iommu/arm-smmu: fix capability checking prior to device attach
[deliverable/linux.git] / drivers / iommu / arm-smmu.c
1 /*
2 * IOMMU API for ARM architected SMMU implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16 *
17 * Copyright (C) 2013 ARM Limited
18 *
19 * Author: Will Deacon <will.deacon@arm.com>
20 *
21 * This driver currently supports:
22 * - SMMUv1 and v2 implementations
23 * - Stream-matching and stream-indexing
24 * - v7/v8 long-descriptor format
25 * - Non-secure access to the SMMU
26 * - 4k and 64k pages, with contiguous pte hints.
27 * - Up to 42-bit addressing (dependent on VA_BITS)
28 * - Context fault reporting
29 */
30
31 #define pr_fmt(fmt) "arm-smmu: " fmt
32
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/err.h>
36 #include <linux/interrupt.h>
37 #include <linux/io.h>
38 #include <linux/iommu.h>
39 #include <linux/mm.h>
40 #include <linux/module.h>
41 #include <linux/of.h>
42 #include <linux/pci.h>
43 #include <linux/platform_device.h>
44 #include <linux/slab.h>
45 #include <linux/spinlock.h>
46
47 #include <linux/amba/bus.h>
48
49 #include <asm/pgalloc.h>
50
51 /* Maximum number of stream IDs assigned to a single device */
52 #define MAX_MASTER_STREAMIDS MAX_PHANDLE_ARGS
53
54 /* Maximum number of context banks per SMMU */
55 #define ARM_SMMU_MAX_CBS 128
56
57 /* Maximum number of mapping groups per SMMU */
58 #define ARM_SMMU_MAX_SMRS 128
59
60 /* SMMU global address space */
61 #define ARM_SMMU_GR0(smmu) ((smmu)->base)
62 #define ARM_SMMU_GR1(smmu) ((smmu)->base + (smmu)->pagesize)
63
64 /*
65 * SMMU global address space with conditional offset to access secure
66 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
67 * nsGFSYNR0: 0x450)
68 */
69 #define ARM_SMMU_GR0_NS(smmu) \
70 ((smmu)->base + \
71 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS) \
72 ? 0x400 : 0))
73
74 /* Page table bits */
75 #define ARM_SMMU_PTE_XN (((pteval_t)3) << 53)
76 #define ARM_SMMU_PTE_CONT (((pteval_t)1) << 52)
77 #define ARM_SMMU_PTE_AF (((pteval_t)1) << 10)
78 #define ARM_SMMU_PTE_SH_NS (((pteval_t)0) << 8)
79 #define ARM_SMMU_PTE_SH_OS (((pteval_t)2) << 8)
80 #define ARM_SMMU_PTE_SH_IS (((pteval_t)3) << 8)
81 #define ARM_SMMU_PTE_PAGE (((pteval_t)3) << 0)
82
83 #if PAGE_SIZE == SZ_4K
84 #define ARM_SMMU_PTE_CONT_ENTRIES 16
85 #elif PAGE_SIZE == SZ_64K
86 #define ARM_SMMU_PTE_CONT_ENTRIES 32
87 #else
88 #define ARM_SMMU_PTE_CONT_ENTRIES 1
89 #endif
90
91 #define ARM_SMMU_PTE_CONT_SIZE (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
92 #define ARM_SMMU_PTE_CONT_MASK (~(ARM_SMMU_PTE_CONT_SIZE - 1))
93
94 /* Stage-1 PTE */
95 #define ARM_SMMU_PTE_AP_UNPRIV (((pteval_t)1) << 6)
96 #define ARM_SMMU_PTE_AP_RDONLY (((pteval_t)2) << 6)
97 #define ARM_SMMU_PTE_ATTRINDX_SHIFT 2
98 #define ARM_SMMU_PTE_nG (((pteval_t)1) << 11)
99
100 /* Stage-2 PTE */
101 #define ARM_SMMU_PTE_HAP_FAULT (((pteval_t)0) << 6)
102 #define ARM_SMMU_PTE_HAP_READ (((pteval_t)1) << 6)
103 #define ARM_SMMU_PTE_HAP_WRITE (((pteval_t)2) << 6)
104 #define ARM_SMMU_PTE_MEMATTR_OIWB (((pteval_t)0xf) << 2)
105 #define ARM_SMMU_PTE_MEMATTR_NC (((pteval_t)0x5) << 2)
106 #define ARM_SMMU_PTE_MEMATTR_DEV (((pteval_t)0x1) << 2)
107
108 /* Configuration registers */
109 #define ARM_SMMU_GR0_sCR0 0x0
110 #define sCR0_CLIENTPD (1 << 0)
111 #define sCR0_GFRE (1 << 1)
112 #define sCR0_GFIE (1 << 2)
113 #define sCR0_GCFGFRE (1 << 4)
114 #define sCR0_GCFGFIE (1 << 5)
115 #define sCR0_USFCFG (1 << 10)
116 #define sCR0_VMIDPNE (1 << 11)
117 #define sCR0_PTM (1 << 12)
118 #define sCR0_FB (1 << 13)
119 #define sCR0_BSU_SHIFT 14
120 #define sCR0_BSU_MASK 0x3
121
122 /* Identification registers */
123 #define ARM_SMMU_GR0_ID0 0x20
124 #define ARM_SMMU_GR0_ID1 0x24
125 #define ARM_SMMU_GR0_ID2 0x28
126 #define ARM_SMMU_GR0_ID3 0x2c
127 #define ARM_SMMU_GR0_ID4 0x30
128 #define ARM_SMMU_GR0_ID5 0x34
129 #define ARM_SMMU_GR0_ID6 0x38
130 #define ARM_SMMU_GR0_ID7 0x3c
131 #define ARM_SMMU_GR0_sGFSR 0x48
132 #define ARM_SMMU_GR0_sGFSYNR0 0x50
133 #define ARM_SMMU_GR0_sGFSYNR1 0x54
134 #define ARM_SMMU_GR0_sGFSYNR2 0x58
135 #define ARM_SMMU_GR0_PIDR0 0xfe0
136 #define ARM_SMMU_GR0_PIDR1 0xfe4
137 #define ARM_SMMU_GR0_PIDR2 0xfe8
138
139 #define ID0_S1TS (1 << 30)
140 #define ID0_S2TS (1 << 29)
141 #define ID0_NTS (1 << 28)
142 #define ID0_SMS (1 << 27)
143 #define ID0_PTFS_SHIFT 24
144 #define ID0_PTFS_MASK 0x2
145 #define ID0_PTFS_V8_ONLY 0x2
146 #define ID0_CTTW (1 << 14)
147 #define ID0_NUMIRPT_SHIFT 16
148 #define ID0_NUMIRPT_MASK 0xff
149 #define ID0_NUMSMRG_SHIFT 0
150 #define ID0_NUMSMRG_MASK 0xff
151
152 #define ID1_PAGESIZE (1 << 31)
153 #define ID1_NUMPAGENDXB_SHIFT 28
154 #define ID1_NUMPAGENDXB_MASK 7
155 #define ID1_NUMS2CB_SHIFT 16
156 #define ID1_NUMS2CB_MASK 0xff
157 #define ID1_NUMCB_SHIFT 0
158 #define ID1_NUMCB_MASK 0xff
159
160 #define ID2_OAS_SHIFT 4
161 #define ID2_OAS_MASK 0xf
162 #define ID2_IAS_SHIFT 0
163 #define ID2_IAS_MASK 0xf
164 #define ID2_UBS_SHIFT 8
165 #define ID2_UBS_MASK 0xf
166 #define ID2_PTFS_4K (1 << 12)
167 #define ID2_PTFS_16K (1 << 13)
168 #define ID2_PTFS_64K (1 << 14)
169
170 #define PIDR2_ARCH_SHIFT 4
171 #define PIDR2_ARCH_MASK 0xf
172
173 /* Global TLB invalidation */
174 #define ARM_SMMU_GR0_STLBIALL 0x60
175 #define ARM_SMMU_GR0_TLBIVMID 0x64
176 #define ARM_SMMU_GR0_TLBIALLNSNH 0x68
177 #define ARM_SMMU_GR0_TLBIALLH 0x6c
178 #define ARM_SMMU_GR0_sTLBGSYNC 0x70
179 #define ARM_SMMU_GR0_sTLBGSTATUS 0x74
180 #define sTLBGSTATUS_GSACTIVE (1 << 0)
181 #define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
182
183 /* Stream mapping registers */
184 #define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
185 #define SMR_VALID (1 << 31)
186 #define SMR_MASK_SHIFT 16
187 #define SMR_MASK_MASK 0x7fff
188 #define SMR_ID_SHIFT 0
189 #define SMR_ID_MASK 0x7fff
190
191 #define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
192 #define S2CR_CBNDX_SHIFT 0
193 #define S2CR_CBNDX_MASK 0xff
194 #define S2CR_TYPE_SHIFT 16
195 #define S2CR_TYPE_MASK 0x3
196 #define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT)
197 #define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT)
198 #define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT)
199
200 /* Context bank attribute registers */
201 #define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
202 #define CBAR_VMID_SHIFT 0
203 #define CBAR_VMID_MASK 0xff
204 #define CBAR_S1_BPSHCFG_SHIFT 8
205 #define CBAR_S1_BPSHCFG_MASK 3
206 #define CBAR_S1_BPSHCFG_NSH 3
207 #define CBAR_S1_MEMATTR_SHIFT 12
208 #define CBAR_S1_MEMATTR_MASK 0xf
209 #define CBAR_S1_MEMATTR_WB 0xf
210 #define CBAR_TYPE_SHIFT 16
211 #define CBAR_TYPE_MASK 0x3
212 #define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
213 #define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
