Merge branch 'for-4.5/drivers' of git://git.kernel.dk/linux-block
[deliverable/linux.git] / drivers / iommu / arm-smmu.c
1 /*
2 * IOMMU API for ARM architected SMMU implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16 *
17 * Copyright (C) 2013 ARM Limited
18 *
19 * Author: Will Deacon <will.deacon@arm.com>
20 *
21 * This driver currently supports:
22 * - SMMUv1 and v2 implementations
23 * - Stream-matching and stream-indexing
24 * - v7/v8 long-descriptor format
25 * - Non-secure access to the SMMU
26 * - Context fault reporting
27 */
28
29 #define pr_fmt(fmt) "arm-smmu: " fmt
30
31 #include <linux/delay.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/err.h>
34 #include <linux/interrupt.h>
35 #include <linux/io.h>
36 #include <linux/iommu.h>
37 #include <linux/iopoll.h>
38 #include <linux/module.h>
39 #include <linux/of.h>
40 #include <linux/of_address.h>
41 #include <linux/pci.h>
42 #include <linux/platform_device.h>
43 #include <linux/slab.h>
44 #include <linux/spinlock.h>
45
46 #include <linux/amba/bus.h>
47
48 #include "io-pgtable.h"
49
50 /* Maximum number of stream IDs assigned to a single device */
51 #define MAX_MASTER_STREAMIDS MAX_PHANDLE_ARGS
52
53 /* Maximum number of context banks per SMMU */
54 #define ARM_SMMU_MAX_CBS 128
55
56 /* Maximum number of mapping groups per SMMU */
57 #define ARM_SMMU_MAX_SMRS 128
58
59 /* SMMU global address space */
60 #define ARM_SMMU_GR0(smmu) ((smmu)->base)
61 #define ARM_SMMU_GR1(smmu) ((smmu)->base + (1 << (smmu)->pgshift))
62
63 /*
64 * SMMU global address space with conditional offset to access secure
65 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
66 * nsGFSYNR0: 0x450)
67 */
68 #define ARM_SMMU_GR0_NS(smmu) \
69 ((smmu)->base + \
70 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS) \
71 ? 0x400 : 0))
72
73 #ifdef CONFIG_64BIT
74 #define smmu_writeq writeq_relaxed
75 #else
76 #define smmu_writeq(reg64, addr) \
77 do { \
78 u64 __val = (reg64); \
79 void __iomem *__addr = (addr); \
80 writel_relaxed(__val >> 32, __addr + 4); \
81 writel_relaxed(__val, __addr); \
82 } while (0)
83 #endif
84
85 /* Configuration registers */
86 #define ARM_SMMU_GR0_sCR0 0x0
87 #define sCR0_CLIENTPD (1 << 0)
88 #define sCR0_GFRE (1 << 1)
89 #define sCR0_GFIE (1 << 2)
90 #define sCR0_GCFGFRE (1 << 4)
91 #define sCR0_GCFGFIE (1 << 5)
92 #define sCR0_USFCFG (1 << 10)
93 #define sCR0_VMIDPNE (1 << 11)
94 #define sCR0_PTM (1 << 12)
95 #define sCR0_FB (1 << 13)
96 #define sCR0_BSU_SHIFT 14
97 #define sCR0_BSU_MASK 0x3
98
99 /* Identification registers */
100 #define ARM_SMMU_GR0_ID0 0x20
101 #define ARM_SMMU_GR0_ID1 0x24
102 #define ARM_SMMU_GR0_ID2 0x28
103 #define ARM_SMMU_GR0_ID3 0x2c
104 #define ARM_SMMU_GR0_ID4 0x30
105 #define ARM_SMMU_GR0_ID5 0x34
106 #define ARM_SMMU_GR0_ID6 0x38
107 #define ARM_SMMU_GR0_ID7 0x3c
108 #define ARM_SMMU_GR0_sGFSR 0x48
109 #define ARM_SMMU_GR0_sGFSYNR0 0x50
110 #define ARM_SMMU_GR0_sGFSYNR1 0x54
111 #define ARM_SMMU_GR0_sGFSYNR2 0x58
112
113 #define ID0_S1TS (1 << 30)
114 #define ID0_S2TS (1 << 29)
115 #define ID0_NTS (1 << 28)
116 #define ID0_SMS (1 << 27)
117 #define ID0_ATOSNS (1 << 26)
118 #define ID0_CTTW (1 << 14)
119 #define ID0_NUMIRPT_SHIFT 16
120 #define ID0_NUMIRPT_MASK 0xff
121 #define ID0_NUMSIDB_SHIFT 9
122 #define ID0_NUMSIDB_MASK 0xf
123 #define ID0_NUMSMRG_SHIFT 0
124 #define ID0_NUMSMRG_MASK 0xff
125
126 #define ID1_PAGESIZE (1 << 31)
127 #define ID1_NUMPAGENDXB_SHIFT 28
128 #define ID1_NUMPAGENDXB_MASK 7
129 #define ID1_NUMS2CB_SHIFT 16
130 #define ID1_NUMS2CB_MASK 0xff
131 #define ID1_NUMCB_SHIFT 0
132 #define ID1_NUMCB_MASK 0xff
133
134 #define ID2_OAS_SHIFT 4
135 #define ID2_OAS_MASK 0xf
136 #define ID2_IAS_SHIFT 0
137 #define ID2_IAS_MASK 0xf
138 #define ID2_UBS_SHIFT 8
139 #define ID2_UBS_MASK 0xf
140 #define ID2_PTFS_4K (1 << 12)
141 #define ID2_PTFS_16K (1 << 13)
142 #define ID2_PTFS_64K (1 << 14)
143
144 /* Global TLB invalidation */
145 #define ARM_SMMU_GR0_TLBIVMID 0x64
146 #define ARM_SMMU_GR0_TLBIALLNSNH 0x68
147 #define ARM_SMMU_GR0_TLBIALLH 0x6c
148 #define ARM_SMMU_GR0_sTLBGSYNC 0x70
149 #define ARM_SMMU_GR0_sTLBGSTATUS 0x74
150 #define sTLBGSTATUS_GSACTIVE (1 << 0)
151 #define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
152
153 /* Stream mapping registers */
154 #define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
155 #define SMR_VALID (1 << 31)
156 #define SMR_MASK_SHIFT 16
157 #define SMR_MASK_MASK 0x7fff
158 #define SMR_ID_SHIFT 0
159 #define SMR_ID_MASK 0x7fff
160
161 #define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
162 #define S2CR_CBNDX_SHIFT 0
163 #define S2CR_CBNDX_MASK 0xff
164 #define S2CR_TYPE_SHIFT 16
165 #define S2CR_TYPE_MASK 0x3
166 #define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT)
167 #define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT)
168 #define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT)
169
170 /* Context bank attribute registers */
171 #define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
172 #define CBAR_VMID_SHIFT 0
173 #define CBAR_VMID_MASK 0xff
174 #define CBAR_S1_BPSHCFG_SHIFT 8
175 #define CBAR_S1_BPSHCFG_MASK 3
176 #define CBAR_S1_BPSHCFG_NSH 3
177 #define CBAR_S1_MEMATTR_SHIFT 12
178 #define CBAR_S1_MEMATTR_MASK 0xf
179 #define CBAR_S1_MEMATTR_WB 0xf
180 #define CBAR_TYPE_SHIFT 16
181 #define CBAR_TYPE_MASK 0x3
182 #define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
183 #define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
184 #define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
185 #define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
186 #define CBAR_IRPTNDX_SHIFT 24
187 #define CBAR_IRPTNDX_MASK 0xff
188
189 #define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
190 #define CBA2R_RW64_32BIT (0 << 0)
191 #define CBA2R_RW64_64BIT (1 << 0)
192
193 /* Translation context bank */
194 #define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
195 #define ARM_SMMU_CB(smmu, n) ((n) * (1 << (smmu)->pgshift))
196
197 #define ARM_SMMU_CB_SCTLR 0x0
198 #define ARM_SMMU_CB_RESUME 0x8
199 #define ARM_SMMU_CB_TTBCR2 0x10
200 #define ARM_SMMU_CB_TTBR0 0x20
201 #define ARM_SMMU_CB_TTBR1 0x28
202 #define ARM_SMMU_CB_TTBCR 0x30
203 #define ARM_SMMU_CB_S1_MAIR0 0x38
204 #define ARM_SMMU_CB_S1_MAIR1 0x3c
205 #define ARM_SMMU_CB_PAR_LO 0x50
206 #define ARM_SMMU_CB_PAR_HI 0x54
207 #define ARM_SMMU_CB_FSR 0x58
208 #define ARM_SMMU_CB_FAR_LO 0x60
209 #define ARM_SMMU_CB_FAR_HI 0x64
210 #define ARM_SMMU_CB_FSYNR0 0x68
211 #define ARM_SMMU_CB_S1_TLBIVA 0x600
212 #define ARM_SMMU_CB_S1_TLBIASID 0x610
