iommu/vt-d, trivial: simplify code with existing macros
[deliverable/linux.git] / drivers / iommu / dmar.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 *
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt /* has to precede printk.h */
30
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/iova.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/timer.h>
36 #include <linux/irq.h>
37 #include <linux/interrupt.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/slab.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/iommu_table.h>
43
44 #include "irq_remapping.h"
45
46 /* No locks are needed as DMA remapping hardware unit
47 * list is constructed at boot time and hotplug of
48 * these units are not supported by the architecture.
49 */
50 LIST_HEAD(dmar_drhd_units);
51
52 struct acpi_table_header * __initdata dmar_tbl;
53 static acpi_size dmar_tbl_size;
54
55 static int alloc_iommu(struct dmar_drhd_unit *drhd);
56
57 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
58 {
59 /*
60 * add INCLUDE_ALL at the tail, so scan the list will find it at
61 * the very end.
62 */
63 if (drhd->include_all)
64 list_add_tail(&drhd->list, &dmar_drhd_units);
65 else
66 list_add(&drhd->list, &dmar_drhd_units);
67 }
68
69 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
70 struct pci_dev **dev, u16 segment)
71 {
72 struct pci_bus *bus;
73 struct pci_dev *pdev = NULL;
74 struct acpi_dmar_pci_path *path;
75 int count;
76
77 bus = pci_find_bus(segment, scope->bus);
78 path = (struct acpi_dmar_pci_path *)(scope + 1);
79 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
80 / sizeof(struct acpi_dmar_pci_path);
81
82 while (count) {
83 if (pdev)
84 pci_dev_put(pdev);
85 /*
86 * Some BIOSes list non-exist devices in DMAR table, just
87 * ignore it
88 */
89 if (!bus) {
90 pr_warn("Device scope bus [%d] not found\n", scope->bus);
91 break;
92 }
93 pdev = pci_get_slot(bus, PCI_DEVFN(path->device, path->function));
94 if (!pdev) {
95 /* warning will be printed below */
96 break;
97 }
98 path ++;
99 count --;
100 bus = pdev->subordinate;
101 }
102 if (!pdev) {
103 pr_warn("Device scope device [%04x:%02x:%02x.%02x] not found\n",
104 segment, scope->bus, path->device, path->function);
105 return 0;
106 }
107 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
108 pdev->subordinate) || (scope->entry_type == \
109 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
110 pci_dev_put(pdev);
111 pr_warn("Device scope type does not match for %s\n",
112 pci_name(pdev));
113 return -EINVAL;
114 }
115 *dev = pdev;
116 return 0;
117 }
118
119 int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
120 struct pci_dev ***devices, u16 segment)
121 {
122 struct acpi_dmar_device_scope *scope;
123 void * tmp = start;
124 int index;
125 int ret;
126
127 *cnt = 0;
128 while (start < end) {
129 scope = start;
130 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
131 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
132 (*cnt)++;
133 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
134 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
135 pr_warn("Unsupported device scope\n");
136 }
137 start += scope->length;
138 }
139 if (*cnt == 0)
140 return 0;
141
142 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
143 if (!*devices)
144 return -ENOMEM;
145
146 start = tmp;
147 index = 0;
148 while (start < end) {
149 scope = start;
150 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
151 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
152 ret = dmar_parse_one_dev_scope(scope,
153 &(*devices)[index], segment);
154 if (ret) {
155 dmar_free_dev_scope(devices, cnt);
156 return ret;
157 }
158 index ++;
159 }
160 start += scope->length;
161 }
162
163 return 0;
164 }
165
166 void dmar_free_dev_scope(struct pci_dev ***devices, int *cnt)
167 {
168 if (*devices && *cnt) {
169 while (--*cnt >= 0)
170 pci_dev_put((*devices)[*cnt]);
171 kfree(*devices);
172 *devices = NULL;
173 *cnt = 0;
174 }
175 }
176
177 /**
178 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
179 * structure which uniquely represent one DMA remapping hardware unit
