Merge tag 'ntb-3.15' of git://github.com/jonmason/ntb
[deliverable/linux.git] / drivers / iommu / dmar.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 *
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt /* has to precede printk.h */
30
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/iova.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/timer.h>
36 #include <linux/irq.h>
37 #include <linux/interrupt.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/slab.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/iommu_table.h>
43
44 #include "irq_remapping.h"
45
46 /*
47 * Assumptions:
48 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
49 * before IO devices managed by that unit.
50 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
51 * after IO devices managed by that unit.
52 * 3) Hotplug events are rare.
53 *
54 * Locking rules for DMA and interrupt remapping related global data structures:
55 * 1) Use dmar_global_lock in process context
56 * 2) Use RCU in interrupt context
57 */
58 DECLARE_RWSEM(dmar_global_lock);
59 LIST_HEAD(dmar_drhd_units);
60
61 struct acpi_table_header * __initdata dmar_tbl;
62 static acpi_size dmar_tbl_size;
63 static int dmar_dev_scope_status = 1;
64
65 static int alloc_iommu(struct dmar_drhd_unit *drhd);
66 static void free_iommu(struct intel_iommu *iommu);
67
68 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
69 {
70 /*
71 * add INCLUDE_ALL at the tail, so scan the list will find it at
72 * the very end.
73 */
74 if (drhd->include_all)
75 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
76 else
77 list_add_rcu(&drhd->list, &dmar_drhd_units);
78 }
79
80 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
81 {
82 struct acpi_dmar_device_scope *scope;
83
84 *cnt = 0;
85 while (start < end) {
86 scope = start;
87 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ACPI ||
88 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
90 (*cnt)++;
91 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
92 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
93 pr_warn("Unsupported device scope\n");
94 }
95 start += scope->length;
96 }
97 if (*cnt == 0)
98 return NULL;
99
100 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
101 }
102
103 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
104 {
105 int i;
106 struct device *tmp_dev;
107
108 if (*devices && *cnt) {
109 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
110 put_device(tmp_dev);
111 kfree(*devices);
112 }
113
114 *devices = NULL;
115 *cnt = 0;
116 }
117
118 /* Optimize out kzalloc()/kfree() for normal cases */
119 static char dmar_pci_notify_info_buf[64];
120
121 static struct dmar_pci_notify_info *
122 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
123 {
124 int level = 0;
125 size_t size;
126 struct pci_dev *tmp;
127 struct dmar_pci_notify_info *info;
128
129 BUG_ON(dev->is_virtfn);
130
131 /* Only generate path[] for device addition event */
132 if (event == BUS_NOTIFY_ADD_DEVICE)
133 for (tmp = dev; tmp; tmp = tmp->bus->self)
134 level++;
135
136 size = sizeof(*info) + level * sizeof(struct acpi_dmar_pci_path);
137 if (size <= sizeof(dmar_pci_notify_info_buf)) {
138 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
139 } else {
140 info = kzalloc(size, GFP_KERNEL);
141 if (!info) {
142 pr_warn("Out of memory when allocating notify_info "
143 "for %s.\n", pci_name(dev));
144 if (dmar_dev_scope_status == 0)
145 dmar_dev_scope_status = -ENOMEM;
146 return NULL;
147 }
148 }
149
150 info->event = event;
151 info->dev = dev;
152 info->seg = pci_domain_nr(dev->bus);
153 info->level = level;
154 if (event == BUS_NOTIFY_ADD_DEVICE) {
155 for (tmp = dev, level--; tmp; tmp = tmp->bus->self) {
156 info->path[level].device = PCI_SLOT(tmp->devfn);
157 info->path[level].function = PCI_FUNC(tmp->devfn);
158 if (pci_is_root_bus(tmp->bus))
159 info->bus = tmp->bus->number;
160 }
161 }
162
163 return info;
164 }
165
166 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
167 {
168 if ((void *)info != dmar_pci_notify_info_buf)
169 kfree(info);
170 }
171
172 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
173 struct acpi_dmar_pci_path *path, int count)
174 {
175 int i;
176
177 if (info->bus != bus)
178 return false;
179 if (info->level != count)
180 return false;
181
182 for (i = 0; i < count; i++) {
183 if (path[i].device != info->path[i].device ||
184 path[i].function != info->path[i].function)
185 return false;
186 }
187
188 return true;
189 }
190
191 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
192 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
193 void *start, void*end, u16 segment,
194 struct dmar_dev_scope *devices,
195 int devices_cnt)
196 {
197 int i, level;
198 struct device *tmp, *dev = &info->dev->dev;
199 struct acpi_dmar_device_scope *scope;
200 struct acpi_dmar_pci_path *path;
201
202 if (segment != info->seg)
203 return 0;
204
205 for (; start < end; start += scope->length) {
206 scope = start;
207 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
208 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
209 continue;
210
211 path = (struct acpi_dmar_pci_path *)(scope + 1);
212 level = (scope->length - sizeof(*scope)) / sizeof(*path);
213 if (!dmar_match_pci_path(info, scope->bus, path, level))
214 continue;
215
216 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT) ^
217 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL)) {
218 pr_warn("Device scope type does not match for %s\n",
219 pci_name(info->dev));
220 return -EINVAL;
221 }
222
223 for_each_dev_scope(devices, devices_cnt, i, tmp)
224 if (tmp == NULL) {
