdq_ent {
440 /* Common fields */
441 u8 opcode;
442 bool substream_valid;
443
444 /* Command-specific fields */
445 union {
446 #define CMDQ_OP_PREFETCH_CFG 0x1
447 struct {
448 u32 sid;
449 u8 size;
450 u64 addr;
451 } prefetch;
452
453 #define CMDQ_OP_CFGI_STE 0x3
454 #define CMDQ_OP_CFGI_ALL 0x4
455 struct {
456 u32 sid;
457 union {
458 bool leaf;
459 u8 span;
460 };
461 } cfgi;
462
463 #define CMDQ_OP_TLBI_NH_ASID 0x11
464 #define CMDQ_OP_TLBI_NH_VA 0x12
465 #define CMDQ_OP_TLBI_EL2_ALL 0x20
466 #define CMDQ_OP_TLBI_S12_VMALL 0x28
467 #define CMDQ_OP_TLBI_S2_IPA 0x2a
468 #define CMDQ_OP_TLBI_NSNH_ALL 0x30
469 struct {
470 u16 asid;
471 u16 vmid;
472 bool leaf;
473 u64 addr;
474 } tlbi;
475
476 #define CMDQ_OP_PRI_RESP 0x41
477 struct {
478 u32 sid;
479 u32 ssid;
480 u16 grpid;
481 enum pri_resp resp;
482 } pri;
483
484 #define CMDQ_OP_CMD_SYNC 0x46
485 };
486 };
487
488 struct arm_smmu_queue {
489 int irq; /* Wired interrupt */
490
491 __le64 *base;
492 dma_addr_t base_dma;
493 u64 q_base;
494
495 size_t ent_dwords;
496 u32 max_n_shift;
497 u32 prod;
498 u32 cons;
499
500 u32 __iomem *prod_reg;
501 u32 __iomem *cons_reg;
502 };
503
504 struct arm_smmu_cmdq {
505 struct arm_smmu_queue q;
506 spinlock_t lock;
507 };
508
509 struct arm_smmu_evtq {
510 struct arm_smmu_queue q;
511 u32 max_stalls;
512 };
513
514 struct arm_smmu_priq {
515 struct arm_smmu_queue q;
516 };
517
518 /* High-level stream table and context descriptor structures */
519 struct arm_smmu_strtab_l1_desc {
520 u8 span;
521
522 __le64 *l2ptr;
523 dma_addr_t l2ptr_dma;
524 };
525
526 struct arm_smmu_s1_cfg {
527 __le64 *cdptr;
528 dma_addr_t cdptr_dma;
529
530 struct arm_smmu_ctx_desc {
531 u16 asid;
532 u64 ttbr;
533 u64 tcr;
534 u64 mair;
535 } cd;
536 };
537
538 struct arm_smmu_s2_cfg {
539 u16 vmid;
540 u64 vttbr;
541 u64 vtcr;
542 };
543
544 struct arm_smmu_strtab_ent {
545 bool valid;
546
547 bool bypass; /* Overrides s1/s2 config */
548 struct arm_smmu_s1_cfg *s1_cfg;
549 struct arm_smmu_s2_cfg *s2_cfg;
550 };
551
552 struct arm_smmu_strtab_cfg {
553 __le64 *strtab;
554 dma_addr_t strtab_dma;
555 struct arm_smmu_strtab_l1_desc *l1_desc;
556 unsigned int num_l1_ents;
557
558 u64 strtab_base;
559 u32 strtab_base_cfg;
560 };
561
562 /* An SMMUv3 instance */
563 struct arm_smmu_device {
564 struct device *dev;
565 void __iomem *base;
566
567 #define ARM_SMMU_FEAT_2_LVL_STRTAB (1 << 0)
568 #define ARM_SMMU_FEAT_2_LVL_CDTAB (1 << 1)
569 #define ARM_SMMU_FEAT_TT_LE (1 << 2)
570 #define ARM_SMMU_FEAT_TT_BE (1 << 3)
571 #define ARM_SMMU_FEAT_PRI (1 << 4)
572 #define ARM_SMMU_FEAT_ATS (1 << 5)
573 #define ARM_SMMU_FEAT_SEV (1 << 6)
574 #define ARM_SMMU_FEAT_MSI (1 << 7)
575 #define ARM_SMMU_FEAT_COHERENCY (1 << 8)
576 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 9)
577 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 10)
578 #define ARM_SMMU_FEAT_STALLS (1 << 11)
579 #define ARM_SMMU_FEAT_HYP (1 << 12)
580 u32 features;
581
582 #define ARM_SMMU_OPT_SKIP_PREFETCH (1 << 0)
583 u32 options;
584
585 struct arm_smmu_cmdq cmdq;
586 struct arm_smmu_evtq evtq;
587 struct arm_smmu_priq priq;
588
589 int gerr_irq;
590
591 unsigned long ias; /* IPA */
592 unsigned long oas; /* PA */
593
594 #define ARM_SMMU_MAX_ASIDS (1 << 16)
595 unsigned int asid_bits;
596 DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
597
598 #define ARM_SMMU_MAX_VMIDS (1 << 16)
599 unsigned int vmid_bits;
600 DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
601
602 unsigned int ssid_bits;
603 unsigned int sid_bits;
604
605 struct arm_smmu_strtab_cfg strtab_cfg;
606 };
607
608 /* SMMU private data for an IOMMU group */
609 struct arm_smmu_group {
610 struct arm_smmu_device *smmu;
611 struct arm_smmu_domain *domain;
612 int num_sids;
613 u32 *sids;
614 struct arm_smmu_strtab_ent ste;
615 };
616
617 /* SMMU private data for an IOMMU domain */
618 enum arm_smmu_domain_stage {
619 ARM_SMMU_DOMAIN_S1 = 0,
620 ARM_SMMU_DOMAIN_S2,
621 ARM_SMMU_DOMAIN_NESTED,
622 };
623
624 struct arm_smmu_domain {
625 struct arm_smmu_device *smmu;
626 struct mutex init_mutex; /* Protects smmu pointer */
627
628 struct io_pgtable_ops *pgtbl_ops;
629 spinlock_t pgtbl_lock;
630
631 enum arm_smmu_domain_stage stage;
632 union {
633 struct arm_smmu_s1_cfg s1_cfg;
634 struct arm_smmu_s2_cfg s2_cfg;
635 };
636
637 struct iommu_domain domain;
638 };
639
640 struct arm_smmu_option_prop {
641 u32 opt;
642 const char *prop;
643 };
644
645 static struct arm_smmu_option_prop arm_smmu_options[] = {
646 { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
647 { 0, NULL},
648 };
649
650 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
651 {
652 return container_of(dom, struct arm_smmu_domain, domain);
653 }
654
655 static void parse_driver_options(struct arm_smmu_device *smmu)
656 {
657 int i = 0;
658
659 do {
660 if (of_property_read_bool(smmu->dev->of_node,
661 arm_smmu_options[i].prop)) {
662 smmu->options |= arm_smmu_options[i].opt;
663 dev_notice(smmu->dev, "option %s\n",
664 arm_smmu_options[i].prop);
665 }
666 } while (arm_smmu_options[++i].opt);
667 }
668
669 /* Low-level queue manipulation functions */
670 static bool queue_full(struct arm_smmu_queue *q)
671 {
672 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
673 Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
674 }
675
676 static bool queue_empty(struct arm_smmu_queue *q)
677 {
678 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
679 Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
680 }
681
682 static void queue_sync_cons(struct arm_smmu_queue *q)
683 {
684 q->cons = readl_relaxed(q->cons_reg);
685 }
686
687 static void queue_inc_cons(struct arm_smmu_queue *q)
688 {
689 u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
690
691 q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
692 writel(q->cons, q->cons_reg);
693 }
694
695 static int queue_sync_prod(struct arm_smmu_queue *q)
696 {
697 int ret = 0;
698 u32 prod = readl_relaxed(q->prod_reg);
699
700 if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
701 ret = -EOVERFLOW;
702
703 q->prod = prod;
704 return ret;
705 }
706
707 static void queue_inc_prod(struct arm_smmu_queue *q)
708 {
709 u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
710
711 q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
712 writel(q->prod, q->prod_reg);
713 }
714
715 static bool __queue_cons_before(struct arm_smmu_queue *q, u32 until)
716 {
717 if (Q_WRP(q, q->cons) == Q_WRP(q, until))
718 return Q_IDX(q, q->cons) < Q_IDX(q, until);
719
720 return Q_IDX(q, q->cons) >= Q_IDX(q, until);
721 }
722
723 static int queue_poll_cons(struct arm_smmu_queue *q, u32 until, bool wfe)
724 {
