iommu/vt-d: fix PCI device reference leakage on error recovery path
[deliverable/linux.git] / drivers / iommu / dmar.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 *
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt /* has to precede printk.h */
30
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/iova.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/timer.h>
36 #include <linux/irq.h>
37 #include <linux/interrupt.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/slab.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/iommu_table.h>
43
44 #include "irq_remapping.h"
45
46 /* No locks are needed as DMA remapping hardware unit
47 * list is constructed at boot time and hotplug of
48 * these units are not supported by the architecture.
49 */
50 LIST_HEAD(dmar_drhd_units);
51
52 struct acpi_table_header * __initdata dmar_tbl;
53 static acpi_size dmar_tbl_size;
54
55 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
56 {
57 /*
58 * add INCLUDE_ALL at the tail, so scan the list will find it at
59 * the very end.
60 */
61 if (drhd->include_all)
62 list_add_tail(&drhd->list, &dmar_drhd_units);
63 else
64 list_add(&drhd->list, &dmar_drhd_units);
65 }
66
67 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
68 struct pci_dev **dev, u16 segment)
69 {
70 struct pci_bus *bus;
71 struct pci_dev *pdev = NULL;
72 struct acpi_dmar_pci_path *path;
73 int count;
74
75 bus = pci_find_bus(segment, scope->bus);
76 path = (struct acpi_dmar_pci_path *)(scope + 1);
77 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
78 / sizeof(struct acpi_dmar_pci_path);
79
80 while (count) {
81 if (pdev)
82 pci_dev_put(pdev);
83 /*
84 * Some BIOSes list non-exist devices in DMAR table, just
85 * ignore it
86 */
87 if (!bus) {
88 pr_warn("Device scope bus [%d] not found\n", scope->bus);
89 break;
90 }
91 pdev = pci_get_slot(bus, PCI_DEVFN(path->device, path->function));
92 if (!pdev) {
93 /* warning will be printed below */
94 break;
95 }
96 path ++;
97 count --;
98 bus = pdev->subordinate;
99 }
100 if (!pdev) {
101 pr_warn("Device scope device [%04x:%02x:%02x.%02x] not found\n",
102 segment, scope->bus, path->device, path->function);
103 return 0;
104 }
105 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
106 pdev->subordinate) || (scope->entry_type == \
107 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
108 pci_dev_put(pdev);
109 pr_warn("Device scope type does not match for %s\n",
110 pci_name(pdev));
111 return -EINVAL;
112 }
113 *dev = pdev;
114 return 0;
115 }
116
117 int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
118 struct pci_dev ***devices, u16 segment)
119 {
120 struct acpi_dmar_device_scope *scope;
121 void * tmp = start;
122 int index;
123 int ret;
124
125 *cnt = 0;
126 while (start < end) {
127 scope = start;
128 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
129 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
130 (*cnt)++;
131 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
132 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
133 pr_warn("Unsupported device scope\n");
134 }
135 start += scope->length;
136 }
137 if (*cnt == 0)
138 return 0;
139
140 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
141 if (!*devices)
142 return -ENOMEM;
143
144 start = tmp;
145 index = 0;
146 while (start < end) {
147 scope = start;
148 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
149 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
150 ret = dmar_parse_one_dev_scope(scope,
151 &(*devices)[index], segment);
152 if (ret) {
153 dmar_free_dev_scope(devices, cnt);
154 return ret;
155 }
156 index ++;
157 }
158 start += scope->length;
159 }
160
161 return 0;
162 }
163
164 void dmar_free_dev_scope(struct pci_dev ***devices, int *cnt)
165 {
166 if (*devices && *cnt) {
167 while (--*cnt >= 0)
168 pci_dev_put((*devices)[*cnt]);
169 kfree(*devices);
170 *devices = NULL;
171 *cnt = 0;
172 }
173 }
174
175 /**
176 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
177 * structure which uniquely represent one DMA remapping hardware unit
178 * present in the platform