225 devices[i].bus = info->dev->bus->number;
226 devices[i].devfn = info->dev->devfn;
227 rcu_assign_pointer(devices[i].dev,
228 get_device(dev));
229 return 1;
230 }
231 BUG_ON(i >= devices_cnt);
232 }
233
234 return 0;
235 }
236
237 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
238 struct dmar_dev_scope *devices, int count)
239 {
240 int index;
241 struct device *tmp;
242
243 if (info->seg != segment)
244 return 0;
245
246 for_each_active_dev_scope(devices, count, index, tmp)
247 if (tmp == &info->dev->dev) {
248 rcu_assign_pointer(devices[index].dev, NULL);
249 synchronize_rcu();
250 put_device(tmp);
251 return 1;
252 }
253
254 return 0;
255 }
256
257 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
258 {
259 int ret = 0;
260 struct dmar_drhd_unit *dmaru;
261 struct acpi_dmar_hardware_unit *drhd;
262
263 for_each_drhd_unit(dmaru) {
264 if (dmaru->include_all)
265 continue;
266
267 drhd = container_of(dmaru->hdr,
268 struct acpi_dmar_hardware_unit, header);
269 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
270 ((void *)drhd) + drhd->header.length,
271 dmaru->segment,
272 dmaru->devices, dmaru->devices_cnt);
273 if (ret != 0)
274 break;
275 }
276 if (ret >= 0)
277 ret = dmar_iommu_notify_scope_dev(info);
278 if (ret < 0 && dmar_dev_scope_status == 0)
279 dmar_dev_scope_status = ret;
280
281 return ret;
282 }
283
284 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
285 {
286 struct dmar_drhd_unit *dmaru;
287
288 for_each_drhd_unit(dmaru)
289 if (dmar_remove_dev_scope(info, dmaru->segment,
290 dmaru->devices, dmaru->devices_cnt))
291 break;
292 dmar_iommu_notify_scope_dev(info);
293 }
294
295 static int dmar_pci_bus_notifier(struct notifier_block *nb,
296 unsigned long action, void *data)
297 {
298 struct pci_dev *pdev = to_pci_dev(data);
299 struct dmar_pci_notify_info *info;
300
301 /* Only care about add/remove events for physical functions */
302 if (pdev->is_virtfn)
303 return NOTIFY_DONE;
304 if (action != BUS_NOTIFY_ADD_DEVICE && action != BUS_NOTIFY_DEL_DEVICE)
305 return NOTIFY_DONE;
306
307 info = dmar_alloc_pci_notify_info(pdev, action);
308 if (!info)
309 return NOTIFY_DONE;
310
311 down_write(&dmar_global_lock);
312 if (action == BUS_NOTIFY_ADD_DEVICE)
313 dmar_pci_bus_add_dev(info);
314 else if (action == BUS_NOTIFY_DEL_DEVICE)
315 dmar_pci_bus_del_dev(info);
316 up_write(&dmar_global_lock);
317
318 dmar_free_pci_notify_info(info);
319
320 return NOTIFY_OK;
321 }
322
323 static struct notifier_block dmar_pci_bus_nb = {
324 .notifier_call = dmar_pci_bus_notifier,
325 .priority = INT_MIN,
326 };
327
328 /**
329 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
330 * structure which uniquely represent one DMA remapping hardware unit
331 * present in the platform
332 */
333 static int __init
334 dmar_parse_one_drhd(struct acpi_dmar_header *header)
335 {
336 struct acpi_dmar_hardware_unit *drhd;
337 struct dmar_drhd_unit *dmaru;
338 int ret = 0;
339
340 drhd = (struct acpi_dmar_hardware_unit *)header;
341 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
342 if (!dmaru)
343 return -ENOMEM;
344
345 dmaru->hdr = header;
346 dmaru->reg_base_addr = drhd->address;
347 dmaru->segment = drhd->segment;
348 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
349 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
350 ((void *)drhd) + drhd->header.length,
351 &dmaru->devices_cnt);
352 if (dmaru->devices_cnt && dmaru->devices == NULL) {
353 kfree(dmaru);
354 return -ENOMEM;
355 }
356
357 ret = alloc_iommu(dmaru);
358 if (ret) {
359 dmar_free_dev_scope(&dmaru->devices,
360 &dmaru->devices_cnt);
361 kfree(dmaru);
362 return ret;
363 }
364 dmar_register_drhd_unit(dmaru);
365 return 0;
366 }
367
368 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
369 {
370 if (dmaru->devices && dmaru->devices_cnt)
371 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
372 if (dmaru->iommu)
373 free_iommu(dmaru->iommu);
374 kfree(dmaru);
375 }
376
377 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header)
378 {
379 struct acpi_dmar_andd *andd = (void *)header;
380
381 /* Check for NUL termination within the designated length */
382 if (strnlen(andd->object_name, header->length - 8) == header->length - 8) {
383 WARN_TAINT(1, TAINT_FIRMWARE_WORKAROUND,
384 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
385 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
386 dmi_get_system_info(DMI_BIOS_VENDOR),
387 dmi_get_system_info(DMI_BIOS_VERSION),
388 dmi_get_system_info(DMI_PRODUCT_VERSION));
389 return -EINVAL;
390 }
391 pr_info("ANDD device: %x name: %s\n", andd->device_number,
392 andd->object_name);
393
394 return 0;
395 }
396
397 #ifdef CONFIG_ACPI_NUMA
398 static int __init
399 dmar_parse_one_rhsa(struct acpi_dmar_header *header)
400 {
401 struct acpi_dmar_rhsa *rhsa;
402 struct dmar_drhd_unit *drhd;
403
404 rhsa = (struct acpi_dmar_rhsa *)header;
405 for_each_drhd_unit(drhd) {
406 if (drhd->reg_base_addr == rhsa->base_address) {
407 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
408
409 if (!node_online(node))
410 node = -1;
411 drhd->iommu->node = node;
412 return 0;
413 }
414 }
415 WARN_TAINT(
416 1, TAINT_FIRMWARE_WORKAROUND,
417 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
418 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
419 drhd->reg_base_addr,
420 dmi_get_system_info(DMI_BIOS_VENDOR),
421 dmi_get_system_info(DMI_BIOS_VERSION),
422 dmi_get_system_info(DMI_PRODUCT_VERSION));
423
424 return 0;
425 }
426 #endif
427
428 static void __init
429 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
430 {
431 struct acpi_dmar_hardware_unit *drhd;