725 ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
726
727 while (queue_sync_cons(q), __queue_cons_before(q, until)) {
728 if (ktime_compare(ktime_get(), timeout) > 0)
729 return -ETIMEDOUT;
730
731 if (wfe) {
732 wfe();
733 } else {
734 cpu_relax();
735 udelay(1);
736 }
737 }
738
739 return 0;
740 }
741
742 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
743 {
744 int i;
745
746 for (i = 0; i < n_dwords; ++i)
747 *dst++ = cpu_to_le64(*src++);
748 }
749
750 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
751 {
752 if (queue_full(q))
753 return -ENOSPC;
754
755 queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
756 queue_inc_prod(q);
757 return 0;
758 }
759
760 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
761 {
762 int i;
763
764 for (i = 0; i < n_dwords; ++i)
765 *dst++ = le64_to_cpu(*src++);
766 }
767
768 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
769 {
770 if (queue_empty(q))
771 return -EAGAIN;
772
773 queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
774 queue_inc_cons(q);
775 return 0;
776 }
777
778 /* High-level queue accessors */
779 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
780 {
781 memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
782 cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
783
784 switch (ent->opcode) {
785 case CMDQ_OP_TLBI_EL2_ALL:
786 case CMDQ_OP_TLBI_NSNH_ALL:
787 break;
788 case CMDQ_OP_PREFETCH_CFG:
789 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
790 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
791 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
792 break;
793 case CMDQ_OP_CFGI_STE:
794 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
795 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
796 break;
797 case CMDQ_OP_CFGI_ALL:
798 /* Cover the entire SID range */
799 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
800 break;
801 case CMDQ_OP_TLBI_NH_VA:
802 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
803 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
804 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
805 break;
806 case CMDQ_OP_TLBI_S2_IPA:
807 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
808 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
809 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
810 break;
811 case CMDQ_OP_TLBI_NH_ASID:
812 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
813 /* Fallthrough */
814 case CMDQ_OP_TLBI_S12_VMALL:
815 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
816 break;
817 case CMDQ_OP_PRI_RESP:
818 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
819 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
820 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
821 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
822 switch (ent->pri.resp) {
823 case PRI_RESP_DENY:
824 cmd[1] |= CMDQ_PRI_1_RESP_DENY;
825 break;
826 case PRI_RESP_FAIL:
827 cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
828 break;
829 case PRI_RESP_SUCC:
830 cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
831 break;
832 default:
833 return -EINVAL;
834 }
835 break;
836 case CMDQ_OP_CMD_SYNC:
837 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
838 break;
839 default:
840 return -ENOENT;
841 }
842
843 return 0;
844 }
845
846 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
847 {
848 static const char *cerror_str[] = {
849 [CMDQ_ERR_CERROR_NONE_IDX] = "No error",
850 [CMDQ_ERR_CERROR_ILL_IDX] = "Illegal command",
851 [CMDQ_ERR_CERROR_ABT_IDX] = "Abort on command fetch",
852 };
853
854 int i;
855 u64 cmd[CMDQ_ENT_DWORDS];
856 struct arm_smmu_queue *q = &smmu->cmdq.q;
857 u32 cons = readl_relaxed(q->cons_reg);
858 u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
859 struct arm_smmu_cmdq_ent cmd_sync = {
860 .opcode = CMDQ_OP_CMD_SYNC,
861 };
862
863 dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
864 idx < ARRAY_SIZE(cerror_str) ? cerror_str[idx] : "Unknown");
865
866 switch (idx) {
867 case CMDQ_ERR_CERROR_ABT_IDX:
868 dev_err(smmu->dev, "retrying command fetch\n");
869 case CMDQ_ERR_CERROR_NONE_IDX:
870 return;
871 case CMDQ_ERR_CERROR_ILL_IDX:
872 /* Fallthrough */
873 default:
874 break;
875 }
876
877 /*
878 * We may have concurrent producers, so we need to be careful
879 * not to touch any of the shadow cmdq state.
880 */
881 queue_read(cmd, Q_ENT(q, idx), q->ent_dwords);
882 dev_err(smmu->dev, "skipping command in error state:\n");
883 for (i = 0; i < ARRAY_SIZE(cmd); ++i)
884 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
885
886 /* Convert the erroneous command into a CMD_SYNC */
887 if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
888 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
889 return;
890 }
891
892 queue_write(cmd, Q_ENT(q, idx), q->ent_dwords);
893 }
894
895 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
896 struct arm_smmu_cmdq_ent *ent)
897 {
898 u32 until;
899 u64 cmd[CMDQ_ENT_DWORDS];
900 bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
901 struct arm_smmu_queue *q = &smmu->cmdq.q;
902
903 if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
904 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
905 ent->opcode);
906 return;
907 }
908
909 spin_lock(&smmu->cmdq.lock);
910 while (until = q->prod + 1, queue_insert_raw(q, cmd) == -ENOSPC) {
911 /*
912 * Keep the queue locked, otherwise the producer could wrap
913 * twice and we could see a future consumer pointer that looks
914 * like it's behind us.
915 */
916 if (queue_poll_cons(q, until, wfe))
917 dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
918 }
919
920 if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, until, wfe))
921 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
922 spin_unlock(&smmu->cmdq.lock);
923 }
924
925 /* Context descriptor manipulation functions */
926 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
927 {
928 u64 val = 0;
929
930 /* Repack the TCR. Just care about TTBR0 for now */
931 val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
932 val |= ARM_SMMU_TCR2CD(tcr, TG0);
933 val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
934 val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
935 val |= ARM_SMMU_TCR2CD(tcr, SH0);
936 val |= ARM_SMMU_TCR2CD(tcr, EPD0);
937 val |= ARM_SMMU_TCR2CD(tcr, EPD1);
938 val |= ARM_SMMU_TCR2CD(tcr, IPS);
939 val |= ARM_SMMU_TCR2CD(tcr, TBI0);
940
941 return val;
942 }
943
944 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
945 struct arm_smmu_s1_cfg *cfg)
946 {
947 u64 val;
948
949 /*
950 * We don't need to issue any invalidation here, as we'll invalidate
951 * the STE when installing the new entry anyway.