179 */
180 static int __init
181 dmar_parse_one_drhd(struct acpi_dmar_header *header)
182 {
183 struct acpi_dmar_hardware_unit *drhd;
184 struct dmar_drhd_unit *dmaru;
185 int ret = 0;
186
187 drhd = (struct acpi_dmar_hardware_unit *)header;
188 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
189 if (!dmaru)
190 return -ENOMEM;
191
192 dmaru->hdr = header;
193 dmaru->reg_base_addr = drhd->address;
194 dmaru->segment = drhd->segment;
195 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
196
197 ret = alloc_iommu(dmaru);
198 if (ret) {
199 kfree(dmaru);
200 return ret;
201 }
202 dmar_register_drhd_unit(dmaru);
203 return 0;
204 }
205
206 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
207 {
208 struct acpi_dmar_hardware_unit *drhd;
209 int ret = 0;
210
211 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
212
213 if (dmaru->include_all)
214 return 0;
215
216 ret = dmar_parse_dev_scope((void *)(drhd + 1),
217 ((void *)drhd) + drhd->header.length,
218 &dmaru->devices_cnt, &dmaru->devices,
219 drhd->segment);
220 if (ret) {
221 list_del(&dmaru->list);
222 kfree(dmaru);
223 }
224 return ret;
225 }
226
227 #ifdef CONFIG_ACPI_NUMA
228 static int __init
229 dmar_parse_one_rhsa(struct acpi_dmar_header *header)
230 {
231 struct acpi_dmar_rhsa *rhsa;
232 struct dmar_drhd_unit *drhd;
233
234 rhsa = (struct acpi_dmar_rhsa *)header;
235 for_each_drhd_unit(drhd) {
236 if (drhd->reg_base_addr == rhsa->base_address) {
237 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
238
239 if (!node_online(node))
240 node = -1;
241 drhd->iommu->node = node;
242 return 0;
243 }
244 }
245 WARN_TAINT(
246 1, TAINT_FIRMWARE_WORKAROUND,
247 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
248 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
249 drhd->reg_base_addr,
250 dmi_get_system_info(DMI_BIOS_VENDOR),
251 dmi_get_system_info(DMI_BIOS_VERSION),
252 dmi_get_system_info(DMI_PRODUCT_VERSION));
253
254 return 0;
255 }
256 #endif
257
258 static void __init
259 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
260 {
261 struct acpi_dmar_hardware_unit *drhd;
262 struct acpi_dmar_reserved_memory *rmrr;
263 struct acpi_dmar_atsr *atsr;
264 struct acpi_dmar_rhsa *rhsa;
265
266 switch (header->type) {
267 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
268 drhd = container_of(header, struct acpi_dmar_hardware_unit,
269 header);
270 pr_info("DRHD base: %#016Lx flags: %#x\n",
271 (unsigned long long)drhd->address, drhd->flags);
272 break;
273 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
274 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
275 header);
276 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
277 (unsigned long long)rmrr->base_address,
278 (unsigned long long)rmrr->end_address);
279 break;
280 case ACPI_DMAR_TYPE_ATSR:
281 atsr = container_of(header, struct acpi_dmar_atsr, header);
282 pr_info("ATSR flags: %#x\n", atsr->flags);
283 break;
284 case ACPI_DMAR_HARDWARE_AFFINITY:
285 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
286 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
287 (unsigned long long)rhsa->base_address,
288 rhsa->proximity_domain);
289 break;
290 }
291 }
292
293 /**
294 * dmar_table_detect - checks to see if the platform supports DMAR devices
295 */
296 static int __init dmar_table_detect(void)
297 {
298 acpi_status status = AE_OK;
299
300 /* if we could find DMAR table, then there are DMAR devices */
301 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
302 (struct acpi_table_header **)&dmar_tbl,
303 &dmar_tbl_size);
304
305 if (ACPI_SUCCESS(status) && !dmar_tbl) {
306 pr_warn("Unable to map DMAR\n");
307 status = AE_NOT_FOUND;
308 }
309
310 return (ACPI_SUCCESS(status) ? 1 : 0);
311 }
312
313 /**
314 * parse_dmar_table - parses the DMA reporting table
315 */
316 static int __init
317 parse_dmar_table(void)
318 {
319 struct acpi_table_dmar *dmar;
320 struct acpi_dmar_header *entry_header;
321 int ret = 0;
322 int drhd_count = 0;
323
324 /*
325 * Do it again, earlier dmar_tbl mapping could be mapped with
326 * fixed map.