214 #define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
215 #define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
216 #define CBAR_IRPTNDX_SHIFT 24
217 #define CBAR_IRPTNDX_MASK 0xff
218
219 #define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
220 #define CBA2R_RW64_32BIT (0 << 0)
221 #define CBA2R_RW64_64BIT (1 << 0)
222
223 /* Translation context bank */
224 #define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
225 #define ARM_SMMU_CB(smmu, n) ((n) * (smmu)->pagesize)
226
227 #define ARM_SMMU_CB_SCTLR 0x0
228 #define ARM_SMMU_CB_RESUME 0x8
229 #define ARM_SMMU_CB_TTBCR2 0x10
230 #define ARM_SMMU_CB_TTBR0_LO 0x20
231 #define ARM_SMMU_CB_TTBR0_HI 0x24
232 #define ARM_SMMU_CB_TTBCR 0x30
233 #define ARM_SMMU_CB_S1_MAIR0 0x38
234 #define ARM_SMMU_CB_FSR 0x58
235 #define ARM_SMMU_CB_FAR_LO 0x60
236 #define ARM_SMMU_CB_FAR_HI 0x64
237 #define ARM_SMMU_CB_FSYNR0 0x68
238 #define ARM_SMMU_CB_S1_TLBIASID 0x610
239
240 #define SCTLR_S1_ASIDPNE (1 << 12)
241 #define SCTLR_CFCFG (1 << 7)
242 #define SCTLR_CFIE (1 << 6)
243 #define SCTLR_CFRE (1 << 5)
244 #define SCTLR_E (1 << 4)
245 #define SCTLR_AFE (1 << 2)
246 #define SCTLR_TRE (1 << 1)
247 #define SCTLR_M (1 << 0)
248 #define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE)
249
250 #define RESUME_RETRY (0 << 0)
251 #define RESUME_TERMINATE (1 << 0)
252
253 #define TTBCR_EAE (1 << 31)
254
255 #define TTBCR_PASIZE_SHIFT 16
256 #define TTBCR_PASIZE_MASK 0x7
257
258 #define TTBCR_TG0_4K (0 << 14)
259 #define TTBCR_TG0_64K (1 << 14)
260
261 #define TTBCR_SH0_SHIFT 12
262 #define TTBCR_SH0_MASK 0x3
263 #define TTBCR_SH_NS 0
264 #define TTBCR_SH_OS 2
265 #define TTBCR_SH_IS 3
266
267 #define TTBCR_ORGN0_SHIFT 10
268 #define TTBCR_IRGN0_SHIFT 8
269 #define TTBCR_RGN_MASK 0x3
270 #define TTBCR_RGN_NC 0
271 #define TTBCR_RGN_WBWA 1
272 #define TTBCR_RGN_WT 2
273 #define TTBCR_RGN_WB 3
274
275 #define TTBCR_SL0_SHIFT 6
276 #define TTBCR_SL0_MASK 0x3
277 #define TTBCR_SL0_LVL_2 0
278 #define TTBCR_SL0_LVL_1 1
279
280 #define TTBCR_T1SZ_SHIFT 16
281 #define TTBCR_T0SZ_SHIFT 0
282 #define TTBCR_SZ_MASK 0xf
283
284 #define TTBCR2_SEP_SHIFT 15
285 #define TTBCR2_SEP_MASK 0x7
286
287 #define TTBCR2_PASIZE_SHIFT 0
288 #define TTBCR2_PASIZE_MASK 0x7
289
290 /* Common definitions for PASize and SEP fields */
291 #define TTBCR2_ADDR_32 0
292 #define TTBCR2_ADDR_36 1
293 #define TTBCR2_ADDR_40 2
294 #define TTBCR2_ADDR_42 3
295 #define TTBCR2_ADDR_44 4
296 #define TTBCR2_ADDR_48 5
297
298 #define TTBRn_HI_ASID_SHIFT 16
299
300 #define MAIR_ATTR_SHIFT(n) ((n) << 3)
301 #define MAIR_ATTR_MASK 0xff
302 #define MAIR_ATTR_DEVICE 0x04
303 #define MAIR_ATTR_NC 0x44
304 #define MAIR_ATTR_WBRWA 0xff
305 #define MAIR_ATTR_IDX_NC 0
306 #define MAIR_ATTR_IDX_CACHE 1
307 #define MAIR_ATTR_IDX_DEV 2
308
309 #define FSR_MULTI (1 << 31)
310 #define FSR_SS (1 << 30)
311 #define FSR_UUT (1 << 8)
312 #define FSR_ASF (1 << 7)
313 #define FSR_TLBLKF (1 << 6)
314 #define FSR_TLBMCF (1 << 5)
315 #define FSR_EF (1 << 4)
316 #define FSR_PF (1 << 3)
317 #define FSR_AFF (1 << 2)
318 #define FSR_TF (1 << 1)
319
320 #define FSR_IGN (FSR_AFF | FSR_ASF | FSR_TLBMCF | \
321 FSR_TLBLKF)
322 #define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
323 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
324
325 #define FSYNR0_WNR (1 << 4)
326
327 struct arm_smmu_smr {
328 u8 idx;
329 u16 mask;
330 u16 id;
331 };
332
333 struct arm_smmu_master_cfg {
334 int num_streamids;
335 u16 streamids[MAX_MASTER_STREAMIDS];
336 struct arm_smmu_smr *smrs;
337 };
338
339 struct arm_smmu_master {
340 struct device_node *of_node;
341 struct rb_node node;
342 struct arm_smmu_master_cfg cfg;
343 };
344
345 struct arm_smmu_device {
346 struct device *dev;
347
348 void __iomem *base;
349 unsigned long size;
350 unsigned long pagesize;
351
352 #define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
353 #define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
354 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
355 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
356 #define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
357 u32 features;
358
359 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
360 u32 options;
361 int version;
362
363 u32 num_context_banks;
364 u32 num_s2_context_banks;
365 DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
366 atomic_t irptndx;
367
368 u32 num_mapping_groups;
369 DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
370
371 unsigned long input_size;
372 unsigned long s1_output_size;
373 unsigned long s2_output_size;
374
375 u32 num_global_irqs;
376 u32 num_context_irqs;
377 unsigned int *irqs;
378
379 struct list_head list;
380 struct rb_root masters;
381 };
382
383 struct arm_smmu_cfg {
384 u8 cbndx;
385 u8 irptndx;
386 u32 cbar;
387 pgd_t *pgd;
388 };
389 #define INVALID_IRPTNDX 0xff
390
391 #define ARM_SMMU_CB_ASID(cfg) ((cfg)->cbndx)
392 #define ARM_SMMU_CB_VMID(cfg) ((cfg)->cbndx + 1)
393
394 struct arm_smmu_domain {
395 struct arm_smmu_device *smmu;
396 struct arm_smmu_cfg cfg;
397 spinlock_t lock;
398 };
399
400 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
401 static LIST_HEAD(arm_smmu_devices);
402
403 struct arm_smmu_option_prop {
404 u32 opt;
405 const char *prop;
406 };
407
408 static struct arm_smmu_option_prop arm_smmu_options [] = {
409 { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
410 { 0, NULL},
411 };
412
413 static void parse_driver_options(struct arm_smmu_device *smmu)
414 {
415 int i = 0;
416 do {
417 if (of_property_read_bool(smmu->dev->of_node,
418 arm_smmu_options[i].prop)) {
419 smmu->options |= arm_smmu_options[i].opt;
420 dev_notice(smmu->dev, "option %s\n",
421 arm_smmu_options[i].prop);
422 }
423 } while (arm_smmu_options[++i].opt);
424 }
425
426 static struct device *dev_get_master_dev(struct device *dev)
427 {
428 if (dev_is_pci(dev)) {
429 struct pci_bus *bus = to_pci_dev(dev)->bus;
430 while (!pci_is_root_bus(bus))
431 bus = bus->parent;
432 return bus->bridge->parent;
433 }
434
435 return dev;
436 }
437
438 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
439 struct device_node *dev_node)
440 {
441 struct rb_node *node = smmu->masters.rb_node;
442
443 while (node) {
444 struct arm_smmu_master *master;
445 master = container_of(node, struct arm_smmu_master, node);
446
447 if (dev_node < master->of_node)
448 node = node->rb_left;
449 else if (dev_node > master->of_node)
450 node = node->rb_right;
451 else
452 return master;
453 }
454
455 return NULL;
456 }
457
458 static struct arm_smmu_master_cfg *
459 find_smmu_master_cfg(struct arm_smmu_device *smmu, struct device *dev)
460 {
461 struct arm_smmu_master *master;
462
463 if (dev_is_pci(dev))
464 return dev->archdata.iommu;
