Merge branch 'x86-mce-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / iommu / dmar.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 *
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt /* has to precede printk.h */
30
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/iova.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/timer.h>
36 #include <linux/irq.h>
37 #include <linux/interrupt.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/slab.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/iommu_table.h>
43
44 /* No locks are needed as DMA remapping hardware unit
45 * list is constructed at boot time and hotplug of
46 * these units are not supported by the architecture.
47 */
48 LIST_HEAD(dmar_drhd_units);
49
50 struct acpi_table_header * __initdata dmar_tbl;
51 static acpi_size dmar_tbl_size;
52
53 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
54 {
55 /*
56 * add INCLUDE_ALL at the tail, so scan the list will find it at
57 * the very end.
58 */
59 if (drhd->include_all)
60 list_add_tail(&drhd->list, &dmar_drhd_units);
61 else
62 list_add(&drhd->list, &dmar_drhd_units);
63 }
64
65 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
66 struct pci_dev **dev, u16 segment)
67 {
68 struct pci_bus *bus;
69 struct pci_dev *pdev = NULL;
70 struct acpi_dmar_pci_path *path;
71 int count;
72
73 bus = pci_find_bus(segment, scope->bus);
74 path = (struct acpi_dmar_pci_path *)(scope + 1);
75 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
76 / sizeof(struct acpi_dmar_pci_path);
77
78 while (count) {
79 if (pdev)
80 pci_dev_put(pdev);
81 /*
82 * Some BIOSes list non-exist devices in DMAR table, just
83 * ignore it
84 */
85 if (!bus) {
86 pr_warn("Device scope bus [%d] not found\n", scope->bus);
87 break;
88 }
89 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
90 if (!pdev) {
91 /* warning will be printed below */
92 break;
93 }
94 path ++;
95 count --;
96 bus = pdev->subordinate;
97 }
98 if (!pdev) {
99 pr_warn("Device scope device [%04x:%02x:%02x.%02x] not found\n",
100 segment, scope->bus, path->dev, path->fn);
101 *dev = NULL;
102 return 0;
103 }
104 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
105 pdev->subordinate) || (scope->entry_type == \
106 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
107 pci_dev_put(pdev);
108 pr_warn("Device scope type does not match for %s\n",
109 pci_name(pdev));
110 return -EINVAL;
111 }
112 *dev = pdev;
113 return 0;
114 }
115
116 int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
117 struct pci_dev ***devices, u16 segment)
118 {
119 struct acpi_dmar_device_scope *scope;
120 void * tmp = start;
121 int index;
122 int ret;
123
124 *cnt = 0;
125 while (start < end) {
126 scope = start;
127 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
128 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
129 (*cnt)++;
130 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
131 pr_warn("Unsupported device scope\n");
132 }
133 start += scope->length;
134 }
135 if (*cnt == 0)
136 return 0;
137
138 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
139 if (!*devices)
140 return -ENOMEM;
141
142 start = tmp;
143 index = 0;
144 while (start < end) {
145 scope = start;
146 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
147 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
148 ret = dmar_parse_one_dev_scope(scope,
149 &(*devices)[index], segment);
150 if (ret) {
151 kfree(*devices);
152 return ret;
153 }
154 index ++;
155 }
156 start += scope->length;
157 }
158
159 return 0;
160 }
161
162 /**
163 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
164 * structure which uniquely represent one DMA remapping hardware unit
165 * present in the platform
166 */
167 static int __init
168 dmar_parse_one_drhd(struct acpi_dmar_header *header)
169 {
170 struct acpi_dmar_hardware_unit *drhd;
171 struct dmar_drhd_unit *dmaru;
