Merge tag 'v4.4-rc2' into drm-intel-next-queued
[deliverable/linux.git] / drivers / iommu / dmar.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 *
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
27 */
28
29 #define pr_fmt(fmt) "DMAR: " fmt
30
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/iova.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/timer.h>
36 #include <linux/irq.h>
37 #include <linux/interrupt.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/slab.h>
41 #include <linux/iommu.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/iommu_table.h>
44
45 #include "irq_remapping.h"
46
47 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
48 struct dmar_res_callback {
49 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
50 void *arg[ACPI_DMAR_TYPE_RESERVED];
51 bool ignore_unhandled;
52 bool print_entry;
53 };
54
55 /*
56 * Assumptions:
57 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
58 * before IO devices managed by that unit.
59 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
60 * after IO devices managed by that unit.
61 * 3) Hotplug events are rare.
62 *
63 * Locking rules for DMA and interrupt remapping related global data structures:
64 * 1) Use dmar_global_lock in process context
65 * 2) Use RCU in interrupt context
66 */
67 DECLARE_RWSEM(dmar_global_lock);
68 LIST_HEAD(dmar_drhd_units);
69
70 struct acpi_table_header * __initdata dmar_tbl;
71 static acpi_size dmar_tbl_size;
72 static int dmar_dev_scope_status = 1;
73 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
74
75 static int alloc_iommu(struct dmar_drhd_unit *drhd);
76 static void free_iommu(struct intel_iommu *iommu);
77
78 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
79 {
80 /*
81 * add INCLUDE_ALL at the tail, so scan the list will find it at
82 * the very end.
83 */
84 if (drhd->include_all)
85 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
86 else
87 list_add_rcu(&drhd->list, &dmar_drhd_units);
88 }
89
90 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
91 {
92 struct acpi_dmar_device_scope *scope;
93
94 *cnt = 0;
95 while (start < end) {
96 scope = start;
97 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
98 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
99 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
100 (*cnt)++;
101 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
102 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
103 pr_warn("Unsupported device scope\n");
104 }
105 start += scope->length;
106 }
107 if (*cnt == 0)
108 return NULL;
109
110 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
111 }
112
113 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
114 {
115 int i;
116 struct device *tmp_dev;
117
118 if (*devices && *cnt) {
119 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
120 put_device(tmp_dev);
121 kfree(*devices);
122 }
123
124 *devices = NULL;
125 *cnt = 0;
126 }
127
128 /* Optimize out kzalloc()/kfree() for normal cases */
129 static char dmar_pci_notify_info_buf[64];
130
131 static struct dmar_pci_notify_info *
132 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
133 {
134 int level = 0;
135 size_t size;
136 struct pci_dev *tmp;
137 struct dmar_pci_notify_info *info;
138
139 BUG_ON(dev->is_virtfn);
140
141 /* Only generate path[] for device addition event */
142 if (event == BUS_NOTIFY_ADD_DEVICE)
143 for (tmp = dev; tmp; tmp = tmp->bus->self)
144 level++;
145
146 size = sizeof(*info) + level * sizeof(struct acpi_dmar_pci_path);
147 if (size <= sizeof(dmar_pci_notify_info_buf)) {
148 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
149 } else {
150 info = kzalloc(size, GFP_KERNEL);
151 if (!info) {
152 pr_warn("Out of memory when allocating notify_info "
153 "for %s.\n", pci_name(dev));
154 if (dmar_dev_scope_status == 0)
155 dmar_dev_scope_status = -ENOMEM;
156 return NULL;
157 }
158 }
159
160 info->event = event;
161 info->dev = dev;
162 info->seg = pci_domain_nr(dev->bus);
163 info->level = level;
164 if (event == BUS_NOTIFY_ADD_DEVICE) {
165 for (tmp = dev; tmp; tmp = tmp->bus->self) {
166 level--;
167 info->path[level].bus = tmp->bus->number;
168 info->path[level].device = PCI_SLOT(tmp->devfn);
169 info->path[level].function = PCI_FUNC(tmp->devfn);
170 if (pci_is_root_bus(tmp->bus))
171 info->bus = tmp->bus->number;
172 }
173 }
174
175 return info;
176 }
177
178 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
179 {
180 if ((void *)info != dmar_pci_notify_info_buf)
181 kfree(info);
182 }
183
184 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
185 struct acpi_dmar_pci_path *path, int count)
186 {
187 int i;
188
189 if (info->bus != bus)
190 goto fallback;
191 if (info->level != count)
192 goto fallback;
193
194 for (i = 0; i < count; i++) {
195 if (path[i].device != info->path[i].device ||
196 path[i].function != info->path[i].function)
197 goto fallback;
198 }
199
200 return true;
201
202 fallback:
203
204 if (count != 1)
205 return false;
206
207 i = info->level - 1;
208 if (bus == info->path[i].bus &&
209 path[0].device == info->path[i].device &&
210 path[0].function == info->path[i].function) {
211 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
212 bus, path[0].device, path[0].function);
213 return true;
214 }
215
216 return false;
217 }
218
219 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
220 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
221 void *start, void*end, u16 segment,
222 struct dmar_dev_scope *devices,
223 int devices_cnt)
224 {
225 int i, level;
226 struct device *tmp, *dev = &info->dev->dev;
227 struct acpi_dmar_device_scope *scope;
228 struct acpi_dmar_pci_path *path;
229
230 if (segment != info->seg)
231 return 0;
232
233 for (; start < end; start += scope->length) {
234 scope = start;
235 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
236 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
237 continue;
238
239 path = (struct acpi_dmar_pci_path *)(scope + 1);
240 level = (scope->length - sizeof(*scope)) / sizeof(*path);
241 if (!dmar_match_pci_path(info, scope->bus, path, level))
242 continue;
243
244 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT) ^
245 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL)) {
246 pr_warn("Device scope type does not match for %s\n",
247 pci_name(info->dev));
248 return -EINVAL;
249 }
250
251 for_each_dev_scope(devices, devices_cnt, i, tmp)
252 if (tmp == NULL) {
253 devices[i].bus = info->dev->bus->number;
254 devices[i].devfn = info->dev->devfn;
255 rcu_assign_pointer(devices[i].dev,
256 get_device(dev));
257 return 1;
258 }
259 BUG_ON(i >= devices_cnt);
260 }
261
262 return 0;
263 }
264
265 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
266 struct dmar_dev_scope *devices, int count)