432 struct acpi_dmar_reserved_memory *rmrr;
433 struct acpi_dmar_atsr *atsr;
434 struct acpi_dmar_rhsa *rhsa;
435
436 switch (header->type) {
437 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
438 drhd = container_of(header, struct acpi_dmar_hardware_unit,
439 header);
440 pr_info("DRHD base: %#016Lx flags: %#x\n",
441 (unsigned long long)drhd->address, drhd->flags);
442 break;
443 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
444 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
445 header);
446 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
447 (unsigned long long)rmrr->base_address,
448 (unsigned long long)rmrr->end_address);
449 break;
450 case ACPI_DMAR_TYPE_ATSR:
451 atsr = container_of(header, struct acpi_dmar_atsr, header);
452 pr_info("ATSR flags: %#x\n", atsr->flags);
453 break;
454 case ACPI_DMAR_HARDWARE_AFFINITY:
455 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
456 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
457 (unsigned long long)rhsa->base_address,
458 rhsa->proximity_domain);
459 break;
460 case ACPI_DMAR_TYPE_ANDD:
461 /* We don't print this here because we need to sanity-check
462 it first. So print it in dmar_parse_one_andd() instead. */
463 break;
464 }
465 }
466
467 /**
468 * dmar_table_detect - checks to see if the platform supports DMAR devices
469 */
470 static int __init dmar_table_detect(void)
471 {
472 acpi_status status = AE_OK;
473
474 /* if we could find DMAR table, then there are DMAR devices */
475 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
476 (struct acpi_table_header **)&dmar_tbl,
477 &dmar_tbl_size);
478
479 if (ACPI_SUCCESS(status) && !dmar_tbl) {
480 pr_warn("Unable to map DMAR\n");
481 status = AE_NOT_FOUND;
482 }
483
484 return (ACPI_SUCCESS(status) ? 1 : 0);
485 }
486
487 /**
488 * parse_dmar_table - parses the DMA reporting table
489 */
490 static int __init
491 parse_dmar_table(void)
492 {
493 struct acpi_table_dmar *dmar;
494 struct acpi_dmar_header *entry_header;
495 int ret = 0;
496 int drhd_count = 0;
497
498 /*
499 * Do it again, earlier dmar_tbl mapping could be mapped with
500 * fixed map.
501 */
502 dmar_table_detect();
503
504 /*
505 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
506 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
507 */
508 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
509
510 dmar = (struct acpi_table_dmar *)dmar_tbl;
511 if (!dmar)
512 return -ENODEV;
513
514 if (dmar->width < PAGE_SHIFT - 1) {
515 pr_warn("Invalid DMAR haw\n");
516 return -EINVAL;
517 }
518
519 pr_info("Host address width %d\n", dmar->width + 1);
520
521 entry_header = (struct acpi_dmar_header *)(dmar + 1);
522 while (((unsigned long)entry_header) <
523 (((unsigned long)dmar) + dmar_tbl->length)) {
524 /* Avoid looping forever on bad ACPI tables */
525 if (entry_header->length == 0) {
526 pr_warn("Invalid 0-length structure\n");
527 ret = -EINVAL;
528 break;
529 }
530
531 dmar_table_print_dmar_entry(entry_header);
532
533 switch (entry_header->type) {
534 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
535 drhd_count++;
536 ret = dmar_parse_one_drhd(entry_header);
537 break;
538 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
539 ret = dmar_parse_one_rmrr(entry_header);
540 break;
541 case ACPI_DMAR_TYPE_ATSR:
542 ret = dmar_parse_one_atsr(entry_header);
543 break;
544 case ACPI_DMAR_HARDWARE_AFFINITY:
545 #ifdef CONFIG_ACPI_NUMA
546 ret = dmar_parse_one_rhsa(entry_header);
547 #endif
548 break;
549 case ACPI_DMAR_TYPE_ANDD:
550 ret = dmar_parse_one_andd(entry_header);
551 break;
552 default:
553 pr_warn("Unknown DMAR structure type %d\n",
554 entry_header->type);
555 ret = 0; /* for forward compatibility */
556 break;
557 }
558 if (ret)
559 break;
560
561 entry_header = ((void *)entry_header + entry_header->length);
562 }
563 if (drhd_count == 0)
564 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
565 return ret;
566 }
567
568 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
569 int cnt, struct pci_dev *dev)
570 {
571 int index;
572 struct device *tmp;
573
574 while (dev) {
575 for_each_active_dev_scope(devices, cnt, index, tmp)
576 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
577 return 1;
578
579 /* Check our parent */
580 dev = dev->bus->self;
581 }
582
583 return 0;
584 }
585
586 struct dmar_drhd_unit *
587 dmar_find_matched_drhd_unit(struct pci_dev *dev)
588 {
589 struct dmar_drhd_unit *dmaru;
590 struct acpi_dmar_hardware_unit *drhd;
591
592 dev = pci_physfn(dev);
593
594 rcu_read_lock();
595 for_each_drhd_unit(dmaru) {
596 drhd = container_of(dmaru->hdr,
597 struct acpi_dmar_hardware_unit,
598 header);
599
600 if (dmaru->include_all &&
601 drhd->segment == pci_domain_nr(dev->bus))
602 goto out;
603
604 if (dmar_pci_device_match(dmaru->devices,
605 dmaru->devices_cnt, dev))
606 goto out;
607 }
608 dmaru = NULL;
609 out:
610 rcu_read_unlock();
611
612 return dmaru;
613 }
614
615 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
616 struct acpi_device *adev)
617 {
618 struct dmar_drhd_unit *dmaru;
619 struct acpi_dmar_hardware_unit *drhd;
620 struct acpi_dmar_device_scope *scope;
621 struct device *tmp;
622 int i;
623 struct acpi_dmar_pci_path *path;
624
625 for_each_drhd_unit(dmaru) {
626 drhd = container_of(dmaru->hdr,
627 struct acpi_dmar_hardware_unit,
628 header);
629
630 for (scope = (void *)(drhd + 1);
631 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
632 scope = ((void *)scope) + scope->length) {
633 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ACPI)
634 continue;
635 if (scope->enumeration_id != device_number)