172 int ret = 0;
173
174 drhd = (struct acpi_dmar_hardware_unit *)header;
175 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
176 if (!dmaru)
177 return -ENOMEM;
178
179 dmaru->hdr = header;
180 dmaru->reg_base_addr = drhd->address;
181 dmaru->segment = drhd->segment;
182 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
183
184 ret = alloc_iommu(dmaru);
185 if (ret) {
186 kfree(dmaru);
187 return ret;
188 }
189 dmar_register_drhd_unit(dmaru);
190 return 0;
191 }
192
193 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
194 {
195 struct acpi_dmar_hardware_unit *drhd;
196 int ret = 0;
197
198 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
199
200 if (dmaru->include_all)
201 return 0;
202
203 ret = dmar_parse_dev_scope((void *)(drhd + 1),
204 ((void *)drhd) + drhd->header.length,
205 &dmaru->devices_cnt, &dmaru->devices,
206 drhd->segment);
207 if (ret) {
208 list_del(&dmaru->list);
209 kfree(dmaru);
210 }
211 return ret;
212 }
213
214 #ifdef CONFIG_ACPI_NUMA
215 static int __init
216 dmar_parse_one_rhsa(struct acpi_dmar_header *header)
217 {
218 struct acpi_dmar_rhsa *rhsa;
219 struct dmar_drhd_unit *drhd;
220
221 rhsa = (struct acpi_dmar_rhsa *)header;
222 for_each_drhd_unit(drhd) {
223 if (drhd->reg_base_addr == rhsa->base_address) {
224 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
225
226 if (!node_online(node))
227 node = -1;
228 drhd->iommu->node = node;
229 return 0;
230 }
231 }
232 WARN_TAINT(
233 1, TAINT_FIRMWARE_WORKAROUND,
234 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
235 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
236 drhd->reg_base_addr,
237 dmi_get_system_info(DMI_BIOS_VENDOR),
238 dmi_get_system_info(DMI_BIOS_VERSION),
239 dmi_get_system_info(DMI_PRODUCT_VERSION));
240
241 return 0;
242 }
243 #endif
244
245 static void __init
246 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
247 {
248 struct acpi_dmar_hardware_unit *drhd;
249 struct acpi_dmar_reserved_memory *rmrr;
250 struct acpi_dmar_atsr *atsr;
251 struct acpi_dmar_rhsa *rhsa;
252
253 switch (header->type) {
254 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
255 drhd = container_of(header, struct acpi_dmar_hardware_unit,
256 header);
257 pr_info("DRHD base: %#016Lx flags: %#x\n",
258 (unsigned long long)drhd->address, drhd->flags);
259 break;
260 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
261 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
262 header);
263 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
264 (unsigned long long)rmrr->base_address,
265 (unsigned long long)rmrr->end_address);
266 break;
267 case ACPI_DMAR_TYPE_ATSR:
268 atsr = container_of(header, struct acpi_dmar_atsr, header);
269 pr_info("ATSR flags: %#x\n", atsr->flags);
270 break;
271 case ACPI_DMAR_HARDWARE_AFFINITY:
272 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
273 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
274 (unsigned long long)rhsa->base_address,
275 rhsa->proximity_domain);
276 break;
277 }
278 }
279
280 /**
281 * dmar_table_detect - checks to see if the platform supports DMAR devices
282 */
283 static int __init dmar_table_detect(void)
284 {
285 acpi_status status = AE_OK;
286
287 /* if we could find DMAR table, then there are DMAR devices */
288 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
289 (struct acpi_table_header **)&dmar_tbl,
290 &dmar_tbl_size);
291
292 if (ACPI_SUCCESS(status) && !dmar_tbl) {
293 pr_warn("Unable to map DMAR\n");
294 status = AE_NOT_FOUND;
295 }
296
297 return (ACPI_SUCCESS(status) ? 1 : 0);
298 }
299
300 /**
301 * parse_dmar_table - parses the DMA reporting table
302 */
303 static int __init
304 parse_dmar_table(void)
305 {
306 struct acpi_table_dmar *dmar;
307 struct acpi_dmar_header *entry_header;
308 int ret = 0;
309
310 /*
311 * Do it again, earlier dmar_tbl mapping could be mapped with
312 * fixed map.