213 #define ARM_SMMU_CB_S1_TLBIVAL 0x620
214 #define ARM_SMMU_CB_S2_TLBIIPAS2 0x630
215 #define ARM_SMMU_CB_S2_TLBIIPAS2L 0x638
216 #define ARM_SMMU_CB_ATS1PR 0x800
217 #define ARM_SMMU_CB_ATSR 0x8f0
218
219 #define SCTLR_S1_ASIDPNE (1 << 12)
220 #define SCTLR_CFCFG (1 << 7)
221 #define SCTLR_CFIE (1 << 6)
222 #define SCTLR_CFRE (1 << 5)
223 #define SCTLR_E (1 << 4)
224 #define SCTLR_AFE (1 << 2)
225 #define SCTLR_TRE (1 << 1)
226 #define SCTLR_M (1 << 0)
227 #define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE)
228
229 #define CB_PAR_F (1 << 0)
230
231 #define ATSR_ACTIVE (1 << 0)
232
233 #define RESUME_RETRY (0 << 0)
234 #define RESUME_TERMINATE (1 << 0)
235
236 #define TTBCR2_SEP_SHIFT 15
237 #define TTBCR2_SEP_UPSTREAM (0x7 << TTBCR2_SEP_SHIFT)
238
239 #define TTBRn_ASID_SHIFT 48
240
241 #define FSR_MULTI (1 << 31)
242 #define FSR_SS (1 << 30)
243 #define FSR_UUT (1 << 8)
244 #define FSR_ASF (1 << 7)
245 #define FSR_TLBLKF (1 << 6)
246 #define FSR_TLBMCF (1 << 5)
247 #define FSR_EF (1 << 4)
248 #define FSR_PF (1 << 3)
249 #define FSR_AFF (1 << 2)
250 #define FSR_TF (1 << 1)
251
252 #define FSR_IGN (FSR_AFF | FSR_ASF | \
253 FSR_TLBMCF | FSR_TLBLKF)
254 #define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
255 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
256
257 #define FSYNR0_WNR (1 << 4)
258
259 static int force_stage;
260 module_param_named(force_stage, force_stage, int, S_IRUGO);
261 MODULE_PARM_DESC(force_stage,
262 "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
263
264 enum arm_smmu_arch_version {
265 ARM_SMMU_V1 = 1,
266 ARM_SMMU_V2,
267 };
268
269 struct arm_smmu_smr {
270 u8 idx;
271 u16 mask;
272 u16 id;
273 };
274
275 struct arm_smmu_master_cfg {
276 int num_streamids;
277 u16 streamids[MAX_MASTER_STREAMIDS];
278 struct arm_smmu_smr *smrs;
279 };
280
281 struct arm_smmu_master {
282 struct device_node *of_node;
283 struct rb_node node;
284 struct arm_smmu_master_cfg cfg;
285 };
286
287 struct arm_smmu_device {
288 struct device *dev;
289
290 void __iomem *base;
291 unsigned long size;
292 unsigned long pgshift;
293
294 #define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
295 #define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
296 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
297 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
298 #define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
299 #define ARM_SMMU_FEAT_TRANS_OPS (1 << 5)
300 u32 features;
301
302 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
303 u32 options;
304 enum arm_smmu_arch_version version;
305
306 u32 num_context_banks;
307 u32 num_s2_context_banks;
308 DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
309 atomic_t irptndx;
310
311 u32 num_mapping_groups;
312 DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
313
314 unsigned long va_size;
315 unsigned long ipa_size;
316 unsigned long pa_size;
317
318 u32 num_global_irqs;
319 u32 num_context_irqs;
320 unsigned int *irqs;
321
322 struct list_head list;
323 struct rb_root masters;
324 };
325
326 struct arm_smmu_cfg {
327 u8 cbndx;
328 u8 irptndx;
329 u32 cbar;
330 };
331 #define INVALID_IRPTNDX 0xff
332
333 #define ARM_SMMU_CB_ASID(cfg) ((cfg)->cbndx)
334 #define ARM_SMMU_CB_VMID(cfg) ((cfg)->cbndx + 1)
335
336 enum arm_smmu_domain_stage {
337 ARM_SMMU_DOMAIN_S1 = 0,
338 ARM_SMMU_DOMAIN_S2,
339 ARM_SMMU_DOMAIN_NESTED,
340 };
341
342 struct arm_smmu_domain {
343 struct arm_smmu_device *smmu;
344 struct io_pgtable_ops *pgtbl_ops;
345 spinlock_t pgtbl_lock;
346 struct arm_smmu_cfg cfg;
347 enum arm_smmu_domain_stage stage;
348 struct mutex init_mutex; /* Protects smmu pointer */
349 struct iommu_domain domain;
350 };
351
352 static struct iommu_ops arm_smmu_ops;
353
354 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
355 static LIST_HEAD(arm_smmu_devices);
356
357 struct arm_smmu_option_prop {
358 u32 opt;
359 const char *prop;
360 };
361
362 static struct arm_smmu_option_prop arm_smmu_options[] = {
363 { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
364 { 0, NULL},
365 };
366
367 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
368 {
369 return container_of(dom, struct arm_smmu_domain, domain);
370 }
371
372 static void parse_driver_options(struct arm_smmu_device *smmu)
373 {
374 int i = 0;
375
376 do {
377 if (of_property_read_bool(smmu->dev->of_node,
378 arm_smmu_options[i].prop)) {
379 smmu->options |= arm_smmu_options[i].opt;
380 dev_notice(smmu->dev, "option %s\n",
381 arm_smmu_options[i].prop);
382 }
383 } while (arm_smmu_options[++i].opt);
384 }
385
386 static struct device_node *dev_get_dev_node(struct device *dev)
387 {
388 if (dev_is_pci(dev)) {
389 struct pci_bus *bus = to_pci_dev(dev)->bus;
390
391 while (!pci_is_root_bus(bus))
392 bus = bus->parent;
393 return bus->bridge->parent->of_node;
394 }
395
396 return dev->of_node;
397 }
398
399 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
400 struct device_node *dev_node)
401 {
402 struct rb_node *node = smmu->masters.rb_node;
403
404 while (node) {
405 struct arm_smmu_master *master;
406
407 master = container_of(node, struct arm_smmu_master, node);
408
409 if (dev_node < master->of_node)
410 node = node->rb_left;
411 else if (dev_node > master->of_node)
412 node = node->rb_right;
413 else
414 return master;
415 }
416
417 return NULL;
418 }
419
420 static struct arm_smmu_master_cfg *
421 find_smmu_master_cfg(struct device *dev)
422 {
423 struct arm_smmu_master_cfg *cfg = NULL;
424 struct iommu_group *group = iommu_group_get(dev);
425
426 if (group) {
427 cfg = iommu_group_get_iommudata(group);
428 iommu_group_put(group);
429 }
430
431 return cfg;
432 }
433
434 static int insert_smmu_master(struct arm_smmu_device *smmu,
435 struct arm_smmu_master *master)
436 {
437 struct rb_node **new, *parent;
438
439 new = &smmu->masters.rb_node;
440 parent = NULL;
441 while (*new) {
442 struct arm_smmu_master *this
443 = container_of(*new, struct arm_smmu_master, node);
444
445 parent = *new;
446 if (master->of_node < this->of_node)
447 new = &((*new)->rb_left);
448 else if (master->of_node > this->of_node)
449 new = &((*new)->rb_right);
450 else
451 return -EEXIST;
452 }
453
454 rb_link_node(&master->node, parent, new);
455 rb_insert_color(&master->node, &smmu->masters);
456 return 0;
457 }
458
459 static int register_smmu_master(struct arm_smmu_device *smmu,
460 struct device *dev,
461 struct of_phandle_args *masterspec)
462 {
463 int i;
464 struct arm_smmu_master *master;
465
466 master = find_smmu_master(smmu, masterspec->np);
467 if (master) {
468 dev_err(dev,