267 {
268 int index;
269 struct device *tmp;
270
271 if (info->seg != segment)
272 return 0;
273
274 for_each_active_dev_scope(devices, count, index, tmp)
275 if (tmp == &info->dev->dev) {
276 RCU_INIT_POINTER(devices[index].dev, NULL);
277 synchronize_rcu();
278 put_device(tmp);
279 return 1;
280 }
281
282 return 0;
283 }
284
285 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
286 {
287 int ret = 0;
288 struct dmar_drhd_unit *dmaru;
289 struct acpi_dmar_hardware_unit *drhd;
290
291 for_each_drhd_unit(dmaru) {
292 if (dmaru->include_all)
293 continue;
294
295 drhd = container_of(dmaru->hdr,
296 struct acpi_dmar_hardware_unit, header);
297 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
298 ((void *)drhd) + drhd->header.length,
299 dmaru->segment,
300 dmaru->devices, dmaru->devices_cnt);
301 if (ret != 0)
302 break;
303 }
304 if (ret >= 0)
305 ret = dmar_iommu_notify_scope_dev(info);
306 if (ret < 0 && dmar_dev_scope_status == 0)
307 dmar_dev_scope_status = ret;
308
309 return ret;
310 }
311
312 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
313 {
314 struct dmar_drhd_unit *dmaru;
315
316 for_each_drhd_unit(dmaru)
317 if (dmar_remove_dev_scope(info, dmaru->segment,
318 dmaru->devices, dmaru->devices_cnt))
319 break;
320 dmar_iommu_notify_scope_dev(info);
321 }
322
323 static int dmar_pci_bus_notifier(struct notifier_block *nb,
324 unsigned long action, void *data)
325 {
326 struct pci_dev *pdev = to_pci_dev(data);
327 struct dmar_pci_notify_info *info;
328
329 /* Only care about add/remove events for physical functions */
330 if (pdev->is_virtfn)
331 return NOTIFY_DONE;
332 if (action != BUS_NOTIFY_ADD_DEVICE && action != BUS_NOTIFY_DEL_DEVICE)
333 return NOTIFY_DONE;
334
335 info = dmar_alloc_pci_notify_info(pdev, action);
336 if (!info)
337 return NOTIFY_DONE;
338
339 down_write(&dmar_global_lock);
340 if (action == BUS_NOTIFY_ADD_DEVICE)
341 dmar_pci_bus_add_dev(info);
342 else if (action == BUS_NOTIFY_DEL_DEVICE)
343 dmar_pci_bus_del_dev(info);
344 up_write(&dmar_global_lock);
345
346 dmar_free_pci_notify_info(info);
347
348 return NOTIFY_OK;
349 }
350
351 static struct notifier_block dmar_pci_bus_nb = {
352 .notifier_call = dmar_pci_bus_notifier,
353 .priority = INT_MIN,
354 };
355
356 static struct dmar_drhd_unit *
357 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
358 {
359 struct dmar_drhd_unit *dmaru;
360
361 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list)
362 if (dmaru->segment == drhd->segment &&
363 dmaru->reg_base_addr == drhd->address)
364 return dmaru;
365
366 return NULL;
367 }
368
369 /**
370 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
371 * structure which uniquely represent one DMA remapping hardware unit
372 * present in the platform
373 */
374 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
375 {
376 struct acpi_dmar_hardware_unit *drhd;
377 struct dmar_drhd_unit *dmaru;
378 int ret = 0;
379
380 drhd = (struct acpi_dmar_hardware_unit *)header;
381 dmaru = dmar_find_dmaru(drhd);
382 if (dmaru)
383 goto out;
384
385 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
386 if (!dmaru)
387 return -ENOMEM;
388
389 /*
390 * If header is allocated from slab by ACPI _DSM method, we need to
391 * copy the content because the memory buffer will be freed on return.
392 */
393 dmaru->hdr = (void *)(dmaru + 1);
394 memcpy(dmaru->hdr, header, header->length);
395 dmaru->reg_base_addr = drhd->address;
396 dmaru->segment = drhd->segment;
397 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
398 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
399 ((void *)drhd) + drhd->header.length,
400 &dmaru->devices_cnt);
401 if (dmaru->devices_cnt && dmaru->devices == NULL) {
402 kfree(dmaru);
403 return -ENOMEM;
404 }
405
406 ret = alloc_iommu(dmaru);
407 if (ret) {
408 dmar_free_dev_scope(&dmaru->devices,
409 &dmaru->devices_cnt);
410 kfree(dmaru);
411 return ret;
412 }
413 dmar_register_drhd_unit(dmaru);
414
415 out:
416 if (arg)
417 (*(int *)arg)++;
418
419 return 0;
420 }
421
422 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
423 {
424 if (dmaru->devices && dmaru->devices_cnt)
425 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
426 if (dmaru->iommu)
427 free_iommu(dmaru->iommu);
428 kfree(dmaru);
429 }
430
431 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
432 void *arg)
433 {
434 struct acpi_dmar_andd *andd = (void *)header;
435
436 /* Check for NUL termination within the designated length */
437 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
438 WARN_TAINT(1, TAINT_FIRMWARE_WORKAROUND,
439 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
440 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
441 dmi_get_system_info(DMI_BIOS_VENDOR),
442 dmi_get_system_info(DMI_BIOS_VERSION),
443 dmi_get_system_info(DMI_PRODUCT_VERSION));
444 return -EINVAL;
445 }
446 pr_info("ANDD device: %x name: %s\n", andd->device_number,
447 andd->device_name);
448
449 return 0;
450 }
451
452 #ifdef CONFIG_ACPI_NUMA
453 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
454 {
455 struct acpi_dmar_rhsa *rhsa;
456 struct dmar_drhd_unit *drhd;
457
458 rhsa = (struct acpi_dmar_rhsa *)header;
459 for_each_drhd_unit(drhd) {
460 if (drhd->reg_base_addr == rhsa->base_address) {
461 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
462
463 if (!node_online(node))
464 node = -1;
465 drhd->iommu->node = node;
466 return 0;
467 }
468 }
469 WARN_TAINT(
470 1, TAINT_FIRMWARE_WORKAROUND,
471 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
472 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
473 drhd->reg_base_addr,
474 dmi_get_system_info(DMI_BIOS_VENDOR),
475 dmi_get_system_info(DMI_BIOS_VERSION),
476 dmi_get_system_info(DMI_PRODUCT_VERSION));
477
478 return 0;
479 }
480 #else
481 #define dmar_parse_one_rhsa dmar_res_noop
482 #endif
483
484 static void __init
485 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
486 {
487 struct acpi_dmar_hardware_unit *drhd;
488 struct acpi_dmar_reserved_memory *rmrr;
489 struct acpi_dmar_atsr *atsr;
490 struct acpi_dmar_rhsa *rhsa;
491
492 switch (header->type) {
493 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
494 drhd = container_of(header, struct acpi_dmar_hardware_unit,
495 header);
496 pr_info("DRHD base: %#016Lx flags: %#x\n",
497 (unsigned long long)drhd->address, drhd->flags);
498 break;
499 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
500 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
501 header);
502 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
503 (unsigned long long)rmrr->base_address,
504 (unsigned long long)rmrr->end_address);
505 break;
506 case ACPI_DMAR_TYPE_ROOT_ATS:
507 atsr = container_of(header, struct acpi_dmar_atsr, header);