313 */
314 dmar_table_detect();
315
316 /*
317 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
318 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
319 */
320 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
321
322 dmar = (struct acpi_table_dmar *)dmar_tbl;
323 if (!dmar)
324 return -ENODEV;
325
326 if (dmar->width < PAGE_SHIFT - 1) {
327 pr_warn("Invalid DMAR haw\n");
328 return -EINVAL;
329 }
330
331 pr_info("Host address width %d\n", dmar->width + 1);
332
333 entry_header = (struct acpi_dmar_header *)(dmar + 1);
334 while (((unsigned long)entry_header) <
335 (((unsigned long)dmar) + dmar_tbl->length)) {
336 /* Avoid looping forever on bad ACPI tables */
337 if (entry_header->length == 0) {
338 pr_warn("Invalid 0-length structure\n");
339 ret = -EINVAL;
340 break;
341 }
342
343 dmar_table_print_dmar_entry(entry_header);
344
345 switch (entry_header->type) {
346 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
347 ret = dmar_parse_one_drhd(entry_header);
348 break;
349 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
350 ret = dmar_parse_one_rmrr(entry_header);
351 break;
352 case ACPI_DMAR_TYPE_ATSR:
353 ret = dmar_parse_one_atsr(entry_header);
354 break;
355 case ACPI_DMAR_HARDWARE_AFFINITY:
356 #ifdef CONFIG_ACPI_NUMA
357 ret = dmar_parse_one_rhsa(entry_header);
358 #endif
359 break;
360 default:
361 pr_warn("Unknown DMAR structure type %d\n",
362 entry_header->type);
363 ret = 0; /* for forward compatibility */
364 break;
365 }
366 if (ret)
367 break;
368
369 entry_header = ((void *)entry_header + entry_header->length);
370 }
371 return ret;
372 }
373
374 static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
375 struct pci_dev *dev)
376 {
377 int index;
378
379 while (dev) {
380 for (index = 0; index < cnt; index++)
381 if (dev == devices[index])
382 return 1;
383
384 /* Check our parent */
385 dev = dev->bus->self;
386 }
387
388 return 0;
389 }
390
391 struct dmar_drhd_unit *
392 dmar_find_matched_drhd_unit(struct pci_dev *dev)
393 {
394 struct dmar_drhd_unit *dmaru = NULL;
395 struct acpi_dmar_hardware_unit *drhd;
396
397 dev = pci_physfn(dev);
398
399 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
400 drhd = container_of(dmaru->hdr,
401 struct acpi_dmar_hardware_unit,
402 header);
403
404 if (dmaru->include_all &&
405 drhd->segment == pci_domain_nr(dev->bus))
406 return dmaru;
407
408 if (dmar_pci_device_match(dmaru->devices,
409 dmaru->devices_cnt, dev))
410 return dmaru;
411 }
412
413 return NULL;
414 }
415
416 int __init dmar_dev_scope_init(void)
417 {
418 static int dmar_dev_scope_initialized;
419 struct dmar_drhd_unit *drhd, *drhd_n;
420 int ret = -ENODEV;
421
422 if (dmar_dev_scope_initialized)
423 return dmar_dev_scope_initialized;
424
425 if (list_empty(&dmar_drhd_units))
426 goto fail;
427
428 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
429 ret = dmar_parse_dev(drhd);
430 if (ret)
431 goto fail;
432 }
433
434 ret = dmar_parse_rmrr_atsr_dev();
435 if (ret)
436 goto fail;
437
438 dmar_dev_scope_initialized = 1;
439 return 0;
440
441 fail:
442 dmar_dev_scope_initialized = ret;
443 return ret;
444 }
445
446
447 int __init dmar_table_init(void)
448 {
449 static int dmar_table_initialized;
450 int ret;
451
452 if (dmar_table_initialized)
453 return 0;
454
455 dmar_table_initialized = 1;
456
457 ret = parse_dmar_table();
458 if (ret) {
459 if (ret != -ENODEV)
460 pr_info("parse DMAR table failure.\n");
461 return ret;
462 }
463
464 if (list_empty(&dmar_drhd_units)) {
465 pr_info("No DMAR devices found\n");
466 return -ENODEV;
467 }
468
469 return 0;
470 }
471
472 static void warn_invalid_dmar(u64 addr, const char *message)
473 {
474 WARN_TAINT_ONCE(
475 1, TAINT_FIRMWARE_WORKAROUND,
476 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
477 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
478 addr, message,
479 dmi_get_system_info(DMI_BIOS_VENDOR),
480 dmi_get_system_info(DMI_BIOS_VERSION),
481 dmi_get_system_info(DMI_PRODUCT_VERSION));
482 }
483
484 int __init check_zero_address(void)
485 {
486 struct acpi_table_dmar *dmar;
487 struct acpi_dmar_header *entry_header;
488 struct acpi_dmar_hardware_unit *drhd;
489
490 dmar = (struct acpi_table_dmar *)dmar_tbl;
491 entry_header = (struct acpi_dmar_header *)(dmar + 1);
492
493 while (((unsigned long)entry_header) <
494 (((unsigned long)dmar) + dmar_tbl->length)) {
495 /* Avoid looping forever on bad ACPI tables */
496 if (entry_header->length == 0) {
497 pr_warn("Invalid 0-length structure\n");
498 return 0;
499 }
500
501 if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
502 void __iomem *addr;
503 u64 cap, ecap;
504
505 drhd = (void *)entry_header;
506 if (!drhd->address) {
507 warn_invalid_dmar(0, "");
508 goto failed;
509 }
510
511 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
512 if (!addr ) {
513 printk("IOMMU: can't validate: %llx\n", drhd->address);
514 goto failed;
515 }
516 cap = dmar_readq(addr + DMAR_CAP_REG);
517 ecap = dmar_readq(addr + DMAR_ECAP_REG);