636 continue;
637
638 path = (void *)(scope + 1);
639 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
640 dev_name(&adev->dev), dmaru->reg_base_addr,
641 scope->bus, path->device, path->function);
642 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
643 if (tmp == NULL) {
644 dmaru->devices[i].bus = scope->bus;
645 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
646 path->function);
647 rcu_assign_pointer(dmaru->devices[i].dev,
648 get_device(&adev->dev));
649 return;
650 }
651 BUG_ON(i >= dmaru->devices_cnt);
652 }
653 }
654 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
655 device_number, dev_name(&adev->dev));
656 }
657
658 static int __init dmar_acpi_dev_scope_init(void)
659 {
660 struct acpi_dmar_andd *andd;
661
662 if (dmar_tbl == NULL)
663 return -ENODEV;
664
665 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
666 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
667 andd = ((void *)andd) + andd->header.length) {
668 if (andd->header.type == ACPI_DMAR_TYPE_ANDD) {
669 acpi_handle h;
670 struct acpi_device *adev;
671
672 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
673 andd->object_name,
674 &h))) {
675 pr_err("Failed to find handle for ACPI object %s\n",
676 andd->object_name);
677 continue;
678 }
679 acpi_bus_get_device(h, &adev);
680 if (!adev) {
681 pr_err("Failed to get device for ACPI object %s\n",
682 andd->object_name);
683 continue;
684 }
685 dmar_acpi_insert_dev_scope(andd->device_number, adev);
686 }
687 }
688 return 0;
689 }
690
691 int __init dmar_dev_scope_init(void)
692 {
693 struct pci_dev *dev = NULL;
694 struct dmar_pci_notify_info *info;
695
696 if (dmar_dev_scope_status != 1)
697 return dmar_dev_scope_status;
698
699 if (list_empty(&dmar_drhd_units)) {
700 dmar_dev_scope_status = -ENODEV;
701 } else {
702 dmar_dev_scope_status = 0;
703
704 dmar_acpi_dev_scope_init();
705
706 for_each_pci_dev(dev) {
707 if (dev->is_virtfn)
708 continue;
709
710 info = dmar_alloc_pci_notify_info(dev,
711 BUS_NOTIFY_ADD_DEVICE);
712 if (!info) {
713 return dmar_dev_scope_status;
714 } else {
715 dmar_pci_bus_add_dev(info);
716 dmar_free_pci_notify_info(info);
717 }
718 }
719
720 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
721 }
722
723 return dmar_dev_scope_status;
724 }
725
726
727 int __init dmar_table_init(void)
728 {
729 static int dmar_table_initialized;
730 int ret;
731
732 if (dmar_table_initialized == 0) {
733 ret = parse_dmar_table();
734 if (ret < 0) {
735 if (ret != -ENODEV)
736 pr_info("parse DMAR table failure.\n");
737 } else if (list_empty(&dmar_drhd_units)) {
738 pr_info("No DMAR devices found\n");
739 ret = -ENODEV;
740 }
741
742 if (ret < 0)
743 dmar_table_initialized = ret;
744 else
745 dmar_table_initialized = 1;
746 }
747
748 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
749 }
750
751 static void warn_invalid_dmar(u64 addr, const char *message)
752 {
753 WARN_TAINT_ONCE(
754 1, TAINT_FIRMWARE_WORKAROUND,
755 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
756 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
757 addr, message,
758 dmi_get_system_info(DMI_BIOS_VENDOR),
759 dmi_get_system_info(DMI_BIOS_VERSION),
760 dmi_get_system_info(DMI_PRODUCT_VERSION));
761 }
762
763 static int __init check_zero_address(void)
764 {
765 struct acpi_table_dmar *dmar;
766 struct acpi_dmar_header *entry_header;
767 struct acpi_dmar_hardware_unit *drhd;
768
769 dmar = (struct acpi_table_dmar *)dmar_tbl;
770 entry_header = (struct acpi_dmar_header *)(dmar + 1);
771
772 while (((unsigned long)entry_header) <
773 (((unsigned long)dmar) + dmar_tbl->length)) {
774 /* Avoid looping forever on bad ACPI tables */
775 if (entry_header->length == 0) {
776 pr_warn("Invalid 0-length structure\n");
777 return 0;
778 }
779
780 if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
781 void __iomem *addr;
782 u64 cap, ecap;
783
784 drhd = (void *)entry_header;
785 if (!drhd->address) {
786 warn_invalid_dmar(0, "");
787 goto failed;
788 }
789
790 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
791 if (!addr ) {
792 printk("IOMMU: can't validate: %llx\n", drhd->address);
793 goto failed;
794 }
795 cap = dmar_readq(addr + DMAR_CAP_REG);
796 ecap = dmar_readq(addr + DMAR_ECAP_REG);
797 early_iounmap(addr, VTD_PAGE_SIZE);
798 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
799 warn_invalid_dmar(drhd->address,
800 " returns all ones");
801 goto failed;
802 }
803 }
804
805 entry_header = ((void *)entry_header + entry_header->length);
806 }
807 return 1;
808
809 failed:
810 return 0;
811 }
812
813 int __init detect_intel_iommu(void)
814 {
815 int ret;
816
817 down_write(&dmar_global_lock);
818 ret = dmar_table_detect();
819 if (ret)
820 ret = check_zero_address();
821 {
822 if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
823 iommu_detected = 1;
824 /* Make sure ACS will be enabled */
825 pci_request_acs();
826 }
827
828 #ifdef CONFIG_X86
829 if (ret)
830 x86_init.iommu.iommu_init = intel_iommu_init;
831 #endif
832 }
833 early_acpi_os_unmap_memory((void __iomem *)dmar_tbl, dmar_tbl_size);
834 dmar_tbl = NULL;
835 up_write(&dmar_global_lock);
836
837 return ret ? 1 : -ENODEV;
838 }
839
840
841 static void unmap_iommu(struct intel_iommu *iommu)
842 {
843 iounmap(iommu->reg);
844 release_mem_region(iommu->reg_phys, iommu->reg_size);
845 }
846
847 /**
848 * map_iommu: map the iommu's registers
849 * @iommu: the iommu to map
850 * @phys_addr: the physical address of the base resgister
851 *
852 * Memory map the iommu's registers. Start w/ a single page, and
853 * possibly expand if that turns out to be insufficent.