465
466 master = find_smmu_master(smmu, dev->of_node);
467 return master ? &master->cfg : NULL;
468 }
469
470 static int insert_smmu_master(struct arm_smmu_device *smmu,
471 struct arm_smmu_master *master)
472 {
473 struct rb_node **new, *parent;
474
475 new = &smmu->masters.rb_node;
476 parent = NULL;
477 while (*new) {
478 struct arm_smmu_master *this;
479 this = container_of(*new, struct arm_smmu_master, node);
480
481 parent = *new;
482 if (master->of_node < this->of_node)
483 new = &((*new)->rb_left);
484 else if (master->of_node > this->of_node)
485 new = &((*new)->rb_right);
486 else
487 return -EEXIST;
488 }
489
490 rb_link_node(&master->node, parent, new);
491 rb_insert_color(&master->node, &smmu->masters);
492 return 0;
493 }
494
495 static int register_smmu_master(struct arm_smmu_device *smmu,
496 struct device *dev,
497 struct of_phandle_args *masterspec)
498 {
499 int i;
500 struct arm_smmu_master *master;
501
502 master = find_smmu_master(smmu, masterspec->np);
503 if (master) {
504 dev_err(dev,
505 "rejecting multiple registrations for master device %s\n",
506 masterspec->np->name);
507 return -EBUSY;
508 }
509
510 if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
511 dev_err(dev,
512 "reached maximum number (%d) of stream IDs for master device %s\n",
513 MAX_MASTER_STREAMIDS, masterspec->np->name);
514 return -ENOSPC;
515 }
516
517 master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
518 if (!master)
519 return -ENOMEM;
520
521 master->of_node = masterspec->np;
522 master->cfg.num_streamids = masterspec->args_count;
523
524 for (i = 0; i < master->cfg.num_streamids; ++i)
525 master->cfg.streamids[i] = masterspec->args[i];
526
527 return insert_smmu_master(smmu, master);
528 }
529
530 static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
531 {
532 struct arm_smmu_device *smmu;
533 struct arm_smmu_master *master = NULL;
534 struct device_node *dev_node = dev_get_master_dev(dev)->of_node;
535
536 spin_lock(&arm_smmu_devices_lock);
537 list_for_each_entry(smmu, &arm_smmu_devices, list) {
538 master = find_smmu_master(smmu, dev_node);
539 if (master)
540 break;
541 }
542 spin_unlock(&arm_smmu_devices_lock);
543
544 return master ? smmu : NULL;
545 }
546
547 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
548 {
549 int idx;
550
551 do {
552 idx = find_next_zero_bit(map, end, start);
553 if (idx == end)
554 return -ENOSPC;
555 } while (test_and_set_bit(idx, map));
556
557 return idx;
558 }
559
560 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
561 {
562 clear_bit(idx, map);
563 }
564
565 /* Wait for any pending TLB invalidations to complete */
566 static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
567 {
568 int count = 0;
569 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
570
571 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
572 while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
573 & sTLBGSTATUS_GSACTIVE) {
574 cpu_relax();
575 if (++count == TLB_LOOP_TIMEOUT) {
576 dev_err_ratelimited(smmu->dev,
577 "TLB sync timed out -- SMMU may be deadlocked\n");
578 return;
579 }
580 udelay(1);
581 }
582 }
583
584 static void arm_smmu_tlb_inv_context(struct arm_smmu_domain *smmu_domain)
585 {
586 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
587 struct arm_smmu_device *smmu = smmu_domain->smmu;
588 void __iomem *base = ARM_SMMU_GR0(smmu);
589 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
590
591 if (stage1) {
592 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
593 writel_relaxed(ARM_SMMU_CB_ASID(cfg),
594 base + ARM_SMMU_CB_S1_TLBIASID);
595 } else {
596 base = ARM_SMMU_GR0(smmu);
597 writel_relaxed(ARM_SMMU_CB_VMID(cfg),
598 base + ARM_SMMU_GR0_TLBIVMID);
599 }
600
601 arm_smmu_tlb_sync(smmu);
602 }
603
604 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
605 {
606 int flags, ret;
607 u32 fsr, far, fsynr, resume;
608 unsigned long iova;
609 struct iommu_domain *domain = dev;
610 struct arm_smmu_domain *smmu_domain = domain->priv;
611 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
612 struct arm_smmu_device *smmu = smmu_domain->smmu;
613 void __iomem *cb_base;
614
615 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
616 fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
617
618 if (!(fsr & FSR_FAULT))
619 return IRQ_NONE;
620
621 if (fsr & FSR_IGN)
622 dev_err_ratelimited(smmu->dev,
623 "Unexpected context fault (fsr 0x%u)\n",
624 fsr);
625
626 fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
627 flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
628
629 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
630 iova = far;
631 #ifdef CONFIG_64BIT
632 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
633 iova |= ((unsigned long)far << 32);
634 #endif
635
636 if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
637 ret = IRQ_HANDLED;
638 resume = RESUME_RETRY;
639 } else {
640 dev_err_ratelimited(smmu->dev,
641 "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
642 iova, fsynr, cfg->cbndx);
643 ret = IRQ_NONE;
644 resume = RESUME_TERMINATE;
645 }
646
647 /* Clear the faulting FSR */
648 writel(fsr, cb_base + ARM_SMMU_CB_FSR);
649
650 /* Retry or terminate any stalled transactions */
651 if (fsr & FSR_SS)
652 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
653
654 return ret;
655 }
656
657 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
658 {
659 u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
660 struct arm_smmu_device *smmu = dev;
661 void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
662
663 gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
664 gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
665 gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
666 gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
667
668 if (!gfsr)
669 return IRQ_NONE;
670
671 dev_err_ratelimited(smmu->dev,
672 "Unexpected global fault, this could be serious\n");
673 dev_err_ratelimited(smmu->dev,
674 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
675 gfsr, gfsynr0, gfsynr1, gfsynr2);
676
677 writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
678 return IRQ_HANDLED;
679 }
680
681 static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
682 size_t size)
683 {
684 unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
685
686
687 /* Ensure new page tables are visible to the hardware walker */
688 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
689 dsb(ishst);
690 } else {
691 /*
692 * If the SMMU can't walk tables in the CPU caches, treat them
693 * like non-coherent DMA since we need to flush the new entries
694 * all the way out to memory. There's no possibility of
695 * recursion here as the SMMU table walker will not be wired
696 * through another SMMU.