518 early_iounmap(addr, VTD_PAGE_SIZE);
519 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
520 warn_invalid_dmar(drhd->address,
521 " returns all ones");
522 goto failed;
523 }
524 }
525
526 entry_header = ((void *)entry_header + entry_header->length);
527 }
528 return 1;
529
530 failed:
531 return 0;
532 }
533
534 int __init detect_intel_iommu(void)
535 {
536 int ret;
537
538 ret = dmar_table_detect();
539 if (ret)
540 ret = check_zero_address();
541 {
542 struct acpi_table_dmar *dmar;
543
544 dmar = (struct acpi_table_dmar *) dmar_tbl;
545
546 if (ret && irq_remapping_enabled && cpu_has_x2apic &&
547 dmar->flags & 0x1)
548 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
549
550 if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
551 iommu_detected = 1;
552 /* Make sure ACS will be enabled */
553 pci_request_acs();
554 }
555
556 #ifdef CONFIG_X86
557 if (ret)
558 x86_init.iommu.iommu_init = intel_iommu_init;
559 #endif
560 }
561 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
562 dmar_tbl = NULL;
563
564 return ret ? 1 : -ENODEV;
565 }
566
567
568 static void unmap_iommu(struct intel_iommu *iommu)
569 {
570 iounmap(iommu->reg);
571 release_mem_region(iommu->reg_phys, iommu->reg_size);
572 }
573
574 /**
575 * map_iommu: map the iommu's registers
576 * @iommu: the iommu to map
577 * @phys_addr: the physical address of the base resgister
578 *
579 * Memory map the iommu's registers. Start w/ a single page, and
580 * possibly expand if that turns out to be insufficent.
581 */
582 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
583 {
584 int map_size, err=0;
585
586 iommu->reg_phys = phys_addr;
587 iommu->reg_size = VTD_PAGE_SIZE;
588
589 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
590 pr_err("IOMMU: can't reserve memory\n");
591 err = -EBUSY;
592 goto out;
593 }
594
595 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
596 if (!iommu->reg) {
597 pr_err("IOMMU: can't map the region\n");
598 err = -ENOMEM;
599 goto release;
600 }
601
602 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
603 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
604
605 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
606 err = -EINVAL;
607 warn_invalid_dmar(phys_addr, " returns all ones");
608 goto unmap;
609 }
610
611 /* the registers might be more than one page */
612 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
613 cap_max_fault_reg_offset(iommu->cap));
614 map_size = VTD_PAGE_ALIGN(map_size);
615 if (map_size > iommu->reg_size) {
616 iounmap(iommu->reg);
617 release_mem_region(iommu->reg_phys, iommu->reg_size);
618 iommu->reg_size = map_size;
619 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
620 iommu->name)) {
621 pr_err("IOMMU: can't reserve memory\n");
622 err = -EBUSY;
623 goto out;
624 }
625 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
626 if (!iommu->reg) {
627 pr_err("IOMMU: can't map the region\n");
628 err = -ENOMEM;
629 goto release;
630 }
631 }
632 err = 0;
633 goto out;
634
635 unmap:
636 iounmap(iommu->reg);
637 release:
638 release_mem_region(iommu->reg_phys, iommu->reg_size);
639 out:
640 return err;
641 }
642
643 int alloc_iommu(struct dmar_drhd_unit *drhd)
644 {
645 struct intel_iommu *iommu;
646 u32 ver;
647 static int iommu_allocated = 0;
648 int agaw = 0;
649 int msagaw = 0;
650 int err;
651
652 if (!drhd->reg_base_addr) {
653 warn_invalid_dmar(0, "");
654 return -EINVAL;
655 }
656
657 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
658 if (!iommu)
659 return -ENOMEM;
660
661 iommu->seq_id = iommu_allocated++;
662 sprintf (iommu->name, "dmar%d", iommu->seq_id);
663
664 err = map_iommu(iommu, drhd->reg_base_addr);
665 if (err) {
666 pr_err("IOMMU: failed to map %s\n", iommu->name);
667 goto error;
668 }
669
670 err = -EINVAL;
671 agaw = iommu_calculate_agaw(iommu);
672 if (agaw < 0) {
673 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
674 iommu->seq_id);
675 goto err_unmap;
676 }
677 msagaw = iommu_calculate_max_sagaw(iommu);
678 if (msagaw < 0) {
679 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
680 iommu->seq_id);
681 goto err_unmap;
682 }
683 iommu->agaw = agaw;
684 iommu->msagaw = msagaw;
685
686 iommu->node = -1;
687
688 ver = readl(iommu->reg + DMAR_VER_REG);
689 pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
690 iommu->seq_id,
691 (unsigned long long)drhd->reg_base_addr,
692 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
693 (unsigned long long)iommu->cap,
694 (unsigned long long)iommu->ecap);
695
696 raw_spin_lock_init(&iommu->register_lock);
697
698 drhd->iommu = iommu;
699 return 0;
700
701 err_unmap:
702 unmap_iommu(iommu);
703 error:
704 kfree(iommu);
705 return err;
706 }
707
708 void free_iommu(struct intel_iommu *iommu)
709 {
710 if (!iommu)
711 return;
712
713 free_dmar_iommu(iommu);
714
715 if (iommu->reg)
716 unmap_iommu(iommu);
717
718 kfree(iommu);
719 }
720
721 /*
722 * Reclaim all the submitted descriptors which have completed its work.