180 * present in the platform
181 */
182 static int __init
183 dmar_parse_one_drhd(struct acpi_dmar_header *header)
184 {
185 struct acpi_dmar_hardware_unit *drhd;
186 struct dmar_drhd_unit *dmaru;
187 int ret = 0;
188
189 drhd = (struct acpi_dmar_hardware_unit *)header;
190 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
191 if (!dmaru)
192 return -ENOMEM;
193
194 dmaru->hdr = header;
195 dmaru->reg_base_addr = drhd->address;
196 dmaru->segment = drhd->segment;
197 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
198
199 ret = alloc_iommu(dmaru);
200 if (ret) {
201 kfree(dmaru);
202 return ret;
203 }
204 dmar_register_drhd_unit(dmaru);
205 return 0;
206 }
207
208 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
209 {
210 struct acpi_dmar_hardware_unit *drhd;
211 int ret = 0;
212
213 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
214
215 if (dmaru->include_all)
216 return 0;
217
218 ret = dmar_parse_dev_scope((void *)(drhd + 1),
219 ((void *)drhd) + drhd->header.length,
220 &dmaru->devices_cnt, &dmaru->devices,
221 drhd->segment);
222 if (ret) {
223 list_del(&dmaru->list);
224 kfree(dmaru);
225 }
226 return ret;
227 }
228
229 #ifdef CONFIG_ACPI_NUMA
230 static int __init
231 dmar_parse_one_rhsa(struct acpi_dmar_header *header)
232 {
233 struct acpi_dmar_rhsa *rhsa;
234 struct dmar_drhd_unit *drhd;
235
236 rhsa = (struct acpi_dmar_rhsa *)header;
237 for_each_drhd_unit(drhd) {
238 if (drhd->reg_base_addr == rhsa->base_address) {
239 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
240
241 if (!node_online(node))
242 node = -1;
243 drhd->iommu->node = node;
244 return 0;
245 }
246 }
247 WARN_TAINT(
248 1, TAINT_FIRMWARE_WORKAROUND,
249 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
250 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
251 drhd->reg_base_addr,
252 dmi_get_system_info(DMI_BIOS_VENDOR),
253 dmi_get_system_info(DMI_BIOS_VERSION),
254 dmi_get_system_info(DMI_PRODUCT_VERSION));
255
256 return 0;
257 }
258 #endif
259
260 static void __init
261 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
262 {
263 struct acpi_dmar_hardware_unit *drhd;
264 struct acpi_dmar_reserved_memory *rmrr;
265 struct acpi_dmar_atsr *atsr;
266 struct acpi_dmar_rhsa *rhsa;
267
268 switch (header->type) {
269 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
270 drhd = container_of(header, struct acpi_dmar_hardware_unit,
271 header);
272 pr_info("DRHD base: %#016Lx flags: %#x\n",
273 (unsigned long long)drhd->address, drhd->flags);
274 break;
275 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
276 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
277 header);
278 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
279 (unsigned long long)rmrr->base_address,
280 (unsigned long long)rmrr->end_address);
281 break;
282 case ACPI_DMAR_TYPE_ATSR:
283 atsr = container_of(header, struct acpi_dmar_atsr, header);
284 pr_info("ATSR flags: %#x\n", atsr->flags);
285 break;
286 case ACPI_DMAR_HARDWARE_AFFINITY:
287 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
288 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
289 (unsigned long long)rhsa->base_address,
290 rhsa->proximity_domain);
291 break;
292 }
293 }
294
295 /**
296 * dmar_table_detect - checks to see if the platform supports DMAR devices
297 */
298 static int __init dmar_table_detect(void)
299 {
300 acpi_status status = AE_OK;
301
302 /* if we could find DMAR table, then there are DMAR devices */
303 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
304 (struct acpi_table_header **)&dmar_tbl,
305 &dmar_tbl_size);
306
307 if (ACPI_SUCCESS(status) && !dmar_tbl) {
308 pr_warn("Unable to map DMAR\n");
309 status = AE_NOT_FOUND;
310 }
311
312 return (ACPI_SUCCESS(status) ? 1 : 0);
313 }
314
315 /**
316 * parse_dmar_table - parses the DMA reporting table
317 */
318 static int __init
319 parse_dmar_table(void)
320 {
321 struct acpi_table_dmar *dmar;
322 struct acpi_dmar_header *entry_header;
323 int ret = 0;
324 int drhd_count = 0;
325
326 /*
327 * Do it again, earlier dmar_tbl mapping could be mapped with
328 * fixed map.
