Merge branch 'drm-fixes-4.8' of git://people.freedesktop.org/~agd5f/linux into drm...
[deliverable/linux.git] / drivers / iommu / arm-smmu.c
1 /*
2 * IOMMU API for ARM architected SMMU implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16 *
17 * Copyright (C) 2013 ARM Limited
18 *
19 * Author: Will Deacon <will.deacon@arm.com>
20 *
21 * This driver currently supports:
22 * - SMMUv1 and v2 implementations
23 * - Stream-matching and stream-indexing
24 * - v7/v8 long-descriptor format
25 * - Non-secure access to the SMMU
26 * - Context fault reporting
27 */
28
29 #define pr_fmt(fmt) "arm-smmu: " fmt
30
31 #include <linux/delay.h>
32 #include <linux/dma-iommu.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/err.h>
35 #include <linux/interrupt.h>
36 #include <linux/io.h>
37 #include <linux/io-64-nonatomic-hi-lo.h>
38 #include <linux/iommu.h>
39 #include <linux/iopoll.h>
40 #include <linux/module.h>
41 #include <linux/of.h>
42 #include <linux/of_address.h>
43 #include <linux/pci.h>
44 #include <linux/platform_device.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47
48 #include <linux/amba/bus.h>
49
50 #include "io-pgtable.h"
51
52 /* Maximum number of stream IDs assigned to a single device */
53 #define MAX_MASTER_STREAMIDS 128
54
55 /* Maximum number of context banks per SMMU */
56 #define ARM_SMMU_MAX_CBS 128
57
58 /* Maximum number of mapping groups per SMMU */
59 #define ARM_SMMU_MAX_SMRS 128
60
61 /* SMMU global address space */
62 #define ARM_SMMU_GR0(smmu) ((smmu)->base)
63 #define ARM_SMMU_GR1(smmu) ((smmu)->base + (1 << (smmu)->pgshift))
64
65 /*
66 * SMMU global address space with conditional offset to access secure
67 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
68 * nsGFSYNR0: 0x450)
69 */
70 #define ARM_SMMU_GR0_NS(smmu) \
71 ((smmu)->base + \
72 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS) \
73 ? 0x400 : 0))
74
75 /*
76 * Some 64-bit registers only make sense to write atomically, but in such
77 * cases all the data relevant to AArch32 formats lies within the lower word,
78 * therefore this actually makes more sense than it might first appear.
79 */
80 #ifdef CONFIG_64BIT
81 #define smmu_write_atomic_lq writeq_relaxed
82 #else
83 #define smmu_write_atomic_lq writel_relaxed
84 #endif
85
86 /* Configuration registers */
87 #define ARM_SMMU_GR0_sCR0 0x0
88 #define sCR0_CLIENTPD (1 << 0)
89 #define sCR0_GFRE (1 << 1)
90 #define sCR0_GFIE (1 << 2)
91 #define sCR0_GCFGFRE (1 << 4)
92 #define sCR0_GCFGFIE (1 << 5)
93 #define sCR0_USFCFG (1 << 10)
94 #define sCR0_VMIDPNE (1 << 11)
95 #define sCR0_PTM (1 << 12)
96 #define sCR0_FB (1 << 13)
97 #define sCR0_VMID16EN (1 << 31)
98 #define sCR0_BSU_SHIFT 14
99 #define sCR0_BSU_MASK 0x3
100
101 /* Auxiliary Configuration register */
102 #define ARM_SMMU_GR0_sACR 0x10
103
104 /* Identification registers */
105 #define ARM_SMMU_GR0_ID0 0x20
106 #define ARM_SMMU_GR0_ID1 0x24
107 #define ARM_SMMU_GR0_ID2 0x28
108 #define ARM_SMMU_GR0_ID3 0x2c
109 #define ARM_SMMU_GR0_ID4 0x30
110 #define ARM_SMMU_GR0_ID5 0x34
111 #define ARM_SMMU_GR0_ID6 0x38
112 #define ARM_SMMU_GR0_ID7 0x3c
113 #define ARM_SMMU_GR0_sGFSR 0x48
114 #define ARM_SMMU_GR0_sGFSYNR0 0x50
115 #define ARM_SMMU_GR0_sGFSYNR1 0x54
116 #define ARM_SMMU_GR0_sGFSYNR2 0x58
117
118 #define ID0_S1TS (1 << 30)
119 #define ID0_S2TS (1 << 29)
120 #define ID0_NTS (1 << 28)
121 #define ID0_SMS (1 << 27)
122 #define ID0_ATOSNS (1 << 26)
123 #define ID0_PTFS_NO_AARCH32 (1 << 25)
124 #define ID0_PTFS_NO_AARCH32S (1 << 24)
125 #define ID0_CTTW (1 << 14)
126 #define ID0_NUMIRPT_SHIFT 16
127 #define ID0_NUMIRPT_MASK 0xff
128 #define ID0_NUMSIDB_SHIFT 9
129 #define ID0_NUMSIDB_MASK 0xf
130 #define ID0_NUMSMRG_SHIFT 0
131 #define ID0_NUMSMRG_MASK 0xff
132
133 #define ID1_PAGESIZE (1 << 31)
134 #define ID1_NUMPAGENDXB_SHIFT 28
135 #define ID1_NUMPAGENDXB_MASK 7
136 #define ID1_NUMS2CB_SHIFT 16
137 #define ID1_NUMS2CB_MASK 0xff
138 #define ID1_NUMCB_SHIFT 0
139 #define ID1_NUMCB_MASK 0xff
140
141 #define ID2_OAS_SHIFT 4
142 #define ID2_OAS_MASK 0xf
143 #define ID2_IAS_SHIFT 0
144 #define ID2_IAS_MASK 0xf
145 #define ID2_UBS_SHIFT 8
146 #define ID2_UBS_MASK 0xf
147 #define ID2_PTFS_4K (1 << 12)
148 #define ID2_PTFS_16K (1 << 13)
149 #define ID2_PTFS_64K (1 << 14)
150 #define ID2_VMID16 (1 << 15)
151
152 #define ID7_MAJOR_SHIFT 4
153 #define ID7_MAJOR_MASK 0xf
154
155 /* Global TLB invalidation */
156 #define ARM_SMMU_GR0_TLBIVMID 0x64
157 #define ARM_SMMU_GR0_TLBIALLNSNH 0x68
158 #define ARM_SMMU_GR0_TLBIALLH 0x6c
159 #define ARM_SMMU_GR0_sTLBGSYNC 0x70
160 #define ARM_SMMU_GR0_sTLBGSTATUS 0x74
161 #define sTLBGSTATUS_GSACTIVE (1 << 0)
162 #define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
163
164 /* Stream mapping registers */
165 #define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
166 #define SMR_VALID (1 << 31)
167 #define SMR_MASK_SHIFT 16
168 #define SMR_MASK_MASK 0x7fff
169 #define SMR_ID_SHIFT 0
170 #define SMR_ID_MASK 0x7fff
171
172 #define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
173 #define S2CR_CBNDX_SHIFT 0
174 #define S2CR_CBNDX_MASK 0xff
175 #define S2CR_TYPE_SHIFT 16
176 #define S2CR_TYPE_MASK 0x3
177 #define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT)
178 #define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT)
179 #define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT)
180
181 #define S2CR_PRIVCFG_SHIFT 24
182 #define S2CR_PRIVCFG_UNPRIV (2 << S2CR_PRIVCFG_SHIFT)
183
184 /* Context bank attribute registers */
185 #define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
186 #define CBAR_VMID_SHIFT 0
187 #define CBAR_VMID_MASK 0xff
188 #define CBAR_S1_BPSHCFG_SHIFT 8
189 #define CBAR_S1_BPSHCFG_MASK 3
190 #define CBAR_S1_BPSHCFG_NSH 3
191 #define CBAR_S1_MEMATTR_SHIFT 12
192 #define CBAR_S1_MEMATTR_MASK 0xf
193 #define CBAR_S1_MEMATTR_WB 0xf
194 #define CBAR_TYPE_SHIFT 16
195 #define CBAR_TYPE_MASK 0x3
196 #define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
197 #define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
198 #define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
199 #define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
200 #define CBAR_IRPTNDX_SHIFT 24
201 #define CBAR_IRPTNDX_MASK 0xff
202
203 #define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
204 #define CBA2R_RW64_32BIT (0 << 0)
205 #define CBA2R_RW64_64BIT (1 << 0)
206 #define CBA2R_VMID_SHIFT 16
207 #define CBA2R_VMID_MASK 0xffff
208
209 /* Translation context bank */
210 #define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
211 #define ARM_SMMU_CB(smmu, n) ((n) * (1 << (smmu)->pgshift))
212
213 #define ARM_SMMU_CB_SCTLR 0x0
214 #define ARM_SMMU_CB_ACTLR 0x4
215 #define ARM_SMMU_CB_RESUME 0x8
216 #define ARM_SMMU_CB_TTBCR2 0x10
217 #define ARM_SMMU_CB_TTBR0 0x20
218 #define ARM_SMMU_CB_TTBR1 0x28
219 #define ARM_SMMU_CB_TTBCR 0x30
220 #define ARM_SMMU_CB_S1_MAIR0 0x38
221 #define ARM_SMMU_CB_S1_MAIR1 0x3c
222 #define ARM_SMMU_CB_PAR 0x50
223 #define ARM_SMMU_CB_FSR 0x58
224 #define ARM_SMMU_CB_FAR 0x60
225 #define ARM_SMMU_CB_FSYNR0 0x68
226 #define ARM_SMMU_CB_S1_TLBIVA 0x600
227 #define ARM_SMMU_CB_S1_TLBIASID 0x610
228 #define ARM_SMMU_CB_S1_TLBIVAL 0x620
229 #define ARM_SMMU_CB_S2_TLBIIPAS2 0x630
230 #define ARM_SMMU_CB_S2_TLBIIPAS2L 0x638
231 #define ARM_SMMU_CB_ATS1PR 0x800
232 #define ARM_SMMU_CB_ATSR 0x8f0
233
234 #define SCTLR_S1_ASIDPNE (1 << 12)
235 #define SCTLR_CFCFG (1 << 7)
236 #define SCTLR_CFIE (1 << 6)
237 #define SCTLR_CFRE (1 << 5)
238 #define SCTLR_E (1 << 4)
239 #define SCTLR_AFE (1 << 2)
240 #define SCTLR_TRE (1 << 1)
241 #define SCTLR_M (1 << 0)
242 #define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE)
243