952 */
953 val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
954 #ifdef __BIG_ENDIAN
955 CTXDESC_CD_0_ENDI |
956 #endif
957 CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
958 CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
959 CTXDESC_CD_0_V;
960 cfg->cdptr[0] = cpu_to_le64(val);
961
962 val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
963 cfg->cdptr[1] = cpu_to_le64(val);
964
965 cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
966 }
967
968 /* Stream table manipulation functions */
969 static void
970 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
971 {
972 u64 val = 0;
973
974 val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
975 << STRTAB_L1_DESC_SPAN_SHIFT;
976 val |= desc->l2ptr_dma &
977 STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
978
979 *dst = cpu_to_le64(val);
980 }
981
982 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
983 {
984 struct arm_smmu_cmdq_ent cmd = {
985 .opcode = CMDQ_OP_CFGI_STE,
986 .cfgi = {
987 .sid = sid,
988 .leaf = true,
989 },
990 };
991
992 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
993 cmd.opcode = CMDQ_OP_CMD_SYNC;
994 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
995 }
996
997 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
998 __le64 *dst, struct arm_smmu_strtab_ent *ste)
999 {
1000 /*
1001 * This is hideously complicated, but we only really care about
1002 * three cases at the moment:
1003 *
1004 * 1. Invalid (all zero) -> bypass (init)
1005 * 2. Bypass -> translation (attach)
1006 * 3. Translation -> bypass (detach)
1007 *
1008 * Given that we can't update the STE atomically and the SMMU
1009 * doesn't read the thing in a defined order, that leaves us
1010 * with the following maintenance requirements:
1011 *
1012 * 1. Update Config, return (init time STEs aren't live)
1013 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1014 * 3. Update Config, sync
1015 */
1016 u64 val = le64_to_cpu(dst[0]);
1017 bool ste_live = false;
1018 struct arm_smmu_cmdq_ent prefetch_cmd = {
1019 .opcode = CMDQ_OP_PREFETCH_CFG,
1020 .prefetch = {
1021 .sid = sid,
1022 },
1023 };
1024
1025 if (val & STRTAB_STE_0_V) {
1026 u64 cfg;
1027
1028 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1029 switch (cfg) {
1030 case STRTAB_STE_0_CFG_BYPASS:
1031 break;
1032 case STRTAB_STE_0_CFG_S1_TRANS:
1033 case STRTAB_STE_0_CFG_S2_TRANS:
1034 ste_live = true;
1035 break;
1036 default:
1037 BUG(); /* STE corruption */
1038 }
1039 }
1040
1041 /* Nuke the existing Config, as we're going to rewrite it */
1042 val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1043
1044 if (ste->valid)
1045 val |= STRTAB_STE_0_V;
1046 else
1047 val &= ~STRTAB_STE_0_V;
1048
1049 if (ste->bypass) {
1050 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1051 : STRTAB_STE_0_CFG_BYPASS;
1052 dst[0] = cpu_to_le64(val);
1053 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1054 << STRTAB_STE_1_SHCFG_SHIFT);
1055 dst[2] = 0; /* Nuke the VMID */
1056 if (ste_live)
1057 arm_smmu_sync_ste_for_sid(smmu, sid);
1058 return;
1059 }
1060
1061 if (ste->s1_cfg) {
1062 BUG_ON(ste_live);
1063 dst[1] = cpu_to_le64(
1064 STRTAB_STE_1_S1C_CACHE_WBRA
1065 << STRTAB_STE_1_S1CIR_SHIFT |
1066 STRTAB_STE_1_S1C_CACHE_WBRA
1067 << STRTAB_STE_1_S1COR_SHIFT |
1068 STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1069 #ifdef CONFIG_PCI_ATS
1070 STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1071 #endif
1072 STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1073
1074 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1075 dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1076
1077 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1078 << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1079 STRTAB_STE_0_CFG_S1_TRANS;
1080
1081 }
1082
1083 if (ste->s2_cfg) {
1084 BUG_ON(ste_live);
1085 dst[2] = cpu_to_le64(
1086 ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1087 (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1088 << STRTAB_STE_2_VTCR_SHIFT |
1089 #ifdef __BIG_ENDIAN
1090 STRTAB_STE_2_S2ENDI |
1091 #endif
1092 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1093 STRTAB_STE_2_S2R);
1094
1095 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1096 STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1097
1098 val |= STRTAB_STE_0_CFG_S2_TRANS;
1099 }
1100
1101 arm_smmu_sync_ste_for_sid(smmu, sid);
1102 dst[0] = cpu_to_le64(val);
1103 arm_smmu_sync_ste_for_sid(smmu, sid);
1104
1105 /* It's likely that we'll want to use the new STE soon */
1106 if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1107 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1108 }
1109
1110 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1111 {
1112 unsigned int i;
1113 struct arm_smmu_strtab_ent ste = {
1114 .valid = true,
1115 .bypass = true,
1116 };
1117
1118 for (i = 0; i < nent; ++i) {
1119 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1120 strtab += STRTAB_STE_DWORDS;
1121 }
1122 }
1123
1124 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1125 {
1126 size_t size;
1127 void *strtab;
1128 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1129 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1130
1131 if (desc->l2ptr)
1132 return 0;
1133
1134 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1135 strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1136
1137 desc->span = STRTAB_SPLIT + 1;
1138 desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1139 GFP_KERNEL | __GFP_ZERO);
1140 if (!desc->l2ptr) {
1141 dev_err(smmu->dev,
1142 "failed to allocate l2 stream table for SID %u\n",
1143 sid);
1144 return -ENOMEM;
1145 }
1146
1147 arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1148 arm_smmu_write_strtab_l1_desc(strtab, desc);
1149 return 0;
1150 }
1151
1152 /* IRQ and event handlers */
1153 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1154 {
1155 int i;
1156 struct arm_smmu_device *smmu = dev;
1157 struct arm_smmu_queue *q = &smmu->evtq.q;
1158 u64 evt[EVTQ_ENT_DWORDS];
1159
1160 while (!queue_remove_raw(q, evt)) {
1161 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1162
1163 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1164 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1165 dev_info(smmu->dev, "\t0x%016llx\n",
1166 (unsigned long long)evt[i]);
1167 }
1168
1169 /* Sync our overflow flag, as we believe we're up to speed */
1170 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1171 return IRQ_HANDLED;
1172 }
1173
1174 static irqreturn_t arm_smmu_evtq_handler(int irq, void *dev)
1175 {
1176 irqreturn_t ret = IRQ_WAKE_THREAD;
1177 struct arm_smmu_device *smmu = dev;
1178 struct arm_smmu_queue *q = &smmu->evtq.q;
1179
1180 /*
1181 * Not much we can do on overflow, so scream and pretend we're
1182 * trying harder.
1183 */
1184 if (queue_sync_prod(q) == -EOVERFLOW)
1185 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1186 else if (queue_empty(q))
1187 ret = IRQ_NONE;
1188
1189 return ret;
1190 }
1191
1192 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1193 {
1194 struct arm_smmu_device *smmu = dev;
1195 struct arm_smmu_queue *q = &smmu->priq.q;
1196 u64 evt[PRIQ_ENT_DWORDS];
1197
1198 while (!queue_remove_raw(q, evt)) {
1199 u32 sid, ssid;
1200 u16 grpid;
1201 bool ssv, last;
1202
1203 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1204 ssv = evt[0] & PRIQ_0_SSID_V;
1205 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1206 last = evt[0] & PRIQ_0_PRG_LAST;
1207 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1208
1209 dev_info(smmu->dev, "unexpected PRI request received:\n");
1210 dev_info(smmu->dev,
1211 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1212 sid, ssid, grpid, last ? "L" : "",
1213 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1214 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1215 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1216 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1217 evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1218
1219 if (last) {
1220 struct arm_smmu_cmdq_ent cmd = {
1221 .opcode = CMDQ_OP_PRI_RESP,
1222 .substream_valid = ssv,
1223 .pri = {
1224 .sid = sid,
1225 .ssid = ssid,
1226 .grpid = grpid,
1227 .resp = PRI_RESP_DENY,
1228 },
1229 };
1230
1231 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1232 }
1233 }
1234
1235 /* Sync our overflow flag, as we believe we're up to speed */
1236 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1237 return IRQ_HANDLED;
1238 }
1239
1240 static irqreturn_t arm_smmu_priq_handler(int irq, void *dev)