697 */
698 dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
699 DMA_TO_DEVICE);
700 }
701 }
702
703 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
704 {
705 u32 reg;
706 bool stage1;
707 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
708 struct arm_smmu_device *smmu = smmu_domain->smmu;
709 void __iomem *cb_base, *gr0_base, *gr1_base;
710
711 gr0_base = ARM_SMMU_GR0(smmu);
712 gr1_base = ARM_SMMU_GR1(smmu);
713 stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
714 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
715
716 /* CBAR */
717 reg = cfg->cbar;
718 if (smmu->version == 1)
719 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
720
721 /*
722 * Use the weakest shareability/memory types, so they are
723 * overridden by the ttbcr/pte.
724 */
725 if (stage1) {
726 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
727 (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
728 } else {
729 reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
730 }
731 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
732
733 if (smmu->version > 1) {
734 /* CBA2R */
735 #ifdef CONFIG_64BIT
736 reg = CBA2R_RW64_64BIT;
737 #else
738 reg = CBA2R_RW64_32BIT;
739 #endif
740 writel_relaxed(reg,
741 gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
742
743 /* TTBCR2 */
744 switch (smmu->input_size) {
745 case 32:
746 reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
747 break;
748 case 36:
749 reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
750 break;
751 case 39:
752 reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
753 break;
754 case 42:
755 reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
756 break;
757 case 44:
758 reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
759 break;
760 case 48:
761 reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
762 break;
763 }
764
765 switch (smmu->s1_output_size) {
766 case 32:
767 reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
768 break;
769 case 36:
770 reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
771 break;
772 case 39:
773 reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
774 break;
775 case 42:
776 reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
777 break;
778 case 44:
779 reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
780 break;
781 case 48:
782 reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
783 break;
784 }
785
786 if (stage1)
787 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
788 }
789
790 /* TTBR0 */
791 arm_smmu_flush_pgtable(smmu, cfg->pgd,
792 PTRS_PER_PGD * sizeof(pgd_t));
793 reg = __pa(cfg->pgd);
794 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
795 reg = (phys_addr_t)__pa(cfg->pgd) >> 32;
796 if (stage1)
797 reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
798 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
799
800 /*
801 * TTBCR
802 * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
803 */
804 if (smmu->version > 1) {
805 if (PAGE_SIZE == SZ_4K)
806 reg = TTBCR_TG0_4K;
807 else
808 reg = TTBCR_TG0_64K;
809
810 if (!stage1) {
811 reg |= (64 - smmu->s1_output_size) << TTBCR_T0SZ_SHIFT;
812
813 switch (smmu->s2_output_size) {
814 case 32:
815 reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
816 break;
817 case 36:
818 reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
819 break;
820 case 40:
821 reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
822 break;
823 case 42:
824 reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
825 break;
826 case 44:
827 reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
828 break;
829 case 48:
830 reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
831 break;
832 }
833 } else {
834 reg |= (64 - smmu->input_size) << TTBCR_T0SZ_SHIFT;
835 }
836 } else {
837 reg = 0;
838 }
839
840 reg |= TTBCR_EAE |
841 (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
842 (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
843 (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT) |
844 (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
845 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
846
847 /* MAIR0 (stage-1 only) */
848 if (stage1) {
849 reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
850 (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
851 (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
852 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
853 }
854
855 /* SCTLR */
856 reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
857 if (stage1)
858 reg |= SCTLR_S1_ASIDPNE;
859 #ifdef __BIG_ENDIAN
860 reg |= SCTLR_E;
861 #endif
862 writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
863 }
864
865 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
866 struct arm_smmu_device *smmu)
867 {
868 int irq, ret, start;
869 struct arm_smmu_domain *smmu_domain = domain->priv;
870 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
871
872 if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
873 /*
874 * We will likely want to change this if/when KVM gets
875 * involved.
876 */
877 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
878 start = smmu->num_s2_context_banks;
879 } else if (smmu->features & ARM_SMMU_FEAT_TRANS_S1) {
880 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
881 start = smmu->num_s2_context_banks;
882 } else {
883 cfg->cbar = CBAR_TYPE_S2_TRANS;
884 start = 0;
885 }
886
887 ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
888 smmu->num_context_banks);
889 if (IS_ERR_VALUE(ret))
890 return ret;
891
892 cfg->cbndx = ret;
893 if (smmu->version == 1) {
894 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
895 cfg->irptndx %= smmu->num_context_irqs;
896 } else {
897 cfg->irptndx = cfg->cbndx;
898 }
899
900 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
901 ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
902 "arm-smmu-context-fault", domain);
903 if (IS_ERR_VALUE(ret)) {
904 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
905 cfg->irptndx, irq);
906 cfg->irptndx = INVALID_IRPTNDX;
907 goto out_free_context;
908 }
909
910 smmu_domain->smmu = smmu;
911 arm_smmu_init_context_bank(smmu_domain);
912 return 0;
913
914 out_free_context:
915 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
916 return ret;
917 }
918
919 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
920 {
921 struct arm_smmu_domain *smmu_domain = domain->priv;
922 struct arm_smmu_device *smmu = smmu_domain->smmu;
923 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
924 void __iomem *cb_base;
925 int irq;
926
927 if (!smmu)
928 return;
929
930 /* Disable the context bank and nuke the TLB before freeing it. */
931 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
932 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
933 arm_smmu_tlb_inv_context(smmu_domain);
934
935 if (cfg->irptndx != INVALID_IRPTNDX) {
936 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
937 free_irq(irq, domain);
938 }
939
940 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
941 }
942
943 static int arm_smmu_domain_init(struct iommu_domain *domain)
944 {
945 struct arm_smmu_domain *smmu_domain;
946 pgd_t *pgd;
947
948 /*
949 * Allocate the domain and initialise some of its data structures.
950 * We can't really do anything meaningful until we've added a
951 * master.
952 */
953 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
954 if (!smmu_domain)
955 return -ENOMEM;
956
957 pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
958 if (!pgd)
959 goto out_free_domain;
960 smmu_domain->cfg.pgd = pgd;
961
962 spin_lock_init(&smmu_domain->lock);
963 domain->priv = smmu_domain;
964 return 0;
965
966 out_free_domain:
967 kfree(smmu_domain);
968 return -ENOMEM;
969 }
970
971 static void arm_smmu_free_ptes(pmd_t *pmd)
972 {
973 pgtable_t table = pmd_pgtable(*pmd);
974 pgtable_page_dtor(table);
975 __free_page(table);
976 }
977
978 static void arm_smmu_free_pmds(pud_t *pud)
979 {
980 int i;
981 pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);
982
983 pmd = pmd_base;
984 for (i = 0; i < PTRS_PER_PMD; ++i) {
985 if (pmd_none(*pmd))
986 continue;
987
988 arm_smmu_free_ptes(pmd);
989 pmd++;
990 }
991
992 pmd_free(NULL, pmd_base);
993 }
994
995 static void arm_smmu_free_puds(pgd_t *pgd)
996 {
997 int i;
998 pud_t *pud, *pud_base = pud_offset(pgd, 0);
999
1000 pud = pud_base;
1001 for (i = 0; i < PTRS_PER_PUD; ++i) {
1002 if (pud_none(*pud))
1003 continue;
1004
1005 arm_smmu_free_pmds(pud);
1006 pud++;
1007 }
1008
1009 pud_free(NULL, pud_base);
1010 }
1011
1012 static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
1013 {
1014 int i;
1015 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1016 pgd_t *pgd, *pgd_base = cfg->pgd;
1017
1018 /*
1019 * Recursively free the page tables for this domain. We don't
1020 * care about speculative TLB filling because the tables should
1021 * not be active in any context bank at this point (SCTLR.M is 0).