244 #define ARM_MMU500_ACTLR_CPRE (1 << 1)
245
246 #define ARM_MMU500_ACR_CACHE_LOCK (1 << 26)
247
248 #define CB_PAR_F (1 << 0)
249
250 #define ATSR_ACTIVE (1 << 0)
251
252 #define RESUME_RETRY (0 << 0)
253 #define RESUME_TERMINATE (1 << 0)
254
255 #define TTBCR2_SEP_SHIFT 15
256 #define TTBCR2_SEP_UPSTREAM (0x7 << TTBCR2_SEP_SHIFT)
257
258 #define TTBRn_ASID_SHIFT 48
259
260 #define FSR_MULTI (1 << 31)
261 #define FSR_SS (1 << 30)
262 #define FSR_UUT (1 << 8)
263 #define FSR_ASF (1 << 7)
264 #define FSR_TLBLKF (1 << 6)
265 #define FSR_TLBMCF (1 << 5)
266 #define FSR_EF (1 << 4)
267 #define FSR_PF (1 << 3)
268 #define FSR_AFF (1 << 2)
269 #define FSR_TF (1 << 1)
270
271 #define FSR_IGN (FSR_AFF | FSR_ASF | \
272 FSR_TLBMCF | FSR_TLBLKF)
273 #define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
274 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
275
276 #define FSYNR0_WNR (1 << 4)
277
278 static int force_stage;
279 module_param(force_stage, int, S_IRUGO);
280 MODULE_PARM_DESC(force_stage,
281 "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
282 static bool disable_bypass;
283 module_param(disable_bypass, bool, S_IRUGO);
284 MODULE_PARM_DESC(disable_bypass,
285 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
286
287 enum arm_smmu_arch_version {
288 ARM_SMMU_V1,
289 ARM_SMMU_V1_64K,
290 ARM_SMMU_V2,
291 };
292
293 enum arm_smmu_implementation {
294 GENERIC_SMMU,
295 ARM_MMU500,
296 CAVIUM_SMMUV2,
297 };
298
299 struct arm_smmu_smr {
300 u8 idx;
301 u16 mask;
302 u16 id;
303 };
304
305 struct arm_smmu_master_cfg {
306 int num_streamids;
307 u16 streamids[MAX_MASTER_STREAMIDS];
308 struct arm_smmu_smr *smrs;
309 };
310
311 struct arm_smmu_master {
312 struct device_node *of_node;
313 struct rb_node node;
314 struct arm_smmu_master_cfg cfg;
315 };
316
317 struct arm_smmu_device {
318 struct device *dev;
319
320 void __iomem *base;
321 unsigned long size;
322 unsigned long pgshift;
323
324 #define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
325 #define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
326 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
327 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
328 #define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
329 #define ARM_SMMU_FEAT_TRANS_OPS (1 << 5)
330 #define ARM_SMMU_FEAT_VMID16 (1 << 6)
331 #define ARM_SMMU_FEAT_FMT_AARCH64_4K (1 << 7)
332 #define ARM_SMMU_FEAT_FMT_AARCH64_16K (1 << 8)
333 #define ARM_SMMU_FEAT_FMT_AARCH64_64K (1 << 9)
334 #define ARM_SMMU_FEAT_FMT_AARCH32_L (1 << 10)
335 #define ARM_SMMU_FEAT_FMT_AARCH32_S (1 << 11)
336 u32 features;
337
338 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
339 u32 options;
340 enum arm_smmu_arch_version version;
341 enum arm_smmu_implementation model;
342
343 u32 num_context_banks;
344 u32 num_s2_context_banks;
345 DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
346 atomic_t irptndx;
347
348 u32 num_mapping_groups;
349 DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
350
351 unsigned long va_size;
352 unsigned long ipa_size;
353 unsigned long pa_size;
354 unsigned long pgsize_bitmap;
355
356 u32 num_global_irqs;
357 u32 num_context_irqs;
358 unsigned int *irqs;
359
360 struct list_head list;
361 struct rb_root masters;
362
363 u32 cavium_id_base; /* Specific to Cavium */
364 };
365
366 enum arm_smmu_context_fmt {
367 ARM_SMMU_CTX_FMT_NONE,
368 ARM_SMMU_CTX_FMT_AARCH64,
369 ARM_SMMU_CTX_FMT_AARCH32_L,
370 ARM_SMMU_CTX_FMT_AARCH32_S,
371 };
372
373 struct arm_smmu_cfg {
374 u8 cbndx;
375 u8 irptndx;
376 u32 cbar;
377 enum arm_smmu_context_fmt fmt;
378 };
379 #define INVALID_IRPTNDX 0xff
380
381 #define ARM_SMMU_CB_ASID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx)
382 #define ARM_SMMU_CB_VMID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx + 1)
383
384 enum arm_smmu_domain_stage {
385 ARM_SMMU_DOMAIN_S1 = 0,
386 ARM_SMMU_DOMAIN_S2,
387 ARM_SMMU_DOMAIN_NESTED,
388 };
389
390 struct arm_smmu_domain {
391 struct arm_smmu_device *smmu;
392 struct io_pgtable_ops *pgtbl_ops;
393 spinlock_t pgtbl_lock;
394 struct arm_smmu_cfg cfg;
395 enum arm_smmu_domain_stage stage;
396 struct mutex init_mutex; /* Protects smmu pointer */
397 struct iommu_domain domain;
398 };
399
400 struct arm_smmu_phandle_args {
401 struct device_node *np;
402 int args_count;
403 uint32_t args[MAX_MASTER_STREAMIDS];
404 };
405
406 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
407 static LIST_HEAD(arm_smmu_devices);
408
409 struct arm_smmu_option_prop {
410 u32 opt;
411 const char *prop;
412 };
413
414 static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);
415
416 static struct arm_smmu_option_prop arm_smmu_options[] = {
417 { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
418 { 0, NULL},
419 };
420
421 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
422 {
423 return container_of(dom, struct arm_smmu_domain, domain);
424 }
425
426 static void parse_driver_options(struct arm_smmu_device *smmu)
427 {
428 int i = 0;
429
430 do {
431 if (of_property_read_bool(smmu->dev->of_node,
432 arm_smmu_options[i].prop)) {
433 smmu->options |= arm_smmu_options[i].opt;
434 dev_notice(smmu->dev, "option %s\n",
435 arm_smmu_options[i].prop);
436 }
437 } while (arm_smmu_options[++i].opt);
438 }
439
440 static struct device_node *dev_get_dev_node(struct device *dev)
441 {
442 if (dev_is_pci(dev)) {
443 struct pci_bus *bus = to_pci_dev(dev)->bus;
444
445 while (!pci_is_root_bus(bus))
446 bus = bus->parent;
447 return bus->bridge->parent->of_node;
448 }
449
450 return dev->of_node;
451 }
452
453 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
454 struct device_node *dev_node)
455 {
456 struct rb_node *node = smmu->masters.rb_node;
457
458 while (node) {
459 struct arm_smmu_master *master;
460
461 master = container_of(node, struct arm_smmu_master, node);
462
463 if (dev_node < master->of_node)
464 node = node->rb_left;
465 else if (dev_node > master->of_node)
466 node = node->rb_right;
467 else
468 return master;
469 }
470
471 return NULL;
472 }
473
474 static struct arm_smmu_master_cfg *
475 find_smmu_master_cfg(struct device *dev)
476 {
477 struct arm_smmu_master_cfg *cfg = NULL;
478 struct iommu_group *group = iommu_group_get(dev);
479
480 if (group) {
481 cfg = iommu_group_get_iommudata(group);
482 iommu_group_put(group);
483 }
484
485 return cfg;
486 }
487
488 static int insert_smmu_master(struct arm_smmu_device *smmu,
489 struct arm_smmu_master *master)
490 {
491 struct rb_node **new, *parent;
492
493 new = &smmu->masters.rb_node;
494 parent = NULL;
495 while (*new) {
496 struct arm_smmu_master *this
497 = container_of(*new, struct arm_smmu_master, node);
498
499 parent = *new;
500 if (master->of_node < this->of_node)
501 new = &((*new)->rb_left);
502 else if (master->of_node > this->of_node)
503 new = &((*new)->rb_right);
504 else
505 return -EEXIST;
506 }
507
508 rb_link_node(&master->node, parent, new);
509 rb_insert_color(&master->node, &smmu->masters);
510 return 0;
511 }
512
513 static int register_smmu_master(struct arm_smmu_device *smmu,
514 struct device *dev,
515 struct arm_smmu_phandle_args *masterspec)
516 {
517 int i;
518 struct arm_smmu_master *master;
519
520 master = find_smmu_master(smmu, masterspec->np);
521 if (master) {
522 dev_err(dev,
523 "rejecting multiple registrations for master device %s\n",
524 masterspec->np->name);
525 return -EBUSY;
526 }
527
528 if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
529 dev_err(dev,
530 "reached maximum number (%d) of stream IDs for master device %s\n",
531 MAX_MASTER_STREAMIDS, masterspec->np->name);
532 return -ENOSPC;
533 }
534
535 master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
536 if (!master)