1241 {
1242 irqreturn_t ret = IRQ_WAKE_THREAD;
1243 struct arm_smmu_device *smmu = dev;
1244 struct arm_smmu_queue *q = &smmu->priq.q;
1245
1246 /* PRIQ overflow indicates a programming error */
1247 if (queue_sync_prod(q) == -EOVERFLOW)
1248 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1249 else if (queue_empty(q))
1250 ret = IRQ_NONE;
1251
1252 return ret;
1253 }
1254
1255 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1256 {
1257 /* We don't actually use CMD_SYNC interrupts for anything */
1258 return IRQ_HANDLED;
1259 }
1260
1261 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1262
1263 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1264 {
1265 u32 gerror, gerrorn, active;
1266 struct arm_smmu_device *smmu = dev;
1267
1268 gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1269 gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1270
1271 active = gerror ^ gerrorn;
1272 if (!(active & GERROR_ERR_MASK))
1273 return IRQ_NONE; /* No errors pending */
1274
1275 dev_warn(smmu->dev,
1276 "unexpected global error reported (0x%08x), this could be serious\n",
1277 active);
1278
1279 if (active & GERROR_SFM_ERR) {
1280 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1281 arm_smmu_device_disable(smmu);
1282 }
1283
1284 if (active & GERROR_MSI_GERROR_ABT_ERR)
1285 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1286
1287 if (active & GERROR_MSI_PRIQ_ABT_ERR) {
1288 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1289 arm_smmu_priq_handler(irq, smmu->dev);
1290 }
1291
1292 if (active & GERROR_MSI_EVTQ_ABT_ERR) {
1293 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1294 arm_smmu_evtq_handler(irq, smmu->dev);
1295 }
1296
1297 if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1298 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1299 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1300 }
1301
1302 if (active & GERROR_PRIQ_ABT_ERR)
1303 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1304
1305 if (active & GERROR_EVTQ_ABT_ERR)
1306 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1307
1308 if (active & GERROR_CMDQ_ERR)
1309 arm_smmu_cmdq_skip_err(smmu);
1310
1311 writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1312 return IRQ_HANDLED;
1313 }
1314
1315 /* IO_PGTABLE API */
1316 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1317 {
1318 struct arm_smmu_cmdq_ent cmd;
1319
1320 cmd.opcode = CMDQ_OP_CMD_SYNC;
1321 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1322 }
1323
1324 static void arm_smmu_tlb_sync(void *cookie)
1325 {
1326 struct arm_smmu_domain *smmu_domain = cookie;
1327 __arm_smmu_tlb_sync(smmu_domain->smmu);
1328 }
1329
1330 static void arm_smmu_tlb_inv_context(void *cookie)
1331 {
1332 struct arm_smmu_domain *smmu_domain = cookie;
1333 struct arm_smmu_device *smmu = smmu_domain->smmu;
1334 struct arm_smmu_cmdq_ent cmd;
1335
1336 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1337 cmd.opcode = CMDQ_OP_TLBI_NH_ASID;
1338 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1339 cmd.tlbi.vmid = 0;
1340 } else {
1341 cmd.opcode = CMDQ_OP_TLBI_S12_VMALL;
1342 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1343 }
1344
1345 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1346 __arm_smmu_tlb_sync(smmu);
1347 }
1348
1349 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1350 size_t granule, bool leaf, void *cookie)
1351 {
1352 struct arm_smmu_domain *smmu_domain = cookie;
1353 struct arm_smmu_device *smmu = smmu_domain->smmu;
1354 struct arm_smmu_cmdq_ent cmd = {
1355 .tlbi = {
1356 .leaf = leaf,
1357 .addr = iova,
1358 },
1359 };
1360
1361 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1362 cmd.opcode = CMDQ_OP_TLBI_NH_VA;
1363 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1364 } else {
1365 cmd.opcode = CMDQ_OP_TLBI_S2_IPA;
1366 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1367 }
1368
1369 do {
1370 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1371 cmd.tlbi.addr += granule;
1372 } while (size -= granule);
1373 }
1374
1375 static struct iommu_gather_ops arm_smmu_gather_ops = {
1376 .tlb_flush_all = arm_smmu_tlb_inv_context,
1377 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
1378 .tlb_sync = arm_smmu_tlb_sync,
1379 };
1380
1381 /* IOMMU API */
1382 static bool arm_smmu_capable(enum iommu_cap cap)
1383 {
1384 switch (cap) {
1385 case IOMMU_CAP_CACHE_COHERENCY:
1386 return true;
1387 case IOMMU_CAP_INTR_REMAP:
1388 return true; /* MSIs are just memory writes */
1389 case IOMMU_CAP_NOEXEC:
1390 return true;
1391 default:
1392 return false;
1393 }
1394 }
1395
1396 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1397 {
1398 struct arm_smmu_domain *smmu_domain;
1399
1400 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1401 return NULL;
1402
1403 /*
1404 * Allocate the domain and initialise some of its data structures.
1405 * We can't really do anything meaningful until we've added a
1406 * master.
1407 */
1408 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1409 if (!smmu_domain)
1410 return NULL;
1411
1412 if (type == IOMMU_DOMAIN_DMA &&
1413 iommu_get_dma_cookie(&smmu_domain->domain)) {
1414 kfree(smmu_domain);
1415 return NULL;
1416 }
1417
1418 mutex_init(&smmu_domain->init_mutex);
1419 spin_lock_init(&smmu_domain->pgtbl_lock);
1420 return &smmu_domain->domain;
1421 }
1422
1423 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1424 {
1425 int idx, size = 1 << span;
1426
1427 do {
1428 idx = find_first_zero_bit(map, size);
1429 if (idx == size)
1430 return -ENOSPC;
1431 } while (test_and_set_bit(idx, map));
1432
1433 return idx;
1434 }
1435
1436 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1437 {
1438 clear_bit(idx, map);
1439 }
1440
1441 static void arm_smmu_domain_free(struct iommu_domain *domain)
1442 {
1443 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1444 struct arm_smmu_device *smmu = smmu_domain->smmu;
1445
1446 iommu_put_dma_cookie(domain);
1447 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1448
1449 /* Free the CD and ASID, if we allocated them */
1450 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1451 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1452
1453 if (cfg->cdptr) {
1454 dmam_free_coherent(smmu_domain->smmu->dev,
1455 CTXDESC_CD_DWORDS << 3,
1456 cfg->cdptr,
1457 cfg->cdptr_dma);
1458
1459 arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1460 }
1461 } else {
1462 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1463 if (cfg->vmid)
1464 arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1465 }
1466
1467 kfree(smmu_domain);
1468 }
1469
1470 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1471 struct io_pgtable_cfg *pgtbl_cfg)
1472 {
1473 int ret;
1474 int asid;
1475 struct arm_smmu_device *smmu = smmu_domain->smmu;
1476 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1477
1478 asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1479 if (IS_ERR_VALUE(asid))
1480 return asid;
1481
1482 cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1483 &cfg->cdptr_dma,
1484 GFP_KERNEL | __GFP_ZERO);
1485 if (!cfg->cdptr) {
1486 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1487 ret = -ENOMEM;
1488 goto out_free_asid;
1489 }
1490
1491 cfg->cd.asid = (u16)asid;
1492 cfg->cd.ttbr = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1493 cfg->cd.tcr = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1494 cfg->cd.mair = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1495 return 0;
1496
1497 out_free_asid:
1498 arm_smmu_bitmap_free(smmu->asid_map, asid);
1499 return ret;
1500 }
1501
1502 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1503 struct io_pgtable_cfg *pgtbl_cfg)
1504 {
1505 int vmid;
1506 struct arm_smmu_device *smmu = smmu_domain->smmu;
1507 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1508
1509 vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1510 if (IS_ERR_VALUE(vmid))
1511 return vmid;
1512
1513 cfg->vmid = (u16)vmid;
1514 cfg->vttbr = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1515 cfg->vtcr = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1516 return 0;
1517 }
1518
1519 static struct iommu_ops arm_smmu_ops;
1520
1521 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1522 {
1523 int ret;
1524 unsigned long ias, oas;
1525 enum io_pgtable_fmt fmt;
1526 struct io_pgtable_cfg pgtbl_cfg;
1527 struct io_pgtable_ops *pgtbl_ops;
1528 int (*finalise_stage_fn)(struct arm_smmu_domain *,
1529 struct io_pgtable_cfg *);
1530 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1531 struct arm_smmu_device *smmu = smmu_domain->smmu;