508 pr_info("ATSR flags: %#x\n", atsr->flags);
509 break;
510 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
511 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
512 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
513 (unsigned long long)rhsa->base_address,
514 rhsa->proximity_domain);
515 break;
516 case ACPI_DMAR_TYPE_NAMESPACE:
517 /* We don't print this here because we need to sanity-check
518 it first. So print it in dmar_parse_one_andd() instead. */
519 break;
520 }
521 }
522
523 /**
524 * dmar_table_detect - checks to see if the platform supports DMAR devices
525 */
526 static int __init dmar_table_detect(void)
527 {
528 acpi_status status = AE_OK;
529
530 /* if we could find DMAR table, then there are DMAR devices */
531 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
532 (struct acpi_table_header **)&dmar_tbl,
533 &dmar_tbl_size);
534
535 if (ACPI_SUCCESS(status) && !dmar_tbl) {
536 pr_warn("Unable to map DMAR\n");
537 status = AE_NOT_FOUND;
538 }
539
540 return (ACPI_SUCCESS(status) ? 1 : 0);
541 }
542
543 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
544 size_t len, struct dmar_res_callback *cb)
545 {
546 int ret = 0;
547 struct acpi_dmar_header *iter, *next;
548 struct acpi_dmar_header *end = ((void *)start) + len;
549
550 for (iter = start; iter < end && ret == 0; iter = next) {
551 next = (void *)iter + iter->length;
552 if (iter->length == 0) {
553 /* Avoid looping forever on bad ACPI tables */
554 pr_debug(FW_BUG "Invalid 0-length structure\n");
555 break;
556 } else if (next > end) {
557 /* Avoid passing table end */
558 pr_warn(FW_BUG "Record passes table end\n");
559 ret = -EINVAL;
560 break;
561 }
562
563 if (cb->print_entry)
564 dmar_table_print_dmar_entry(iter);
565
566 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
567 /* continue for forward compatibility */
568 pr_debug("Unknown DMAR structure type %d\n",
569 iter->type);
570 } else if (cb->cb[iter->type]) {
571 ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
572 } else if (!cb->ignore_unhandled) {
573 pr_warn("No handler for DMAR structure type %d\n",
574 iter->type);
575 ret = -EINVAL;
576 }
577 }
578
579 return ret;
580 }
581
582 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
583 struct dmar_res_callback *cb)
584 {
585 return dmar_walk_remapping_entries((void *)(dmar + 1),
586 dmar->header.length - sizeof(*dmar), cb);
587 }
588
589 /**
590 * parse_dmar_table - parses the DMA reporting table
591 */
592 static int __init
593 parse_dmar_table(void)
594 {
595 struct acpi_table_dmar *dmar;
596 int ret = 0;
597 int drhd_count = 0;
598 struct dmar_res_callback cb = {
599 .print_entry = true,
600 .ignore_unhandled = true,
601 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
602 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
603 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
604 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
605 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
606 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
607 };
608
609 /*
610 * Do it again, earlier dmar_tbl mapping could be mapped with
611 * fixed map.
612 */
613 dmar_table_detect();
614
615 /*
616 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
617 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
618 */
619 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
620
621 dmar = (struct acpi_table_dmar *)dmar_tbl;
622 if (!dmar)
623 return -ENODEV;
624
625 if (dmar->width < PAGE_SHIFT - 1) {
626 pr_warn("Invalid DMAR haw\n");
627 return -EINVAL;
628 }
629
630 pr_info("Host address width %d\n", dmar->width + 1);
631 ret = dmar_walk_dmar_table(dmar, &cb);
632 if (ret == 0 && drhd_count == 0)
633 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
634
635 return ret;
636 }
637
638 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
639 int cnt, struct pci_dev *dev)
640 {
641 int index;
642 struct device *tmp;
643
644 while (dev) {
645 for_each_active_dev_scope(devices, cnt, index, tmp)
646 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
647 return 1;
648
649 /* Check our parent */
650 dev = dev->bus->self;
651 }
652
653 return 0;
654 }
655
656 struct dmar_drhd_unit *
657 dmar_find_matched_drhd_unit(struct pci_dev *dev)
658 {
659 struct dmar_drhd_unit *dmaru;
660 struct acpi_dmar_hardware_unit *drhd;
661
662 dev = pci_physfn(dev);
663
664 rcu_read_lock();
665 for_each_drhd_unit(dmaru) {
666 drhd = container_of(dmaru->hdr,
667 struct acpi_dmar_hardware_unit,
668 header);
669
670 if (dmaru->include_all &&
671 drhd->segment == pci_domain_nr(dev->bus))
672 goto out;
673
674 if (dmar_pci_device_match(dmaru->devices,
675 dmaru->devices_cnt, dev))
676 goto out;
677 }
678 dmaru = NULL;
679 out:
680 rcu_read_unlock();
681
682 return dmaru;
683 }
684
685 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
686 struct acpi_device *adev)
687 {
688 struct dmar_drhd_unit *dmaru;
689 struct acpi_dmar_hardware_unit *drhd;
690 struct acpi_dmar_device_scope *scope;
691 struct device *tmp;
692 int i;
693 struct acpi_dmar_pci_path *path;
694
695 for_each_drhd_unit(dmaru) {
696 drhd = container_of(dmaru->hdr,
697 struct acpi_dmar_hardware_unit,
698 header);
699
700 for (scope = (void *)(drhd + 1);
701 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
702 scope = ((void *)scope) + scope->length) {
703 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
704 continue;
705 if (scope->enumeration_id != device_number)
706 continue;
707
708 path = (void *)(scope + 1);
709 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
710 dev_name(&adev->dev), dmaru->reg_base_addr,
711 scope->bus, path->device, path->function);
712 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
713 if (tmp == NULL) {
714 dmaru->devices[i].bus = scope->bus;
715 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
716 path->function);
717 rcu_assign_pointer(dmaru->devices[i].dev,
718 get_device(&adev->dev));
719 return;
720 }
721 BUG_ON(i >= dmaru->devices_cnt);
722 }
723 }
724 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
725 device_number, dev_name(&adev->dev));
726 }
727
728 static int __init dmar_acpi_dev_scope_init(void)
729 {
730 struct acpi_dmar_andd *andd;
731
732 if (dmar_tbl == NULL)
733 return -ENODEV;
734
735 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
736 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
737 andd = ((void *)andd) + andd->header.length) {
738 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
739 acpi_handle h;
740 struct acpi_device *adev;
741
742 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
743 andd->device_name,
744 &h))) {
745 pr_err("Failed to find handle for ACPI object %s\n",
746 andd->device_name);
747 continue;
748 }
749 if (acpi_bus_get_device(h, &adev)) {