329 */
330 dmar_table_detect();
331
332 /*
333 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
334 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
335 */
336 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
337
338 dmar = (struct acpi_table_dmar *)dmar_tbl;
339 if (!dmar)
340 return -ENODEV;
341
342 if (dmar->width < PAGE_SHIFT - 1) {
343 pr_warn("Invalid DMAR haw\n");
344 return -EINVAL;
345 }
346
347 pr_info("Host address width %d\n", dmar->width + 1);
348
349 entry_header = (struct acpi_dmar_header *)(dmar + 1);
350 while (((unsigned long)entry_header) <
351 (((unsigned long)dmar) + dmar_tbl->length)) {
352 /* Avoid looping forever on bad ACPI tables */
353 if (entry_header->length == 0) {
354 pr_warn("Invalid 0-length structure\n");
355 ret = -EINVAL;
356 break;
357 }
358
359 dmar_table_print_dmar_entry(entry_header);
360
361 switch (entry_header->type) {
362 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
363 drhd_count++;
364 ret = dmar_parse_one_drhd(entry_header);
365 break;
366 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
367 ret = dmar_parse_one_rmrr(entry_header);
368 break;
369 case ACPI_DMAR_TYPE_ATSR:
370 ret = dmar_parse_one_atsr(entry_header);
371 break;
372 case ACPI_DMAR_HARDWARE_AFFINITY:
373 #ifdef CONFIG_ACPI_NUMA
374 ret = dmar_parse_one_rhsa(entry_header);
375 #endif
376 break;
377 default:
378 pr_warn("Unknown DMAR structure type %d\n",
379 entry_header->type);
380 ret = 0; /* for forward compatibility */
381 break;
382 }
383 if (ret)
384 break;
385
386 entry_header = ((void *)entry_header + entry_header->length);
387 }
388 if (drhd_count == 0)
389 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
390 return ret;
391 }
392
393 static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
394 struct pci_dev *dev)
395 {
396 int index;
397
398 while (dev) {
399 for (index = 0; index < cnt; index++)
400 if (dev == devices[index])
401 return 1;
402
403 /* Check our parent */
404 dev = dev->bus->self;
405 }
406
407 return 0;
408 }
409
410 struct dmar_drhd_unit *
411 dmar_find_matched_drhd_unit(struct pci_dev *dev)
412 {
413 struct dmar_drhd_unit *dmaru = NULL;
414 struct acpi_dmar_hardware_unit *drhd;
415
416 dev = pci_physfn(dev);
417
418 for_each_drhd_unit(dmaru) {
419 drhd = container_of(dmaru->hdr,
420 struct acpi_dmar_hardware_unit,
421 header);
422
423 if (dmaru->include_all &&
424 drhd->segment == pci_domain_nr(dev->bus))
425 return dmaru;
426
427 if (dmar_pci_device_match(dmaru->devices,
428 dmaru->devices_cnt, dev))
429 return dmaru;
430 }
431
432 return NULL;
433 }
434
435 int __init dmar_dev_scope_init(void)
436 {
437 static int dmar_dev_scope_initialized;
438 struct dmar_drhd_unit *drhd, *drhd_n;
439 int ret = -ENODEV;
440
441 if (dmar_dev_scope_initialized)
442 return dmar_dev_scope_initialized;
443
444 if (list_empty(&dmar_drhd_units))
445 goto fail;
446
447 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
448 ret = dmar_parse_dev(drhd);
449 if (ret)
450 goto fail;
451 }
452
453 ret = dmar_parse_rmrr_atsr_dev();
454 if (ret)
455 goto fail;
456
457 dmar_dev_scope_initialized = 1;
458 return 0;
459
460 fail:
461 dmar_dev_scope_initialized = ret;
462 return ret;
463 }
464
465
466 int __init dmar_table_init(void)
467 {
468 static int dmar_table_initialized;
469 int ret;
470
471 if (dmar_table_initialized)
472 return 0;
473
474 dmar_table_initialized = 1;
475
476 ret = parse_dmar_table();
477 if (ret) {
478 if (ret != -ENODEV)
479 pr_info("parse DMAR table failure.\n");
480 return ret;
481 }
482
483 if (list_empty(&dmar_drhd_units)) {
484 pr_info("No DMAR devices found\n");
485 return -ENODEV;
486 }
487
488 return 0;
489 }
490
491 static void warn_invalid_dmar(u64 addr, const char *message)
492 {
493 WARN_TAINT_ONCE(
494 1, TAINT_FIRMWARE_WORKAROUND,
495 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
496 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
497 addr, message,
498 dmi_get_system_info(DMI_BIOS_VENDOR),
499 dmi_get_system_info(DMI_BIOS_VERSION),
500 dmi_get_system_info(DMI_PRODUCT_VERSION));
501 }
502
503 static int __init check_zero_address(void)
504 {
505 struct acpi_table_dmar *dmar;
506 struct acpi_dmar_header *entry_header;
507 struct acpi_dmar_hardware_unit *drhd;
508
509 dmar = (struct acpi_table_dmar *)dmar_tbl;
510 entry_header = (struct acpi_dmar_header *)(dmar + 1);
511
512 while (((unsigned long)entry_header) <
513 (((unsigned long)dmar) + dmar_tbl->length)) {
514 /* Avoid looping forever on bad ACPI tables */
515 if (entry_header->length == 0) {
516 pr_warn("Invalid 0-length structure\n");
517 return 0;
518 }
519
520 if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
521 void __iomem *addr;
522 u64 cap, ecap;
523
524 drhd = (void *)entry_header;
525 if (!drhd->address) {
526 warn_invalid_dmar(0, "");
527 goto failed;
528 }
529
530 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
531 if (!addr ) {
532 printk("IOMMU: can't validate: %llx\n", drhd->address);
533 goto failed;
534 }
535 cap = dmar_readq(addr + DMAR_CAP_REG);