1532
1533 /* Restrict the stage to what we can actually support */
1534 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1535 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1536 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1537 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1538
1539 switch (smmu_domain->stage) {
1540 case ARM_SMMU_DOMAIN_S1:
1541 ias = VA_BITS;
1542 oas = smmu->ias;
1543 fmt = ARM_64_LPAE_S1;
1544 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1545 break;
1546 case ARM_SMMU_DOMAIN_NESTED:
1547 case ARM_SMMU_DOMAIN_S2:
1548 ias = smmu->ias;
1549 oas = smmu->oas;
1550 fmt = ARM_64_LPAE_S2;
1551 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1552 break;
1553 default:
1554 return -EINVAL;
1555 }
1556
1557 pgtbl_cfg = (struct io_pgtable_cfg) {
1558 .pgsize_bitmap = arm_smmu_ops.pgsize_bitmap,
1559 .ias = ias,
1560 .oas = oas,
1561 .tlb = &arm_smmu_gather_ops,
1562 .iommu_dev = smmu->dev,
1563 };
1564
1565 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1566 if (!pgtbl_ops)
1567 return -ENOMEM;
1568
1569 arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1570 smmu_domain->pgtbl_ops = pgtbl_ops;
1571
1572 ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1573 if (IS_ERR_VALUE(ret))
1574 free_io_pgtable_ops(pgtbl_ops);
1575
1576 return ret;
1577 }
1578
1579 static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
1580 {
1581 struct iommu_group *group;
1582 struct arm_smmu_group *smmu_group;
1583
1584 group = iommu_group_get(dev);
1585 if (!group)
1586 return NULL;
1587
1588 smmu_group = iommu_group_get_iommudata(group);
1589 iommu_group_put(group);
1590 return smmu_group;
1591 }
1592
1593 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1594 {
1595 __le64 *step;
1596 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1597
1598 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1599 struct arm_smmu_strtab_l1_desc *l1_desc;
1600 int idx;
1601
1602 /* Two-level walk */
1603 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1604 l1_desc = &cfg->l1_desc[idx];
1605 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1606 step = &l1_desc->l2ptr[idx];
1607 } else {
1608 /* Simple linear lookup */
1609 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1610 }
1611
1612 return step;
1613 }
1614
1615 static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
1616 {
1617 int i;
1618 struct arm_smmu_domain *smmu_domain = smmu_group->domain;
1619 struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
1620 struct arm_smmu_device *smmu = smmu_group->smmu;
1621
1622 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1623 ste->s1_cfg = &smmu_domain->s1_cfg;
1624 ste->s2_cfg = NULL;
1625 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1626 } else {
1627 ste->s1_cfg = NULL;
1628 ste->s2_cfg = &smmu_domain->s2_cfg;
1629 }
1630
1631 for (i = 0; i < smmu_group->num_sids; ++i) {
1632 u32 sid = smmu_group->sids[i];
1633 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1634
1635 arm_smmu_write_strtab_ent(smmu, sid, step, ste);
1636 }
1637
1638 return 0;
1639 }
1640
1641 static void arm_smmu_detach_dev(struct device *dev)
1642 {
1643 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1644
1645 smmu_group->ste.bypass = true;
1646 if (IS_ERR_VALUE(arm_smmu_install_ste_for_group(smmu_group)))
1647 dev_warn(dev, "failed to install bypass STE\n");
1648
1649 smmu_group->domain = NULL;
1650 }
1651
1652 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1653 {
1654 int ret = 0;
1655 struct arm_smmu_device *smmu;
1656 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1657 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1658
1659 if (!smmu_group)
1660 return -ENOENT;
1661
1662 /* Already attached to a different domain? */
1663 if (smmu_group->domain && smmu_group->domain != smmu_domain)
1664 arm_smmu_detach_dev(dev);
1665
1666 smmu = smmu_group->smmu;
1667 mutex_lock(&smmu_domain->init_mutex);
1668
1669 if (!smmu_domain->smmu) {
1670 smmu_domain->smmu = smmu;
1671 ret = arm_smmu_domain_finalise(domain);
1672 if (ret) {
1673 smmu_domain->smmu = NULL;
1674 goto out_unlock;
1675 }
1676 } else if (smmu_domain->smmu != smmu) {
1677 dev_err(dev,
1678 "cannot attach to SMMU %s (upstream of %s)\n",
1679 dev_name(smmu_domain->smmu->dev),
1680 dev_name(smmu->dev));
1681 ret = -ENXIO;
1682 goto out_unlock;
1683 }
1684
1685 /* Group already attached to this domain? */
1686 if (smmu_group->domain)
1687 goto out_unlock;
1688
1689 smmu_group->domain = smmu_domain;
1690 smmu_group->ste.bypass = false;
1691
1692 ret = arm_smmu_install_ste_for_group(smmu_group);
1693 if (IS_ERR_VALUE(ret))
1694 smmu_group->domain = NULL;
1695
1696 out_unlock:
1697 mutex_unlock(&smmu_domain->init_mutex);
1698 return ret;
1699 }
1700
1701 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1702 phys_addr_t paddr, size_t size, int prot)
1703 {
1704 int ret;
1705 unsigned long flags;
1706 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1707 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1708
1709 if (!ops)
1710 return -ENODEV;
1711
1712 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1713 ret = ops->map(ops, iova, paddr, size, prot);
1714 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1715 return ret;
1716 }
1717
1718 static size_t
1719 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1720 {
1721 size_t ret;
1722 unsigned long flags;
1723 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1724 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1725
1726 if (!ops)
1727 return 0;
1728
1729 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1730 ret = ops->unmap(ops, iova, size);
1731 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1732 return ret;
1733 }
1734
1735 static phys_addr_t
1736 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1737 {
1738 phys_addr_t ret;
1739 unsigned long flags;
1740 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1741 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1742
1743 if (!ops)
1744 return 0;
1745
1746 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1747 ret = ops->iova_to_phys(ops, iova);
1748 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1749
1750 return ret;
1751 }
1752
1753 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
1754 {
1755 *(u32 *)sidp = alias;
1756 return 0; /* Continue walking */
1757 }
1758
1759 static void __arm_smmu_release_pci_iommudata(void *data)
1760 {
1761 kfree(data);
1762 }
1763
1764 static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
1765 {
1766 struct device_node *of_node;
1767 struct platform_device *smmu_pdev;
1768 struct arm_smmu_device *smmu = NULL;
1769 struct pci_bus *bus = pdev->bus;
1770
1771 /* Walk up to the root bus */
1772 while (!pci_is_root_bus(bus))
1773 bus = bus->parent;
1774
1775 /* Follow the "iommus" phandle from the host controller */
1776 of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
1777 if (!of_node)
1778 return NULL;
1779
1780 /* See if we can find an SMMU corresponding to the phandle */
1781 smmu_pdev = of_find_device_by_node(of_node);
1782 if (smmu_pdev)
1783 smmu = platform_get_drvdata(smmu_pdev);
1784
1785 of_node_put(of_node);
1786 return smmu;
1787 }
1788
1789 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1790 {
1791 unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1792
1793 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1794 limit *= 1UL << STRTAB_SPLIT;
1795
1796 return sid < limit;
1797 }
1798
1799 static int arm_smmu_add_device(struct device *dev)
1800 {
1801 int i, ret;
1802 u32 sid, *sids;
1803 struct pci_dev *pdev;
1804 struct iommu_group *group;
1805 struct arm_smmu_group *smmu_group;
1806 struct arm_smmu_device *smmu;
1807
1808 /* We only support PCI, for now */
1809 if (!dev_is_pci(dev))
1810 return -ENODEV;
1811
1812 pdev = to_pci_dev(dev);
1813 group = iommu_group_get_for_dev(dev);
1814 if (IS_ERR(group))
1815 return PTR_ERR(group);
1816
1817 smmu_group = iommu_group_get_iommudata(group);
1818 if (!smmu_group) {
1819 smmu = arm_smmu_get_for_pci_dev(pdev);
1820 if (!smmu) {
1821 ret = -ENOENT;
1822 goto out_remove_dev;
1823 }
1824
1825 smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
1826 if (!smmu_group) {
1827 ret = -ENOMEM;
1828 goto out_remove_dev;
1829 }
1830
1831 smmu_group->ste.valid = true;
1832 smmu_group->smmu = smmu;
1833 iommu_group_set_iommudata(group, smmu_group,
1834 __arm_smmu_release_pci_iommudata);
1835 } else {
1836 smmu = smmu_group->smmu;
1837 }
1838
1839 /* Assume SID == RID until firmware tells us otherwise */