537 return -ENOMEM;
538
539 master->of_node = masterspec->np;
540 master->cfg.num_streamids = masterspec->args_count;
541
542 for (i = 0; i < master->cfg.num_streamids; ++i) {
543 u16 streamid = masterspec->args[i];
544
545 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
546 (streamid >= smmu->num_mapping_groups)) {
547 dev_err(dev,
548 "stream ID for master device %s greater than maximum allowed (%d)\n",
549 masterspec->np->name, smmu->num_mapping_groups);
550 return -ERANGE;
551 }
552 master->cfg.streamids[i] = streamid;
553 }
554 return insert_smmu_master(smmu, master);
555 }
556
557 static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
558 {
559 struct arm_smmu_device *smmu;
560 struct arm_smmu_master *master = NULL;
561 struct device_node *dev_node = dev_get_dev_node(dev);
562
563 spin_lock(&arm_smmu_devices_lock);
564 list_for_each_entry(smmu, &arm_smmu_devices, list) {
565 master = find_smmu_master(smmu, dev_node);
566 if (master)
567 break;
568 }
569 spin_unlock(&arm_smmu_devices_lock);
570
571 return master ? smmu : NULL;
572 }
573
574 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
575 {
576 int idx;
577
578 do {
579 idx = find_next_zero_bit(map, end, start);
580 if (idx == end)
581 return -ENOSPC;
582 } while (test_and_set_bit(idx, map));
583
584 return idx;
585 }
586
587 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
588 {
589 clear_bit(idx, map);
590 }
591
592 /* Wait for any pending TLB invalidations to complete */
593 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
594 {
595 int count = 0;
596 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
597
598 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
599 while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
600 & sTLBGSTATUS_GSACTIVE) {
601 cpu_relax();
602 if (++count == TLB_LOOP_TIMEOUT) {
603 dev_err_ratelimited(smmu->dev,
604 "TLB sync timed out -- SMMU may be deadlocked\n");
605 return;
606 }
607 udelay(1);
608 }
609 }
610
611 static void arm_smmu_tlb_sync(void *cookie)
612 {
613 struct arm_smmu_domain *smmu_domain = cookie;
614 __arm_smmu_tlb_sync(smmu_domain->smmu);
615 }
616
617 static void arm_smmu_tlb_inv_context(void *cookie)
618 {
619 struct arm_smmu_domain *smmu_domain = cookie;
620 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
621 struct arm_smmu_device *smmu = smmu_domain->smmu;
622 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
623 void __iomem *base;
624
625 if (stage1) {
626 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
627 writel_relaxed(ARM_SMMU_CB_ASID(smmu, cfg),
628 base + ARM_SMMU_CB_S1_TLBIASID);
629 } else {
630 base = ARM_SMMU_GR0(smmu);
631 writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg),
632 base + ARM_SMMU_GR0_TLBIVMID);
633 }
634
635 __arm_smmu_tlb_sync(smmu);
636 }
637
638 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
639 size_t granule, bool leaf, void *cookie)
640 {
641 struct arm_smmu_domain *smmu_domain = cookie;
642 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
643 struct arm_smmu_device *smmu = smmu_domain->smmu;
644 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
645 void __iomem *reg;
646
647 if (stage1) {
648 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
649 reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
650
651 if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
652 iova &= ~12UL;
653 iova |= ARM_SMMU_CB_ASID(smmu, cfg);
654 do {
655 writel_relaxed(iova, reg);
656 iova += granule;
657 } while (size -= granule);
658 } else {
659 iova >>= 12;
660 iova |= (u64)ARM_SMMU_CB_ASID(smmu, cfg) << 48;
661 do {
662 writeq_relaxed(iova, reg);
663 iova += granule >> 12;
664 } while (size -= granule);
665 }
666 } else if (smmu->version == ARM_SMMU_V2) {
667 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
668 reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
669 ARM_SMMU_CB_S2_TLBIIPAS2;
670 iova >>= 12;
671 do {
672 smmu_write_atomic_lq(iova, reg);
673 iova += granule >> 12;
674 } while (size -= granule);
675 } else {
676 reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
677 writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg), reg);
678 }
679 }
680
681 static struct iommu_gather_ops arm_smmu_gather_ops = {
682 .tlb_flush_all = arm_smmu_tlb_inv_context,
683 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
684 .tlb_sync = arm_smmu_tlb_sync,
685 };
686
687 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
688 {
689 int flags, ret;
690 u32 fsr, fsynr, resume;
691 unsigned long iova;
692 struct iommu_domain *domain = dev;
693 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
694 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
695 struct arm_smmu_device *smmu = smmu_domain->smmu;
696 void __iomem *cb_base;
697
698 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
699 fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
700
701 if (!(fsr & FSR_FAULT))
702 return IRQ_NONE;
703
704 if (fsr & FSR_IGN)
705 dev_err_ratelimited(smmu->dev,
706 "Unexpected context fault (fsr 0x%x)\n",
707 fsr);
708
709 fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
710 flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
711
712 iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
713 if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
714 ret = IRQ_HANDLED;
715 resume = RESUME_RETRY;
716 } else {
717 dev_err_ratelimited(smmu->dev,
718 "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
719 iova, fsynr, cfg->cbndx);
720 ret = IRQ_NONE;
721 resume = RESUME_TERMINATE;
722 }
723
724 /* Clear the faulting FSR */
725 writel(fsr, cb_base + ARM_SMMU_CB_FSR);
726
727 /* Retry or terminate any stalled transactions */
728 if (fsr & FSR_SS)
729 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
730
731 return ret;
732 }
733
734 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
735 {
736 u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
737 struct arm_smmu_device *smmu = dev;
738 void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
739
740 gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
741 gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
742 gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
743 gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
744
745 if (!gfsr)
746 return IRQ_NONE;
747
748 dev_err_ratelimited(smmu->dev,
749 "Unexpected global fault, this could be serious\n");
750 dev_err_ratelimited(smmu->dev,
751 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
752 gfsr, gfsynr0, gfsynr1, gfsynr2);
753
754 writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
755 return IRQ_HANDLED;
756 }
757
758 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
759 struct io_pgtable_cfg *pgtbl_cfg)
760 {
761 u32 reg;
762 u64 reg64;
763 bool stage1;
764 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
765 struct arm_smmu_device *smmu = smmu_domain->smmu;
766 void __iomem *cb_base, *gr1_base;
767
768 gr1_base = ARM_SMMU_GR1(smmu);
769 stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
770 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
771
772 if (smmu->version > ARM_SMMU_V1) {
773 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
774 reg = CBA2R_RW64_64BIT;
775 else
776 reg = CBA2R_RW64_32BIT;
777 /* 16-bit VMIDs live in CBA2R */
778 if (smmu->features & ARM_SMMU_FEAT_VMID16)
779 reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBA2R_VMID_SHIFT;
780
781 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
782 }
783
784 /* CBAR */
785 reg = cfg->cbar;
786 if (smmu->version < ARM_SMMU_V2)
787 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
788
789 /*
790 * Use the weakest shareability/memory types, so they are
791 * overridden by the ttbcr/pte.