854 */
855 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
856 {
857 int map_size, err=0;
858
859 iommu->reg_phys = phys_addr;
860 iommu->reg_size = VTD_PAGE_SIZE;
861
862 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
863 pr_err("IOMMU: can't reserve memory\n");
864 err = -EBUSY;
865 goto out;
866 }
867
868 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
869 if (!iommu->reg) {
870 pr_err("IOMMU: can't map the region\n");
871 err = -ENOMEM;
872 goto release;
873 }
874
875 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
876 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
877
878 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
879 err = -EINVAL;
880 warn_invalid_dmar(phys_addr, " returns all ones");
881 goto unmap;
882 }
883
884 /* the registers might be more than one page */
885 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
886 cap_max_fault_reg_offset(iommu->cap));
887 map_size = VTD_PAGE_ALIGN(map_size);
888 if (map_size > iommu->reg_size) {
889 iounmap(iommu->reg);
890 release_mem_region(iommu->reg_phys, iommu->reg_size);
891 iommu->reg_size = map_size;
892 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
893 iommu->name)) {
894 pr_err("IOMMU: can't reserve memory\n");
895 err = -EBUSY;
896 goto out;
897 }
898 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
899 if (!iommu->reg) {
900 pr_err("IOMMU: can't map the region\n");
901 err = -ENOMEM;
902 goto release;
903 }
904 }
905 err = 0;
906 goto out;
907
908 unmap:
909 iounmap(iommu->reg);
910 release:
911 release_mem_region(iommu->reg_phys, iommu->reg_size);
912 out:
913 return err;
914 }
915
916 static int alloc_iommu(struct dmar_drhd_unit *drhd)
917 {
918 struct intel_iommu *iommu;
919 u32 ver, sts;
920 static int iommu_allocated = 0;
921 int agaw = 0;
922 int msagaw = 0;
923 int err;
924
925 if (!drhd->reg_base_addr) {
926 warn_invalid_dmar(0, "");
927 return -EINVAL;
928 }
929
930 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
931 if (!iommu)
932 return -ENOMEM;
933
934 iommu->seq_id = iommu_allocated++;
935 sprintf (iommu->name, "dmar%d", iommu->seq_id);
936
937 err = map_iommu(iommu, drhd->reg_base_addr);
938 if (err) {
939 pr_err("IOMMU: failed to map %s\n", iommu->name);
940 goto error;
941 }
942
943 err = -EINVAL;
944 agaw = iommu_calculate_agaw(iommu);
945 if (agaw < 0) {
946 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
947 iommu->seq_id);
948 goto err_unmap;
949 }
950 msagaw = iommu_calculate_max_sagaw(iommu);
951 if (msagaw < 0) {
952 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
953 iommu->seq_id);
954 goto err_unmap;
955 }
956 iommu->agaw = agaw;
957 iommu->msagaw = msagaw;
958 iommu->segment = drhd->segment;
959
960 iommu->node = -1;
961
962 ver = readl(iommu->reg + DMAR_VER_REG);
963 pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
964 iommu->seq_id,
965 (unsigned long long)drhd->reg_base_addr,
966 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
967 (unsigned long long)iommu->cap,
968 (unsigned long long)iommu->ecap);
969
970 /* Reflect status in gcmd */
971 sts = readl(iommu->reg + DMAR_GSTS_REG);
972 if (sts & DMA_GSTS_IRES)
973 iommu->gcmd |= DMA_GCMD_IRE;
974 if (sts & DMA_GSTS_TES)
975 iommu->gcmd |= DMA_GCMD_TE;
976 if (sts & DMA_GSTS_QIES)
977 iommu->gcmd |= DMA_GCMD_QIE;
978
979 raw_spin_lock_init(&iommu->register_lock);
980
981 drhd->iommu = iommu;
982 return 0;
983
984 err_unmap:
985 unmap_iommu(iommu);
986 error:
987 kfree(iommu);
988 return err;
989 }
990
991 static void free_iommu(struct intel_iommu *iommu)
992 {
993 if (iommu->irq) {
994 free_irq(iommu->irq, iommu);
995 irq_set_handler_data(iommu->irq, NULL);
996 destroy_irq(iommu->irq);
997 }
998
999 if (iommu->qi) {
1000 free_page((unsigned long)iommu->qi->desc);
1001 kfree(iommu->qi->desc_status);
1002 kfree(iommu->qi);
1003 }
1004
1005 if (iommu->reg)
1006 unmap_iommu(iommu);
1007
1008 kfree(iommu);
1009 }
1010
1011 /*
1012 * Reclaim all the submitted descriptors which have completed its work.
1013 */
1014 static inline void reclaim_free_desc(struct q_inval *qi)
1015 {
1016 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1017 qi->desc_status[qi->free_tail] == QI_ABORT) {
1018 qi->desc_status[qi->free_tail] = QI_FREE;
1019 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1020 qi->free_cnt++;
1021 }
1022 }
1023
1024 static int qi_check_fault(struct intel_iommu *iommu, int index)
1025 {
1026 u32 fault;
1027 int head, tail;
1028 struct q_inval *qi = iommu->qi;
1029 int wait_index = (index + 1) % QI_LENGTH;
1030
1031 if (qi->desc_status[wait_index] == QI_ABORT)
1032 return -EAGAIN;
1033
1034 fault = readl(iommu->reg + DMAR_FSTS_REG);
1035
1036 /*
1037 * If IQE happens, the head points to the descriptor associated
1038 * with the error. No new descriptors are fetched until the IQE
1039 * is cleared.