1840 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1841 for (i = 0; i < smmu_group->num_sids; ++i) {
1842 /* If we already know about this SID, then we're done */
1843 if (smmu_group->sids[i] == sid)
1844 goto out_put_group;
1845 }
1846
1847 /* Check the SID is in range of the SMMU and our stream table */
1848 if (!arm_smmu_sid_in_range(smmu, sid)) {
1849 ret = -ERANGE;
1850 goto out_remove_dev;
1851 }
1852
1853 /* Ensure l2 strtab is initialised */
1854 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1855 ret = arm_smmu_init_l2_strtab(smmu, sid);
1856 if (ret)
1857 goto out_remove_dev;
1858 }
1859
1860 /* Resize the SID array for the group */
1861 smmu_group->num_sids++;
1862 sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
1863 GFP_KERNEL);
1864 if (!sids) {
1865 smmu_group->num_sids--;
1866 ret = -ENOMEM;
1867 goto out_remove_dev;
1868 }
1869
1870 /* Add the new SID */
1871 sids[smmu_group->num_sids - 1] = sid;
1872 smmu_group->sids = sids;
1873
1874 out_put_group:
1875 iommu_group_put(group);
1876 return 0;
1877
1878 out_remove_dev:
1879 iommu_group_remove_device(dev);
1880 iommu_group_put(group);
1881 return ret;
1882 }
1883
1884 static void arm_smmu_remove_device(struct device *dev)
1885 {
1886 iommu_group_remove_device(dev);
1887 }
1888
1889 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1890 enum iommu_attr attr, void *data)
1891 {
1892 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1893
1894 switch (attr) {
1895 case DOMAIN_ATTR_NESTING:
1896 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1897 return 0;
1898 default:
1899 return -ENODEV;
1900 }
1901 }
1902
1903 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1904 enum iommu_attr attr, void *data)
1905 {
1906 int ret = 0;
1907 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1908
1909 mutex_lock(&smmu_domain->init_mutex);
1910
1911 switch (attr) {
1912 case DOMAIN_ATTR_NESTING:
1913 if (smmu_domain->smmu) {
1914 ret = -EPERM;
1915 goto out_unlock;
1916 }
1917
1918 if (*(int *)data)
1919 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1920 else
1921 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1922
1923 break;
1924 default:
1925 ret = -ENODEV;
1926 }
1927
1928 out_unlock:
1929 mutex_unlock(&smmu_domain->init_mutex);
1930 return ret;
1931 }
1932
1933 static struct iommu_ops arm_smmu_ops = {
1934 .capable = arm_smmu_capable,
1935 .domain_alloc = arm_smmu_domain_alloc,
1936 .domain_free = arm_smmu_domain_free,
1937 .attach_dev = arm_smmu_attach_dev,
1938 .map = arm_smmu_map,
1939 .unmap = arm_smmu_unmap,
1940 .iova_to_phys = arm_smmu_iova_to_phys,
1941 .add_device = arm_smmu_add_device,
1942 .remove_device = arm_smmu_remove_device,
1943 .device_group = pci_device_group,
1944 .domain_get_attr = arm_smmu_domain_get_attr,
1945 .domain_set_attr = arm_smmu_domain_set_attr,
1946 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1947 };
1948
1949 /* Probing and initialisation functions */
1950 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1951 struct arm_smmu_queue *q,
1952 unsigned long prod_off,
1953 unsigned long cons_off,
1954 size_t dwords)
1955 {
1956 size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1957
1958 q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1959 if (!q->base) {
1960 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1961 qsz);
1962 return -ENOMEM;
1963 }
1964
1965 q->prod_reg = smmu->base + prod_off;
1966 q->cons_reg = smmu->base + cons_off;
1967 q->ent_dwords = dwords;
1968
1969 q->q_base = Q_BASE_RWA;
1970 q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1971 q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1972 << Q_BASE_LOG2SIZE_SHIFT;
1973
1974 q->prod = q->cons = 0;
1975 return 0;
1976 }
1977
1978 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1979 {
1980 int ret;
1981
1982 /* cmdq */
1983 spin_lock_init(&smmu->cmdq.lock);
1984 ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1985 ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1986 if (ret)
1987 return ret;
1988
1989 /* evtq */
1990 ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1991 ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1992 if (ret)
1993 return ret;
1994
1995 /* priq */
1996 if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1997 return 0;
1998
1999 return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2000 ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
2001 }
2002
2003 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2004 {
2005 unsigned int i;
2006 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2007 size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2008 void *strtab = smmu->strtab_cfg.strtab;
2009
2010 cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2011 if (!cfg->l1_desc) {
2012 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2013 return -ENOMEM;
2014 }
2015
2016 for (i = 0; i < cfg->num_l1_ents; ++i) {
2017 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2018 strtab += STRTAB_L1_DESC_DWORDS << 3;
2019 }
2020
2021 return 0;
2022 }
2023
2024 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2025 {
2026 void *strtab;
2027 u64 reg;
2028 u32 size, l1size;
2029 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2030
2031 /*
2032 * If we can resolve everything with a single L2 table, then we
2033 * just need a single L1 descriptor. Otherwise, calculate the L1
2034 * size, capped to the SIDSIZE.
2035 */
2036 if (smmu->sid_bits < STRTAB_SPLIT) {
2037 size = 0;
2038 } else {
2039 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2040 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2041 }
2042 cfg->num_l1_ents = 1 << size;
2043
2044 size += STRTAB_SPLIT;
2045 if (size < smmu->sid_bits)
2046 dev_warn(smmu->dev,
2047 "2-level strtab only covers %u/%u bits of SID\n",
2048 size, smmu->sid_bits);
2049
2050 l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2051 strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2052 GFP_KERNEL | __GFP_ZERO);
2053 if (!strtab) {
2054 dev_err(smmu->dev,
2055 "failed to allocate l1 stream table (%u bytes)\n",
2056 size);
2057 return -ENOMEM;
2058 }
2059 cfg->strtab = strtab;
2060
2061 /* Configure strtab_base_cfg for 2 levels */
2062 reg = STRTAB_BASE_CFG_FMT_2LVL;
2063 reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2064 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2065 reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2066 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2067 cfg->strtab_base_cfg = reg;
2068
2069 return arm_smmu_init_l1_strtab(smmu);
2070 }
2071
2072 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2073 {
2074 void *strtab;
2075 u64 reg;
2076 u32 size;
2077 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2078
2079 size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2080 strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2081 GFP_KERNEL | __GFP_ZERO);
2082 if (!strtab) {
2083 dev_err(smmu->dev,
2084 "failed to allocate linear stream table (%u bytes)\n",
2085 size);
2086 return -ENOMEM;
2087 }
2088 cfg->strtab = strtab;
2089 cfg->num_l1_ents = 1 << smmu->sid_bits;
2090
2091 /* Configure strtab_base_cfg for a linear table covering all SIDs */
2092 reg = STRTAB_BASE_CFG_FMT_LINEAR;
2093 reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2094 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2095 cfg->strtab_base_cfg = reg;
2096
2097 arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2098 return 0;
2099 }
2100
2101 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2102 {
2103 u64 reg;
2104 int ret;
2105
2106 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2107 ret = arm_smmu_init_strtab_2lvl(smmu);
2108 else
2109 ret = arm_smmu_init_strtab_linear(smmu);
2110
2111 if (ret)
2112 return ret;
2113
2114 /* Set the strtab base address */
2115 reg = smmu->strtab_cfg.strtab_dma &
2116 STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2117 reg |= STRTAB_BASE_RA;
2118 smmu->strtab_cfg.strtab_base = reg;
2119
2120 /* Allocate the first VMID for stage-2 bypass STEs */
2121 set_bit(0, smmu->vmid_map);
2122 return 0;
2123 }
2124
2125 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2126 {
2127 int ret;
2128
2129 ret = arm_smmu_init_queues(smmu);
2130 if (ret)
2131 return ret;
2132
2133 return arm_smmu_init_strtab(smmu);
2134 }
2135
2136 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2137 unsigned int reg_off, unsigned int ack_off)
2138 {
2139 u32 reg;
2140
2141 writel_relaxed(val, smmu->base + reg_off);
2142 return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2143 1, ARM_SMMU_POLL_TIMEOUT_US);