536 ecap = dmar_readq(addr + DMAR_ECAP_REG);
537 early_iounmap(addr, VTD_PAGE_SIZE);
538 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
539 warn_invalid_dmar(drhd->address,
540 " returns all ones");
541 goto failed;
542 }
543 }
544
545 entry_header = ((void *)entry_header + entry_header->length);
546 }
547 return 1;
548
549 failed:
550 return 0;
551 }
552
553 int __init detect_intel_iommu(void)
554 {
555 int ret;
556
557 ret = dmar_table_detect();
558 if (ret)
559 ret = check_zero_address();
560 {
561 if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
562 iommu_detected = 1;
563 /* Make sure ACS will be enabled */
564 pci_request_acs();
565 }
566
567 #ifdef CONFIG_X86
568 if (ret)
569 x86_init.iommu.iommu_init = intel_iommu_init;
570 #endif
571 }
572 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
573 dmar_tbl = NULL;
574
575 return ret ? 1 : -ENODEV;
576 }
577
578
579 static void unmap_iommu(struct intel_iommu *iommu)
580 {
581 iounmap(iommu->reg);
582 release_mem_region(iommu->reg_phys, iommu->reg_size);
583 }
584
585 /**
586 * map_iommu: map the iommu's registers
587 * @iommu: the iommu to map
588 * @phys_addr: the physical address of the base resgister
589 *
590 * Memory map the iommu's registers. Start w/ a single page, and
591 * possibly expand if that turns out to be insufficent.
592 */
593 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
594 {
595 int map_size, err=0;
596
597 iommu->reg_phys = phys_addr;
598 iommu->reg_size = VTD_PAGE_SIZE;
599
600 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
601 pr_err("IOMMU: can't reserve memory\n");
602 err = -EBUSY;
603 goto out;
604 }
605
606 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
607 if (!iommu->reg) {
608 pr_err("IOMMU: can't map the region\n");
609 err = -ENOMEM;
610 goto release;
611 }
612
613 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
614 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
615
616 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
617 err = -EINVAL;
618 warn_invalid_dmar(phys_addr, " returns all ones");
619 goto unmap;
620 }
621
622 /* the registers might be more than one page */
623 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
624 cap_max_fault_reg_offset(iommu->cap));
625 map_size = VTD_PAGE_ALIGN(map_size);
626 if (map_size > iommu->reg_size) {
627 iounmap(iommu->reg);
628 release_mem_region(iommu->reg_phys, iommu->reg_size);
629 iommu->reg_size = map_size;
630 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
631 iommu->name)) {
632 pr_err("IOMMU: can't reserve memory\n");
633 err = -EBUSY;
634 goto out;
635 }
636 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
637 if (!iommu->reg) {
638 pr_err("IOMMU: can't map the region\n");
639 err = -ENOMEM;
640 goto release;
641 }
642 }
643 err = 0;
644 goto out;
645
646 unmap:
647 iounmap(iommu->reg);
648 release:
649 release_mem_region(iommu->reg_phys, iommu->reg_size);
650 out:
651 return err;
652 }
653
654 static int alloc_iommu(struct dmar_drhd_unit *drhd)
655 {
656 struct intel_iommu *iommu;
657 u32 ver, sts;
658 static int iommu_allocated = 0;
659 int agaw = 0;
660 int msagaw = 0;
661 int err;
662
663 if (!drhd->reg_base_addr) {
664 warn_invalid_dmar(0, "");
665 return -EINVAL;
666 }
667
668 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
669 if (!iommu)
670 return -ENOMEM;
671
672 iommu->seq_id = iommu_allocated++;
673 sprintf (iommu->name, "dmar%d", iommu->seq_id);
674
675 err = map_iommu(iommu, drhd->reg_base_addr);
676 if (err) {
677 pr_err("IOMMU: failed to map %s\n", iommu->name);
678 goto error;
679 }
680
681 err = -EINVAL;
682 agaw = iommu_calculate_agaw(iommu);
683 if (agaw < 0) {
684 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
685 iommu->seq_id);
686 goto err_unmap;
687 }
688 msagaw = iommu_calculate_max_sagaw(iommu);
689 if (msagaw < 0) {
690 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
691 iommu->seq_id);
692 goto err_unmap;
693 }
694 iommu->agaw = agaw;
695 iommu->msagaw = msagaw;
696
697 iommu->node = -1;
698
699 ver = readl(iommu->reg + DMAR_VER_REG);
700 pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
701 iommu->seq_id,
702 (unsigned long long)drhd->reg_base_addr,
703 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
704 (unsigned long long)iommu->cap,
705 (unsigned long long)iommu->ecap);
706
707 /* Reflect status in gcmd */
708 sts = readl(iommu->reg + DMAR_GSTS_REG);
709 if (sts & DMA_GSTS_IRES)
710 iommu->gcmd |= DMA_GCMD_IRE;
711 if (sts & DMA_GSTS_TES)
712 iommu->gcmd |= DMA_GCMD_TE;
713 if (sts & DMA_GSTS_QIES)
714 iommu->gcmd |= DMA_GCMD_QIE;
715
716 raw_spin_lock_init(&iommu->register_lock);
717
718 drhd->iommu = iommu;
719 return 0;
720
721 err_unmap:
722 unmap_iommu(iommu);
723 error:
724 kfree(iommu);
725 return err;
726 }
727
728 void free_iommu(struct intel_iommu *iommu)
729 {
730 if (!iommu)
731 return;
732
733 free_dmar_iommu(iommu);
734
735 if (iommu->reg)
736 unmap_iommu(iommu);
737
738 kfree(iommu);
739 }
740
741 /*
742 * Reclaim all the submitted descriptors which have completed its work.