469 "rejecting multiple registrations for master device %s\n",
470 masterspec->np->name);
471 return -EBUSY;
472 }
473
474 if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
475 dev_err(dev,
476 "reached maximum number (%d) of stream IDs for master device %s\n",
477 MAX_MASTER_STREAMIDS, masterspec->np->name);
478 return -ENOSPC;
479 }
480
481 master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
482 if (!master)
483 return -ENOMEM;
484
485 master->of_node = masterspec->np;
486 master->cfg.num_streamids = masterspec->args_count;
487
488 for (i = 0; i < master->cfg.num_streamids; ++i) {
489 u16 streamid = masterspec->args[i];
490
491 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
492 (streamid >= smmu->num_mapping_groups)) {
493 dev_err(dev,
494 "stream ID for master device %s greater than maximum allowed (%d)\n",
495 masterspec->np->name, smmu->num_mapping_groups);
496 return -ERANGE;
497 }
498 master->cfg.streamids[i] = streamid;
499 }
500 return insert_smmu_master(smmu, master);
501 }
502
503 static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
504 {
505 struct arm_smmu_device *smmu;
506 struct arm_smmu_master *master = NULL;
507 struct device_node *dev_node = dev_get_dev_node(dev);
508
509 spin_lock(&arm_smmu_devices_lock);
510 list_for_each_entry(smmu, &arm_smmu_devices, list) {
511 master = find_smmu_master(smmu, dev_node);
512 if (master)
513 break;
514 }
515 spin_unlock(&arm_smmu_devices_lock);
516
517 return master ? smmu : NULL;
518 }
519
520 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
521 {
522 int idx;
523
524 do {
525 idx = find_next_zero_bit(map, end, start);
526 if (idx == end)
527 return -ENOSPC;
528 } while (test_and_set_bit(idx, map));
529
530 return idx;
531 }
532
533 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
534 {
535 clear_bit(idx, map);
536 }
537
538 /* Wait for any pending TLB invalidations to complete */
539 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
540 {
541 int count = 0;
542 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
543
544 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
545 while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
546 & sTLBGSTATUS_GSACTIVE) {
547 cpu_relax();
548 if (++count == TLB_LOOP_TIMEOUT) {
549 dev_err_ratelimited(smmu->dev,
550 "TLB sync timed out -- SMMU may be deadlocked\n");
551 return;
552 }
553 udelay(1);
554 }
555 }
556
557 static void arm_smmu_tlb_sync(void *cookie)
558 {
559 struct arm_smmu_domain *smmu_domain = cookie;
560 __arm_smmu_tlb_sync(smmu_domain->smmu);
561 }
562
563 static void arm_smmu_tlb_inv_context(void *cookie)
564 {
565 struct arm_smmu_domain *smmu_domain = cookie;
566 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
567 struct arm_smmu_device *smmu = smmu_domain->smmu;
568 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
569 void __iomem *base;
570
571 if (stage1) {
572 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
573 writel_relaxed(ARM_SMMU_CB_ASID(cfg),
574 base + ARM_SMMU_CB_S1_TLBIASID);
575 } else {
576 base = ARM_SMMU_GR0(smmu);
577 writel_relaxed(ARM_SMMU_CB_VMID(cfg),
578 base + ARM_SMMU_GR0_TLBIVMID);
579 }
580
581 __arm_smmu_tlb_sync(smmu);
582 }
583
584 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
585 size_t granule, bool leaf, void *cookie)
586 {
587 struct arm_smmu_domain *smmu_domain = cookie;
588 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
589 struct arm_smmu_device *smmu = smmu_domain->smmu;
590 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
591 void __iomem *reg;
592
593 if (stage1) {
594 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
595 reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
596
597 if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
598 iova &= ~12UL;
599 iova |= ARM_SMMU_CB_ASID(cfg);
600 do {
601 writel_relaxed(iova, reg);
602 iova += granule;
603 } while (size -= granule);
604 #ifdef CONFIG_64BIT
605 } else {
606 iova >>= 12;
607 iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
608 do {
609 writeq_relaxed(iova, reg);
610 iova += granule >> 12;
611 } while (size -= granule);
612 #endif
613 }
614 #ifdef CONFIG_64BIT
615 } else if (smmu->version == ARM_SMMU_V2) {
616 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
617 reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
618 ARM_SMMU_CB_S2_TLBIIPAS2;
619 iova >>= 12;
620 do {
621 writeq_relaxed(iova, reg);
622 iova += granule >> 12;
623 } while (size -= granule);
624 #endif
625 } else {
626 reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
627 writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
628 }
629 }
630
631 static struct iommu_gather_ops arm_smmu_gather_ops = {
632 .tlb_flush_all = arm_smmu_tlb_inv_context,
633 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
634 .tlb_sync = arm_smmu_tlb_sync,
635 };
636
637 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
638 {
639 int flags, ret;
640 u32 fsr, far, fsynr, resume;
641 unsigned long iova;
642 struct iommu_domain *domain = dev;
643 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
644 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
645 struct arm_smmu_device *smmu = smmu_domain->smmu;
646 void __iomem *cb_base;
647
648 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
649 fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
650
651 if (!(fsr & FSR_FAULT))
652 return IRQ_NONE;
653
654 if (fsr & FSR_IGN)
655 dev_err_ratelimited(smmu->dev,
656 "Unexpected context fault (fsr 0x%x)\n",
657 fsr);
658
659 fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
660 flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
661
662 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
663 iova = far;
664 #ifdef CONFIG_64BIT
665 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
666 iova |= ((unsigned long)far << 32);
667 #endif
668
669 if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
670 ret = IRQ_HANDLED;
671 resume = RESUME_RETRY;
672 } else {
673 dev_err_ratelimited(smmu->dev,
674 "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
675 iova, fsynr, cfg->cbndx);
676 ret = IRQ_NONE;
677 resume = RESUME_TERMINATE;
678 }
679
680 /* Clear the faulting FSR */
681 writel(fsr, cb_base + ARM_SMMU_CB_FSR);
682
683 /* Retry or terminate any stalled transactions */
684 if (fsr & FSR_SS)
685 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
686
687 return ret;
688 }
689
690 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
691 {
692 u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
693 struct arm_smmu_device *smmu = dev;
694 void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