1022 */
1023 pgd = pgd_base;
1024 for (i = 0; i < PTRS_PER_PGD; ++i) {
1025 if (pgd_none(*pgd))
1026 continue;
1027 arm_smmu_free_puds(pgd);
1028 pgd++;
1029 }
1030
1031 kfree(pgd_base);
1032 }
1033
1034 static void arm_smmu_domain_destroy(struct iommu_domain *domain)
1035 {
1036 struct arm_smmu_domain *smmu_domain = domain->priv;
1037
1038 /*
1039 * Free the domain resources. We assume that all devices have
1040 * already been detached.
1041 */
1042 arm_smmu_destroy_domain_context(domain);
1043 arm_smmu_free_pgtables(smmu_domain);
1044 kfree(smmu_domain);
1045 }
1046
1047 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1048 struct arm_smmu_master_cfg *cfg)
1049 {
1050 int i;
1051 struct arm_smmu_smr *smrs;
1052 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1053
1054 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1055 return 0;
1056
1057 if (cfg->smrs)
1058 return -EEXIST;
1059
1060 smrs = kmalloc(sizeof(*smrs) * cfg->num_streamids, GFP_KERNEL);
1061 if (!smrs) {
1062 dev_err(smmu->dev, "failed to allocate %d SMRs\n",
1063 cfg->num_streamids);
1064 return -ENOMEM;
1065 }
1066
1067 /* Allocate the SMRs on the SMMU */
1068 for (i = 0; i < cfg->num_streamids; ++i) {
1069 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1070 smmu->num_mapping_groups);
1071 if (IS_ERR_VALUE(idx)) {
1072 dev_err(smmu->dev, "failed to allocate free SMR\n");
1073 goto err_free_smrs;
1074 }
1075
1076 smrs[i] = (struct arm_smmu_smr) {
1077 .idx = idx,
1078 .mask = 0, /* We don't currently share SMRs */
1079 .id = cfg->streamids[i],
1080 };
1081 }
1082
1083 /* It worked! Now, poke the actual hardware */
1084 for (i = 0; i < cfg->num_streamids; ++i) {
1085 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1086 smrs[i].mask << SMR_MASK_SHIFT;
1087 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1088 }
1089
1090 cfg->smrs = smrs;
1091 return 0;
1092
1093 err_free_smrs:
1094 while (--i >= 0)
1095 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1096 kfree(smrs);
1097 return -ENOSPC;
1098 }
1099
1100 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1101 struct arm_smmu_master_cfg *cfg)
1102 {
1103 int i;
1104 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1105 struct arm_smmu_smr *smrs = cfg->smrs;
1106
1107 /* Invalidate the SMRs before freeing back to the allocator */
1108 for (i = 0; i < cfg->num_streamids; ++i) {
1109 u8 idx = smrs[i].idx;
1110 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1111 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1112 }
1113
1114 cfg->smrs = NULL;
1115 kfree(smrs);
1116 }
1117
1118 static void arm_smmu_bypass_stream_mapping(struct arm_smmu_device *smmu,
1119 struct arm_smmu_master_cfg *cfg)
1120 {
1121 int i;
1122 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1123
1124 for (i = 0; i < cfg->num_streamids; ++i) {
1125 u16 sid = cfg->streamids[i];
1126 writel_relaxed(S2CR_TYPE_BYPASS,
1127 gr0_base + ARM_SMMU_GR0_S2CR(sid));
1128 }
1129 }
1130
1131 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1132 struct arm_smmu_master_cfg *cfg)
1133 {
1134 int i, ret;
1135 struct arm_smmu_device *smmu = smmu_domain->smmu;
1136 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1137
1138 ret = arm_smmu_master_configure_smrs(smmu, cfg);
1139 if (ret)
1140 return ret;
1141
1142 for (i = 0; i < cfg->num_streamids; ++i) {
1143 u32 idx, s2cr;
1144 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1145 s2cr = S2CR_TYPE_TRANS |
1146 (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1147 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1148 }
1149
1150 return 0;
1151 }
1152
1153 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1154 struct arm_smmu_master_cfg *cfg)
1155 {
1156 struct arm_smmu_device *smmu = smmu_domain->smmu;
1157
1158 /*
1159 * We *must* clear the S2CR first, because freeing the SMR means
1160 * that it can be re-allocated immediately.
1161 */
1162 arm_smmu_bypass_stream_mapping(smmu, cfg);
1163 arm_smmu_master_free_smrs(smmu, cfg);
1164 }
1165
1166 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1167 {
1168 int ret = -EINVAL;
1169 struct arm_smmu_domain *smmu_domain = domain->priv;
1170 struct arm_smmu_device *smmu;
1171 struct arm_smmu_master_cfg *cfg;
1172 unsigned long flags;
1173
1174 smmu = dev_get_master_dev(dev)->archdata.iommu;
1175 if (!smmu) {
1176 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1177 return -ENXIO;
1178 }
1179
1180 /*
1181 * Sanity check the domain. We don't support domains across
1182 * different SMMUs.
1183 */
1184 spin_lock_irqsave(&smmu_domain->lock, flags);
1185 if (!smmu_domain->smmu) {
1186 /* Now that we have a master, we can finalise the domain */
1187 ret = arm_smmu_init_domain_context(domain, smmu);
1188 if (IS_ERR_VALUE(ret))
1189 goto err_unlock;
1190 } else if (smmu_domain->smmu != smmu) {
1191 dev_err(dev,
1192 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1193 dev_name(smmu_domain->smmu->dev),
1194 dev_name(smmu->dev));
1195 goto err_unlock;
1196 }
1197 spin_unlock_irqrestore(&smmu_domain->lock, flags);
1198
1199 /* Looks ok, so add the device to the domain */
1200 cfg = find_smmu_master_cfg(smmu_domain->smmu, dev);
1201 if (!cfg)
1202 return -ENODEV;
1203
1204 return arm_smmu_domain_add_master(smmu_domain, cfg);
1205
1206 err_unlock:
1207 spin_unlock_irqrestore(&smmu_domain->lock, flags);
1208 return ret;
1209 }
1210
1211 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1212 {
1213 struct arm_smmu_domain *smmu_domain = domain->priv;
1214 struct arm_smmu_master_cfg *cfg;
1215
1216 cfg = find_smmu_master_cfg(smmu_domain->smmu, dev);
1217 if (cfg)
1218 arm_smmu_domain_remove_master(smmu_domain, cfg);
1219 }
1220
1221 static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
1222 unsigned long end)
1223 {
1224 return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
1225 (addr + ARM_SMMU_PTE_CONT_SIZE <= end);
1226 }
1227
1228 static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
1229 unsigned long addr, unsigned long end,
1230 unsigned long pfn, int prot, int stage)
1231 {
1232 pte_t *pte, *start;
1233 pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF | ARM_SMMU_PTE_XN;
1234
1235 if (pmd_none(*pmd)) {
1236 /* Allocate a new set of tables */
1237 pgtable_t table = alloc_page(GFP_ATOMIC|__GFP_ZERO);
1238 if (!table)
1239 return -ENOMEM;
1240
1241 arm_smmu_flush_pgtable(smmu, page_address(table), PAGE_SIZE);
1242 if (!pgtable_page_ctor(table)) {
1243 __free_page(table);
1244 return -ENOMEM;
1245 }
1246 pmd_populate(NULL, pmd, table);
1247 arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
1248 }
1249
1250 if (stage == 1) {
1251 pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
1252 if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
1253 pteval |= ARM_SMMU_PTE_AP_RDONLY;
1254
1255 if (prot & IOMMU_CACHE)
1256 pteval |= (MAIR_ATTR_IDX_CACHE <<
1257 ARM_SMMU_PTE_ATTRINDX_SHIFT);
1258 } else {
1259 pteval |= ARM_SMMU_PTE_HAP_FAULT;
1260 if (prot & IOMMU_READ)
1261 pteval |= ARM_SMMU_PTE_HAP_READ;
1262 if (prot & IOMMU_WRITE)
1263 pteval |= ARM_SMMU_PTE_HAP_WRITE;
1264 if (prot & IOMMU_CACHE)
1265 pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
1266 else
1267 pteval |= ARM_SMMU_PTE_MEMATTR_NC;
1268 }
1269
1270 /* If no access, create a faulting entry to avoid TLB fills */
1271 if (prot & IOMMU_EXEC)
1272 pteval &= ~ARM_SMMU_PTE_XN;
1273 else if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
1274 pteval &= ~ARM_SMMU_PTE_PAGE;
1275
1276 pteval |= ARM_SMMU_PTE_SH_IS;
1277 start = pmd_page_vaddr(*pmd) + pte_index(addr);
1278 pte = start;
1279
1280 /*
1281 * Install the page table entries. This is fairly complicated
1282 * since we attempt to make use of the contiguous hint in the
1283 * ptes where possible. The contiguous hint indicates a series
1284 * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
1285 * contiguous region with the following constraints:
1286 *
1287 * - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
1288 * - Each pte in the region has the contiguous hint bit set
1289 *
1290 * This complicates unmapping (also handled by this code, when
1291 * neither IOMMU_READ or IOMMU_WRITE are set) because it is
1292 * possible, yet highly unlikely, that a client may unmap only
1293 * part of a contiguous range. This requires clearing of the
1294 * contiguous hint bits in the range before installing the new
1295 * faulting entries.