743 */
744 static inline void reclaim_free_desc(struct q_inval *qi)
745 {
746 while (qi->desc_status[qi->free_tail] == QI_DONE ||
747 qi->desc_status[qi->free_tail] == QI_ABORT) {
748 qi->desc_status[qi->free_tail] = QI_FREE;
749 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
750 qi->free_cnt++;
751 }
752 }
753
754 static int qi_check_fault(struct intel_iommu *iommu, int index)
755 {
756 u32 fault;
757 int head, tail;
758 struct q_inval *qi = iommu->qi;
759 int wait_index = (index + 1) % QI_LENGTH;
760
761 if (qi->desc_status[wait_index] == QI_ABORT)
762 return -EAGAIN;
763
764 fault = readl(iommu->reg + DMAR_FSTS_REG);
765
766 /*
767 * If IQE happens, the head points to the descriptor associated
768 * with the error. No new descriptors are fetched until the IQE
769 * is cleared.
770 */
771 if (fault & DMA_FSTS_IQE) {
772 head = readl(iommu->reg + DMAR_IQH_REG);
773 if ((head >> DMAR_IQ_SHIFT) == index) {
774 pr_err("VT-d detected invalid descriptor: "
775 "low=%llx, high=%llx\n",
776 (unsigned long long)qi->desc[index].low,
777 (unsigned long long)qi->desc[index].high);
778 memcpy(&qi->desc[index], &qi->desc[wait_index],
779 sizeof(struct qi_desc));
780 __iommu_flush_cache(iommu, &qi->desc[index],
781 sizeof(struct qi_desc));
782 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
783 return -EINVAL;
784 }
785 }
786
787 /*
788 * If ITE happens, all pending wait_desc commands are aborted.
789 * No new descriptors are fetched until the ITE is cleared.
790 */
791 if (fault & DMA_FSTS_ITE) {
792 head = readl(iommu->reg + DMAR_IQH_REG);
793 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
794 head |= 1;
795 tail = readl(iommu->reg + DMAR_IQT_REG);
796 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
797
798 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
799
800 do {
801 if (qi->desc_status[head] == QI_IN_USE)
802 qi->desc_status[head] = QI_ABORT;
803 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
804 } while (head != tail);
805
806 if (qi->desc_status[wait_index] == QI_ABORT)
807 return -EAGAIN;
808 }
809
810 if (fault & DMA_FSTS_ICE)
811 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
812
813 return 0;
814 }
815
816 /*
817 * Submit the queued invalidation descriptor to the remapping
818 * hardware unit and wait for its completion.
819 */
820 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
821 {
822 int rc;
823 struct q_inval *qi = iommu->qi;
824 struct qi_desc *hw, wait_desc;
825 int wait_index, index;
826 unsigned long flags;
827
828 if (!qi)
829 return 0;
830
831 hw = qi->desc;
832
833 restart:
834 rc = 0;
835
836 raw_spin_lock_irqsave(&qi->q_lock, flags);
837 while (qi->free_cnt < 3) {
838 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
839 cpu_relax();
840 raw_spin_lock_irqsave(&qi->q_lock, flags);
841 }
842
843 index = qi->free_head;
844 wait_index = (index + 1) % QI_LENGTH;
845
846 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
847
848 hw[index] = *desc;
849
850 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
851 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
852 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
853
854 hw[wait_index] = wait_desc;
855
856 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
857 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
858
859 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
860 qi->free_cnt -= 2;
861
862 /*
863 * update the HW tail register indicating the presence of
864 * new descriptors.