723 */
724 static inline void reclaim_free_desc(struct q_inval *qi)
725 {
726 while (qi->desc_status[qi->free_tail] == QI_DONE ||
727 qi->desc_status[qi->free_tail] == QI_ABORT) {
728 qi->desc_status[qi->free_tail] = QI_FREE;
729 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
730 qi->free_cnt++;
731 }
732 }
733
734 static int qi_check_fault(struct intel_iommu *iommu, int index)
735 {
736 u32 fault;
737 int head, tail;
738 struct q_inval *qi = iommu->qi;
739 int wait_index = (index + 1) % QI_LENGTH;
740
741 if (qi->desc_status[wait_index] == QI_ABORT)
742 return -EAGAIN;
743
744 fault = readl(iommu->reg + DMAR_FSTS_REG);
745
746 /*
747 * If IQE happens, the head points to the descriptor associated
748 * with the error. No new descriptors are fetched until the IQE
749 * is cleared.
750 */
751 if (fault & DMA_FSTS_IQE) {
752 head = readl(iommu->reg + DMAR_IQH_REG);
753 if ((head >> DMAR_IQ_SHIFT) == index) {
754 pr_err("VT-d detected invalid descriptor: "
755 "low=%llx, high=%llx\n",
756 (unsigned long long)qi->desc[index].low,
757 (unsigned long long)qi->desc[index].high);
758 memcpy(&qi->desc[index], &qi->desc[wait_index],
759 sizeof(struct qi_desc));
760 __iommu_flush_cache(iommu, &qi->desc[index],
761 sizeof(struct qi_desc));
762 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
763 return -EINVAL;
764 }
765 }
766
767 /*
768 * If ITE happens, all pending wait_desc commands are aborted.
769 * No new descriptors are fetched until the ITE is cleared.
770 */
771 if (fault & DMA_FSTS_ITE) {
772 head = readl(iommu->reg + DMAR_IQH_REG);
773 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
774 head |= 1;
775 tail = readl(iommu->reg + DMAR_IQT_REG);
776 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
777
778 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
779
780 do {
781 if (qi->desc_status[head] == QI_IN_USE)
782 qi->desc_status[head] = QI_ABORT;
783 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
784 } while (head != tail);
785
786 if (qi->desc_status[wait_index] == QI_ABORT)
787 return -EAGAIN;
788 }
789
790 if (fault & DMA_FSTS_ICE)
791 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
792
793 return 0;
794 }
795
796 /*
797 * Submit the queued invalidation descriptor to the remapping
798 * hardware unit and wait for its completion.
799 */
800 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
801 {
802 int rc;
803 struct q_inval *qi = iommu->qi;
804 struct qi_desc *hw, wait_desc;
805 int wait_index, index;
806 unsigned long flags;
807
808 if (!qi)
809 return 0;
810
811 hw = qi->desc;
812
813 restart:
814 rc = 0;
815
816 raw_spin_lock_irqsave(&qi->q_lock, flags);
817 while (qi->free_cnt < 3) {
818 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
819 cpu_relax();
820 raw_spin_lock_irqsave(&qi->q_lock, flags);
821 }
822
823 index = qi->free_head;
824 wait_index = (index + 1) % QI_LENGTH;
825
826 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
827
828 hw[index] = *desc;
829
830 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
831 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
832 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
833
834 hw[wait_index] = wait_desc;
835
836 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
837 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
838
839 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
840 qi->free_cnt -= 2;
841
842 /*
843 * update the HW tail register indicating the presence of
844 * new descriptors.
845 */
846 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
847
848 while (qi->desc_status[wait_index] != QI_DONE) {
849 /*
850 * We will leave the interrupts disabled, to prevent interrupt
851 * context to queue another cmd while a cmd is already submitted
852 * and waiting for completion on this cpu. This is to avoid
853 * a deadlock where the interrupt context can wait indefinitely
854 * for free slots in the queue.