695
696 gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
697 gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
698 gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
699 gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
700
701 if (!gfsr)
702 return IRQ_NONE;
703
704 dev_err_ratelimited(smmu->dev,
705 "Unexpected global fault, this could be serious\n");
706 dev_err_ratelimited(smmu->dev,
707 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
708 gfsr, gfsynr0, gfsynr1, gfsynr2);
709
710 writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
711 return IRQ_HANDLED;
712 }
713
714 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
715 struct io_pgtable_cfg *pgtbl_cfg)
716 {
717 u32 reg;
718 u64 reg64;
719 bool stage1;
720 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
721 struct arm_smmu_device *smmu = smmu_domain->smmu;
722 void __iomem *cb_base, *gr1_base;
723
724 gr1_base = ARM_SMMU_GR1(smmu);
725 stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
726 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
727
728 if (smmu->version > ARM_SMMU_V1) {
729 /*
730 * CBA2R.
731 * *Must* be initialised before CBAR thanks to VMID16
732 * architectural oversight affected some implementations.
733 */
734 #ifdef CONFIG_64BIT
735 reg = CBA2R_RW64_64BIT;
736 #else
737 reg = CBA2R_RW64_32BIT;
738 #endif
739 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
740 }
741
742 /* CBAR */
743 reg = cfg->cbar;
744 if (smmu->version == ARM_SMMU_V1)
745 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
746
747 /*
748 * Use the weakest shareability/memory types, so they are
749 * overridden by the ttbcr/pte.
750 */
751 if (stage1) {
752 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
753 (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
754 } else {
755 reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
756 }
757 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
758
759 /* TTBRs */
760 if (stage1) {
761 reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
762
763 reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
764 smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);
765
766 reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
767 reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
768 smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR1);
769 } else {
770 reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
771 smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);
772 }
773
774 /* TTBCR */
775 if (stage1) {
776 reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
777 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
778 if (smmu->version > ARM_SMMU_V1) {
779 reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
780 reg |= TTBCR2_SEP_UPSTREAM;
781 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
782 }
783 } else {
784 reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
785 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
786 }
787
788 /* MAIRs (stage-1 only) */
789 if (stage1) {
790 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
791 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
792 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
793 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
794 }
795
796 /* SCTLR */
797 reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
798 if (stage1)
799 reg |= SCTLR_S1_ASIDPNE;
800 #ifdef __BIG_ENDIAN
801 reg |= SCTLR_E;
802 #endif
803 writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
804 }
805
806 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
807 struct arm_smmu_device *smmu)
808 {
809 int irq, start, ret = 0;
810 unsigned long ias, oas;
811 struct io_pgtable_ops *pgtbl_ops;
812 struct io_pgtable_cfg pgtbl_cfg;
813 enum io_pgtable_fmt fmt;
814 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
815 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
816
817 mutex_lock(&smmu_domain->init_mutex);
818 if (smmu_domain->smmu)
819 goto out_unlock;
820
821 /*
822 * Mapping the requested stage onto what we support is surprisingly
823 * complicated, mainly because the spec allows S1+S2 SMMUs without
824 * support for nested translation. That means we end up with the
825 * following table:
826 *
827 * Requested Supported Actual
828 * S1 N S1
829 * S1 S1+S2 S1
830 * S1 S2 S2
831 * S1 S1 S1
832 * N N N
833 * N S1+S2 S2
834 * N S2 S2
835 * N S1 S1
836 *
837 * Note that you can't actually request stage-2 mappings.
838 */
839 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
840 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
841 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
842 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
843
844 switch (smmu_domain->stage) {
845 case ARM_SMMU_DOMAIN_S1:
846 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
847 start = smmu->num_s2_context_banks;
848 ias = smmu->va_size;
849 oas = smmu->ipa_size;
850 if (IS_ENABLED(CONFIG_64BIT))
851 fmt = ARM_64_LPAE_S1;
852 else
853 fmt = ARM_32_LPAE_S1;
854 break;
855 case ARM_SMMU_DOMAIN_NESTED:
856 /*
857 * We will likely want to change this if/when KVM gets
858 * involved.
859 */
860 case ARM_SMMU_DOMAIN_S2:
861 cfg->cbar = CBAR_TYPE_S2_TRANS;
862 start = 0;
863 ias = smmu->ipa_size;
864 oas = smmu->pa_size;
865 if (IS_ENABLED(CONFIG_64BIT))
866 fmt = ARM_64_LPAE_S2;
867 else
868 fmt = ARM_32_LPAE_S2;
869 break;
870 default:
871 ret = -EINVAL;
872 goto out_unlock;
873 }
874
875 ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
876 smmu->num_context_banks);
877 if (IS_ERR_VALUE(ret))
878 goto out_unlock;
879
880 cfg->cbndx = ret;
881 if (smmu->version == ARM_SMMU_V1) {
882 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
883 cfg->irptndx %= smmu->num_context_irqs;
884 } else {
885 cfg->irptndx = cfg->cbndx;
886 }
887
888 pgtbl_cfg = (struct io_pgtable_cfg) {
889 .pgsize_bitmap = arm_smmu_ops.pgsize_bitmap,
890 .ias = ias,
891 .oas = oas,
892 .tlb = &arm_smmu_gather_ops,
893 .iommu_dev = smmu->dev,
894 };
895
896 smmu_domain->smmu = smmu;
897 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
898 if (!pgtbl_ops) {
899 ret = -ENOMEM;
900 goto out_clear_smmu;
901 }
902
903 /* Update our support page sizes to reflect the page table format */
904 arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
905
906 /* Initialise the context bank with our page table cfg */
907 arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
908
909 /*
910 * Request context fault interrupt. Do this last to avoid the
911 * handler seeing a half-initialised domain state.