865 */
866 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
867
868 while (qi->desc_status[wait_index] != QI_DONE) {
869 /*
870 * We will leave the interrupts disabled, to prevent interrupt
871 * context to queue another cmd while a cmd is already submitted
872 * and waiting for completion on this cpu. This is to avoid
873 * a deadlock where the interrupt context can wait indefinitely
874 * for free slots in the queue.
875 */
876 rc = qi_check_fault(iommu, index);
877 if (rc)
878 break;
879
880 raw_spin_unlock(&qi->q_lock);
881 cpu_relax();
882 raw_spin_lock(&qi->q_lock);
883 }
884
885 qi->desc_status[index] = QI_DONE;
886
887 reclaim_free_desc(qi);
888 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
889
890 if (rc == -EAGAIN)
891 goto restart;
892
893 return rc;
894 }
895
896 /*
897 * Flush the global interrupt entry cache.
898 */
899 void qi_global_iec(struct intel_iommu *iommu)
900 {
901 struct qi_desc desc;
902
903 desc.low = QI_IEC_TYPE;
904 desc.high = 0;
905
906 /* should never fail */
907 qi_submit_sync(&desc, iommu);
908 }
909
910 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
911 u64 type)
912 {
913 struct qi_desc desc;
914
915 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
916 | QI_CC_GRAN(type) | QI_CC_TYPE;
917 desc.high = 0;
918
919 qi_submit_sync(&desc, iommu);
920 }
921
922 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
923 unsigned int size_order, u64 type)
924 {
925 u8 dw = 0, dr = 0;
926
927 struct qi_desc desc;
928 int ih = 0;
929
930 if (cap_write_drain(iommu->cap))
931 dw = 1;
932
933 if (cap_read_drain(iommu->cap))
934 dr = 1;
935
936 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
937 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
938 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
939 | QI_IOTLB_AM(size_order);
940
941 qi_submit_sync(&desc, iommu);
942 }
943
944 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
945 u64 addr, unsigned mask)
946 {
947 struct qi_desc desc;
948
949 if (mask) {
950 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
951 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
952 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
953 } else
954 desc.high = QI_DEV_IOTLB_ADDR(addr);
955
956 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
957 qdep = 0;
958
959 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
960 QI_DIOTLB_TYPE;
961
962 qi_submit_sync(&desc, iommu);
963 }
964
965 /*
966 * Disable Queued Invalidation interface.
967 */
968 void dmar_disable_qi(struct intel_iommu *iommu)
969 {
970 unsigned long flags;
971 u32 sts;
972 cycles_t start_time = get_cycles();
973
974 if (!ecap_qis(iommu->ecap))
975 return;
976
977 raw_spin_lock_irqsave(&iommu->register_lock, flags);
978
979 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
980 if (!(sts & DMA_GSTS_QIES))
981 goto end;
982
983 /*
984 * Give a chance to HW to complete the pending invalidation requests.
985 */
986 while ((readl(iommu->reg + DMAR_IQT_REG) !=
987 readl(iommu->reg + DMAR_IQH_REG)) &&
988 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
989 cpu_relax();
990
991 iommu->gcmd &= ~DMA_GCMD_QIE;
992 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
993
994 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
995 !(sts & DMA_GSTS_QIES), sts);
996 end:
997 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
998 }
999
1000 /*
1001 * Enable queued invalidation.
1002 */
1003 static void __dmar_enable_qi(struct intel_iommu *iommu)
1004 {
1005 u32 sts;
1006 unsigned long flags;
1007 struct q_inval *qi = iommu->qi;
1008
1009 qi->free_head = qi->free_tail = 0;
1010 qi->free_cnt = QI_LENGTH;
1011
1012 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1013
1014 /* write zero to the tail reg */
1015 writel(0, iommu->reg + DMAR_IQT_REG);
1016
1017 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1018
1019 iommu->gcmd |= DMA_GCMD_QIE;
1020 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1021
1022 /* Make sure hardware complete it */
1023 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1024
1025 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1026 }
1027
1028 /*
1029 * Enable Queued Invalidation interface. This is a must to support
1030 * interrupt-remapping. Also used by DMA-remapping, which replaces
1031 * register based IOTLB invalidation.
1032 */
1033 int dmar_enable_qi(struct intel_iommu *iommu)
1034 {
1035 struct q_inval *qi;
1036 struct page *desc_page;
1037
1038 if (!ecap_qis(iommu->ecap))
1039 return -ENOENT;
1040
1041 /*
1042 * queued invalidation is already setup and enabled.