855 */
856 rc = qi_check_fault(iommu, index);
857 if (rc)
858 break;
859
860 raw_spin_unlock(&qi->q_lock);
861 cpu_relax();
862 raw_spin_lock(&qi->q_lock);
863 }
864
865 qi->desc_status[index] = QI_DONE;
866
867 reclaim_free_desc(qi);
868 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
869
870 if (rc == -EAGAIN)
871 goto restart;
872
873 return rc;
874 }
875
876 /*
877 * Flush the global interrupt entry cache.
878 */
879 void qi_global_iec(struct intel_iommu *iommu)
880 {
881 struct qi_desc desc;
882
883 desc.low = QI_IEC_TYPE;
884 desc.high = 0;
885
886 /* should never fail */
887 qi_submit_sync(&desc, iommu);
888 }
889
890 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
891 u64 type)
892 {
893 struct qi_desc desc;
894
895 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
896 | QI_CC_GRAN(type) | QI_CC_TYPE;
897 desc.high = 0;
898
899 qi_submit_sync(&desc, iommu);
900 }
901
902 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
903 unsigned int size_order, u64 type)
904 {
905 u8 dw = 0, dr = 0;
906
907 struct qi_desc desc;
908 int ih = 0;
909
910 if (cap_write_drain(iommu->cap))
911 dw = 1;
912
913 if (cap_read_drain(iommu->cap))
914 dr = 1;
915
916 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
917 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
918 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
919 | QI_IOTLB_AM(size_order);
920
921 qi_submit_sync(&desc, iommu);
922 }
923
924 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
925 u64 addr, unsigned mask)
926 {
927 struct qi_desc desc;
928
929 if (mask) {
930 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
931 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
932 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
933 } else
934 desc.high = QI_DEV_IOTLB_ADDR(addr);
935
936 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
937 qdep = 0;
938
939 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
940 QI_DIOTLB_TYPE;
941
942 qi_submit_sync(&desc, iommu);
943 }
944
945 /*
946 * Disable Queued Invalidation interface.
947 */
948 void dmar_disable_qi(struct intel_iommu *iommu)
949 {
950 unsigned long flags;
951 u32 sts;
952 cycles_t start_time = get_cycles();
953
954 if (!ecap_qis(iommu->ecap))
955 return;
956
957 raw_spin_lock_irqsave(&iommu->register_lock, flags);
958
959 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
960 if (!(sts & DMA_GSTS_QIES))
961 goto end;
962
963 /*
964 * Give a chance to HW to complete the pending invalidation requests.
965 */
966 while ((readl(iommu->reg + DMAR_IQT_REG) !=
967 readl(iommu->reg + DMAR_IQH_REG)) &&
968 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
969 cpu_relax();
970
971 iommu->gcmd &= ~DMA_GCMD_QIE;
972 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
973
974 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
975 !(sts & DMA_GSTS_QIES), sts);
976 end:
977 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
978 }
979
980 /*
981 * Enable queued invalidation.
982 */
983 static void __dmar_enable_qi(struct intel_iommu *iommu)
984 {
985 u32 sts;
986 unsigned long flags;
987 struct q_inval *qi = iommu->qi;
988
989 qi->free_head = qi->free_tail = 0;
990 qi->free_cnt = QI_LENGTH;
991
992 raw_spin_lock_irqsave(&iommu->register_lock, flags);
993
994 /* write zero to the tail reg */
995 writel(0, iommu->reg + DMAR_IQT_REG);
996
997 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
998
999 iommu->gcmd |= DMA_GCMD_QIE;
1000 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1001
1002 /* Make sure hardware complete it */
1003 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1004
1005 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1006 }
1007
1008 /*
1009 * Enable Queued Invalidation interface. This is a must to support
1010 * interrupt-remapping. Also used by DMA-remapping, which replaces
1011 * register based IOTLB invalidation.
1012 */
1013 int dmar_enable_qi(struct intel_iommu *iommu)
1014 {
1015 struct q_inval *qi;
1016 struct page *desc_page;
1017
1018 if (!ecap_qis(iommu->ecap))
1019 return -ENOENT;
1020
1021 /*
1022 * queued invalidation is already setup and enabled.