1296 *
1297 * Note that re-mapping an address range without first unmapping
1298 * it is not supported, so TLB invalidation is not required here
1299 * and is instead performed at unmap and domain-init time.
1300 */
1301 do {
1302 int i = 1;
1303 pteval &= ~ARM_SMMU_PTE_CONT;
1304
1305 if (arm_smmu_pte_is_contiguous_range(addr, end)) {
1306 i = ARM_SMMU_PTE_CONT_ENTRIES;
1307 pteval |= ARM_SMMU_PTE_CONT;
1308 } else if (pte_val(*pte) &
1309 (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
1310 int j;
1311 pte_t *cont_start;
1312 unsigned long idx = pte_index(addr);
1313
1314 idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
1315 cont_start = pmd_page_vaddr(*pmd) + idx;
1316 for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
1317 pte_val(*(cont_start + j)) &= ~ARM_SMMU_PTE_CONT;
1318
1319 arm_smmu_flush_pgtable(smmu, cont_start,
1320 sizeof(*pte) *
1321 ARM_SMMU_PTE_CONT_ENTRIES);
1322 }
1323
1324 do {
1325 *pte = pfn_pte(pfn, __pgprot(pteval));
1326 } while (pte++, pfn++, addr += PAGE_SIZE, --i);
1327 } while (addr != end);
1328
1329 arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
1330 return 0;
1331 }
1332
1333 static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
1334 unsigned long addr, unsigned long end,
1335 phys_addr_t phys, int prot, int stage)
1336 {
1337 int ret;
1338 pmd_t *pmd;
1339 unsigned long next, pfn = __phys_to_pfn(phys);
1340
1341 #ifndef __PAGETABLE_PMD_FOLDED
1342 if (pud_none(*pud)) {
1343 pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
1344 if (!pmd)
1345 return -ENOMEM;
1346
1347 arm_smmu_flush_pgtable(smmu, pmd, PAGE_SIZE);
1348 pud_populate(NULL, pud, pmd);
1349 arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));
1350
1351 pmd += pmd_index(addr);
1352 } else
1353 #endif
1354 pmd = pmd_offset(pud, addr);
1355
1356 do {
1357 next = pmd_addr_end(addr, end);
1358 ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, next, pfn,
1359 prot, stage);
1360 phys += next - addr;
1361 } while (pmd++, addr = next, addr < end);
1362
1363 return ret;
1364 }
1365
1366 static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
1367 unsigned long addr, unsigned long end,
1368 phys_addr_t phys, int prot, int stage)
1369 {
1370 int ret = 0;
1371 pud_t *pud;
1372 unsigned long next;
1373
1374 #ifndef __PAGETABLE_PUD_FOLDED
1375 if (pgd_none(*pgd)) {
1376 pud = (pud_t *)get_zeroed_page(GFP_ATOMIC);
1377 if (!pud)
1378 return -ENOMEM;
1379
1380 arm_smmu_flush_pgtable(smmu, pud, PAGE_SIZE);
1381 pgd_populate(NULL, pgd, pud);
1382 arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));
1383
1384 pud += pud_index(addr);
1385 } else
1386 #endif
1387 pud = pud_offset(pgd, addr);
1388
1389 do {
1390 next = pud_addr_end(addr, end);
1391 ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
1392 prot, stage);
1393 phys += next - addr;
1394 } while (pud++, addr = next, addr < end);
1395
1396 return ret;
1397 }
1398
1399 static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
1400 unsigned long iova, phys_addr_t paddr,
1401 size_t size, int prot)
1402 {
1403 int ret, stage;
1404 unsigned long end;
1405 phys_addr_t input_mask, output_mask;
1406 struct arm_smmu_device *smmu = smmu_domain->smmu;
1407 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1408 pgd_t *pgd = cfg->pgd;
1409 unsigned long flags;
1410
1411 if (cfg->cbar == CBAR_TYPE_S2_TRANS) {
1412 stage = 2;
1413 output_mask = (1ULL << smmu->s2_output_size) - 1;
1414 } else {
1415 stage = 1;
1416 output_mask = (1ULL << smmu->s1_output_size) - 1;
1417 }
1418
1419 if (!pgd)
1420 return -EINVAL;
1421
1422 if (size & ~PAGE_MASK)
1423 return -EINVAL;
1424
1425 input_mask = (1ULL << smmu->input_size) - 1;
1426 if ((phys_addr_t)iova & ~input_mask)
1427 return -ERANGE;
1428
1429 if (paddr & ~output_mask)
1430 return -ERANGE;
1431
1432 spin_lock_irqsave(&smmu_domain->lock, flags);
1433 pgd += pgd_index(iova);
1434 end = iova + size;
1435 do {
1436 unsigned long next = pgd_addr_end(iova, end);
1437
1438 ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
1439 prot, stage);
1440 if (ret)
1441 goto out_unlock;
1442
1443 paddr += next - iova;
1444 iova = next;
1445 } while (pgd++, iova != end);
1446
1447 out_unlock:
1448 spin_unlock_irqrestore(&smmu_domain->lock, flags);
1449
1450 return ret;
1451 }
1452
1453 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1454 phys_addr_t paddr, size_t size, int prot)
1455 {
1456 struct arm_smmu_domain *smmu_domain = domain->priv;
1457
1458 if (!smmu_domain)
1459 return -ENODEV;
1460
1461 return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, prot);
1462 }
1463
1464 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1465 size_t size)
1466 {
1467 int ret;
1468 struct arm_smmu_domain *smmu_domain = domain->priv;
1469
1470 ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
1471 arm_smmu_tlb_inv_context(smmu_domain);
1472 return ret ? 0 : size;
1473 }
1474
1475 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1476 dma_addr_t iova)
1477 {
1478 pgd_t *pgdp, pgd;
1479 pud_t pud;
1480 pmd_t pmd;
1481 pte_t pte;
1482 struct arm_smmu_domain *smmu_domain = domain->priv;
1483 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1484
1485 pgdp = cfg->pgd;
1486 if (!pgdp)
1487 return 0;
1488
1489 pgd = *(pgdp + pgd_index(iova));
1490 if (pgd_none(pgd))
1491 return 0;
1492
1493 pud = *pud_offset(&pgd, iova);
1494 if (pud_none(pud))
1495 return 0;
1496
1497 pmd = *pmd_offset(&pud, iova);
1498 if (pmd_none(pmd))
1499 return 0;
1500
1501 pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
1502 if (pte_none(pte))
1503 return 0;
1504
1505 return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
1506 }
1507
1508 static int arm_smmu_domain_has_cap(struct iommu_domain *domain,
1509 unsigned long cap)
1510 {
1511 struct arm_smmu_domain *smmu_domain = domain->priv;
1512 struct arm_smmu_device *smmu = smmu_domain->smmu;
1513 u32 features = smmu ? smmu->features : 0;
1514
1515 switch (cap) {
1516 case IOMMU_CAP_CACHE_COHERENCY:
1517 return features & ARM_SMMU_FEAT_COHERENT_WALK;
1518 case IOMMU_CAP_INTR_REMAP:
1519 return 1; /* MSIs are just memory writes */
1520 default:
1521 return 0;
1522 }
1523 }
1524
1525 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1526 {
1527 *((u16 *)data) = alias;
1528 return 0; /* Continue walking */
1529 }
1530
1531 static int arm_smmu_add_device(struct device *dev)
1532 {
1533 struct arm_smmu_device *smmu;
1534 struct iommu_group *group;
1535 int ret;
1536
1537 if (dev->archdata.iommu) {
1538 dev_warn(dev, "IOMMU driver already assigned to device\n");
1539 return -EINVAL;
1540 }
1541
1542 smmu = find_smmu_for_device(dev);
1543 if (!smmu)
1544 return -ENODEV;
1545
1546 group = iommu_group_alloc();
1547 if (IS_ERR(group)) {
1548 dev_err(dev, "Failed to allocate IOMMU group\n");
1549 return PTR_ERR(group);
1550 }
1551
1552 if (dev_is_pci(dev)) {
1553 struct arm_smmu_master_cfg *cfg;
1554 struct pci_dev *pdev = to_pci_dev(dev);
1555
1556 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1557 if (!cfg) {
1558 ret = -ENOMEM;
1559 goto out_put_group;
1560 }
1561
1562 cfg->num_streamids = 1;
1563 /*
1564 * Assume Stream ID == Requester ID for now.