1043 */
1044 if (iommu->qi)
1045 return 0;
1046
1047 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1048 if (!iommu->qi)
1049 return -ENOMEM;
1050
1051 qi = iommu->qi;
1052
1053
1054 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1055 if (!desc_page) {
1056 kfree(qi);
1057 iommu->qi = 0;
1058 return -ENOMEM;
1059 }
1060
1061 qi->desc = page_address(desc_page);
1062
1063 qi->desc_status = kzalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1064 if (!qi->desc_status) {
1065 free_page((unsigned long) qi->desc);
1066 kfree(qi);
1067 iommu->qi = 0;
1068 return -ENOMEM;
1069 }
1070
1071 qi->free_head = qi->free_tail = 0;
1072 qi->free_cnt = QI_LENGTH;
1073
1074 raw_spin_lock_init(&qi->q_lock);
1075
1076 __dmar_enable_qi(iommu);
1077
1078 return 0;
1079 }
1080
1081 /* iommu interrupt handling. Most stuff are MSI-like. */
1082
1083 enum faulttype {
1084 DMA_REMAP,
1085 INTR_REMAP,
1086 UNKNOWN,
1087 };
1088
1089 static const char *dma_remap_fault_reasons[] =
1090 {
1091 "Software",
1092 "Present bit in root entry is clear",
1093 "Present bit in context entry is clear",
1094 "Invalid context entry",
1095 "Access beyond MGAW",
1096 "PTE Write access is not set",
1097 "PTE Read access is not set",
1098 "Next page table ptr is invalid",
1099 "Root table address invalid",
1100 "Context table ptr is invalid",
1101 "non-zero reserved fields in RTP",
1102 "non-zero reserved fields in CTP",
1103 "non-zero reserved fields in PTE",
1104 "PCE for translation request specifies blocking",
1105 };
1106
1107 static const char *irq_remap_fault_reasons[] =
1108 {
1109 "Detected reserved fields in the decoded interrupt-remapped request",
1110 "Interrupt index exceeded the interrupt-remapping table size",
1111 "Present field in the IRTE entry is clear",
1112 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1113 "Detected reserved fields in the IRTE entry",
1114 "Blocked a compatibility format interrupt request",
1115 "Blocked an interrupt request due to source-id verification failure",
1116 };
1117
1118 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1119 {
1120 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1121 ARRAY_SIZE(irq_remap_fault_reasons))) {
1122 *fault_type = INTR_REMAP;
1123 return irq_remap_fault_reasons[fault_reason - 0x20];
1124 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1125 *fault_type = DMA_REMAP;
1126 return dma_remap_fault_reasons[fault_reason];
1127 } else {
1128 *fault_type = UNKNOWN;
1129 return "Unknown";
1130 }
1131 }
1132
1133 void dmar_msi_unmask(struct irq_data *data)
1134 {
1135 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1136 unsigned long flag;
1137
1138 /* unmask it */
1139 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1140 writel(0, iommu->reg + DMAR_FECTL_REG);
1141 /* Read a reg to force flush the post write */
1142 readl(iommu->reg + DMAR_FECTL_REG);
1143 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1144 }
1145
1146 void dmar_msi_mask(struct irq_data *data)
1147 {
1148 unsigned long flag;
1149 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1150
1151 /* mask it */
1152 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1153 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1154 /* Read a reg to force flush the post write */
1155 readl(iommu->reg + DMAR_FECTL_REG);
1156 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1157 }
1158
1159 void dmar_msi_write(int irq, struct msi_msg *msg)
1160 {
1161 struct intel_iommu *iommu = irq_get_handler_data(irq);
1162 unsigned long flag;
1163
1164 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1165 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1166 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1167 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1168 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1169 }
1170
1171 void dmar_msi_read(int irq, struct msi_msg *msg)
1172 {
1173 struct intel_iommu *iommu = irq_get_handler_data(irq);
1174 unsigned long flag;
1175
1176 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1177 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1178 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1179 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1180 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1181 }
1182
1183 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1184 u8 fault_reason, u16 source_id, unsigned long long addr)
1185 {
1186 const char *reason;
1187 int fault_type;
1188
1189 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1190
1191 if (fault_type == INTR_REMAP)
1192 pr_err("INTR-REMAP: Request device [[%02x:%02x.%d] "
1193 "fault index %llx\n"
1194 "INTR-REMAP:[fault reason %02d] %s\n",