792 */
793 if (stage1) {
794 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
795 (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
796 } else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
797 /* 8-bit VMIDs live in CBAR */
798 reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBAR_VMID_SHIFT;
799 }
800 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
801
802 /* TTBRs */
803 if (stage1) {
804 reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
805
806 reg64 |= ((u64)ARM_SMMU_CB_ASID(smmu, cfg)) << TTBRn_ASID_SHIFT;
807 writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
808
809 reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
810 reg64 |= ((u64)ARM_SMMU_CB_ASID(smmu, cfg)) << TTBRn_ASID_SHIFT;
811 writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR1);
812 } else {
813 reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
814 writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
815 }
816
817 /* TTBCR */
818 if (stage1) {
819 reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
820 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
821 if (smmu->version > ARM_SMMU_V1) {
822 reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
823 reg |= TTBCR2_SEP_UPSTREAM;
824 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
825 }
826 } else {
827 reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
828 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
829 }
830
831 /* MAIRs (stage-1 only) */
832 if (stage1) {
833 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
834 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
835 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
836 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
837 }
838
839 /* SCTLR */
840 reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
841 if (stage1)
842 reg |= SCTLR_S1_ASIDPNE;
843 #ifdef __BIG_ENDIAN
844 reg |= SCTLR_E;
845 #endif
846 writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
847 }
848
849 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
850 struct arm_smmu_device *smmu)
851 {
852 int irq, start, ret = 0;
853 unsigned long ias, oas;
854 struct io_pgtable_ops *pgtbl_ops;
855 struct io_pgtable_cfg pgtbl_cfg;
856 enum io_pgtable_fmt fmt;
857 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
858 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
859
860 mutex_lock(&smmu_domain->init_mutex);
861 if (smmu_domain->smmu)
862 goto out_unlock;
863
864 /* We're bypassing these SIDs, so don't allocate an actual context */
865 if (domain->type == IOMMU_DOMAIN_DMA) {
866 smmu_domain->smmu = smmu;
867 goto out_unlock;
868 }
869
870 /*
871 * Mapping the requested stage onto what we support is surprisingly
872 * complicated, mainly because the spec allows S1+S2 SMMUs without
873 * support for nested translation. That means we end up with the
874 * following table:
875 *
876 * Requested Supported Actual
877 * S1 N S1
878 * S1 S1+S2 S1
879 * S1 S2 S2
880 * S1 S1 S1
881 * N N N
882 * N S1+S2 S2
883 * N S2 S2
884 * N S1 S1
885 *
886 * Note that you can't actually request stage-2 mappings.
887 */
888 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
889 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
890 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
891 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
892
893 /*
894 * Choosing a suitable context format is even more fiddly. Until we
895 * grow some way for the caller to express a preference, and/or move
896 * the decision into the io-pgtable code where it arguably belongs,
897 * just aim for the closest thing to the rest of the system, and hope
898 * that the hardware isn't esoteric enough that we can't assume AArch64
899 * support to be a superset of AArch32 support...
900 */
901 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
902 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
903 if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
904 (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
905 ARM_SMMU_FEAT_FMT_AARCH64_16K |
906 ARM_SMMU_FEAT_FMT_AARCH64_4K)))
907 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;
908
909 if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
910 ret = -EINVAL;
911 goto out_unlock;
912 }
913
914 switch (smmu_domain->stage) {
915 case ARM_SMMU_DOMAIN_S1:
916 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
917 start = smmu->num_s2_context_banks;
918 ias = smmu->va_size;
919 oas = smmu->ipa_size;
920 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
921 fmt = ARM_64_LPAE_S1;
922 } else {
923 fmt = ARM_32_LPAE_S1;
924 ias = min(ias, 32UL);
925 oas = min(oas, 40UL);
926 }
927 break;
928 case ARM_SMMU_DOMAIN_NESTED:
929 /*
930 * We will likely want to change this if/when KVM gets
931 * involved.
932 */
933 case ARM_SMMU_DOMAIN_S2:
934 cfg->cbar = CBAR_TYPE_S2_TRANS;
935 start = 0;
936 ias = smmu->ipa_size;
937 oas = smmu->pa_size;
938 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
939 fmt = ARM_64_LPAE_S2;
940 } else {
941 fmt = ARM_32_LPAE_S2;
942 ias = min(ias, 40UL);
943 oas = min(oas, 40UL);
944 }
945 break;
946 default:
947 ret = -EINVAL;
948 goto out_unlock;
949 }
950
951 ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
952 smmu->num_context_banks);
953 if (ret < 0)
954 goto out_unlock;
955
956 cfg->cbndx = ret;
957 if (smmu->version < ARM_SMMU_V2) {
958 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
959 cfg->irptndx %= smmu->num_context_irqs;
960 } else {
961 cfg->irptndx = cfg->cbndx;
962 }
963
964 pgtbl_cfg = (struct io_pgtable_cfg) {
965 .pgsize_bitmap = smmu->pgsize_bitmap,
966 .ias = ias,
967 .oas = oas,
968 .tlb = &arm_smmu_gather_ops,
969 .iommu_dev = smmu->dev,
970 };
971
972 smmu_domain->smmu = smmu;
973 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
974 if (!pgtbl_ops) {
975 ret = -ENOMEM;
976 goto out_clear_smmu;
977 }
978
979 /* Update the domain's page sizes to reflect the page table format */
980 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
981
982 /* Initialise the context bank with our page table cfg */
983 arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
984
985 /*
986 * Request context fault interrupt. Do this last to avoid the
987 * handler seeing a half-initialised domain state.