1565 * We need a way to describe the ID mappings in FDT.
1566 */
1567 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid,
1568 &cfg->streamids[0]);
1569 dev->archdata.iommu = cfg;
1570 } else {
1571 dev->archdata.iommu = smmu;
1572 }
1573
1574 ret = iommu_group_add_device(group, dev);
1575
1576 out_put_group:
1577 iommu_group_put(group);
1578 return ret;
1579 }
1580
1581 static void arm_smmu_remove_device(struct device *dev)
1582 {
1583 if (dev_is_pci(dev))
1584 kfree(dev->archdata.iommu);
1585
1586 dev->archdata.iommu = NULL;
1587 iommu_group_remove_device(dev);
1588 }
1589
1590 static struct iommu_ops arm_smmu_ops = {
1591 .domain_init = arm_smmu_domain_init,
1592 .domain_destroy = arm_smmu_domain_destroy,
1593 .attach_dev = arm_smmu_attach_dev,
1594 .detach_dev = arm_smmu_detach_dev,
1595 .map = arm_smmu_map,
1596 .unmap = arm_smmu_unmap,
1597 .iova_to_phys = arm_smmu_iova_to_phys,
1598 .domain_has_cap = arm_smmu_domain_has_cap,
1599 .add_device = arm_smmu_add_device,
1600 .remove_device = arm_smmu_remove_device,
1601 .pgsize_bitmap = (SECTION_SIZE |
1602 ARM_SMMU_PTE_CONT_SIZE |
1603 PAGE_SIZE),
1604 };
1605
1606 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1607 {
1608 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1609 void __iomem *cb_base;
1610 int i = 0;
1611 u32 reg;
1612
1613 /* clear global FSR */
1614 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1615 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1616
1617 /* Mark all SMRn as invalid and all S2CRn as bypass */
1618 for (i = 0; i < smmu->num_mapping_groups; ++i) {
1619 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(i));
1620 writel_relaxed(S2CR_TYPE_BYPASS, gr0_base + ARM_SMMU_GR0_S2CR(i));
1621 }
1622
1623 /* Make sure all context banks are disabled and clear CB_FSR */
1624 for (i = 0; i < smmu->num_context_banks; ++i) {
1625 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1626 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1627 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1628 }
1629
1630 /* Invalidate the TLB, just in case */
1631 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
1632 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1633 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1634
1635 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1636
1637 /* Enable fault reporting */
1638 reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1639
1640 /* Disable TLB broadcasting. */
1641 reg |= (sCR0_VMIDPNE | sCR0_PTM);
1642
1643 /* Enable client access, but bypass when no mapping is found */
1644 reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1645
1646 /* Disable forced broadcasting */
1647 reg &= ~sCR0_FB;
1648
1649 /* Don't upgrade barriers */
1650 reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1651
1652 /* Push the button */
1653 arm_smmu_tlb_sync(smmu);
1654 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1655 }
1656
1657 static int arm_smmu_id_size_to_bits(int size)
1658 {
1659 switch (size) {
1660 case 0:
1661 return 32;
1662 case 1:
1663 return 36;
1664 case 2:
1665 return 40;
1666 case 3:
1667 return 42;
1668 case 4:
1669 return 44;
1670 case 5:
1671 default:
1672 return 48;
1673 }
1674 }
1675
1676 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1677 {
1678 unsigned long size;
1679 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1680 u32 id;
1681
1682 dev_notice(smmu->dev, "probing hardware configuration...\n");
1683
1684 /* Primecell ID */
1685 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_PIDR2);
1686 smmu->version = ((id >> PIDR2_ARCH_SHIFT) & PIDR2_ARCH_MASK) + 1;
1687 dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1688
1689 /* ID0 */
1690 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1691 #ifndef CONFIG_64BIT
1692 if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
1693 dev_err(smmu->dev, "\tno v7 descriptor support!\n");
1694 return -ENODEV;
1695 }
1696 #endif
1697 if (id & ID0_S1TS) {
1698 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1699 dev_notice(smmu->dev, "\tstage 1 translation\n");
1700 }
1701
1702 if (id & ID0_S2TS) {
1703 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1704 dev_notice(smmu->dev, "\tstage 2 translation\n");
1705 }
1706
1707 if (id & ID0_NTS) {
1708 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1709 dev_notice(smmu->dev, "\tnested translation\n");
1710 }
1711
1712 if (!(smmu->features &
1713 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2 |
1714 ARM_SMMU_FEAT_TRANS_NESTED))) {
1715 dev_err(smmu->dev, "\tno translation support!\n");
1716 return -ENODEV;
1717 }
1718
1719 if (id & ID0_CTTW) {
1720 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1721 dev_notice(smmu->dev, "\tcoherent table walk\n");
1722 }
1723
1724 if (id & ID0_SMS) {
1725 u32 smr, sid, mask;
1726
1727 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1728 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1729 ID0_NUMSMRG_MASK;
1730 if (smmu->num_mapping_groups == 0) {
1731 dev_err(smmu->dev,
1732 "stream-matching supported, but no SMRs present!\n");
1733 return -ENODEV;
1734 }
1735
1736 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1737 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1738 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1739 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1740
1741 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1742 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1743 if ((mask & sid) != sid) {
1744 dev_err(smmu->dev,
1745 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1746 mask, sid);
1747 return -ENODEV;
1748 }
1749
1750 dev_notice(smmu->dev,
1751 "\tstream matching with %u register groups, mask 0x%x",
1752 smmu->num_mapping_groups, mask);
1753 }
1754
1755 /* ID1 */
1756 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1757 smmu->pagesize = (id & ID1_PAGESIZE) ? SZ_64K : SZ_4K;
1758
1759 /* Check for size mismatch of SMMU address space from mapped region */
1760 size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1761 size *= (smmu->pagesize << 1);
1762 if (smmu->size != size)
1763 dev_warn(smmu->dev, "SMMU address space size (0x%lx) differs "
1764 "from mapped region size (0x%lx)!\n", size, smmu->size);
1765
1766 smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
1767 ID1_NUMS2CB_MASK;
1768 smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1769 if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1770 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1771 return -ENODEV;
1772 }
1773 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1774 smmu->num_context_banks, smmu->num_s2_context_banks);
1775
1776 /* ID2 */
1777 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1778 size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1779
1780 /*
1781 * Stage-1 output limited by stage-2 input size due to pgd
1782 * allocation (PTRS_PER_PGD).