1040 */
1041 if (fault & DMA_FSTS_IQE) {
1042 head = readl(iommu->reg + DMAR_IQH_REG);
1043 if ((head >> DMAR_IQ_SHIFT) == index) {
1044 pr_err("VT-d detected invalid descriptor: "
1045 "low=%llx, high=%llx\n",
1046 (unsigned long long)qi->desc[index].low,
1047 (unsigned long long)qi->desc[index].high);
1048 memcpy(&qi->desc[index], &qi->desc[wait_index],
1049 sizeof(struct qi_desc));
1050 __iommu_flush_cache(iommu, &qi->desc[index],
1051 sizeof(struct qi_desc));
1052 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1053 return -EINVAL;
1054 }
1055 }
1056
1057 /*
1058 * If ITE happens, all pending wait_desc commands are aborted.
1059 * No new descriptors are fetched until the ITE is cleared.
1060 */
1061 if (fault & DMA_FSTS_ITE) {
1062 head = readl(iommu->reg + DMAR_IQH_REG);
1063 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1064 head |= 1;
1065 tail = readl(iommu->reg + DMAR_IQT_REG);
1066 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1067
1068 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1069
1070 do {
1071 if (qi->desc_status[head] == QI_IN_USE)
1072 qi->desc_status[head] = QI_ABORT;
1073 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1074 } while (head != tail);
1075
1076 if (qi->desc_status[wait_index] == QI_ABORT)
1077 return -EAGAIN;
1078 }
1079
1080 if (fault & DMA_FSTS_ICE)
1081 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1082
1083 return 0;
1084 }
1085
1086 /*
1087 * Submit the queued invalidation descriptor to the remapping
1088 * hardware unit and wait for its completion.
1089 */
1090 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
1091 {
1092 int rc;
1093 struct q_inval *qi = iommu->qi;
1094 struct qi_desc *hw, wait_desc;
1095 int wait_index, index;
1096 unsigned long flags;
1097
1098 if (!qi)
1099 return 0;
1100
1101 hw = qi->desc;
1102
1103 restart:
1104 rc = 0;
1105
1106 raw_spin_lock_irqsave(&qi->q_lock, flags);
1107 while (qi->free_cnt < 3) {
1108 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1109 cpu_relax();
1110 raw_spin_lock_irqsave(&qi->q_lock, flags);
1111 }
1112
1113 index = qi->free_head;
1114 wait_index = (index + 1) % QI_LENGTH;
1115
1116 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
1117
1118 hw[index] = *desc;
1119
1120 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
1121 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1122 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
1123
1124 hw[wait_index] = wait_desc;
1125
1126 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
1127 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
1128
1129 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
1130 qi->free_cnt -= 2;
1131
1132 /*
1133 * update the HW tail register indicating the presence of
1134 * new descriptors.
1135 */
1136 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
1137
1138 while (qi->desc_status[wait_index] != QI_DONE) {
1139 /*
1140 * We will leave the interrupts disabled, to prevent interrupt
1141 * context to queue another cmd while a cmd is already submitted
1142 * and waiting for completion on this cpu. This is to avoid
1143 * a deadlock where the interrupt context can wait indefinitely
1144 * for free slots in the queue.
1145 */
1146 rc = qi_check_fault(iommu, index);
1147 if (rc)
1148 break;
1149
1150 raw_spin_unlock(&qi->q_lock);
1151 cpu_relax();
1152 raw_spin_lock(&qi->q_lock);
1153 }
1154
1155 qi->desc_status[index] = QI_DONE;
1156
1157 reclaim_free_desc(qi);
1158 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1159
1160 if (rc == -EAGAIN)
1161 goto restart;
1162
1163 return rc;
1164 }
1165
1166 /*
1167 * Flush the global interrupt entry cache.
1168 */
1169 void qi_global_iec(struct intel_iommu *iommu)
1170 {
1171 struct qi_desc desc;
1172
1173 desc.low = QI_IEC_TYPE;
1174 desc.high = 0;
1175
1176 /* should never fail */
1177 qi_submit_sync(&desc, iommu);
1178 }
1179
1180 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1181 u64 type)
1182 {
1183 struct qi_desc desc;
1184
1185 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1186 | QI_CC_GRAN(type) | QI_CC_TYPE;
1187 desc.high = 0;
1188
1189 qi_submit_sync(&desc, iommu);
1190 }
1191
1192 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1193 unsigned int size_order, u64 type)
1194 {
1195 u8 dw = 0, dr = 0;
1196
1197 struct qi_desc desc;
1198 int ih = 0;
1199
1200 if (cap_write_drain(iommu->cap))
1201 dw = 1;
1202
1203 if (cap_read_drain(iommu->cap))
1204 dr = 1;
1205
1206 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1207 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1208 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1209 | QI_IOTLB_AM(size_order);
1210
1211 qi_submit_sync(&desc, iommu);
1212 }
1213
1214 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
1215 u64 addr, unsigned mask)
1216 {
1217 struct qi_desc desc;
1218
1219 if (mask) {
1220 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
1221 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1222 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1223 } else
1224 desc.high = QI_DEV_IOTLB_ADDR(addr);
1225
1226 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1227 qdep = 0;
1228
1229 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1230 QI_DIOTLB_TYPE;
1231
1232 qi_submit_sync(&desc, iommu);
1233 }
1234
1235 /*
1236 * Disable Queued Invalidation interface.
1237 */
1238 void dmar_disable_qi(struct intel_iommu *iommu)
1239 {
1240 unsigned long flags;
1241 u32 sts;
1242 cycles_t start_time = get_cycles();
1243
1244 if (!ecap_qis(iommu->ecap))
1245 return;
1246
1247 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1248
1249 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
1250 if (!(sts & DMA_GSTS_QIES))
1251 goto end;
1252
1253 /*
1254 * Give a chance to HW to complete the pending invalidation requests.