750 pr_err("Failed to get device for ACPI object %s\n",
751 andd->device_name);
752 continue;
753 }
754 dmar_acpi_insert_dev_scope(andd->device_number, adev);
755 }
756 }
757 return 0;
758 }
759
760 int __init dmar_dev_scope_init(void)
761 {
762 struct pci_dev *dev = NULL;
763 struct dmar_pci_notify_info *info;
764
765 if (dmar_dev_scope_status != 1)
766 return dmar_dev_scope_status;
767
768 if (list_empty(&dmar_drhd_units)) {
769 dmar_dev_scope_status = -ENODEV;
770 } else {
771 dmar_dev_scope_status = 0;
772
773 dmar_acpi_dev_scope_init();
774
775 for_each_pci_dev(dev) {
776 if (dev->is_virtfn)
777 continue;
778
779 info = dmar_alloc_pci_notify_info(dev,
780 BUS_NOTIFY_ADD_DEVICE);
781 if (!info) {
782 return dmar_dev_scope_status;
783 } else {
784 dmar_pci_bus_add_dev(info);
785 dmar_free_pci_notify_info(info);
786 }
787 }
788
789 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
790 }
791
792 return dmar_dev_scope_status;
793 }
794
795
796 int __init dmar_table_init(void)
797 {
798 static int dmar_table_initialized;
799 int ret;
800
801 if (dmar_table_initialized == 0) {
802 ret = parse_dmar_table();
803 if (ret < 0) {
804 if (ret != -ENODEV)
805 pr_info("Parse DMAR table failure.\n");
806 } else if (list_empty(&dmar_drhd_units)) {
807 pr_info("No DMAR devices found\n");
808 ret = -ENODEV;
809 }
810
811 if (ret < 0)
812 dmar_table_initialized = ret;
813 else
814 dmar_table_initialized = 1;
815 }
816
817 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
818 }
819
820 static void warn_invalid_dmar(u64 addr, const char *message)
821 {
822 WARN_TAINT_ONCE(
823 1, TAINT_FIRMWARE_WORKAROUND,
824 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
825 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
826 addr, message,
827 dmi_get_system_info(DMI_BIOS_VENDOR),
828 dmi_get_system_info(DMI_BIOS_VERSION),
829 dmi_get_system_info(DMI_PRODUCT_VERSION));
830 }
831
832 static int __ref
833 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
834 {
835 struct acpi_dmar_hardware_unit *drhd;
836 void __iomem *addr;
837 u64 cap, ecap;
838
839 drhd = (void *)entry;
840 if (!drhd->address) {
841 warn_invalid_dmar(0, "");
842 return -EINVAL;
843 }
844
845 if (arg)
846 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
847 else
848 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
849 if (!addr) {
850 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
851 return -EINVAL;
852 }
853
854 cap = dmar_readq(addr + DMAR_CAP_REG);
855 ecap = dmar_readq(addr + DMAR_ECAP_REG);
856
857 if (arg)
858 iounmap(addr);
859 else
860 early_iounmap(addr, VTD_PAGE_SIZE);
861
862 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
863 warn_invalid_dmar(drhd->address, " returns all ones");
864 return -EINVAL;
865 }
866
867 return 0;
868 }
869
870 int __init detect_intel_iommu(void)
871 {
872 int ret;
873 struct dmar_res_callback validate_drhd_cb = {
874 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
875 .ignore_unhandled = true,
876 };
877
878 down_write(&dmar_global_lock);
879 ret = dmar_table_detect();
880 if (ret)
881 ret = !dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
882 &validate_drhd_cb);
883 if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
884 iommu_detected = 1;
885 /* Make sure ACS will be enabled */
886 pci_request_acs();
887 }
888
889 #ifdef CONFIG_X86
890 if (ret)
891 x86_init.iommu.iommu_init = intel_iommu_init;
892 #endif
893
894 early_acpi_os_unmap_memory((void __iomem *)dmar_tbl, dmar_tbl_size);
895 dmar_tbl = NULL;
896 up_write(&dmar_global_lock);
897
898 return ret ? 1 : -ENODEV;
899 }
900
901
902 static void unmap_iommu(struct intel_iommu *iommu)
903 {
904 iounmap(iommu->reg);
905 release_mem_region(iommu->reg_phys, iommu->reg_size);
906 }
907
908 /**
909 * map_iommu: map the iommu's registers
910 * @iommu: the iommu to map
911 * @phys_addr: the physical address of the base resgister
912 *
913 * Memory map the iommu's registers. Start w/ a single page, and
914 * possibly expand if that turns out to be insufficent.
915 */
916 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
917 {
918 int map_size, err=0;
919
920 iommu->reg_phys = phys_addr;
921 iommu->reg_size = VTD_PAGE_SIZE;
922
923 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
924 pr_err("Can't reserve memory\n");
925 err = -EBUSY;
926 goto out;
927 }
928
929 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
930 if (!iommu->reg) {
931 pr_err("Can't map the region\n");
932 err = -ENOMEM;
933 goto release;
934 }
935
936 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
937 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
938
939 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
940 err = -EINVAL;
941 warn_invalid_dmar(phys_addr, " returns all ones");
942 goto unmap;
943 }
944
945 /* the registers might be more than one page */
946 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
947 cap_max_fault_reg_offset(iommu->cap));
948 map_size = VTD_PAGE_ALIGN(map_size);
949 if (map_size > iommu->reg_size) {
950 iounmap(iommu->reg);
951 release_mem_region(iommu->reg_phys, iommu->reg_size);
952 iommu->reg_size = map_size;
953 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
954 iommu->name)) {
955 pr_err("Can't reserve memory\n");
956 err = -EBUSY;
957 goto out;
958 }
959 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
960 if (!iommu->reg) {
961 pr_err("Can't map the region\n");
962 err = -ENOMEM;
963 goto release;
964 }
965 }
966 err = 0;
967 goto out;
968
969 unmap:
970 iounmap(iommu->reg);
971 release:
972 release_mem_region(iommu->reg_phys, iommu->reg_size);
973 out:
974 return err;
975 }
976
977 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
978 {
979 iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
980 DMAR_UNITS_SUPPORTED);
981 if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
982 iommu->seq_id = -1;
983 } else {
984 set_bit(iommu->seq_id, dmar_seq_ids);
985 sprintf(iommu->name, "dmar%d", iommu->seq_id);
986 }
987
988 return iommu->seq_id;
989 }
990
991 static void dmar_free_seq_id(struct intel_iommu *iommu)
992 {
993 if (iommu->seq_id >= 0) {
994 clear_bit(iommu->seq_id, dmar_seq_ids);
995 iommu->seq_id = -1;
996 }
997 }
998
999 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1000 {
1001 struct intel_iommu *iommu;
1002 u32 ver, sts;
1003 int agaw = 0;
1004 int msagaw = 0;
1005 int err;
1006
1007 if (!drhd->reg_base_addr) {
1008 warn_invalid_dmar(0, "");
1009 return -EINVAL;
1010 }
1011
1012 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1013 if (!iommu)
1014 return -ENOMEM;
1015
1016 if (dmar_alloc_seq_id(iommu) < 0) {
1017 pr_err("Failed to allocate seq_id\n");
1018 err = -ENOSPC;
1019 goto error;
1020 }
1021
1022 err = map_iommu(iommu, drhd->reg_base_addr);
1023 if (err) {