912 */
913 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
914 ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
915 "arm-smmu-context-fault", domain);
916 if (IS_ERR_VALUE(ret)) {
917 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
918 cfg->irptndx, irq);
919 cfg->irptndx = INVALID_IRPTNDX;
920 }
921
922 mutex_unlock(&smmu_domain->init_mutex);
923
924 /* Publish page table ops for map/unmap */
925 smmu_domain->pgtbl_ops = pgtbl_ops;
926 return 0;
927
928 out_clear_smmu:
929 smmu_domain->smmu = NULL;
930 out_unlock:
931 mutex_unlock(&smmu_domain->init_mutex);
932 return ret;
933 }
934
935 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
936 {
937 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
938 struct arm_smmu_device *smmu = smmu_domain->smmu;
939 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
940 void __iomem *cb_base;
941 int irq;
942
943 if (!smmu)
944 return;
945
946 /*
947 * Disable the context bank and free the page tables before freeing
948 * it.
949 */
950 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
951 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
952
953 if (cfg->irptndx != INVALID_IRPTNDX) {
954 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
955 free_irq(irq, domain);
956 }
957
958 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
959 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
960 }
961
962 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
963 {
964 struct arm_smmu_domain *smmu_domain;
965
966 if (type != IOMMU_DOMAIN_UNMANAGED)
967 return NULL;
968 /*
969 * Allocate the domain and initialise some of its data structures.
970 * We can't really do anything meaningful until we've added a
971 * master.
972 */
973 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
974 if (!smmu_domain)
975 return NULL;
976
977 mutex_init(&smmu_domain->init_mutex);
978 spin_lock_init(&smmu_domain->pgtbl_lock);
979
980 return &smmu_domain->domain;
981 }
982
983 static void arm_smmu_domain_free(struct iommu_domain *domain)
984 {
985 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
986
987 /*
988 * Free the domain resources. We assume that all devices have
989 * already been detached.
990 */
991 arm_smmu_destroy_domain_context(domain);
992 kfree(smmu_domain);
993 }
994
995 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
996 struct arm_smmu_master_cfg *cfg)
997 {
998 int i;
999 struct arm_smmu_smr *smrs;
1000 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1001
1002 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1003 return 0;
1004
1005 if (cfg->smrs)
1006 return -EEXIST;
1007
1008 smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1009 if (!smrs) {
1010 dev_err(smmu->dev, "failed to allocate %d SMRs\n",
1011 cfg->num_streamids);
1012 return -ENOMEM;
1013 }
1014
1015 /* Allocate the SMRs on the SMMU */
1016 for (i = 0; i < cfg->num_streamids; ++i) {
1017 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1018 smmu->num_mapping_groups);
1019 if (IS_ERR_VALUE(idx)) {
1020 dev_err(smmu->dev, "failed to allocate free SMR\n");
1021 goto err_free_smrs;
1022 }
1023
1024 smrs[i] = (struct arm_smmu_smr) {
1025 .idx = idx,
1026 .mask = 0, /* We don't currently share SMRs */
1027 .id = cfg->streamids[i],
1028 };
1029 }
1030
1031 /* It worked! Now, poke the actual hardware */
1032 for (i = 0; i < cfg->num_streamids; ++i) {
1033 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1034 smrs[i].mask << SMR_MASK_SHIFT;
1035 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1036 }
1037
1038 cfg->smrs = smrs;
1039 return 0;
1040
1041 err_free_smrs:
1042 while (--i >= 0)
1043 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1044 kfree(smrs);
1045 return -ENOSPC;
1046 }
1047
1048 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1049 struct arm_smmu_master_cfg *cfg)
1050 {
1051 int i;
1052 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1053 struct arm_smmu_smr *smrs = cfg->smrs;
1054
1055 if (!smrs)
1056 return;
1057
1058 /* Invalidate the SMRs before freeing back to the allocator */
1059 for (i = 0; i < cfg->num_streamids; ++i) {
1060 u8 idx = smrs[i].idx;
1061
1062 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1063 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1064 }
1065
1066 cfg->smrs = NULL;
1067 kfree(smrs);
1068 }
1069
1070 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1071 struct arm_smmu_master_cfg *cfg)
1072 {
1073 int i, ret;
1074 struct arm_smmu_device *smmu = smmu_domain->smmu;
1075 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1076
1077 /* Devices in an IOMMU group may already be configured */
1078 ret = arm_smmu_master_configure_smrs(smmu, cfg);
1079 if (ret)
1080 return ret == -EEXIST ? 0 : ret;
1081
1082 for (i = 0; i < cfg->num_streamids; ++i) {
1083 u32 idx, s2cr;
1084
1085 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1086 s2cr = S2CR_TYPE_TRANS |
1087 (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1088 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1089 }
1090
1091 return 0;
1092 }
1093
1094 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1095 struct arm_smmu_master_cfg *cfg)
1096 {
1097 int i;
1098 struct arm_smmu_device *smmu = smmu_domain->smmu;
1099 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1100
1101 /* An IOMMU group is torn down by the first device to be removed */
1102 if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
1103 return;
1104
1105 /*
1106 * We *must* clear the S2CR first, because freeing the SMR means
1107 * that it can be re-allocated immediately.
1108 */
1109 for (i = 0; i < cfg->num_streamids; ++i) {
1110 u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1111
1112 writel_relaxed(S2CR_TYPE_BYPASS,
1113 gr0_base + ARM_SMMU_GR0_S2CR(idx));
1114 }
1115
1116 arm_smmu_master_free_smrs(smmu, cfg);
1117 }
1118
1119 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1120 {
1121 int ret;
1122 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1123 struct arm_smmu_device *smmu;
1124 struct arm_smmu_master_cfg *cfg;
1125
1126 smmu = find_smmu_for_device(dev);
1127 if (!smmu) {
1128 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1129 return -ENXIO;
1130 }
1131
1132 if (dev->archdata.iommu) {
1133 dev_err(dev, "already attached to IOMMU domain\n");
1134 return -EEXIST;
1135 }
1136
1137 /* Ensure that the domain is finalised */
1138 ret = arm_smmu_init_domain_context(domain, smmu);
1139 if (IS_ERR_VALUE(ret))
1140 return ret;
1141
1142 /*
1143 * Sanity check the domain. We don't support domains across
1144 * different SMMUs.