1195 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1196 PCI_FUNC(source_id & 0xFF), addr >> 48,
1197 fault_reason, reason);
1198 else
1199 pr_err("DMAR:[%s] Request device [%02x:%02x.%d] "
1200 "fault addr %llx \n"
1201 "DMAR:[fault reason %02d] %s\n",
1202 (type ? "DMA Read" : "DMA Write"),
1203 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1204 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1205 return 0;
1206 }
1207
1208 #define PRIMARY_FAULT_REG_LEN (16)
1209 irqreturn_t dmar_fault(int irq, void *dev_id)
1210 {
1211 struct intel_iommu *iommu = dev_id;
1212 int reg, fault_index;
1213 u32 fault_status;
1214 unsigned long flag;
1215
1216 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1217 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1218 if (fault_status)
1219 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1220
1221 /* TBD: ignore advanced fault log currently */
1222 if (!(fault_status & DMA_FSTS_PPF))
1223 goto unlock_exit;
1224
1225 fault_index = dma_fsts_fault_record_index(fault_status);
1226 reg = cap_fault_reg_offset(iommu->cap);
1227 while (1) {
1228 u8 fault_reason;
1229 u16 source_id;
1230 u64 guest_addr;
1231 int type;
1232 u32 data;
1233
1234 /* highest 32 bits */
1235 data = readl(iommu->reg + reg +
1236 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1237 if (!(data & DMA_FRCD_F))
1238 break;
1239
1240 fault_reason = dma_frcd_fault_reason(data);
1241 type = dma_frcd_type(data);
1242
1243 data = readl(iommu->reg + reg +
1244 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1245 source_id = dma_frcd_source_id(data);
1246
1247 guest_addr = dmar_readq(iommu->reg + reg +
1248 fault_index * PRIMARY_FAULT_REG_LEN);
1249 guest_addr = dma_frcd_page_addr(guest_addr);
1250 /* clear the fault */
1251 writel(DMA_FRCD_F, iommu->reg + reg +
1252 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1253
1254 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1255
1256 dmar_fault_do_one(iommu, type, fault_reason,
1257 source_id, guest_addr);
1258
1259 fault_index++;
1260 if (fault_index >= cap_num_fault_regs(iommu->cap))
1261 fault_index = 0;
1262 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1263 }
1264
1265 writel(DMA_FSTS_PFO | DMA_FSTS_PPF, iommu->reg + DMAR_FSTS_REG);
1266
1267 unlock_exit:
1268 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1269 return IRQ_HANDLED;
1270 }
1271
1272 int dmar_set_interrupt(struct intel_iommu *iommu)
1273 {
1274 int irq, ret;
1275
1276 /*
1277 * Check if the fault interrupt is already initialized.
1278 */
1279 if (iommu->irq)
1280 return 0;
1281
1282 irq = create_irq();
1283 if (!irq) {
1284 pr_err("IOMMU: no free vectors\n");
1285 return -EINVAL;
1286 }
1287
1288 irq_set_handler_data(irq, iommu);
1289 iommu->irq = irq;
1290
1291 ret = arch_setup_dmar_msi(irq);
1292 if (ret) {
1293 irq_set_handler_data(irq, NULL);
1294 iommu->irq = 0;
1295 destroy_irq(irq);
1296 return ret;
1297 }
1298
1299 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1300 if (ret)
1301 pr_err("IOMMU: can't request irq\n");
1302 return ret;
1303 }
1304
1305 int __init enable_drhd_fault_handling(void)
1306 {
1307 struct dmar_drhd_unit *drhd;
1308 struct intel_iommu *iommu;
1309
1310 /*
1311 * Enable fault control interrupt.
1312 */
1313 for_each_iommu(iommu, drhd) {
1314 u32 fault_status;
1315 int ret = dmar_set_interrupt(iommu);
1316
1317 if (ret) {
1318 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1319 (unsigned long long)drhd->reg_base_addr, ret);
1320 return -1;
1321 }
1322
1323 /*
1324 * Clear any previous faults.
1325 */
1326 dmar_fault(iommu->irq, iommu);
1327 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1328 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1329 }
1330
1331 return 0;
1332 }
1333
1334 /*
1335 * Re-enable Queued Invalidation interface.
1336 */
1337 int dmar_reenable_qi(struct intel_iommu *iommu)
1338 {
1339 if (!ecap_qis(iommu->ecap))
1340 return -ENOENT;
1341
1342 if (!iommu->qi)
1343 return -ENOENT;
1344
1345 /*
1346 * First disable queued invalidation.
1347 */
1348 dmar_disable_qi(iommu);
1349 /*
1350 * Then enable queued invalidation again. Since there is no pending
1351 * invalidation requests now, it's safe to re-enable queued
1352 * invalidation.
1353 */
1354 __dmar_enable_qi(iommu);
1355
1356 return 0;
1357 }
1358
1359 /*
1360 * Check interrupt remapping support in DMAR table description.
1361 */
1362 int __init dmar_ir_support(void)
1363 {
1364 struct acpi_table_dmar *dmar;
1365 dmar = (struct acpi_table_dmar *)dmar_tbl;
1366 if (!dmar)
1367 return 0;
1368 return dmar->flags & 0x1;
1369 }
1370
1371 IOMMU_INIT_POST(detect_intel_iommu);
This page took 0.063672 seconds and 5 git commands to generate.