1024 pr_err("Failed to map %s\n", iommu->name);
1025 goto error_free_seq_id;
1026 }
1027
1028 err = -EINVAL;
1029 agaw = iommu_calculate_agaw(iommu);
1030 if (agaw < 0) {
1031 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1032 iommu->seq_id);
1033 goto err_unmap;
1034 }
1035 msagaw = iommu_calculate_max_sagaw(iommu);
1036 if (msagaw < 0) {
1037 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1038 iommu->seq_id);
1039 goto err_unmap;
1040 }
1041 iommu->agaw = agaw;
1042 iommu->msagaw = msagaw;
1043 iommu->segment = drhd->segment;
1044
1045 iommu->node = -1;
1046
1047 ver = readl(iommu->reg + DMAR_VER_REG);
1048 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1049 iommu->name,
1050 (unsigned long long)drhd->reg_base_addr,
1051 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1052 (unsigned long long)iommu->cap,
1053 (unsigned long long)iommu->ecap);
1054
1055 /* Reflect status in gcmd */
1056 sts = readl(iommu->reg + DMAR_GSTS_REG);
1057 if (sts & DMA_GSTS_IRES)
1058 iommu->gcmd |= DMA_GCMD_IRE;
1059 if (sts & DMA_GSTS_TES)
1060 iommu->gcmd |= DMA_GCMD_TE;
1061 if (sts & DMA_GSTS_QIES)
1062 iommu->gcmd |= DMA_GCMD_QIE;
1063
1064 raw_spin_lock_init(&iommu->register_lock);
1065
1066 drhd->iommu = iommu;
1067
1068 if (intel_iommu_enabled)
1069 iommu->iommu_dev = iommu_device_create(NULL, iommu,
1070 intel_iommu_groups,
1071 "%s", iommu->name);
1072
1073 return 0;
1074
1075 err_unmap:
1076 unmap_iommu(iommu);
1077 error_free_seq_id:
1078 dmar_free_seq_id(iommu);
1079 error:
1080 kfree(iommu);
1081 return err;
1082 }
1083
1084 static void free_iommu(struct intel_iommu *iommu)
1085 {
1086 iommu_device_destroy(iommu->iommu_dev);
1087
1088 if (iommu->irq) {
1089 if (iommu->pr_irq) {
1090 free_irq(iommu->pr_irq, iommu);
1091 dmar_free_hwirq(iommu->pr_irq);
1092 iommu->pr_irq = 0;
1093 }
1094 free_irq(iommu->irq, iommu);
1095 dmar_free_hwirq(iommu->irq);
1096 iommu->irq = 0;
1097 }
1098
1099 if (iommu->qi) {
1100 free_page((unsigned long)iommu->qi->desc);
1101 kfree(iommu->qi->desc_status);
1102 kfree(iommu->qi);
1103 }
1104
1105 if (iommu->reg)
1106 unmap_iommu(iommu);
1107
1108 dmar_free_seq_id(iommu);
1109 kfree(iommu);
1110 }
1111
1112 /*
1113 * Reclaim all the submitted descriptors which have completed its work.
1114 */
1115 static inline void reclaim_free_desc(struct q_inval *qi)
1116 {
1117 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1118 qi->desc_status[qi->free_tail] == QI_ABORT) {
1119 qi->desc_status[qi->free_tail] = QI_FREE;
1120 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1121 qi->free_cnt++;
1122 }
1123 }
1124
1125 static int qi_check_fault(struct intel_iommu *iommu, int index)
1126 {
1127 u32 fault;
1128 int head, tail;
1129 struct q_inval *qi = iommu->qi;
1130 int wait_index = (index + 1) % QI_LENGTH;
1131
1132 if (qi->desc_status[wait_index] == QI_ABORT)
1133 return -EAGAIN;
1134
1135 fault = readl(iommu->reg + DMAR_FSTS_REG);
1136
1137 /*
1138 * If IQE happens, the head points to the descriptor associated
1139 * with the error. No new descriptors are fetched until the IQE
1140 * is cleared.
1141 */
1142 if (fault & DMA_FSTS_IQE) {
1143 head = readl(iommu->reg + DMAR_IQH_REG);
1144 if ((head >> DMAR_IQ_SHIFT) == index) {
1145 pr_err("VT-d detected invalid descriptor: "
1146 "low=%llx, high=%llx\n",
1147 (unsigned long long)qi->desc[index].low,
1148 (unsigned long long)qi->desc[index].high);
1149 memcpy(&qi->desc[index], &qi->desc[wait_index],
1150 sizeof(struct qi_desc));
1151 __iommu_flush_cache(iommu, &qi->desc[index],
1152 sizeof(struct qi_desc));
1153 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1154 return -EINVAL;
1155 }
1156 }
1157
1158 /*
1159 * If ITE happens, all pending wait_desc commands are aborted.
1160 * No new descriptors are fetched until the ITE is cleared.
1161 */
1162 if (fault & DMA_FSTS_ITE) {
1163 head = readl(iommu->reg + DMAR_IQH_REG);
1164 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1165 head |= 1;
1166 tail = readl(iommu->reg + DMAR_IQT_REG);
1167 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1168
1169 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1170
1171 do {
1172 if (qi->desc_status[head] == QI_IN_USE)
1173 qi->desc_status[head] = QI_ABORT;
1174 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1175 } while (head != tail);
1176
1177 if (qi->desc_status[wait_index] == QI_ABORT)
1178 return -EAGAIN;
1179 }
1180
1181 if (fault & DMA_FSTS_ICE)
1182 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1183
1184 return 0;
1185 }
1186
1187 /*
1188 * Submit the queued invalidation descriptor to the remapping
1189 * hardware unit and wait for its completion.
1190 */
1191 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
1192 {
1193 int rc;
1194 struct q_inval *qi = iommu->qi;
1195 struct qi_desc *hw, wait_desc;
1196 int wait_index, index;
1197 unsigned long flags;
1198
1199 if (!qi)
1200 return 0;
1201
1202 hw = qi->desc;
1203
1204 restart:
1205 rc = 0;
1206
1207 raw_spin_lock_irqsave(&qi->q_lock, flags);
1208 while (qi->free_cnt < 3) {
1209 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1210 cpu_relax();
1211 raw_spin_lock_irqsave(&qi->q_lock, flags);
1212 }
1213
1214 index = qi->free_head;
1215 wait_index = (index + 1) % QI_LENGTH;
1216
1217 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
1218
1219 hw[index] = *desc;
1220
1221 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
1222 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1223 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
1224
1225 hw[wait_index] = wait_desc;
1226
1227 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
1228 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
1229
1230 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
1231 qi->free_cnt -= 2;
1232
1233 /*
1234 * update the HW tail register indicating the presence of
1235 * new descriptors.
1236 */
1237 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
1238
1239 while (qi->desc_status[wait_index] != QI_DONE) {
1240 /*
1241 * We will leave the interrupts disabled, to prevent interrupt
1242 * context to queue another cmd while a cmd is already submitted
1243 * and waiting for completion on this cpu. This is to avoid
1244 * a deadlock where the interrupt context can wait indefinitely
1245 * for free slots in the queue.
1246 */
1247 rc = qi_check_fault(iommu, index);
1248 if (rc)
1249 break;
1250
1251 raw_spin_unlock(&qi->q_lock);
1252 cpu_relax();
1253 raw_spin_lock(&qi->q_lock);
1254 }
1255
1256 qi->desc_status[index] = QI_DONE;
1257
1258 reclaim_free_desc(qi);
1259 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1260
1261 if (rc == -EAGAIN)
1262 goto restart;
1263
1264 return rc;
1265 }
1266
1267 /*
1268 * Flush the global interrupt entry cache.