1783 */
1784 #ifdef CONFIG_64BIT
1785 smmu->s1_output_size = min((unsigned long)VA_BITS, size);
1786 #else
1787 smmu->s1_output_size = min(32UL, size);
1788 #endif
1789
1790 /* The stage-2 output mask is also applied for bypass */
1791 size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1792 smmu->s2_output_size = min((unsigned long)PHYS_MASK_SHIFT, size);
1793
1794 if (smmu->version == 1) {
1795 smmu->input_size = 32;
1796 } else {
1797 #ifdef CONFIG_64BIT
1798 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1799 size = min(VA_BITS, arm_smmu_id_size_to_bits(size));
1800 #else
1801 size = 32;
1802 #endif
1803 smmu->input_size = size;
1804
1805 if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
1806 (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
1807 (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
1808 dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
1809 PAGE_SIZE);
1810 return -ENODEV;
1811 }
1812 }
1813
1814 dev_notice(smmu->dev,
1815 "\t%lu-bit VA, %lu-bit IPA, %lu-bit PA\n",
1816 smmu->input_size, smmu->s1_output_size, smmu->s2_output_size);
1817 return 0;
1818 }
1819
1820 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1821 {
1822 struct resource *res;
1823 struct arm_smmu_device *smmu;
1824 struct device *dev = &pdev->dev;
1825 struct rb_node *node;
1826 struct of_phandle_args masterspec;
1827 int num_irqs, i, err;
1828
1829 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1830 if (!smmu) {
1831 dev_err(dev, "failed to allocate arm_smmu_device\n");
1832 return -ENOMEM;
1833 }
1834 smmu->dev = dev;
1835
1836 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1837 smmu->base = devm_ioremap_resource(dev, res);
1838 if (IS_ERR(smmu->base))
1839 return PTR_ERR(smmu->base);
1840 smmu->size = resource_size(res);
1841
1842 if (of_property_read_u32(dev->of_node, "#global-interrupts",
1843 &smmu->num_global_irqs)) {
1844 dev_err(dev, "missing #global-interrupts property\n");
1845 return -ENODEV;
1846 }
1847
1848 num_irqs = 0;
1849 while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1850 num_irqs++;
1851 if (num_irqs > smmu->num_global_irqs)
1852 smmu->num_context_irqs++;
1853 }
1854
1855 if (!smmu->num_context_irqs) {
1856 dev_err(dev, "found %d interrupts but expected at least %d\n",
1857 num_irqs, smmu->num_global_irqs + 1);
1858 return -ENODEV;
1859 }
1860
1861 smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1862 GFP_KERNEL);
1863 if (!smmu->irqs) {
1864 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1865 return -ENOMEM;
1866 }
1867
1868 for (i = 0; i < num_irqs; ++i) {
1869 int irq = platform_get_irq(pdev, i);
1870 if (irq < 0) {
1871 dev_err(dev, "failed to get irq index %d\n", i);
1872 return -ENODEV;
1873 }
1874 smmu->irqs[i] = irq;
1875 }
1876
1877 i = 0;
1878 smmu->masters = RB_ROOT;
1879 while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1880 "#stream-id-cells", i,
1881 &masterspec)) {
1882 err = register_smmu_master(smmu, dev, &masterspec);
1883 if (err) {
1884 dev_err(dev, "failed to add master %s\n",
1885 masterspec.np->name);
1886 goto out_put_masters;
1887 }
1888
1889 i++;
1890 }
1891 dev_notice(dev, "registered %d master devices\n", i);
1892
1893 err = arm_smmu_device_cfg_probe(smmu);
1894 if (err)
1895 goto out_put_masters;
1896
1897 parse_driver_options(smmu);
1898
1899 if (smmu->version > 1 &&
1900 smmu->num_context_banks != smmu->num_context_irqs) {
1901 dev_err(dev,
1902 "found only %d context interrupt(s) but %d required\n",
1903 smmu->num_context_irqs, smmu->num_context_banks);
1904 err = -ENODEV;
1905 goto out_put_masters;
1906 }
1907
1908 for (i = 0; i < smmu->num_global_irqs; ++i) {
1909 err = request_irq(smmu->irqs[i],
1910 arm_smmu_global_fault,
1911 IRQF_SHARED,
1912 "arm-smmu global fault",
1913 smmu);
1914 if (err) {
1915 dev_err(dev, "failed to request global IRQ %d (%u)\n",
1916 i, smmu->irqs[i]);
1917 goto out_free_irqs;
1918 }
1919 }
1920
1921 INIT_LIST_HEAD(&smmu->list);
1922 spin_lock(&arm_smmu_devices_lock);
1923 list_add(&smmu->list, &arm_smmu_devices);
1924 spin_unlock(&arm_smmu_devices_lock);
1925
1926 arm_smmu_device_reset(smmu);
1927 return 0;
1928
1929 out_free_irqs:
1930 while (i--)
1931 free_irq(smmu->irqs[i], smmu);
1932
1933 out_put_masters:
1934 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1935 struct arm_smmu_master *master;
1936 master = container_of(node, struct arm_smmu_master, node);
1937 of_node_put(master->of_node);
1938 }
1939
1940 return err;
1941 }
1942
1943 static int arm_smmu_device_remove(struct platform_device *pdev)
1944 {
1945 int i;
1946 struct device *dev = &pdev->dev;
1947 struct arm_smmu_device *curr, *smmu = NULL;
1948 struct rb_node *node;
1949
1950 spin_lock(&arm_smmu_devices_lock);
1951 list_for_each_entry(curr, &arm_smmu_devices, list) {
1952 if (curr->dev == dev) {
1953 smmu = curr;
1954 list_del(&smmu->list);
1955 break;
1956 }
1957 }
1958 spin_unlock(&arm_smmu_devices_lock);
1959
1960 if (!smmu)
1961 return -ENODEV;
1962
1963 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1964 struct arm_smmu_master *master;
1965 master = container_of(node, struct arm_smmu_master, node);
1966 of_node_put(master->of_node);
1967 }
1968
1969 if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1970 dev_err(dev, "removing device with active domains!\n");
1971
1972 for (i = 0; i < smmu->num_global_irqs; ++i)
1973 free_irq(smmu->irqs[i], smmu);
1974
1975 /* Turn the thing off */
1976 writel(sCR0_CLIENTPD,ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1977 return 0;
1978 }
1979
1980 #ifdef CONFIG_OF
1981 static struct of_device_id arm_smmu_of_match[] = {
1982 { .compatible = "arm,smmu-v1", },
1983 { .compatible = "arm,smmu-v2", },
1984 { .compatible = "arm,mmu-400", },
1985 { .compatible = "arm,mmu-500", },
1986 { },
1987 };
1988 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1989 #endif
1990
1991 static struct platform_driver arm_smmu_driver = {
1992 .driver = {
1993 .owner = THIS_MODULE,
1994 .name = "arm-smmu",
1995 .of_match_table = of_match_ptr(arm_smmu_of_match),
1996 },
1997 .probe = arm_smmu_device_dt_probe,
1998 .remove = arm_smmu_device_remove,
1999 };
2000
2001 static int __init arm_smmu_init(void)
2002 {
2003 int ret;
2004
2005 ret = platform_driver_register(&arm_smmu_driver);
2006 if (ret)
2007 return ret;
2008
2009 /* Oh, for a proper bus abstraction */
2010 if (!iommu_present(&platform_bus_type))
2011 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2012
2013 #ifdef CONFIG_ARM_AMBA
2014 if (!iommu_present(&amba_bustype))
2015 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2016 #endif
2017
2018 #ifdef CONFIG_PCI
2019 if (!iommu_present(&pci_bus_type))
2020 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2021 #endif
2022
2023 return 0;
2024 }
2025
2026 static void __exit arm_smmu_exit(void)
2027 {
2028 return platform_driver_unregister(&arm_smmu_driver);
2029 }
2030
2031 subsys_initcall(arm_smmu_init);
2032 module_exit(arm_smmu_exit);
2033
2034 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
2035 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2036 MODULE_LICENSE("GPL v2");
This page took 0.078324 seconds and 5 git commands to generate.