1145 */
1146 if (smmu_domain->smmu != smmu) {
1147 dev_err(dev,
1148 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1149 dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1150 return -EINVAL;
1151 }
1152
1153 /* Looks ok, so add the device to the domain */
1154 cfg = find_smmu_master_cfg(dev);
1155 if (!cfg)
1156 return -ENODEV;
1157
1158 ret = arm_smmu_domain_add_master(smmu_domain, cfg);
1159 if (!ret)
1160 dev->archdata.iommu = domain;
1161 return ret;
1162 }
1163
1164 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1165 {
1166 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1167 struct arm_smmu_master_cfg *cfg;
1168
1169 cfg = find_smmu_master_cfg(dev);
1170 if (!cfg)
1171 return;
1172
1173 dev->archdata.iommu = NULL;
1174 arm_smmu_domain_remove_master(smmu_domain, cfg);
1175 }
1176
1177 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1178 phys_addr_t paddr, size_t size, int prot)
1179 {
1180 int ret;
1181 unsigned long flags;
1182 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1183 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1184
1185 if (!ops)
1186 return -ENODEV;
1187
1188 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1189 ret = ops->map(ops, iova, paddr, size, prot);
1190 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1191 return ret;
1192 }
1193
1194 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1195 size_t size)
1196 {
1197 size_t ret;
1198 unsigned long flags;
1199 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1200 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1201
1202 if (!ops)
1203 return 0;
1204
1205 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1206 ret = ops->unmap(ops, iova, size);
1207 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1208 return ret;
1209 }
1210
1211 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
1212 dma_addr_t iova)
1213 {
1214 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1215 struct arm_smmu_device *smmu = smmu_domain->smmu;
1216 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1217 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1218 struct device *dev = smmu->dev;
1219 void __iomem *cb_base;
1220 u32 tmp;
1221 u64 phys;
1222 unsigned long va;
1223
1224 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1225
1226 /* ATS1 registers can only be written atomically */
1227 va = iova & ~0xfffUL;
1228 if (smmu->version == ARM_SMMU_V2)
1229 smmu_writeq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1230 else
1231 writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1232
1233 if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
1234 !(tmp & ATSR_ACTIVE), 5, 50)) {
1235 dev_err(dev,
1236 "iova to phys timed out on %pad. Falling back to software table walk.\n",
1237 &iova);
1238 return ops->iova_to_phys(ops, iova);
1239 }
1240
1241 phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
1242 phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;
1243
1244 if (phys & CB_PAR_F) {
1245 dev_err(dev, "translation fault!\n");
1246 dev_err(dev, "PAR = 0x%llx\n", phys);
1247 return 0;
1248 }
1249
1250 return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
1251 }
1252
1253 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1254 dma_addr_t iova)
1255 {
1256 phys_addr_t ret;
1257 unsigned long flags;
1258 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1259 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1260
1261 if (!ops)
1262 return 0;
1263
1264 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1265 if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1266 smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1267 ret = arm_smmu_iova_to_phys_hard(domain, iova);
1268 } else {
1269 ret = ops->iova_to_phys(ops, iova);
1270 }
1271
1272 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1273
1274 return ret;
1275 }
1276
1277 static bool arm_smmu_capable(enum iommu_cap cap)
1278 {
1279 switch (cap) {
1280 case IOMMU_CAP_CACHE_COHERENCY:
1281 /*
1282 * Return true here as the SMMU can always send out coherent
1283 * requests.
1284 */
1285 return true;
1286 case IOMMU_CAP_INTR_REMAP:
1287 return true; /* MSIs are just memory writes */
1288 case IOMMU_CAP_NOEXEC:
1289 return true;
1290 default:
1291 return false;
1292 }
1293 }
1294
1295 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1296 {
1297 *((u16 *)data) = alias;
1298 return 0; /* Continue walking */
1299 }
1300
1301 static void __arm_smmu_release_pci_iommudata(void *data)
1302 {
1303 kfree(data);
1304 }
1305
1306 static int arm_smmu_init_pci_device(struct pci_dev *pdev,
1307 struct iommu_group *group)
1308 {
1309 struct arm_smmu_master_cfg *cfg;
1310 u16 sid;
1311 int i;
1312
1313 cfg = iommu_group_get_iommudata(group);
1314 if (!cfg) {
1315 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1316 if (!cfg)
1317 return -ENOMEM;
1318
1319 iommu_group_set_iommudata(group, cfg,
1320 __arm_smmu_release_pci_iommudata);
1321 }
1322
1323 if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
1324 return -ENOSPC;
1325
1326 /*
1327 * Assume Stream ID == Requester ID for now.
1328 * We need a way to describe the ID mappings in FDT.
1329 */
1330 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1331 for (i = 0; i < cfg->num_streamids; ++i)
1332 if (cfg->streamids[i] == sid)
1333 break;
1334
1335 /* Avoid duplicate SIDs, as this can lead to SMR conflicts */
1336 if (i == cfg->num_streamids)
1337 cfg->streamids[cfg->num_streamids++] = sid;
1338
1339 return 0;
1340 }
1341
1342 static int arm_smmu_init_platform_device(struct device *dev,
1343 struct iommu_group *group)
1344 {
1345 struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1346 struct arm_smmu_master *master;
1347
1348 if (!smmu)
1349 return -ENODEV;
1350
1351 master = find_smmu_master(smmu, dev->of_node);
1352 if (!master)
1353 return -ENODEV;
1354
1355 iommu_group_set_iommudata(group, &master->cfg, NULL);
1356
1357 return 0;
1358 }
1359
1360 static int arm_smmu_add_device(struct device *dev)
1361 {
1362 struct iommu_group *group;
1363
1364 group = iommu_group_get_for_dev(dev);
1365 if (IS_ERR(group))
1366 return PTR_ERR(group);
1367
1368 iommu_group_put(group);
1369 return 0;
1370 }
1371
1372 static void arm_smmu_remove_device(struct device *dev)
1373 {
1374 iommu_group_remove_device(dev);
1375 }
1376
1377 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1378 {
1379 struct iommu_group *group;
1380 int ret;
1381
1382 if (dev_is_pci(dev))
1383 group = pci_device_group(dev);
1384 else
1385 group = generic_device_group(dev);
1386
1387 if (IS_ERR(group))
1388 return group;
1389
1390 if (dev_is_pci(dev))
1391 ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
1392 else
1393 ret = arm_smmu_init_platform_device(dev, group);
1394
1395 if (ret) {
1396 iommu_group_put(group);
1397 group = ERR_PTR(ret);
1398 }
1399
1400 return group;
1401 }
1402
1403 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1404 enum iommu_attr attr, void *data)
1405 {
1406 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1407
1408 switch (attr) {
1409 case DOMAIN_ATTR_NESTING:
1410 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1411 return 0;
1412 default:
1413 return -ENODEV;
1414 }
1415 }
1416
1417 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1418 enum iommu_attr attr, void *data)
1419 {
1420 int ret = 0;
1421 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1422
1423 mutex_lock(&smmu_domain->init_mutex);
1424
1425 switch (attr) {
1426 case DOMAIN_ATTR_NESTING:
1427 if (smmu_domain->smmu) {
1428 ret = -EPERM;
1429 goto out_unlock;
1430 }
1431
1432 if (*(int *)data)