1269 */
1270 void qi_global_iec(struct intel_iommu *iommu)
1271 {
1272 struct qi_desc desc;
1273
1274 desc.low = QI_IEC_TYPE;
1275 desc.high = 0;
1276
1277 /* should never fail */
1278 qi_submit_sync(&desc, iommu);
1279 }
1280
1281 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1282 u64 type)
1283 {
1284 struct qi_desc desc;
1285
1286 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1287 | QI_CC_GRAN(type) | QI_CC_TYPE;
1288 desc.high = 0;
1289
1290 qi_submit_sync(&desc, iommu);
1291 }
1292
1293 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1294 unsigned int size_order, u64 type)
1295 {
1296 u8 dw = 0, dr = 0;
1297
1298 struct qi_desc desc;
1299 int ih = 0;
1300
1301 if (cap_write_drain(iommu->cap))
1302 dw = 1;
1303
1304 if (cap_read_drain(iommu->cap))
1305 dr = 1;
1306
1307 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1308 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1309 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1310 | QI_IOTLB_AM(size_order);
1311
1312 qi_submit_sync(&desc, iommu);
1313 }
1314
1315 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
1316 u64 addr, unsigned mask)
1317 {
1318 struct qi_desc desc;
1319
1320 if (mask) {
1321 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
1322 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1323 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1324 } else
1325 desc.high = QI_DEV_IOTLB_ADDR(addr);
1326
1327 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1328 qdep = 0;
1329
1330 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1331 QI_DIOTLB_TYPE;
1332
1333 qi_submit_sync(&desc, iommu);
1334 }
1335
1336 /*
1337 * Disable Queued Invalidation interface.
1338 */
1339 void dmar_disable_qi(struct intel_iommu *iommu)
1340 {
1341 unsigned long flags;
1342 u32 sts;
1343 cycles_t start_time = get_cycles();
1344
1345 if (!ecap_qis(iommu->ecap))
1346 return;
1347
1348 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1349
1350 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
1351 if (!(sts & DMA_GSTS_QIES))
1352 goto end;
1353
1354 /*
1355 * Give a chance to HW to complete the pending invalidation requests.
1356 */
1357 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1358 readl(iommu->reg + DMAR_IQH_REG)) &&
1359 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1360 cpu_relax();
1361
1362 iommu->gcmd &= ~DMA_GCMD_QIE;
1363 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1364
1365 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1366 !(sts & DMA_GSTS_QIES), sts);
1367 end:
1368 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1369 }
1370
1371 /*
1372 * Enable queued invalidation.
1373 */
1374 static void __dmar_enable_qi(struct intel_iommu *iommu)
1375 {
1376 u32 sts;
1377 unsigned long flags;
1378 struct q_inval *qi = iommu->qi;
1379
1380 qi->free_head = qi->free_tail = 0;
1381 qi->free_cnt = QI_LENGTH;
1382
1383 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1384
1385 /* write zero to the tail reg */
1386 writel(0, iommu->reg + DMAR_IQT_REG);
1387
1388 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1389
1390 iommu->gcmd |= DMA_GCMD_QIE;
1391 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1392
1393 /* Make sure hardware complete it */
1394 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1395
1396 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1397 }
1398
1399 /*
1400 * Enable Queued Invalidation interface. This is a must to support
1401 * interrupt-remapping. Also used by DMA-remapping, which replaces
1402 * register based IOTLB invalidation.
1403 */
1404 int dmar_enable_qi(struct intel_iommu *iommu)
1405 {
1406 struct q_inval *qi;
1407 struct page *desc_page;
1408
1409 if (!ecap_qis(iommu->ecap))
1410 return -ENOENT;
1411
1412 /*
1413 * queued invalidation is already setup and enabled.
1414 */
1415 if (iommu->qi)
1416 return 0;
1417
1418 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1419 if (!iommu->qi)
1420 return -ENOMEM;
1421
1422 qi = iommu->qi;
1423
1424
1425 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1426 if (!desc_page) {
1427 kfree(qi);
1428 iommu->qi = NULL;
1429 return -ENOMEM;
1430 }
1431
1432 qi->desc = page_address(desc_page);
1433
1434 qi->desc_status = kzalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1435 if (!qi->desc_status) {
1436 free_page((unsigned long) qi->desc);
1437 kfree(qi);
1438 iommu->qi = NULL;
1439 return -ENOMEM;
1440 }
1441
1442 raw_spin_lock_init(&qi->q_lock);
1443
1444 __dmar_enable_qi(iommu);
1445
1446 return 0;
1447 }
1448
1449 /* iommu interrupt handling. Most stuff are MSI-like. */
1450
1451 enum faulttype {
1452 DMA_REMAP,
1453 INTR_REMAP,
1454 UNKNOWN,
1455 };
1456
1457 static const char *dma_remap_fault_reasons[] =
1458 {
1459 "Software",
1460 "Present bit in root entry is clear",
1461 "Present bit in context entry is clear",
1462 "Invalid context entry",
1463 "Access beyond MGAW",
1464 "PTE Write access is not set",
1465 "PTE Read access is not set",
1466 "Next page table ptr is invalid",
1467 "Root table address invalid",
1468 "Context table ptr is invalid",
1469 "non-zero reserved fields in RTP",
1470 "non-zero reserved fields in CTP",
1471 "non-zero reserved fields in PTE",
1472 "PCE for translation request specifies blocking",
1473 };
1474
1475 static const char *irq_remap_fault_reasons[] =
1476 {
1477 "Detected reserved fields in the decoded interrupt-remapped request",
1478 "Interrupt index exceeded the interrupt-remapping table size",
1479 "Present field in the IRTE entry is clear",
1480 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1481 "Detected reserved fields in the IRTE entry",
1482 "Blocked a compatibility format interrupt request",
1483 "Blocked an interrupt request due to source-id verification failure",
1484 };
1485
1486 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1487 {
1488 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1489 ARRAY_SIZE(irq_remap_fault_reasons))) {
1490 *fault_type = INTR_REMAP;
1491 return irq_remap_fault_reasons[fault_reason - 0x20];
1492 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1493 *fault_type = DMA_REMAP;
1494 return dma_remap_fault_reasons[fault_reason];
1495 } else {
1496 *fault_type = UNKNOWN;
1497 return "Unknown";
1498 }
1499 }
1500
1501
1502 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1503 {
1504 if (iommu->irq == irq)
1505 return DMAR_FECTL_REG;
1506 else if (iommu->pr_irq == irq)
1507 return DMAR_PECTL_REG;
1508 else
1509 BUG();
1510 }
1511
1512 void dmar_msi_unmask(struct irq_data *data)
1513 {
1514 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1515 int reg = dmar_msi_reg(iommu, data->irq);
1516 unsigned long flag;
1517
1518 /* unmask it */
1519 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1520 writel(0, iommu->reg + reg);
1521 /* Read a reg to force flush the post write */
1522 readl(iommu->reg + reg);
1523 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1524 }
1525
1526 void dmar_msi_mask(struct irq_data *data)
1527 {
1528 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1529 int reg = dmar_msi_reg(iommu, data->irq);