2144 }
2145
2146 static void arm_smmu_free_msis(void *data)
2147 {
2148 struct device *dev = data;
2149 platform_msi_domain_free_irqs(dev);
2150 }
2151
2152 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2153 {
2154 phys_addr_t doorbell;
2155 struct device *dev = msi_desc_to_dev(desc);
2156 struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2157 phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2158
2159 doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2160 doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2161
2162 writeq_relaxed(doorbell, smmu->base + cfg[0]);
2163 writel_relaxed(msg->data, smmu->base + cfg[1]);
2164 writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2165 }
2166
2167 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2168 {
2169 struct msi_desc *desc;
2170 int ret, nvec = ARM_SMMU_MAX_MSIS;
2171 struct device *dev = smmu->dev;
2172
2173 /* Clear the MSI address regs */
2174 writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2175 writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2176
2177 if (smmu->features & ARM_SMMU_FEAT_PRI)
2178 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2179 else
2180 nvec--;
2181
2182 if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2183 return;
2184
2185 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2186 ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2187 if (ret) {
2188 dev_warn(dev, "failed to allocate MSIs\n");
2189 return;
2190 }
2191
2192 for_each_msi_entry(desc, dev) {
2193 switch (desc->platform.msi_index) {
2194 case EVTQ_MSI_INDEX:
2195 smmu->evtq.q.irq = desc->irq;
2196 break;
2197 case GERROR_MSI_INDEX:
2198 smmu->gerr_irq = desc->irq;
2199 break;
2200 case PRIQ_MSI_INDEX:
2201 smmu->priq.q.irq = desc->irq;
2202 break;
2203 default: /* Unknown */
2204 continue;
2205 }
2206 }
2207
2208 /* Add callback to free MSIs on teardown */
2209 devm_add_action(dev, arm_smmu_free_msis, dev);
2210 }
2211
2212 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2213 {
2214 int ret, irq;
2215 u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2216
2217 /* Disable IRQs first */
2218 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2219 ARM_SMMU_IRQ_CTRLACK);
2220 if (ret) {
2221 dev_err(smmu->dev, "failed to disable irqs\n");
2222 return ret;
2223 }
2224
2225 arm_smmu_setup_msis(smmu);
2226
2227 /* Request interrupt lines */
2228 irq = smmu->evtq.q.irq;
2229 if (irq) {
2230 ret = devm_request_threaded_irq(smmu->dev, irq,
2231 arm_smmu_evtq_handler,
2232 arm_smmu_evtq_thread,
2233 0, "arm-smmu-v3-evtq", smmu);
2234 if (IS_ERR_VALUE(ret))
2235 dev_warn(smmu->dev, "failed to enable evtq irq\n");
2236 }
2237
2238 irq = smmu->cmdq.q.irq;
2239 if (irq) {
2240 ret = devm_request_irq(smmu->dev, irq,
2241 arm_smmu_cmdq_sync_handler, 0,
2242 "arm-smmu-v3-cmdq-sync", smmu);
2243 if (IS_ERR_VALUE(ret))
2244 dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2245 }
2246
2247 irq = smmu->gerr_irq;
2248 if (irq) {
2249 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2250 0, "arm-smmu-v3-gerror", smmu);
2251 if (IS_ERR_VALUE(ret))
2252 dev_warn(smmu->dev, "failed to enable gerror irq\n");
2253 }
2254
2255 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2256 irq = smmu->priq.q.irq;
2257 if (irq) {
2258 ret = devm_request_threaded_irq(smmu->dev, irq,
2259 arm_smmu_priq_handler,
2260 arm_smmu_priq_thread,
2261 0, "arm-smmu-v3-priq",
2262 smmu);
2263 if (IS_ERR_VALUE(ret))
2264 dev_warn(smmu->dev,
2265 "failed to enable priq irq\n");
2266 else
2267 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2268 }
2269 }
2270
2271 /* Enable interrupt generation on the SMMU */
2272 ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2273 ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2274 if (ret)
2275 dev_warn(smmu->dev, "failed to enable irqs\n");
2276
2277 return 0;
2278 }
2279
2280 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2281 {
2282 int ret;
2283
2284 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2285 if (ret)
2286 dev_err(smmu->dev, "failed to clear cr0\n");
2287
2288 return ret;
2289 }
2290
2291 static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
2292 {
2293 int ret;
2294 u32 reg, enables;
2295 struct arm_smmu_cmdq_ent cmd;
2296
2297 /* Clear CR0 and sync (disables SMMU and queue processing) */
2298 reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2299 if (reg & CR0_SMMUEN)
2300 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2301
2302 ret = arm_smmu_device_disable(smmu);
2303 if (ret)
2304 return ret;
2305
2306 /* CR1 (table and queue memory attributes) */
2307 reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2308 (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2309 (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2310 (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2311 (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2312 (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2313 writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2314
2315 /* CR2 (random crap) */
2316 reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2317 writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2318
2319 /* Stream table */
2320 writeq_relaxed(smmu->strtab_cfg.strtab_base,
2321 smmu->base + ARM_SMMU_STRTAB_BASE);
2322 writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2323 smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2324
2325 /* Command queue */
2326 writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2327 writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2328 writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2329
2330 enables = CR0_CMDQEN;
2331 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2332 ARM_SMMU_CR0ACK);
2333 if (ret) {
2334 dev_err(smmu->dev, "failed to enable command queue\n");
2335 return ret;
2336 }
2337
2338 /* Invalidate any cached configuration */
2339 cmd.opcode = CMDQ_OP_CFGI_ALL;
2340 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2341 cmd.opcode = CMDQ_OP_CMD_SYNC;
2342 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2343
2344 /* Invalidate any stale TLB entries */
2345 if (smmu->features & ARM_SMMU_FEAT_HYP) {
2346 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2347 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2348 }
2349
2350 cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2351 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2352 cmd.opcode = CMDQ_OP_CMD_SYNC;
2353 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2354
2355 /* Event queue */
2356 writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2357 writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2358 writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2359
2360 enables |= CR0_EVTQEN;
2361 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2362 ARM_SMMU_CR0ACK);
2363 if (ret) {
2364 dev_err(smmu->dev, "failed to enable event queue\n");
2365 return ret;
2366 }
2367
2368 /* PRI queue */
2369 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2370 writeq_relaxed(smmu->priq.q.q_base,
2371 smmu->base + ARM_SMMU_PRIQ_BASE);
2372 writel_relaxed(smmu->priq.q.prod,
2373 smmu->base + ARM_SMMU_PRIQ_PROD);
2374 writel_relaxed(smmu->priq.q.cons,
2375 smmu->base + ARM_SMMU_PRIQ_CONS);
2376
2377 enables |= CR0_PRIQEN;
2378 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2379 ARM_SMMU_CR0ACK);
2380 if (ret) {
2381 dev_err(smmu->dev, "failed to enable PRI queue\n");
2382 return ret;
2383 }
2384 }
2385
2386 ret = arm_smmu_setup_irqs(smmu);
2387 if (ret) {
2388 dev_err(smmu->dev, "failed to setup irqs\n");
2389 return ret;
2390 }
2391
2392 /* Enable the SMMU interface */
2393 enables |= CR0_SMMUEN;
2394 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2395 ARM_SMMU_CR0ACK);
2396 if (ret) {
2397 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2398 return ret;
2399 }
2400
2401 return 0;
2402 }
2403
2404 static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2405 {
2406 u32 reg;
2407 bool coherent;
2408 unsigned long pgsize_bitmap = 0;
2409
2410 /* IDR0 */
2411 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2412
2413 /* 2-level structures */
2414 if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2415 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2416
2417 if (reg & IDR0_CD2L)
2418 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2419
2420 /*
2421 * Translation table endianness.
2422 * We currently require the same endianness as the CPU, but this
2423 * could be changed later by adding a new IO_PGTABLE_QUIRK.