1433 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1434 else
1435 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1436
1437 break;
1438 default:
1439 ret = -ENODEV;
1440 }
1441
1442 out_unlock:
1443 mutex_unlock(&smmu_domain->init_mutex);
1444 return ret;
1445 }
1446
1447 static struct iommu_ops arm_smmu_ops = {
1448 .capable = arm_smmu_capable,
1449 .domain_alloc = arm_smmu_domain_alloc,
1450 .domain_free = arm_smmu_domain_free,
1451 .attach_dev = arm_smmu_attach_dev,
1452 .detach_dev = arm_smmu_detach_dev,
1453 .map = arm_smmu_map,
1454 .unmap = arm_smmu_unmap,
1455 .map_sg = default_iommu_map_sg,
1456 .iova_to_phys = arm_smmu_iova_to_phys,
1457 .add_device = arm_smmu_add_device,
1458 .remove_device = arm_smmu_remove_device,
1459 .device_group = arm_smmu_device_group,
1460 .domain_get_attr = arm_smmu_domain_get_attr,
1461 .domain_set_attr = arm_smmu_domain_set_attr,
1462 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1463 };
1464
1465 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1466 {
1467 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1468 void __iomem *cb_base;
1469 int i = 0;
1470 u32 reg;
1471
1472 /* clear global FSR */
1473 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1474 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1475
1476 /* Mark all SMRn as invalid and all S2CRn as bypass */
1477 for (i = 0; i < smmu->num_mapping_groups; ++i) {
1478 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1479 writel_relaxed(S2CR_TYPE_BYPASS,
1480 gr0_base + ARM_SMMU_GR0_S2CR(i));
1481 }
1482
1483 /* Make sure all context banks are disabled and clear CB_FSR */
1484 for (i = 0; i < smmu->num_context_banks; ++i) {
1485 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1486 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1487 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1488 }
1489
1490 /* Invalidate the TLB, just in case */
1491 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1492 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1493
1494 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1495
1496 /* Enable fault reporting */
1497 reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1498
1499 /* Disable TLB broadcasting. */
1500 reg |= (sCR0_VMIDPNE | sCR0_PTM);
1501
1502 /* Enable client access, but bypass when no mapping is found */
1503 reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1504
1505 /* Disable forced broadcasting */
1506 reg &= ~sCR0_FB;
1507
1508 /* Don't upgrade barriers */
1509 reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1510
1511 /* Push the button */
1512 __arm_smmu_tlb_sync(smmu);
1513 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1514 }
1515
1516 static int arm_smmu_id_size_to_bits(int size)
1517 {
1518 switch (size) {
1519 case 0:
1520 return 32;
1521 case 1:
1522 return 36;
1523 case 2:
1524 return 40;
1525 case 3:
1526 return 42;
1527 case 4:
1528 return 44;
1529 case 5:
1530 default:
1531 return 48;
1532 }
1533 }
1534
1535 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1536 {
1537 unsigned long size;
1538 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1539 u32 id;
1540 bool cttw_dt, cttw_reg;
1541
1542 dev_notice(smmu->dev, "probing hardware configuration...\n");
1543 dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1544
1545 /* ID0 */
1546 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1547
1548 /* Restrict available stages based on module parameter */
1549 if (force_stage == 1)
1550 id &= ~(ID0_S2TS | ID0_NTS);
1551 else if (force_stage == 2)
1552 id &= ~(ID0_S1TS | ID0_NTS);
1553
1554 if (id & ID0_S1TS) {
1555 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1556 dev_notice(smmu->dev, "\tstage 1 translation\n");
1557 }
1558
1559 if (id & ID0_S2TS) {
1560 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1561 dev_notice(smmu->dev, "\tstage 2 translation\n");
1562 }
1563
1564 if (id & ID0_NTS) {
1565 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1566 dev_notice(smmu->dev, "\tnested translation\n");
1567 }
1568
1569 if (!(smmu->features &
1570 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1571 dev_err(smmu->dev, "\tno translation support!\n");
1572 return -ENODEV;
1573 }
1574
1575 if ((id & ID0_S1TS) && ((smmu->version == 1) || !(id & ID0_ATOSNS))) {
1576 smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
1577 dev_notice(smmu->dev, "\taddress translation ops\n");
1578 }
1579
1580 /*
1581 * In order for DMA API calls to work properly, we must defer to what
1582 * the DT says about coherency, regardless of what the hardware claims.
1583 * Fortunately, this also opens up a workaround for systems where the
1584 * ID register value has ended up configured incorrectly.
1585 */
1586 cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
1587 cttw_reg = !!(id & ID0_CTTW);
1588 if (cttw_dt)
1589 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1590 if (cttw_dt || cttw_reg)
1591 dev_notice(smmu->dev, "\t%scoherent table walk\n",
1592 cttw_dt ? "" : "non-");
1593 if (cttw_dt != cttw_reg)
1594 dev_notice(smmu->dev,
1595 "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1596
1597 if (id & ID0_SMS) {
1598 u32 smr, sid, mask;
1599
1600 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1601 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1602 ID0_NUMSMRG_MASK;
1603 if (smmu->num_mapping_groups == 0) {
1604 dev_err(smmu->dev,
1605 "stream-matching supported, but no SMRs present!\n");
1606 return -ENODEV;
1607 }
1608
1609 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1610 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1611 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1612 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1613
1614 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1615 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1616 if ((mask & sid) != sid) {
1617 dev_err(smmu->dev,
1618 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1619 mask, sid);
1620 return -ENODEV;
1621 }
1622
1623 dev_notice(smmu->dev,
1624 "\tstream matching with %u register groups, mask 0x%x",
1625 smmu->num_mapping_groups, mask);
1626 } else {
1627 smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
1628 ID0_NUMSIDB_MASK;
1629 }
1630
1631 /* ID1 */
1632 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1633 smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1634
1635 /* Check for size mismatch of SMMU address space from mapped region */
1636 size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1637 size *= 2 << smmu->pgshift;
1638 if (smmu->size != size)
1639 dev_warn(smmu->dev,
1640 "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1641 size, smmu->size);
1642
1643 smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1644 smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1645 if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1646 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1647 return -ENODEV;
1648 }
1649 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1650 smmu->num_context_banks, smmu->num_s2_context_banks);
1651
1652 /* ID2 */
1653 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1654 size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1655 smmu->ipa_size = size;
1656
1657 /* The output mask is also applied for bypass */
1658 size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1659 smmu->pa_size = size;
1660
1661 /*
1662 * What the page table walker can address actually depends on which
1663 * descriptor format is in use, but since a) we don't know that yet,
1664 * and b) it can vary per context bank, this will have to do...