1023 */
1024 if (iommu->qi)
1025 return 0;
1026
1027 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1028 if (!iommu->qi)
1029 return -ENOMEM;
1030
1031 qi = iommu->qi;
1032
1033
1034 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1035 if (!desc_page) {
1036 kfree(qi);
1037 iommu->qi = 0;
1038 return -ENOMEM;
1039 }
1040
1041 qi->desc = page_address(desc_page);
1042
1043 qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1044 if (!qi->desc_status) {
1045 free_page((unsigned long) qi->desc);
1046 kfree(qi);
1047 iommu->qi = 0;
1048 return -ENOMEM;
1049 }
1050
1051 qi->free_head = qi->free_tail = 0;
1052 qi->free_cnt = QI_LENGTH;
1053
1054 raw_spin_lock_init(&qi->q_lock);
1055
1056 __dmar_enable_qi(iommu);
1057
1058 return 0;
1059 }
1060
1061 /* iommu interrupt handling. Most stuff are MSI-like. */
1062
1063 enum faulttype {
1064 DMA_REMAP,
1065 INTR_REMAP,
1066 UNKNOWN,
1067 };
1068
1069 static const char *dma_remap_fault_reasons[] =
1070 {
1071 "Software",
1072 "Present bit in root entry is clear",
1073 "Present bit in context entry is clear",
1074 "Invalid context entry",
1075 "Access beyond MGAW",
1076 "PTE Write access is not set",
1077 "PTE Read access is not set",
1078 "Next page table ptr is invalid",
1079 "Root table address invalid",
1080 "Context table ptr is invalid",
1081 "non-zero reserved fields in RTP",
1082 "non-zero reserved fields in CTP",
1083 "non-zero reserved fields in PTE",
1084 };
1085
1086 static const char *irq_remap_fault_reasons[] =
1087 {
1088 "Detected reserved fields in the decoded interrupt-remapped request",
1089 "Interrupt index exceeded the interrupt-remapping table size",
1090 "Present field in the IRTE entry is clear",
1091 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1092 "Detected reserved fields in the IRTE entry",
1093 "Blocked a compatibility format interrupt request",
1094 "Blocked an interrupt request due to source-id verification failure",
1095 };
1096
1097 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
1098
1099 const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1100 {
1101 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1102 ARRAY_SIZE(irq_remap_fault_reasons))) {
1103 *fault_type = INTR_REMAP;
1104 return irq_remap_fault_reasons[fault_reason - 0x20];
1105 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1106 *fault_type = DMA_REMAP;
1107 return dma_remap_fault_reasons[fault_reason];
1108 } else {
1109 *fault_type = UNKNOWN;
1110 return "Unknown";
1111 }
1112 }
1113
1114 void dmar_msi_unmask(struct irq_data *data)
1115 {
1116 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1117 unsigned long flag;
1118
1119 /* unmask it */
1120 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1121 writel(0, iommu->reg + DMAR_FECTL_REG);
1122 /* Read a reg to force flush the post write */
1123 readl(iommu->reg + DMAR_FECTL_REG);
1124 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1125 }
1126
1127 void dmar_msi_mask(struct irq_data *data)
1128 {
1129 unsigned long flag;
1130 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1131
1132 /* mask it */
1133 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1134 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1135 /* Read a reg to force flush the post write */
1136 readl(iommu->reg + DMAR_FECTL_REG);
1137 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1138 }
1139
1140 void dmar_msi_write(int irq, struct msi_msg *msg)
1141 {
1142 struct intel_iommu *iommu = irq_get_handler_data(irq);
1143 unsigned long flag;
1144
1145 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1146 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1147 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1148 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1149 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1150 }
1151
1152 void dmar_msi_read(int irq, struct msi_msg *msg)
1153 {
1154 struct intel_iommu *iommu = irq_get_handler_data(irq);
1155 unsigned long flag;
1156
1157 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1158 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1159 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1160 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1161 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1162 }
1163
1164 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1165 u8 fault_reason, u16 source_id, unsigned long long addr)
1166 {
1167 const char *reason;
1168 int fault_type;
1169
1170 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1171
1172 if (fault_type == INTR_REMAP)
1173 pr_err("INTR-REMAP: Request device [[%02x:%02x.%d] "
1174 "fault index %llx\n"
1175 "INTR-REMAP:[fault reason %02d] %s\n",