1255 */
1256 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1257 readl(iommu->reg + DMAR_IQH_REG)) &&
1258 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1259 cpu_relax();
1260
1261 iommu->gcmd &= ~DMA_GCMD_QIE;
1262 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1263
1264 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1265 !(sts & DMA_GSTS_QIES), sts);
1266 end:
1267 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1268 }
1269
1270 /*
1271 * Enable queued invalidation.
1272 */
1273 static void __dmar_enable_qi(struct intel_iommu *iommu)
1274 {
1275 u32 sts;
1276 unsigned long flags;
1277 struct q_inval *qi = iommu->qi;
1278
1279 qi->free_head = qi->free_tail = 0;
1280 qi->free_cnt = QI_LENGTH;
1281
1282 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1283
1284 /* write zero to the tail reg */
1285 writel(0, iommu->reg + DMAR_IQT_REG);
1286
1287 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1288
1289 iommu->gcmd |= DMA_GCMD_QIE;
1290 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1291
1292 /* Make sure hardware complete it */
1293 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1294
1295 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1296 }
1297
1298 /*
1299 * Enable Queued Invalidation interface. This is a must to support
1300 * interrupt-remapping. Also used by DMA-remapping, which replaces
1301 * register based IOTLB invalidation.
1302 */
1303 int dmar_enable_qi(struct intel_iommu *iommu)
1304 {
1305 struct q_inval *qi;
1306 struct page *desc_page;
1307
1308 if (!ecap_qis(iommu->ecap))
1309 return -ENOENT;
1310
1311 /*
1312 * queued invalidation is already setup and enabled.
1313 */
1314 if (iommu->qi)
1315 return 0;
1316
1317 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1318 if (!iommu->qi)
1319 return -ENOMEM;
1320
1321 qi = iommu->qi;
1322
1323
1324 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1325 if (!desc_page) {
1326 kfree(qi);
1327 iommu->qi = NULL;
1328 return -ENOMEM;
1329 }
1330
1331 qi->desc = page_address(desc_page);
1332
1333 qi->desc_status = kzalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1334 if (!qi->desc_status) {
1335 free_page((unsigned long) qi->desc);
1336 kfree(qi);
1337 iommu->qi = NULL;
1338 return -ENOMEM;
1339 }
1340
1341 qi->free_head = qi->free_tail = 0;
1342 qi->free_cnt = QI_LENGTH;
1343
1344 raw_spin_lock_init(&qi->q_lock);
1345
1346 __dmar_enable_qi(iommu);
1347
1348 return 0;
1349 }
1350
1351 /* iommu interrupt handling. Most stuff are MSI-like. */
1352
1353 enum faulttype {
1354 DMA_REMAP,
1355 INTR_REMAP,
1356 UNKNOWN,
1357 };
1358
1359 static const char *dma_remap_fault_reasons[] =
1360 {
1361 "Software",
1362 "Present bit in root entry is clear",
1363 "Present bit in context entry is clear",
1364 "Invalid context entry",
1365 "Access beyond MGAW",
1366 "PTE Write access is not set",
1367 "PTE Read access is not set",
1368 "Next page table ptr is invalid",
1369 "Root table address invalid",
1370 "Context table ptr is invalid",
1371 "non-zero reserved fields in RTP",
1372 "non-zero reserved fields in CTP",
1373 "non-zero reserved fields in PTE",
1374 "PCE for translation request specifies blocking",
1375 };
1376
1377 static const char *irq_remap_fault_reasons[] =
1378 {
1379 "Detected reserved fields in the decoded interrupt-remapped request",
1380 "Interrupt index exceeded the interrupt-remapping table size",
1381 "Present field in the IRTE entry is clear",
1382 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1383 "Detected reserved fields in the IRTE entry",
1384 "Blocked a compatibility format interrupt request",
1385 "Blocked an interrupt request due to source-id verification failure",
1386 };
1387
1388 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1389 {
1390 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1391 ARRAY_SIZE(irq_remap_fault_reasons))) {
1392 *fault_type = INTR_REMAP;
1393 return irq_remap_fault_reasons[fault_reason - 0x20];
1394 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1395 *fault_type = DMA_REMAP;
1396 return dma_remap_fault_reasons[fault_reason];
1397 } else {
1398 *fault_type = UNKNOWN;
1399 return "Unknown";
1400 }
1401 }
1402
1403 void dmar_msi_unmask(struct irq_data *data)
1404 {
1405 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1406 unsigned long flag;
1407
1408 /* unmask it */
1409 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1410 writel(0, iommu->reg + DMAR_FECTL_REG);
1411 /* Read a reg to force flush the post write */
1412 readl(iommu->reg + DMAR_FECTL_REG);
1413 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1414 }
1415
1416 void dmar_msi_mask(struct irq_data *data)
1417 {
1418 unsigned long flag;
1419 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1420
1421 /* mask it */
1422 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1423 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1424 /* Read a reg to force flush the post write */
1425 readl(iommu->reg + DMAR_FECTL_REG);
1426 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1427 }
1428
1429 void dmar_msi_write(int irq, struct msi_msg *msg)
1430 {
1431 struct intel_iommu *iommu = irq_get_handler_data(irq);
1432 unsigned long flag;
1433
1434 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1435 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1436 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1437 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1438 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1439 }
1440
1441 void dmar_msi_read(int irq, struct msi_msg *msg)
1442 {
1443 struct intel_iommu *iommu = irq_get_handler_data(irq);
1444 unsigned long flag;
1445
1446 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1447 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1448 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1449 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1450 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1451 }