988 */
989 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
990 ret = devm_request_irq(smmu->dev, irq, arm_smmu_context_fault,
991 IRQF_SHARED, "arm-smmu-context-fault", domain);
992 if (ret < 0) {
993 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
994 cfg->irptndx, irq);
995 cfg->irptndx = INVALID_IRPTNDX;
996 }
997
998 mutex_unlock(&smmu_domain->init_mutex);
999
1000 /* Publish page table ops for map/unmap */
1001 smmu_domain->pgtbl_ops = pgtbl_ops;
1002 return 0;
1003
1004 out_clear_smmu:
1005 smmu_domain->smmu = NULL;
1006 out_unlock:
1007 mutex_unlock(&smmu_domain->init_mutex);
1008 return ret;
1009 }
1010
1011 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
1012 {
1013 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1014 struct arm_smmu_device *smmu = smmu_domain->smmu;
1015 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1016 void __iomem *cb_base;
1017 int irq;
1018
1019 if (!smmu || domain->type == IOMMU_DOMAIN_DMA)
1020 return;
1021
1022 /*
1023 * Disable the context bank and free the page tables before freeing
1024 * it.
1025 */
1026 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1027 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1028
1029 if (cfg->irptndx != INVALID_IRPTNDX) {
1030 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1031 devm_free_irq(smmu->dev, irq, domain);
1032 }
1033
1034 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1035 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
1036 }
1037
1038 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1039 {
1040 struct arm_smmu_domain *smmu_domain;
1041
1042 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1043 return NULL;
1044 /*
1045 * Allocate the domain and initialise some of its data structures.
1046 * We can't really do anything meaningful until we've added a
1047 * master.
1048 */
1049 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1050 if (!smmu_domain)
1051 return NULL;
1052
1053 if (type == IOMMU_DOMAIN_DMA &&
1054 iommu_get_dma_cookie(&smmu_domain->domain)) {
1055 kfree(smmu_domain);
1056 return NULL;
1057 }
1058
1059 mutex_init(&smmu_domain->init_mutex);
1060 spin_lock_init(&smmu_domain->pgtbl_lock);
1061
1062 return &smmu_domain->domain;
1063 }
1064
1065 static void arm_smmu_domain_free(struct iommu_domain *domain)
1066 {
1067 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1068
1069 /*
1070 * Free the domain resources. We assume that all devices have
1071 * already been detached.
1072 */
1073 iommu_put_dma_cookie(domain);
1074 arm_smmu_destroy_domain_context(domain);
1075 kfree(smmu_domain);
1076 }
1077
1078 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1079 struct arm_smmu_master_cfg *cfg)
1080 {
1081 int i;
1082 struct arm_smmu_smr *smrs;
1083 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1084
1085 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1086 return 0;
1087
1088 if (cfg->smrs)
1089 return -EEXIST;
1090
1091 smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1092 if (!smrs) {
1093 dev_err(smmu->dev, "failed to allocate %d SMRs\n",
1094 cfg->num_streamids);
1095 return -ENOMEM;
1096 }
1097
1098 /* Allocate the SMRs on the SMMU */
1099 for (i = 0; i < cfg->num_streamids; ++i) {
1100 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1101 smmu->num_mapping_groups);
1102 if (idx < 0) {
1103 dev_err(smmu->dev, "failed to allocate free SMR\n");
1104 goto err_free_smrs;
1105 }
1106
1107 smrs[i] = (struct arm_smmu_smr) {
1108 .idx = idx,
1109 .mask = 0, /* We don't currently share SMRs */
1110 .id = cfg->streamids[i],
1111 };
1112 }
1113
1114 /* It worked! Now, poke the actual hardware */
1115 for (i = 0; i < cfg->num_streamids; ++i) {
1116 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1117 smrs[i].mask << SMR_MASK_SHIFT;
1118 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1119 }
1120
1121 cfg->smrs = smrs;
1122 return 0;
1123
1124 err_free_smrs:
1125 while (--i >= 0)
1126 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1127 kfree(smrs);
1128 return -ENOSPC;
1129 }
1130
1131 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1132 struct arm_smmu_master_cfg *cfg)
1133 {
1134 int i;
1135 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1136 struct arm_smmu_smr *smrs = cfg->smrs;
1137
1138 if (!smrs)
1139 return;
1140
1141 /* Invalidate the SMRs before freeing back to the allocator */
1142 for (i = 0; i < cfg->num_streamids; ++i) {
1143 u8 idx = smrs[i].idx;
1144
1145 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1146 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1147 }
1148
1149 cfg->smrs = NULL;
1150 kfree(smrs);
1151 }
1152
1153 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1154 struct arm_smmu_master_cfg *cfg)
1155 {
1156 int i, ret;
1157 struct arm_smmu_device *smmu = smmu_domain->smmu;
1158 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1159
1160 /*
1161 * FIXME: This won't be needed once we have IOMMU-backed DMA ops
1162 * for all devices behind the SMMU. Note that we need to take
1163 * care configuring SMRs for devices both a platform_device and
1164 * and a PCI device (i.e. a PCI host controller)
1165 */
1166 if (smmu_domain->domain.type == IOMMU_DOMAIN_DMA)
1167 return 0;
1168
1169 /* Devices in an IOMMU group may already be configured */
1170 ret = arm_smmu_master_configure_smrs(smmu, cfg);
1171 if (ret)
1172 return ret == -EEXIST ? 0 : ret;
1173
1174 for (i = 0; i < cfg->num_streamids; ++i) {
1175 u32 idx, s2cr;
1176
1177 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1178 s2cr = S2CR_TYPE_TRANS | S2CR_PRIVCFG_UNPRIV |
1179 (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1180 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1181 }
1182
1183 return 0;
1184 }
1185
1186 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1187 struct arm_smmu_master_cfg *cfg)
1188 {
1189 int i;
1190 struct arm_smmu_device *smmu = smmu_domain->smmu;
1191 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1192
1193 /* An IOMMU group is torn down by the first device to be removed */
1194 if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
1195 return;
1196
1197 /*
1198 * We *must* clear the S2CR first, because freeing the SMR means
1199 * that it can be re-allocated immediately.
1200 */
1201 for (i = 0; i < cfg->num_streamids; ++i) {
1202 u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1203 u32 reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1204
1205 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1206 }
1207
1208 arm_smmu_master_free_smrs(smmu, cfg);
1209 }
1210
1211 static void arm_smmu_detach_dev(struct device *dev,
1212 struct arm_smmu_master_cfg *cfg)
1213 {
1214 struct iommu_domain *domain = dev->archdata.iommu;
1215 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1216
1217 dev->archdata.iommu = NULL;
1218 arm_smmu_domain_remove_master(smmu_domain, cfg);
1219 }
1220
1221 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1222 {
1223 int ret;
1224 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1225 struct arm_smmu_device *smmu;
1226 struct arm_smmu_master_cfg *cfg;
1227
1228 smmu = find_smmu_for_device(dev);
1229 if (!smmu) {
1230 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1231 return -ENXIO;
1232 }
1233
1234 /* Ensure that the domain is finalised */
1235 ret = arm_smmu_init_domain_context(domain, smmu);
1236 if (ret < 0)
1237 return ret;
1238
1239 /*
1240 * Sanity check the domain. We don't support domains across
1241 * different SMMUs.