1176 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1177 PCI_FUNC(source_id & 0xFF), addr >> 48,
1178 fault_reason, reason);
1179 else
1180 pr_err("DMAR:[%s] Request device [%02x:%02x.%d] "
1181 "fault addr %llx \n"
1182 "DMAR:[fault reason %02d] %s\n",
1183 (type ? "DMA Read" : "DMA Write"),
1184 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1185 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1186 return 0;
1187 }
1188
1189 #define PRIMARY_FAULT_REG_LEN (16)
1190 irqreturn_t dmar_fault(int irq, void *dev_id)
1191 {
1192 struct intel_iommu *iommu = dev_id;
1193 int reg, fault_index;
1194 u32 fault_status;
1195 unsigned long flag;
1196
1197 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1198 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1199 if (fault_status)
1200 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1201
1202 /* TBD: ignore advanced fault log currently */
1203 if (!(fault_status & DMA_FSTS_PPF))
1204 goto clear_rest;
1205
1206 fault_index = dma_fsts_fault_record_index(fault_status);
1207 reg = cap_fault_reg_offset(iommu->cap);
1208 while (1) {
1209 u8 fault_reason;
1210 u16 source_id;
1211 u64 guest_addr;
1212 int type;
1213 u32 data;
1214
1215 /* highest 32 bits */
1216 data = readl(iommu->reg + reg +
1217 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1218 if (!(data & DMA_FRCD_F))
1219 break;
1220
1221 fault_reason = dma_frcd_fault_reason(data);
1222 type = dma_frcd_type(data);
1223
1224 data = readl(iommu->reg + reg +
1225 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1226 source_id = dma_frcd_source_id(data);
1227
1228 guest_addr = dmar_readq(iommu->reg + reg +
1229 fault_index * PRIMARY_FAULT_REG_LEN);
1230 guest_addr = dma_frcd_page_addr(guest_addr);
1231 /* clear the fault */
1232 writel(DMA_FRCD_F, iommu->reg + reg +
1233 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1234
1235 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1236
1237 dmar_fault_do_one(iommu, type, fault_reason,
1238 source_id, guest_addr);
1239
1240 fault_index++;
1241 if (fault_index >= cap_num_fault_regs(iommu->cap))
1242 fault_index = 0;
1243 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1244 }
1245 clear_rest:
1246 /* clear all the other faults */
1247 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1248 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1249
1250 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1251 return IRQ_HANDLED;
1252 }
1253
1254 int dmar_set_interrupt(struct intel_iommu *iommu)
1255 {
1256 int irq, ret;
1257
1258 /*
1259 * Check if the fault interrupt is already initialized.
1260 */
1261 if (iommu->irq)
1262 return 0;
1263
1264 irq = create_irq();
1265 if (!irq) {
1266 pr_err("IOMMU: no free vectors\n");
1267 return -EINVAL;
1268 }
1269
1270 irq_set_handler_data(irq, iommu);
1271 iommu->irq = irq;
1272
1273 ret = arch_setup_dmar_msi(irq);
1274 if (ret) {
1275 irq_set_handler_data(irq, NULL);
1276 iommu->irq = 0;
1277 destroy_irq(irq);
1278 return ret;
1279 }
1280
1281 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1282 if (ret)
1283 pr_err("IOMMU: can't request irq\n");
1284 return ret;
1285 }
1286
1287 int __init enable_drhd_fault_handling(void)
1288 {
1289 struct dmar_drhd_unit *drhd;
1290
1291 /*
1292 * Enable fault control interrupt.
1293 */
1294 for_each_drhd_unit(drhd) {
1295 int ret;
1296 struct intel_iommu *iommu = drhd->iommu;
1297 ret = dmar_set_interrupt(iommu);
1298
1299 if (ret) {
1300 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1301 (unsigned long long)drhd->reg_base_addr, ret);
1302 return -1;
1303 }
1304
1305 /*
1306 * Clear any previous faults.
1307 */
1308 dmar_fault(iommu->irq, iommu);
1309 }
1310
1311 return 0;
1312 }
1313
1314 /*
1315 * Re-enable Queued Invalidation interface.
1316 */
1317 int dmar_reenable_qi(struct intel_iommu *iommu)
1318 {
1319 if (!ecap_qis(iommu->ecap))
1320 return -ENOENT;
1321
1322 if (!iommu->qi)
1323 return -ENOENT;
1324
1325 /*
1326 * First disable queued invalidation.
1327 */
1328 dmar_disable_qi(iommu);
1329 /*
1330 * Then enable queued invalidation again. Since there is no pending
1331 * invalidation requests now, it's safe to re-enable queued
1332 * invalidation.
1333 */
1334 __dmar_enable_qi(iommu);
1335
1336 return 0;
1337 }
1338
1339 /*
1340 * Check interrupt remapping support in DMAR table description.
1341 */
1342 int __init dmar_ir_support(void)
1343 {
1344 struct acpi_table_dmar *dmar;
1345 dmar = (struct acpi_table_dmar *)dmar_tbl;
1346 if (!dmar)
1347 return 0;
1348 return dmar->flags & 0x1;
1349 }
1350 IOMMU_INIT_POST(detect_intel_iommu);
This page took 0.081362 seconds and 6 git commands to generate.