1452
1453 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1454 u8 fault_reason, u16 source_id, unsigned long long addr)
1455 {
1456 const char *reason;
1457 int fault_type;
1458
1459 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1460
1461 if (fault_type == INTR_REMAP)
1462 pr_err("INTR-REMAP: Request device [[%02x:%02x.%d] "
1463 "fault index %llx\n"
1464 "INTR-REMAP:[fault reason %02d] %s\n",
1465 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1466 PCI_FUNC(source_id & 0xFF), addr >> 48,
1467 fault_reason, reason);
1468 else
1469 pr_err("DMAR:[%s] Request device [%02x:%02x.%d] "
1470 "fault addr %llx \n"
1471 "DMAR:[fault reason %02d] %s\n",
1472 (type ? "DMA Read" : "DMA Write"),
1473 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1474 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1475 return 0;
1476 }
1477
1478 #define PRIMARY_FAULT_REG_LEN (16)
1479 irqreturn_t dmar_fault(int irq, void *dev_id)
1480 {
1481 struct intel_iommu *iommu = dev_id;
1482 int reg, fault_index;
1483 u32 fault_status;
1484 unsigned long flag;
1485
1486 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1487 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1488 if (fault_status)
1489 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1490
1491 /* TBD: ignore advanced fault log currently */
1492 if (!(fault_status & DMA_FSTS_PPF))
1493 goto unlock_exit;
1494
1495 fault_index = dma_fsts_fault_record_index(fault_status);
1496 reg = cap_fault_reg_offset(iommu->cap);
1497 while (1) {
1498 u8 fault_reason;
1499 u16 source_id;
1500 u64 guest_addr;
1501 int type;
1502 u32 data;
1503
1504 /* highest 32 bits */
1505 data = readl(iommu->reg + reg +
1506 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1507 if (!(data & DMA_FRCD_F))
1508 break;
1509
1510 fault_reason = dma_frcd_fault_reason(data);
1511 type = dma_frcd_type(data);
1512
1513 data = readl(iommu->reg + reg +
1514 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1515 source_id = dma_frcd_source_id(data);
1516
1517 guest_addr = dmar_readq(iommu->reg + reg +
1518 fault_index * PRIMARY_FAULT_REG_LEN);
1519 guest_addr = dma_frcd_page_addr(guest_addr);
1520 /* clear the fault */
1521 writel(DMA_FRCD_F, iommu->reg + reg +
1522 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1523
1524 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1525
1526 dmar_fault_do_one(iommu, type, fault_reason,
1527 source_id, guest_addr);
1528
1529 fault_index++;
1530 if (fault_index >= cap_num_fault_regs(iommu->cap))
1531 fault_index = 0;
1532 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1533 }
1534
1535 writel(DMA_FSTS_PFO | DMA_FSTS_PPF, iommu->reg + DMAR_FSTS_REG);
1536
1537 unlock_exit:
1538 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1539 return IRQ_HANDLED;
1540 }
1541
1542 int dmar_set_interrupt(struct intel_iommu *iommu)
1543 {
1544 int irq, ret;
1545
1546 /*
1547 * Check if the fault interrupt is already initialized.
1548 */
1549 if (iommu->irq)
1550 return 0;
1551
1552 irq = create_irq();
1553 if (!irq) {
1554 pr_err("IOMMU: no free vectors\n");
1555 return -EINVAL;
1556 }
1557
1558 irq_set_handler_data(irq, iommu);
1559 iommu->irq = irq;
1560
1561 ret = arch_setup_dmar_msi(irq);
1562 if (ret) {
1563 irq_set_handler_data(irq, NULL);
1564 iommu->irq = 0;
1565 destroy_irq(irq);
1566 return ret;
1567 }
1568
1569 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1570 if (ret)
1571 pr_err("IOMMU: can't request irq\n");
1572 return ret;
1573 }
1574
1575 int __init enable_drhd_fault_handling(void)
1576 {
1577 struct dmar_drhd_unit *drhd;
1578 struct intel_iommu *iommu;
1579
1580 /*
1581 * Enable fault control interrupt.
1582 */
1583 for_each_iommu(iommu, drhd) {
1584 u32 fault_status;
1585 int ret = dmar_set_interrupt(iommu);
1586
1587 if (ret) {
1588 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1589 (unsigned long long)drhd->reg_base_addr, ret);
1590 return -1;
1591 }
1592
1593 /*
1594 * Clear any previous faults.
1595 */
1596 dmar_fault(iommu->irq, iommu);
1597 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1598 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1599 }
1600
1601 return 0;
1602 }
1603
1604 /*
1605 * Re-enable Queued Invalidation interface.
1606 */
1607 int dmar_reenable_qi(struct intel_iommu *iommu)
1608 {
1609 if (!ecap_qis(iommu->ecap))
1610 return -ENOENT;
1611
1612 if (!iommu->qi)
1613 return -ENOENT;
1614
1615 /*
1616 * First disable queued invalidation.
1617 */
1618 dmar_disable_qi(iommu);
1619 /*
1620 * Then enable queued invalidation again. Since there is no pending
1621 * invalidation requests now, it's safe to re-enable queued
1622 * invalidation.
1623 */
1624 __dmar_enable_qi(iommu);
1625
1626 return 0;
1627 }
1628
1629 /*
1630 * Check interrupt remapping support in DMAR table description.
1631 */
1632 int __init dmar_ir_support(void)
1633 {
1634 struct acpi_table_dmar *dmar;
1635 dmar = (struct acpi_table_dmar *)dmar_tbl;
1636 if (!dmar)
1637 return 0;
1638 return dmar->flags & 0x1;
1639 }
1640
1641 static int __init dmar_free_unused_resources(void)
1642 {
1643 struct dmar_drhd_unit *dmaru, *dmaru_n;
1644
1645 /* DMAR units are in use */
1646 if (irq_remapping_enabled || intel_iommu_enabled)
1647 return 0;
1648
1649 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
1650 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1651
1652 down_write(&dmar_global_lock);
1653 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
1654 list_del(&dmaru->list);
1655 dmar_free_drhd(dmaru);
1656 }
1657 up_write(&dmar_global_lock);
1658
1659 return 0;
1660 }
1661
1662 late_initcall(dmar_free_unused_resources);
1663 IOMMU_INIT_POST(detect_intel_iommu);
This page took 0.074474 seconds and 6 git commands to generate.