1530 unsigned long flag;
1531
1532 /* mask it */
1533 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1534 writel(DMA_FECTL_IM, iommu->reg + reg);
1535 /* Read a reg to force flush the post write */
1536 readl(iommu->reg + reg);
1537 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1538 }
1539
1540 void dmar_msi_write(int irq, struct msi_msg *msg)
1541 {
1542 struct intel_iommu *iommu = irq_get_handler_data(irq);
1543 int reg = dmar_msi_reg(iommu, irq);
1544 unsigned long flag;
1545
1546 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1547 writel(msg->data, iommu->reg + reg + 4);
1548 writel(msg->address_lo, iommu->reg + reg + 8);
1549 writel(msg->address_hi, iommu->reg + reg + 12);
1550 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1551 }
1552
1553 void dmar_msi_read(int irq, struct msi_msg *msg)
1554 {
1555 struct intel_iommu *iommu = irq_get_handler_data(irq);
1556 int reg = dmar_msi_reg(iommu, irq);
1557 unsigned long flag;
1558
1559 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1560 msg->data = readl(iommu->reg + reg + 4);
1561 msg->address_lo = readl(iommu->reg + reg + 8);
1562 msg->address_hi = readl(iommu->reg + reg + 12);
1563 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1564 }
1565
1566 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1567 u8 fault_reason, u16 source_id, unsigned long long addr)
1568 {
1569 const char *reason;
1570 int fault_type;
1571
1572 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1573
1574 if (fault_type == INTR_REMAP)
1575 pr_err("INTR-REMAP: Request device [[%02x:%02x.%d] "
1576 "fault index %llx\n"
1577 "INTR-REMAP:[fault reason %02d] %s\n",
1578 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1579 PCI_FUNC(source_id & 0xFF), addr >> 48,
1580 fault_reason, reason);
1581 else
1582 pr_err("DMAR:[%s] Request device [%02x:%02x.%d] "
1583 "fault addr %llx \n"
1584 "DMAR:[fault reason %02d] %s\n",
1585 (type ? "DMA Read" : "DMA Write"),
1586 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1587 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1588 return 0;
1589 }
1590
1591 #define PRIMARY_FAULT_REG_LEN (16)
1592 irqreturn_t dmar_fault(int irq, void *dev_id)
1593 {
1594 struct intel_iommu *iommu = dev_id;
1595 int reg, fault_index;
1596 u32 fault_status;
1597 unsigned long flag;
1598
1599 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1600 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1601 if (fault_status)
1602 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1603
1604 /* TBD: ignore advanced fault log currently */
1605 if (!(fault_status & DMA_FSTS_PPF))
1606 goto unlock_exit;
1607
1608 fault_index = dma_fsts_fault_record_index(fault_status);
1609 reg = cap_fault_reg_offset(iommu->cap);
1610 while (1) {
1611 u8 fault_reason;
1612 u16 source_id;
1613 u64 guest_addr;
1614 int type;
1615 u32 data;
1616
1617 /* highest 32 bits */
1618 data = readl(iommu->reg + reg +
1619 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1620 if (!(data & DMA_FRCD_F))
1621 break;
1622
1623 fault_reason = dma_frcd_fault_reason(data);
1624 type = dma_frcd_type(data);
1625
1626 data = readl(iommu->reg + reg +
1627 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1628 source_id = dma_frcd_source_id(data);
1629
1630 guest_addr = dmar_readq(iommu->reg + reg +
1631 fault_index * PRIMARY_FAULT_REG_LEN);
1632 guest_addr = dma_frcd_page_addr(guest_addr);
1633 /* clear the fault */
1634 writel(DMA_FRCD_F, iommu->reg + reg +
1635 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1636
1637 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1638
1639 dmar_fault_do_one(iommu, type, fault_reason,
1640 source_id, guest_addr);
1641
1642 fault_index++;
1643 if (fault_index >= cap_num_fault_regs(iommu->cap))
1644 fault_index = 0;
1645 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1646 }
1647
1648 writel(DMA_FSTS_PFO | DMA_FSTS_PPF, iommu->reg + DMAR_FSTS_REG);
1649
1650 unlock_exit:
1651 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1652 return IRQ_HANDLED;
1653 }
1654
1655 int dmar_set_interrupt(struct intel_iommu *iommu)
1656 {
1657 int irq, ret;
1658
1659 /*
1660 * Check if the fault interrupt is already initialized.
1661 */
1662 if (iommu->irq)
1663 return 0;
1664
1665 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1666 if (irq > 0) {
1667 iommu->irq = irq;
1668 } else {
1669 pr_err("No free IRQ vectors\n");
1670 return -EINVAL;
1671 }
1672
1673 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1674 if (ret)
1675 pr_err("Can't request irq\n");
1676 return ret;
1677 }
1678
1679 int __init enable_drhd_fault_handling(void)
1680 {
1681 struct dmar_drhd_unit *drhd;
1682 struct intel_iommu *iommu;
1683
1684 /*
1685 * Enable fault control interrupt.
1686 */
1687 for_each_iommu(iommu, drhd) {
1688 u32 fault_status;
1689 int ret = dmar_set_interrupt(iommu);
1690
1691 if (ret) {
1692 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1693 (unsigned long long)drhd->reg_base_addr, ret);
1694 return -1;
1695 }
1696
1697 /*
1698 * Clear any previous faults.
1699 */
1700 dmar_fault(iommu->irq, iommu);
1701 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1702 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1703 }
1704
1705 return 0;
1706 }
1707
1708 /*
1709 * Re-enable Queued Invalidation interface.
1710 */
1711 int dmar_reenable_qi(struct intel_iommu *iommu)
1712 {
1713 if (!ecap_qis(iommu->ecap))
1714 return -ENOENT;
1715
1716 if (!iommu->qi)
1717 return -ENOENT;
1718
1719 /*
1720 * First disable queued invalidation.
1721 */
1722 dmar_disable_qi(iommu);
1723 /*
1724 * Then enable queued invalidation again. Since there is no pending
1725 * invalidation requests now, it's safe to re-enable queued
1726 * invalidation.
1727 */
1728 __dmar_enable_qi(iommu);
1729
1730 return 0;
1731 }
1732
1733 /*
1734 * Check interrupt remapping support in DMAR table description.
1735 */
1736 int __init dmar_ir_support(void)
1737 {
1738 struct acpi_table_dmar *dmar;
1739 dmar = (struct acpi_table_dmar *)dmar_tbl;
1740 if (!dmar)
1741 return 0;
1742 return dmar->flags & 0x1;
1743 }
1744
1745 /* Check whether DMAR units are in use */
1746 static inline bool dmar_in_use(void)
1747 {
1748 return irq_remapping_enabled || intel_iommu_enabled;
1749 }
1750
1751 static int __init dmar_free_unused_resources(void)
1752 {
1753 struct dmar_drhd_unit *dmaru, *dmaru_n;
1754
1755 if (dmar_in_use())
1756 return 0;
1757
1758 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
1759 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1760
1761 down_write(&dmar_global_lock);
1762 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
1763 list_del(&dmaru->list);
1764 dmar_free_drhd(dmaru);
1765 }
1766 up_write(&dmar_global_lock);
1767
1768 return 0;
1769 }
1770
1771 late_initcall(dmar_free_unused_resources);
1772 IOMMU_INIT_POST(detect_intel_iommu);
1773
1774 /*
1775 * DMAR Hotplug Support
1776 * For more details, please refer to Intel(R) Virtualization Technology
1777 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
1778 * "Remapping Hardware Unit Hot Plug".