1242 */
1243 if (smmu_domain->smmu != smmu) {
1244 dev_err(dev,
1245 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1246 dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1247 return -EINVAL;
1248 }
1249
1250 /* Looks ok, so add the device to the domain */
1251 cfg = find_smmu_master_cfg(dev);
1252 if (!cfg)
1253 return -ENODEV;
1254
1255 /* Detach the dev from its current domain */
1256 if (dev->archdata.iommu)
1257 arm_smmu_detach_dev(dev, cfg);
1258
1259 ret = arm_smmu_domain_add_master(smmu_domain, cfg);
1260 if (!ret)
1261 dev->archdata.iommu = domain;
1262 return ret;
1263 }
1264
1265 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1266 phys_addr_t paddr, size_t size, int prot)
1267 {
1268 int ret;
1269 unsigned long flags;
1270 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1271 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1272
1273 if (!ops)
1274 return -ENODEV;
1275
1276 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1277 ret = ops->map(ops, iova, paddr, size, prot);
1278 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1279 return ret;
1280 }
1281
1282 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1283 size_t size)
1284 {
1285 size_t ret;
1286 unsigned long flags;
1287 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1288 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1289
1290 if (!ops)
1291 return 0;
1292
1293 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1294 ret = ops->unmap(ops, iova, size);
1295 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1296 return ret;
1297 }
1298
1299 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
1300 dma_addr_t iova)
1301 {
1302 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1303 struct arm_smmu_device *smmu = smmu_domain->smmu;
1304 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1305 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1306 struct device *dev = smmu->dev;
1307 void __iomem *cb_base;
1308 u32 tmp;
1309 u64 phys;
1310 unsigned long va;
1311
1312 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1313
1314 /* ATS1 registers can only be written atomically */
1315 va = iova & ~0xfffUL;
1316 if (smmu->version == ARM_SMMU_V2)
1317 smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1318 else /* Register is only 32-bit in v1 */
1319 writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1320
1321 if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
1322 !(tmp & ATSR_ACTIVE), 5, 50)) {
1323 dev_err(dev,
1324 "iova to phys timed out on %pad. Falling back to software table walk.\n",
1325 &iova);
1326 return ops->iova_to_phys(ops, iova);
1327 }
1328
1329 phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1330 if (phys & CB_PAR_F) {
1331 dev_err(dev, "translation fault!\n");
1332 dev_err(dev, "PAR = 0x%llx\n", phys);
1333 return 0;
1334 }
1335
1336 return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
1337 }
1338
1339 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1340 dma_addr_t iova)
1341 {
1342 phys_addr_t ret;
1343 unsigned long flags;
1344 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1345 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1346
1347 if (!ops)
1348 return 0;
1349
1350 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1351 if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1352 smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1353 ret = arm_smmu_iova_to_phys_hard(domain, iova);
1354 } else {
1355 ret = ops->iova_to_phys(ops, iova);
1356 }
1357
1358 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1359
1360 return ret;
1361 }
1362
1363 static bool arm_smmu_capable(enum iommu_cap cap)
1364 {
1365 switch (cap) {
1366 case IOMMU_CAP_CACHE_COHERENCY:
1367 /*
1368 * Return true here as the SMMU can always send out coherent
1369 * requests.
1370 */
1371 return true;
1372 case IOMMU_CAP_INTR_REMAP:
1373 return true; /* MSIs are just memory writes */
1374 case IOMMU_CAP_NOEXEC:
1375 return true;
1376 default:
1377 return false;
1378 }
1379 }
1380
1381 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1382 {
1383 *((u16 *)data) = alias;
1384 return 0; /* Continue walking */
1385 }
1386
1387 static void __arm_smmu_release_pci_iommudata(void *data)
1388 {
1389 kfree(data);
1390 }
1391
1392 static int arm_smmu_init_pci_device(struct pci_dev *pdev,
1393 struct iommu_group *group)
1394 {
1395 struct arm_smmu_master_cfg *cfg;
1396 u16 sid;
1397 int i;
1398
1399 cfg = iommu_group_get_iommudata(group);
1400 if (!cfg) {
1401 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1402 if (!cfg)
1403 return -ENOMEM;
1404
1405 iommu_group_set_iommudata(group, cfg,
1406 __arm_smmu_release_pci_iommudata);
1407 }
1408
1409 if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
1410 return -ENOSPC;
1411
1412 /*
1413 * Assume Stream ID == Requester ID for now.
1414 * We need a way to describe the ID mappings in FDT.
1415 */
1416 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1417 for (i = 0; i < cfg->num_streamids; ++i)
1418 if (cfg->streamids[i] == sid)
1419 break;
1420
1421 /* Avoid duplicate SIDs, as this can lead to SMR conflicts */
1422 if (i == cfg->num_streamids)
1423 cfg->streamids[cfg->num_streamids++] = sid;
1424
1425 return 0;
1426 }
1427
1428 static int arm_smmu_init_platform_device(struct device *dev,
1429 struct iommu_group *group)
1430 {
1431 struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1432 struct arm_smmu_master *master;
1433
1434 if (!smmu)
1435 return -ENODEV;
1436
1437 master = find_smmu_master(smmu, dev->of_node);
1438 if (!master)
1439 return -ENODEV;
1440
1441 iommu_group_set_iommudata(group, &master->cfg, NULL);
1442
1443 return 0;
1444 }
1445
1446 static int arm_smmu_add_device(struct device *dev)
1447 {
1448 struct iommu_group *group;
1449
1450 group = iommu_group_get_for_dev(dev);
1451 if (IS_ERR(group))
1452 return PTR_ERR(group);
1453
1454 iommu_group_put(group);
1455 return 0;
1456 }
1457
1458 static void arm_smmu_remove_device(struct device *dev)
1459 {
1460 iommu_group_remove_device(dev);
1461 }
1462
1463 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1464 {
1465 struct iommu_group *group;
1466 int ret;
1467
1468 if (dev_is_pci(dev))
1469 group = pci_device_group(dev);
1470 else
1471 group = generic_device_group(dev);
1472
1473 if (IS_ERR(group))
1474 return group;
1475
1476 if (dev_is_pci(dev))
1477 ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
1478 else
1479 ret = arm_smmu_init_platform_device(dev, group);
1480
1481 if (ret) {
1482 iommu_group_put(group);
1483 group = ERR_PTR(ret);
1484 }
1485
1486 return group;
1487 }
1488
1489 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1490 enum iommu_attr attr, void *data)
1491 {
1492 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1493
1494 switch (attr) {
1495 case DOMAIN_ATTR_NESTING:
1496 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1497 return 0;
1498 default:
1499 return -ENODEV;
1500 }
1501 }
1502
1503 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1504 enum iommu_attr attr, void *data)
1505 {
1506 int ret = 0;
1507 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1508
1509 mutex_lock(&smmu_domain->init_mutex);
1510
1511 switch (attr) {
1512 case DOMAIN_ATTR_NESTING:
1513 if (smmu_domain->smmu) {
1514 ret = -EPERM;
1515 goto out_unlock;
1516 }
1517
1518 if (*(int *)data)
1519 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1520 else
1521 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1522
1523 break;
1524 default:
1525 ret = -ENODEV;
1526 }
1527
1528 out_unlock:
1529 mutex_unlock(&smmu_domain->init_mutex);
1530 return ret;
1531 }
1532
1533 static struct iommu_ops arm_smmu_ops = {
1534 .capable = arm_smmu_capable,
1535 .domain_alloc = arm_smmu_domain_alloc,
1536 .domain_free = arm_smmu_domain_free,
1537 .attach_dev = arm_smmu_attach_dev,
1538 .map = arm_smmu_map,
1539 .unmap = arm_smmu_unmap,
1540 .map_sg = default_iommu_map_sg,
1541 .iova_to_phys = arm_smmu_iova_to_phys,
1542 .add_device = arm_smmu_add_device,
1543 .remove_device = arm_smmu_remove_device,
1544 .device_group = arm_smmu_device_group,
1545 .domain_get_attr = arm_smmu_domain_get_attr,
1546 .domain_set_attr = arm_smmu_domain_set_attr,
1547 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1548 };
1549
1550 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1551 {
1552 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1553 void __iomem *cb_base;
1554 int i = 0;
1555 u32 reg, major;
1556
1557 /* clear global FSR */
1558 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1559 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1560
1561 /* Mark all SMRn as invalid and all S2CRn as bypass unless overridden */
1562 reg = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS;
1563 for (i = 0; i < smmu->num_mapping_groups; ++i) {
1564 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1565 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_S2CR(i));
1566 }
1567
1568 /*
1569 * Before clearing ARM_MMU500_ACTLR_CPRE, need to
1570 * clear CACHE_LOCK bit of ACR first. And, CACHE_LOCK
1571 * bit is only present in MMU-500r2 onwards.