1665 */
1666 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
1667 dev_warn(smmu->dev,
1668 "failed to set DMA mask for table walker\n");
1669
1670 if (smmu->version == ARM_SMMU_V1) {
1671 smmu->va_size = smmu->ipa_size;
1672 size = SZ_4K | SZ_2M | SZ_1G;
1673 } else {
1674 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1675 smmu->va_size = arm_smmu_id_size_to_bits(size);
1676 #ifndef CONFIG_64BIT
1677 smmu->va_size = min(32UL, smmu->va_size);
1678 #endif
1679 size = 0;
1680 if (id & ID2_PTFS_4K)
1681 size |= SZ_4K | SZ_2M | SZ_1G;
1682 if (id & ID2_PTFS_16K)
1683 size |= SZ_16K | SZ_32M;
1684 if (id & ID2_PTFS_64K)
1685 size |= SZ_64K | SZ_512M;
1686 }
1687
1688 arm_smmu_ops.pgsize_bitmap &= size;
1689 dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);
1690
1691 if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1692 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1693 smmu->va_size, smmu->ipa_size);
1694
1695 if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1696 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1697 smmu->ipa_size, smmu->pa_size);
1698
1699 return 0;
1700 }
1701
1702 static const struct of_device_id arm_smmu_of_match[] = {
1703 { .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
1704 { .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
1705 { .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
1706 { .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1707 { .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
1708 { },
1709 };
1710 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1711
1712 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1713 {
1714 const struct of_device_id *of_id;
1715 struct resource *res;
1716 struct arm_smmu_device *smmu;
1717 struct device *dev = &pdev->dev;
1718 struct rb_node *node;
1719 struct of_phandle_args masterspec;
1720 int num_irqs, i, err;
1721
1722 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1723 if (!smmu) {
1724 dev_err(dev, "failed to allocate arm_smmu_device\n");
1725 return -ENOMEM;
1726 }
1727 smmu->dev = dev;
1728
1729 of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1730 smmu->version = (enum arm_smmu_arch_version)of_id->data;
1731
1732 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1733 smmu->base = devm_ioremap_resource(dev, res);
1734 if (IS_ERR(smmu->base))
1735 return PTR_ERR(smmu->base);
1736 smmu->size = resource_size(res);
1737
1738 if (of_property_read_u32(dev->of_node, "#global-interrupts",
1739 &smmu->num_global_irqs)) {
1740 dev_err(dev, "missing #global-interrupts property\n");
1741 return -ENODEV;
1742 }
1743
1744 num_irqs = 0;
1745 while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1746 num_irqs++;
1747 if (num_irqs > smmu->num_global_irqs)
1748 smmu->num_context_irqs++;
1749 }
1750
1751 if (!smmu->num_context_irqs) {
1752 dev_err(dev, "found %d interrupts but expected at least %d\n",
1753 num_irqs, smmu->num_global_irqs + 1);
1754 return -ENODEV;
1755 }
1756
1757 smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1758 GFP_KERNEL);
1759 if (!smmu->irqs) {
1760 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1761 return -ENOMEM;
1762 }
1763
1764 for (i = 0; i < num_irqs; ++i) {
1765 int irq = platform_get_irq(pdev, i);
1766
1767 if (irq < 0) {
1768 dev_err(dev, "failed to get irq index %d\n", i);
1769 return -ENODEV;
1770 }
1771 smmu->irqs[i] = irq;
1772 }
1773
1774 err = arm_smmu_device_cfg_probe(smmu);
1775 if (err)
1776 return err;
1777
1778 i = 0;
1779 smmu->masters = RB_ROOT;
1780 while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1781 "#stream-id-cells", i,
1782 &masterspec)) {
1783 err = register_smmu_master(smmu, dev, &masterspec);
1784 if (err) {
1785 dev_err(dev, "failed to add master %s\n",
1786 masterspec.np->name);
1787 goto out_put_masters;
1788 }
1789
1790 i++;
1791 }
1792 dev_notice(dev, "registered %d master devices\n", i);
1793
1794 parse_driver_options(smmu);
1795
1796 if (smmu->version > ARM_SMMU_V1 &&
1797 smmu->num_context_banks != smmu->num_context_irqs) {
1798 dev_err(dev,
1799 "found only %d context interrupt(s) but %d required\n",
1800 smmu->num_context_irqs, smmu->num_context_banks);
1801 err = -ENODEV;
1802 goto out_put_masters;
1803 }
1804
1805 for (i = 0; i < smmu->num_global_irqs; ++i) {
1806 err = request_irq(smmu->irqs[i],
1807 arm_smmu_global_fault,
1808 IRQF_SHARED,
1809 "arm-smmu global fault",
1810 smmu);
1811 if (err) {
1812 dev_err(dev, "failed to request global IRQ %d (%u)\n",
1813 i, smmu->irqs[i]);
1814 goto out_free_irqs;
1815 }
1816 }
1817
1818 INIT_LIST_HEAD(&smmu->list);
1819 spin_lock(&arm_smmu_devices_lock);
1820 list_add(&smmu->list, &arm_smmu_devices);
1821 spin_unlock(&arm_smmu_devices_lock);
1822
1823 arm_smmu_device_reset(smmu);
1824 return 0;
1825
1826 out_free_irqs:
1827 while (i--)
1828 free_irq(smmu->irqs[i], smmu);
1829
1830 out_put_masters:
1831 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1832 struct arm_smmu_master *master
1833 = container_of(node, struct arm_smmu_master, node);
1834 of_node_put(master->of_node);
1835 }
1836
1837 return err;
1838 }
1839
1840 static int arm_smmu_device_remove(struct platform_device *pdev)
1841 {
1842 int i;
1843 struct device *dev = &pdev->dev;
1844 struct arm_smmu_device *curr, *smmu = NULL;
1845 struct rb_node *node;
1846
1847 spin_lock(&arm_smmu_devices_lock);
1848 list_for_each_entry(curr, &arm_smmu_devices, list) {
1849 if (curr->dev == dev) {
1850 smmu = curr;
1851 list_del(&smmu->list);
1852 break;
1853 }
1854 }
1855 spin_unlock(&arm_smmu_devices_lock);
1856
1857 if (!smmu)
1858 return -ENODEV;
1859
1860 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1861 struct arm_smmu_master *master
1862 = container_of(node, struct arm_smmu_master, node);
1863 of_node_put(master->of_node);
1864 }
1865
1866 if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1867 dev_err(dev, "removing device with active domains!\n");
1868
1869 for (i = 0; i < smmu->num_global_irqs; ++i)
1870 free_irq(smmu->irqs[i], smmu);
1871
1872 /* Turn the thing off */
1873 writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1874 return 0;
1875 }
1876
1877 static struct platform_driver arm_smmu_driver = {
1878 .driver = {
1879 .name = "arm-smmu",
1880 .of_match_table = of_match_ptr(arm_smmu_of_match),
1881 },
1882 .probe = arm_smmu_device_dt_probe,
1883 .remove = arm_smmu_device_remove,
1884 };
1885
1886 static int __init arm_smmu_init(void)
1887 {
1888 struct device_node *np;
1889 int ret;
1890
1891 /*
1892 * Play nice with systems that don't have an ARM SMMU by checking that
1893 * an ARM SMMU exists in the system before proceeding with the driver
1894 * and IOMMU bus operation registration.
1895 */
1896 np = of_find_matching_node(NULL, arm_smmu_of_match);
1897 if (!np)
1898 return 0;
1899
1900 of_node_put(np);
1901
1902 ret = platform_driver_register(&arm_smmu_driver);
1903 if (ret)
1904 return ret;
1905
1906 /* Oh, for a proper bus abstraction */
1907 if (!iommu_present(&platform_bus_type))
1908 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
1909
1910 #ifdef CONFIG_ARM_AMBA
1911 if (!iommu_present(&amba_bustype))
1912 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1913 #endif
1914
1915 #ifdef CONFIG_PCI
1916 if (!iommu_present(&pci_bus_type))
1917 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
1918 #endif
1919
1920 return 0;
1921 }
1922
1923 static void __exit arm_smmu_exit(void)
1924 {
1925 return platform_driver_unregister(&arm_smmu_driver);
1926 }
1927
1928 subsys_initcall(arm_smmu_init);
1929 module_exit(arm_smmu_exit);
1930
1931 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
1932 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1933 MODULE_LICENSE("GPL v2");
This page took 0.15633 seconds and 6 git commands to generate.