1779 */
1780 static u8 dmar_hp_uuid[] = {
1781 /* 0000 */ 0xA6, 0xA3, 0xC1, 0xD8, 0x9B, 0xBE, 0x9B, 0x4C,
1782 /* 0008 */ 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF
1783 };
1784
1785 /*
1786 * Currently there's only one revision and BIOS will not check the revision id,
1787 * so use 0 for safety.
1788 */
1789 #define DMAR_DSM_REV_ID 0
1790 #define DMAR_DSM_FUNC_DRHD 1
1791 #define DMAR_DSM_FUNC_ATSR 2
1792 #define DMAR_DSM_FUNC_RHSA 3
1793
1794 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
1795 {
1796 return acpi_check_dsm(handle, dmar_hp_uuid, DMAR_DSM_REV_ID, 1 << func);
1797 }
1798
1799 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
1800 dmar_res_handler_t handler, void *arg)
1801 {
1802 int ret = -ENODEV;
1803 union acpi_object *obj;
1804 struct acpi_dmar_header *start;
1805 struct dmar_res_callback callback;
1806 static int res_type[] = {
1807 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
1808 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
1809 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
1810 };
1811
1812 if (!dmar_detect_dsm(handle, func))
1813 return 0;
1814
1815 obj = acpi_evaluate_dsm_typed(handle, dmar_hp_uuid, DMAR_DSM_REV_ID,
1816 func, NULL, ACPI_TYPE_BUFFER);
1817 if (!obj)
1818 return -ENODEV;
1819
1820 memset(&callback, 0, sizeof(callback));
1821 callback.cb[res_type[func]] = handler;
1822 callback.arg[res_type[func]] = arg;
1823 start = (struct acpi_dmar_header *)obj->buffer.pointer;
1824 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
1825
1826 ACPI_FREE(obj);
1827
1828 return ret;
1829 }
1830
1831 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
1832 {
1833 int ret;
1834 struct dmar_drhd_unit *dmaru;
1835
1836 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1837 if (!dmaru)
1838 return -ENODEV;
1839
1840 ret = dmar_ir_hotplug(dmaru, true);
1841 if (ret == 0)
1842 ret = dmar_iommu_hotplug(dmaru, true);
1843
1844 return ret;
1845 }
1846
1847 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
1848 {
1849 int i, ret;
1850 struct device *dev;
1851 struct dmar_drhd_unit *dmaru;
1852
1853 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1854 if (!dmaru)
1855 return 0;
1856
1857 /*
1858 * All PCI devices managed by this unit should have been destroyed.
1859 */
1860 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt)
1861 for_each_active_dev_scope(dmaru->devices,
1862 dmaru->devices_cnt, i, dev)
1863 return -EBUSY;
1864
1865 ret = dmar_ir_hotplug(dmaru, false);
1866 if (ret == 0)
1867 ret = dmar_iommu_hotplug(dmaru, false);
1868
1869 return ret;
1870 }
1871
1872 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
1873 {
1874 struct dmar_drhd_unit *dmaru;
1875
1876 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1877 if (dmaru) {
1878 list_del_rcu(&dmaru->list);
1879 synchronize_rcu();
1880 dmar_free_drhd(dmaru);
1881 }
1882
1883 return 0;
1884 }
1885
1886 static int dmar_hotplug_insert(acpi_handle handle)
1887 {
1888 int ret;
1889 int drhd_count = 0;
1890
1891 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1892 &dmar_validate_one_drhd, (void *)1);
1893 if (ret)
1894 goto out;
1895
1896 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1897 &dmar_parse_one_drhd, (void *)&drhd_count);
1898 if (ret == 0 && drhd_count == 0) {
1899 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
1900 goto out;
1901 } else if (ret) {
1902 goto release_drhd;
1903 }
1904
1905 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
1906 &dmar_parse_one_rhsa, NULL);
1907 if (ret)
1908 goto release_drhd;
1909
1910 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1911 &dmar_parse_one_atsr, NULL);
1912 if (ret)
1913 goto release_atsr;
1914
1915 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1916 &dmar_hp_add_drhd, NULL);
1917 if (!ret)
1918 return 0;
1919
1920 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1921 &dmar_hp_remove_drhd, NULL);
1922 release_atsr:
1923 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1924 &dmar_release_one_atsr, NULL);
1925 release_drhd:
1926 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1927 &dmar_hp_release_drhd, NULL);
1928 out:
1929 return ret;
1930 }
1931
1932 static int dmar_hotplug_remove(acpi_handle handle)
1933 {
1934 int ret;
1935
1936 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1937 &dmar_check_one_atsr, NULL);
1938 if (ret)
1939 return ret;
1940
1941 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1942 &dmar_hp_remove_drhd, NULL);
1943 if (ret == 0) {
1944 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1945 &dmar_release_one_atsr, NULL));
1946 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1947 &dmar_hp_release_drhd, NULL));
1948 } else {
1949 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1950 &dmar_hp_add_drhd, NULL);
1951 }
1952
1953 return ret;
1954 }
1955
1956 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
1957 void *context, void **retval)
1958 {
1959 acpi_handle *phdl = retval;
1960
1961 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
1962 *phdl = handle;
1963 return AE_CTRL_TERMINATE;
1964 }
1965
1966 return AE_OK;
1967 }
1968
1969 static int dmar_device_hotplug(acpi_handle handle, bool insert)
1970 {
1971 int ret;
1972 acpi_handle tmp = NULL;
1973 acpi_status status;
1974
1975 if (!dmar_in_use())
1976 return 0;
1977
1978 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
1979 tmp = handle;
1980 } else {
1981 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1982 ACPI_UINT32_MAX,
1983 dmar_get_dsm_handle,
1984 NULL, NULL, &tmp);
1985 if (ACPI_FAILURE(status)) {
1986 pr_warn("Failed to locate _DSM method.\n");
1987 return -ENXIO;
1988 }
1989 }
1990 if (tmp == NULL)
1991 return 0;
1992
1993 down_write(&dmar_global_lock);
1994 if (insert)
1995 ret = dmar_hotplug_insert(tmp);
1996 else
1997 ret = dmar_hotplug_remove(tmp);
1998 up_write(&dmar_global_lock);
1999
2000 return ret;
2001 }
2002
2003 int dmar_device_add(acpi_handle handle)
2004 {
2005 return dmar_device_hotplug(handle, true);
2006 }
2007
2008 int dmar_device_remove(acpi_handle handle)
2009 {
2010 return dmar_device_hotplug(handle, false);
2011 }
This page took 0.070699 seconds and 6 git commands to generate.