1572 */
1573 reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID7);
1574 major = (reg >> ID7_MAJOR_SHIFT) & ID7_MAJOR_MASK;
1575 if ((smmu->model == ARM_MMU500) && (major >= 2)) {
1576 reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sACR);
1577 reg &= ~ARM_MMU500_ACR_CACHE_LOCK;
1578 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sACR);
1579 }
1580
1581 /* Make sure all context banks are disabled and clear CB_FSR */
1582 for (i = 0; i < smmu->num_context_banks; ++i) {
1583 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1584 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1585 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1586 /*
1587 * Disable MMU-500's not-particularly-beneficial next-page
1588 * prefetcher for the sake of errata #841119 and #826419.
1589 */
1590 if (smmu->model == ARM_MMU500) {
1591 reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
1592 reg &= ~ARM_MMU500_ACTLR_CPRE;
1593 writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
1594 }
1595 }
1596
1597 /* Invalidate the TLB, just in case */
1598 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1599 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1600
1601 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1602
1603 /* Enable fault reporting */
1604 reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1605
1606 /* Disable TLB broadcasting. */
1607 reg |= (sCR0_VMIDPNE | sCR0_PTM);
1608
1609 /* Enable client access, handling unmatched streams as appropriate */
1610 reg &= ~sCR0_CLIENTPD;
1611 if (disable_bypass)
1612 reg |= sCR0_USFCFG;
1613 else
1614 reg &= ~sCR0_USFCFG;
1615
1616 /* Disable forced broadcasting */
1617 reg &= ~sCR0_FB;
1618
1619 /* Don't upgrade barriers */
1620 reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1621
1622 if (smmu->features & ARM_SMMU_FEAT_VMID16)
1623 reg |= sCR0_VMID16EN;
1624
1625 /* Push the button */
1626 __arm_smmu_tlb_sync(smmu);
1627 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1628 }
1629
1630 static int arm_smmu_id_size_to_bits(int size)
1631 {
1632 switch (size) {
1633 case 0:
1634 return 32;
1635 case 1:
1636 return 36;
1637 case 2:
1638 return 40;
1639 case 3:
1640 return 42;
1641 case 4:
1642 return 44;
1643 case 5:
1644 default:
1645 return 48;
1646 }
1647 }
1648
1649 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1650 {
1651 unsigned long size;
1652 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1653 u32 id;
1654 bool cttw_dt, cttw_reg;
1655
1656 dev_notice(smmu->dev, "probing hardware configuration...\n");
1657 dev_notice(smmu->dev, "SMMUv%d with:\n",
1658 smmu->version == ARM_SMMU_V2 ? 2 : 1);
1659
1660 /* ID0 */
1661 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1662
1663 /* Restrict available stages based on module parameter */
1664 if (force_stage == 1)
1665 id &= ~(ID0_S2TS | ID0_NTS);
1666 else if (force_stage == 2)
1667 id &= ~(ID0_S1TS | ID0_NTS);
1668
1669 if (id & ID0_S1TS) {
1670 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1671 dev_notice(smmu->dev, "\tstage 1 translation\n");
1672 }
1673
1674 if (id & ID0_S2TS) {
1675 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1676 dev_notice(smmu->dev, "\tstage 2 translation\n");
1677 }
1678
1679 if (id & ID0_NTS) {
1680 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1681 dev_notice(smmu->dev, "\tnested translation\n");
1682 }
1683
1684 if (!(smmu->features &
1685 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1686 dev_err(smmu->dev, "\tno translation support!\n");
1687 return -ENODEV;
1688 }
1689
1690 if ((id & ID0_S1TS) &&
1691 ((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1692 smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
1693 dev_notice(smmu->dev, "\taddress translation ops\n");
1694 }
1695
1696 /*
1697 * In order for DMA API calls to work properly, we must defer to what
1698 * the DT says about coherency, regardless of what the hardware claims.
1699 * Fortunately, this also opens up a workaround for systems where the
1700 * ID register value has ended up configured incorrectly.
1701 */
1702 cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
1703 cttw_reg = !!(id & ID0_CTTW);
1704 if (cttw_dt)
1705 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1706 if (cttw_dt || cttw_reg)
1707 dev_notice(smmu->dev, "\t%scoherent table walk\n",
1708 cttw_dt ? "" : "non-");
1709 if (cttw_dt != cttw_reg)
1710 dev_notice(smmu->dev,
1711 "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1712
1713 if (id & ID0_SMS) {
1714 u32 smr, sid, mask;
1715
1716 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1717 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1718 ID0_NUMSMRG_MASK;
1719 if (smmu->num_mapping_groups == 0) {
1720 dev_err(smmu->dev,
1721 "stream-matching supported, but no SMRs present!\n");
1722 return -ENODEV;
1723 }
1724
1725 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1726 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1727 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1728 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1729
1730 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1731 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1732 if ((mask & sid) != sid) {
1733 dev_err(smmu->dev,
1734 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1735 mask, sid);
1736 return -ENODEV;
1737 }
1738
1739 dev_notice(smmu->dev,
1740 "\tstream matching with %u register groups, mask 0x%x",
1741 smmu->num_mapping_groups, mask);
1742 } else {
1743 smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
1744 ID0_NUMSIDB_MASK;
1745 }
1746
1747 if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
1748 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
1749 if (!(id & ID0_PTFS_NO_AARCH32S))
1750 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
1751 }
1752
1753 /* ID1 */
1754 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1755 smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1756
1757 /* Check for size mismatch of SMMU address space from mapped region */
1758 size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1759 size *= 2 << smmu->pgshift;
1760 if (smmu->size != size)
1761 dev_warn(smmu->dev,
1762 "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1763 size, smmu->size);
1764
1765 smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1766 smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1767 if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1768 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1769 return -ENODEV;
1770 }
1771 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1772 smmu->num_context_banks, smmu->num_s2_context_banks);
1773 /*
1774 * Cavium CN88xx erratum #27704.
1775 * Ensure ASID and VMID allocation is unique across all SMMUs in
1776 * the system.
1777 */
1778 if (smmu->model == CAVIUM_SMMUV2) {
1779 smmu->cavium_id_base =
1780 atomic_add_return(smmu->num_context_banks,
1781 &cavium_smmu_context_count);
1782 smmu->cavium_id_base -= smmu->num_context_banks;
1783 }
1784
1785 /* ID2 */
1786 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1787 size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1788 smmu->ipa_size = size;
1789
1790 /* The output mask is also applied for bypass */
1791 size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1792 smmu->pa_size = size;
1793
1794 if (id & ID2_VMID16)
1795 smmu->features |= ARM_SMMU_FEAT_VMID16;
1796
1797 /*
1798 * What the page table walker can address actually depends on which
1799 * descriptor format is in use, but since a) we don't know that yet,
1800 * and b) it can vary per context bank, this will have to do...