2424 */
2425 switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2426 case IDR0_TTENDIAN_MIXED:
2427 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2428 break;
2429 #ifdef __BIG_ENDIAN
2430 case IDR0_TTENDIAN_BE:
2431 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2432 break;
2433 #else
2434 case IDR0_TTENDIAN_LE:
2435 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2436 break;
2437 #endif
2438 default:
2439 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2440 return -ENXIO;
2441 }
2442
2443 /* Boolean feature flags */
2444 if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2445 smmu->features |= ARM_SMMU_FEAT_PRI;
2446
2447 if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2448 smmu->features |= ARM_SMMU_FEAT_ATS;
2449
2450 if (reg & IDR0_SEV)
2451 smmu->features |= ARM_SMMU_FEAT_SEV;
2452
2453 if (reg & IDR0_MSI)
2454 smmu->features |= ARM_SMMU_FEAT_MSI;
2455
2456 if (reg & IDR0_HYP)
2457 smmu->features |= ARM_SMMU_FEAT_HYP;
2458
2459 /*
2460 * The dma-coherent property is used in preference to the ID
2461 * register, but warn on mismatch.
2462 */
2463 coherent = of_dma_is_coherent(smmu->dev->of_node);
2464 if (coherent)
2465 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2466
2467 if (!!(reg & IDR0_COHACC) != coherent)
2468 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2469 coherent ? "true" : "false");
2470
2471 switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2472 case IDR0_STALL_MODEL_STALL:
2473 /* Fallthrough */
2474 case IDR0_STALL_MODEL_FORCE:
2475 smmu->features |= ARM_SMMU_FEAT_STALLS;
2476 }
2477
2478 if (reg & IDR0_S1P)
2479 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2480
2481 if (reg & IDR0_S2P)
2482 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2483
2484 if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2485 dev_err(smmu->dev, "no translation support!\n");
2486 return -ENXIO;
2487 }
2488
2489 /* We only support the AArch64 table format at present */
2490 switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2491 case IDR0_TTF_AARCH32_64:
2492 smmu->ias = 40;
2493 /* Fallthrough */
2494 case IDR0_TTF_AARCH64:
2495 break;
2496 default:
2497 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2498 return -ENXIO;
2499 }
2500
2501 /* ASID/VMID sizes */
2502 smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2503 smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2504
2505 /* IDR1 */
2506 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2507 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2508 dev_err(smmu->dev, "embedded implementation not supported\n");
2509 return -ENXIO;
2510 }
2511
2512 /* Queue sizes, capped at 4k */
2513 smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2514 reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2515 if (!smmu->cmdq.q.max_n_shift) {
2516 /* Odd alignment restrictions on the base, so ignore for now */
2517 dev_err(smmu->dev, "unit-length command queue not supported\n");
2518 return -ENXIO;
2519 }
2520
2521 smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2522 reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2523 smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2524 reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2525
2526 /* SID/SSID sizes */
2527 smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2528 smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2529
2530 /* IDR5 */
2531 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2532
2533 /* Maximum number of outstanding stalls */
2534 smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2535 & IDR5_STALL_MAX_MASK;
2536
2537 /* Page sizes */
2538 if (reg & IDR5_GRAN64K)
2539 pgsize_bitmap |= SZ_64K | SZ_512M;
2540 if (reg & IDR5_GRAN16K)
2541 pgsize_bitmap |= SZ_16K | SZ_32M;
2542 if (reg & IDR5_GRAN4K)
2543 pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2544
2545 arm_smmu_ops.pgsize_bitmap &= pgsize_bitmap;
2546
2547 /* Output address size */
2548 switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2549 case IDR5_OAS_32_BIT:
2550 smmu->oas = 32;
2551 break;
2552 case IDR5_OAS_36_BIT:
2553 smmu->oas = 36;
2554 break;
2555 case IDR5_OAS_40_BIT:
2556 smmu->oas = 40;
2557 break;
2558 case IDR5_OAS_42_BIT:
2559 smmu->oas = 42;
2560 break;
2561 case IDR5_OAS_44_BIT:
2562 smmu->oas = 44;
2563 break;
2564 default:
2565 dev_info(smmu->dev,
2566 "unknown output address size. Truncating to 48-bit\n");
2567 /* Fallthrough */
2568 case IDR5_OAS_48_BIT:
2569 smmu->oas = 48;
2570 }
2571
2572 /* Set the DMA mask for our table walker */
2573 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2574 dev_warn(smmu->dev,
2575 "failed to set DMA mask for table walker\n");
2576
2577 smmu->ias = max(smmu->ias, smmu->oas);
2578
2579 dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2580 smmu->ias, smmu->oas, smmu->features);
2581 return 0;
2582 }
2583
2584 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2585 {
2586 int irq, ret;
2587 struct resource *res;
2588 struct arm_smmu_device *smmu;
2589 struct device *dev = &pdev->dev;
2590
2591 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2592 if (!smmu) {
2593 dev_err(dev, "failed to allocate arm_smmu_device\n");
2594 return -ENOMEM;
2595 }
2596 smmu->dev = dev;
2597
2598 /* Base address */
2599 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2600 if (resource_size(res) + 1 < SZ_128K) {
2601 dev_err(dev, "MMIO region too small (%pr)\n", res);
2602 return -EINVAL;
2603 }
2604
2605 smmu->base = devm_ioremap_resource(dev, res);
2606 if (IS_ERR(smmu->base))
2607 return PTR_ERR(smmu->base);
2608
2609 /* Interrupt lines */
2610 irq = platform_get_irq_byname(pdev, "eventq");
2611 if (irq > 0)
2612 smmu->evtq.q.irq = irq;
2613
2614 irq = platform_get_irq_byname(pdev, "priq");
2615 if (irq > 0)
2616 smmu->priq.q.irq = irq;
2617
2618 irq = platform_get_irq_byname(pdev, "cmdq-sync");
2619 if (irq > 0)
2620 smmu->cmdq.q.irq = irq;
2621
2622 irq = platform_get_irq_byname(pdev, "gerror");
2623 if (irq > 0)
2624 smmu->gerr_irq = irq;
2625
2626 parse_driver_options(smmu);
2627
2628 /* Probe the h/w */
2629 ret = arm_smmu_device_probe(smmu);
2630 if (ret)
2631 return ret;
2632
2633 /* Initialise in-memory data structures */
2634 ret = arm_smmu_init_structures(smmu);
2635 if (ret)
2636 return ret;
2637
2638 /* Record our private device structure */
2639 platform_set_drvdata(pdev, smmu);
2640
2641 /* Reset the device */
2642 return arm_smmu_device_reset(smmu);
2643 }
2644
2645 static int arm_smmu_device_remove(struct platform_device *pdev)
2646 {
2647 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2648
2649 arm_smmu_device_disable(smmu);
2650 return 0;
2651 }
2652
2653 static struct of_device_id arm_smmu_of_match[] = {
2654 { .compatible = "arm,smmu-v3", },
2655 { },
2656 };
2657 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2658
2659 static struct platform_driver arm_smmu_driver = {
2660 .driver = {
2661 .name = "arm-smmu-v3",
2662 .of_match_table = of_match_ptr(arm_smmu_of_match),
2663 },
2664 .probe = arm_smmu_device_dt_probe,
2665 .remove = arm_smmu_device_remove,
2666 };
2667
2668 static int __init arm_smmu_init(void)
2669 {
2670 struct device_node *np;
2671 int ret;
2672
2673 np = of_find_matching_node(NULL, arm_smmu_of_match);
2674 if (!np)
2675 return 0;
2676
2677 of_node_put(np);
2678
2679 ret = platform_driver_register(&arm_smmu_driver);
2680 if (ret)
2681 return ret;
2682
2683 return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2684 }
2685
2686 static void __exit arm_smmu_exit(void)
2687 {
2688 return platform_driver_unregister(&arm_smmu_driver);
2689 }
2690
2691 subsys_initcall(arm_smmu_init);
2692 module_exit(arm_smmu_exit);
2693
2694 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2695 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2696 MODULE_LICENSE("GPL v2");
This page took 0.332608 seconds and 6 git commands to generate.