1801 */
1802 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
1803 dev_warn(smmu->dev,
1804 "failed to set DMA mask for table walker\n");
1805
1806 if (smmu->version < ARM_SMMU_V2) {
1807 smmu->va_size = smmu->ipa_size;
1808 if (smmu->version == ARM_SMMU_V1_64K)
1809 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1810 } else {
1811 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1812 smmu->va_size = arm_smmu_id_size_to_bits(size);
1813 if (id & ID2_PTFS_4K)
1814 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
1815 if (id & ID2_PTFS_16K)
1816 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
1817 if (id & ID2_PTFS_64K)
1818 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1819 }
1820
1821 /* Now we've corralled the various formats, what'll it do? */
1822 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
1823 smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
1824 if (smmu->features &
1825 (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
1826 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
1827 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
1828 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
1829 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
1830 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
1831
1832 if (arm_smmu_ops.pgsize_bitmap == -1UL)
1833 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
1834 else
1835 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
1836 dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
1837 smmu->pgsize_bitmap);
1838
1839
1840 if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1841 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1842 smmu->va_size, smmu->ipa_size);
1843
1844 if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1845 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1846 smmu->ipa_size, smmu->pa_size);
1847
1848 return 0;
1849 }
1850
1851 struct arm_smmu_match_data {
1852 enum arm_smmu_arch_version version;
1853 enum arm_smmu_implementation model;
1854 };
1855
1856 #define ARM_SMMU_MATCH_DATA(name, ver, imp) \
1857 static struct arm_smmu_match_data name = { .version = ver, .model = imp }
1858
1859 ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
1860 ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
1861 ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
1862 ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
1863 ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
1864
1865 static const struct of_device_id arm_smmu_of_match[] = {
1866 { .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
1867 { .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
1868 { .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
1869 { .compatible = "arm,mmu-401", .data = &arm_mmu401 },
1870 { .compatible = "arm,mmu-500", .data = &arm_mmu500 },
1871 { .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
1872 { },
1873 };
1874 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1875
1876 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1877 {
1878 const struct of_device_id *of_id;
1879 const struct arm_smmu_match_data *data;
1880 struct resource *res;
1881 struct arm_smmu_device *smmu;
1882 struct device *dev = &pdev->dev;
1883 struct rb_node *node;
1884 struct of_phandle_iterator it;
1885 struct arm_smmu_phandle_args *masterspec;
1886 int num_irqs, i, err;
1887
1888 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1889 if (!smmu) {
1890 dev_err(dev, "failed to allocate arm_smmu_device\n");
1891 return -ENOMEM;
1892 }
1893 smmu->dev = dev;
1894
1895 of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1896 data = of_id->data;
1897 smmu->version = data->version;
1898 smmu->model = data->model;
1899
1900 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1901 smmu->base = devm_ioremap_resource(dev, res);
1902 if (IS_ERR(smmu->base))
1903 return PTR_ERR(smmu->base);
1904 smmu->size = resource_size(res);
1905
1906 if (of_property_read_u32(dev->of_node, "#global-interrupts",
1907 &smmu->num_global_irqs)) {
1908 dev_err(dev, "missing #global-interrupts property\n");
1909 return -ENODEV;
1910 }
1911
1912 num_irqs = 0;
1913 while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1914 num_irqs++;
1915 if (num_irqs > smmu->num_global_irqs)
1916 smmu->num_context_irqs++;
1917 }
1918
1919 if (!smmu->num_context_irqs) {
1920 dev_err(dev, "found %d interrupts but expected at least %d\n",
1921 num_irqs, smmu->num_global_irqs + 1);
1922 return -ENODEV;
1923 }
1924
1925 smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1926 GFP_KERNEL);
1927 if (!smmu->irqs) {
1928 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1929 return -ENOMEM;
1930 }
1931
1932 for (i = 0; i < num_irqs; ++i) {
1933 int irq = platform_get_irq(pdev, i);
1934
1935 if (irq < 0) {
1936 dev_err(dev, "failed to get irq index %d\n", i);
1937 return -ENODEV;
1938 }
1939 smmu->irqs[i] = irq;
1940 }
1941
1942 err = arm_smmu_device_cfg_probe(smmu);
1943 if (err)
1944 return err;
1945
1946 i = 0;
1947 smmu->masters = RB_ROOT;
1948
1949 err = -ENOMEM;
1950 /* No need to zero the memory for masterspec */
1951 masterspec = kmalloc(sizeof(*masterspec), GFP_KERNEL);
1952 if (!masterspec)
1953 goto out_put_masters;
1954
1955 of_for_each_phandle(&it, err, dev->of_node,
1956 "mmu-masters", "#stream-id-cells", 0) {
1957 int count = of_phandle_iterator_args(&it, masterspec->args,
1958 MAX_MASTER_STREAMIDS);
1959 masterspec->np = of_node_get(it.node);
1960 masterspec->args_count = count;
1961
1962 err = register_smmu_master(smmu, dev, masterspec);
1963 if (err) {
1964 dev_err(dev, "failed to add master %s\n",
1965 masterspec->np->name);
1966 kfree(masterspec);
1967 goto out_put_masters;
1968 }
1969
1970 i++;
1971 }
1972
1973 dev_notice(dev, "registered %d master devices\n", i);
1974
1975 kfree(masterspec);
1976
1977 parse_driver_options(smmu);
1978
1979 if (smmu->version == ARM_SMMU_V2 &&
1980 smmu->num_context_banks != smmu->num_context_irqs) {
1981 dev_err(dev,
1982 "found only %d context interrupt(s) but %d required\n",
1983 smmu->num_context_irqs, smmu->num_context_banks);
1984 err = -ENODEV;
1985 goto out_put_masters;
1986 }
1987
1988 for (i = 0; i < smmu->num_global_irqs; ++i) {
1989 err = devm_request_irq(smmu->dev, smmu->irqs[i],
1990 arm_smmu_global_fault,
1991 IRQF_SHARED,
1992 "arm-smmu global fault",
1993 smmu);
1994 if (err) {
1995 dev_err(dev, "failed to request global IRQ %d (%u)\n",
1996 i, smmu->irqs[i]);
1997 goto out_put_masters;
1998 }
1999 }
2000
2001 INIT_LIST_HEAD(&smmu->list);
2002 spin_lock(&arm_smmu_devices_lock);
2003 list_add(&smmu->list, &arm_smmu_devices);
2004 spin_unlock(&arm_smmu_devices_lock);
2005
2006 arm_smmu_device_reset(smmu);
2007 return 0;
2008
2009 out_put_masters:
2010 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2011 struct arm_smmu_master *master
2012 = container_of(node, struct arm_smmu_master, node);
2013 of_node_put(master->of_node);
2014 }
2015
2016 return err;
2017 }
2018
2019 static int arm_smmu_device_remove(struct platform_device *pdev)
2020 {
2021 int i;
2022 struct device *dev = &pdev->dev;
2023 struct arm_smmu_device *curr, *smmu = NULL;
2024 struct rb_node *node;
2025
2026 spin_lock(&arm_smmu_devices_lock);
2027 list_for_each_entry(curr, &arm_smmu_devices, list) {
2028 if (curr->dev == dev) {
2029 smmu = curr;
2030 list_del(&smmu->list);
2031 break;
2032 }
2033 }
2034 spin_unlock(&arm_smmu_devices_lock);
2035
2036 if (!smmu)
2037 return -ENODEV;
2038
2039 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2040 struct arm_smmu_master *master
2041 = container_of(node, struct arm_smmu_master, node);
2042 of_node_put(master->of_node);
2043 }
2044
2045 if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2046 dev_err(dev, "removing device with active domains!\n");
2047
2048 for (i = 0; i < smmu->num_global_irqs; ++i)
2049 devm_free_irq(smmu->dev, smmu->irqs[i], smmu);
2050
2051 /* Turn the thing off */
2052 writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2053 return 0;
2054 }
2055
2056 static struct platform_driver arm_smmu_driver = {
2057 .driver = {
2058 .name = "arm-smmu",
2059 .of_match_table = of_match_ptr(arm_smmu_of_match),
2060 },
2061 .probe = arm_smmu_device_dt_probe,
2062 .remove = arm_smmu_device_remove,
2063 };
2064
2065 static int __init arm_smmu_init(void)
2066 {
2067 struct device_node *np;
2068 int ret;
2069
2070 /*
2071 * Play nice with systems that don't have an ARM SMMU by checking that
2072 * an ARM SMMU exists in the system before proceeding with the driver
2073 * and IOMMU bus operation registration.
2074 */
2075 np = of_find_matching_node(NULL, arm_smmu_of_match);
2076 if (!np)
2077 return 0;
2078
2079 of_node_put(np);
2080
2081 ret = platform_driver_register(&arm_smmu_driver);
2082 if (ret)
2083 return ret;
2084
2085 /* Oh, for a proper bus abstraction */
2086 if (!iommu_present(&platform_bus_type))
2087 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2088
2089 #ifdef CONFIG_ARM_AMBA
2090 if (!iommu_present(&amba_bustype))
2091 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2092 #endif
2093
2094 #ifdef CONFIG_PCI
2095 if (!iommu_present(&pci_bus_type)) {
2096 pci_request_acs();
2097 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2098 }
2099 #endif
2100
2101 return 0;
2102 }
2103
2104 static void __exit arm_smmu_exit(void)
2105 {
2106 return platform_driver_unregister(&arm_smmu_driver);
2107 }
2108
2109 subsys_initcall(arm_smmu_init);
2110 module_exit(arm_smmu_exit);
2111
2112 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
2113 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2114 MODULE_LICENSE("GPL v2");
This page took 0.074354 seconds and 5 git commands to generate.