327 */
328 dmar_table_detect();
329
330 /*
331 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
332 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
333 */
334 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
335
336 dmar = (struct acpi_table_dmar *)dmar_tbl;
337 if (!dmar)
338 return -ENODEV;
339
340 if (dmar->width < PAGE_SHIFT - 1) {
341 pr_warn("Invalid DMAR haw\n");
342 return -EINVAL;
343 }
344
345 pr_info("Host address width %d\n", dmar->width + 1);
346
347 entry_header = (struct acpi_dmar_header *)(dmar + 1);
348 while (((unsigned long)entry_header) <
349 (((unsigned long)dmar) + dmar_tbl->length)) {
350 /* Avoid looping forever on bad ACPI tables */
351 if (entry_header->length == 0) {
352 pr_warn("Invalid 0-length structure\n");
353 ret = -EINVAL;
354 break;
355 }
356
357 dmar_table_print_dmar_entry(entry_header);
358
359 switch (entry_header->type) {
360 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
361 drhd_count++;
362 ret = dmar_parse_one_drhd(entry_header);
363 break;
364 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
365 ret = dmar_parse_one_rmrr(entry_header);
366 break;
367 case ACPI_DMAR_TYPE_ATSR:
368 ret = dmar_parse_one_atsr(entry_header);
369 break;
370 case ACPI_DMAR_HARDWARE_AFFINITY:
371 #ifdef CONFIG_ACPI_NUMA
372 ret = dmar_parse_one_rhsa(entry_header);
373 #endif
374 break;
375 default:
376 pr_warn("Unknown DMAR structure type %d\n",
377 entry_header->type);
378 ret = 0; /* for forward compatibility */
379 break;
380 }
381 if (ret)
382 break;
383
384 entry_header = ((void *)entry_header + entry_header->length);
385 }
386 if (drhd_count == 0)
387 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
388 return ret;
389 }
390
391 static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
392 struct pci_dev *dev)
393 {
394 int index;
395
396 while (dev) {
397 for (index = 0; index < cnt; index++)
398 if (dev == devices[index])
399 return 1;
400
401 /* Check our parent */
402 dev = dev->bus->self;
403 }
404
405 return 0;
406 }
407
408 struct dmar_drhd_unit *
409 dmar_find_matched_drhd_unit(struct pci_dev *dev)
410 {
411 struct dmar_drhd_unit *dmaru = NULL;
412 struct acpi_dmar_hardware_unit *drhd;
413
414 dev = pci_physfn(dev);
415
416 for_each_drhd_unit(dmaru) {
417 drhd = container_of(dmaru->hdr,
418 struct acpi_dmar_hardware_unit,
419 header);
420
421 if (dmaru->include_all &&
422 drhd->segment == pci_domain_nr(dev->bus))
423 return dmaru;
424
425 if (dmar_pci_device_match(dmaru->devices,
426 dmaru->devices_cnt, dev))
427 return dmaru;
428 }
429
430 return NULL;
431 }
432
433 int __init dmar_dev_scope_init(void)
434 {
435 static int dmar_dev_scope_initialized;
436 struct dmar_drhd_unit *drhd, *drhd_n;
437 int ret = -ENODEV;
438
439 if (dmar_dev_scope_initialized)
440 return dmar_dev_scope_initialized;
441
442 if (list_empty(&dmar_drhd_units))
443 goto fail;
444
445 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
446 ret = dmar_parse_dev(drhd);
447 if (ret)
448 goto fail;
449 }
450
451 ret = dmar_parse_rmrr_atsr_dev();
452 if (ret)
453 goto fail;
454
455 dmar_dev_scope_initialized = 1;
456 return 0;
457
458 fail:
459 dmar_dev_scope_initialized = ret;
460 return ret;
461 }
462
463
464 int __init dmar_table_init(void)
465 {
466 static int dmar_table_initialized;
467 int ret;
468
469 if (dmar_table_initialized)
470 return 0;
471
472 dmar_table_initialized = 1;
473
474 ret = parse_dmar_table();
475 if (ret) {
476 if (ret != -ENODEV)
477 pr_info("parse DMAR table failure.\n");
478 return ret;
479 }
480
481 if (list_empty(&dmar_drhd_units)) {
482 pr_info("No DMAR devices found\n");
483 return -ENODEV;
484 }
485
486 return 0;
487 }
488
489 static void warn_invalid_dmar(u64 addr, const char *message)
490 {
491 WARN_TAINT_ONCE(
492 1, TAINT_FIRMWARE_WORKAROUND,
493 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
494 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
495 addr, message,
496 dmi_get_system_info(DMI_BIOS_VENDOR),
497 dmi_get_system_info(DMI_BIOS_VERSION),
498 dmi_get_system_info(DMI_PRODUCT_VERSION));
499 }
500
501 static int __init check_zero_address(void)
502 {
503 struct acpi_table_dmar *dmar;
504 struct acpi_dmar_header *entry_header;
505 struct acpi_dmar_hardware_unit *drhd;
506
507 dmar = (struct acpi_table_dmar *)dmar_tbl;
508 entry_header = (struct acpi_dmar_header *)(dmar + 1);
509
510 while (((unsigned long)entry_header) <
511 (((unsigned long)dmar) + dmar_tbl->length)) {
512 /* Avoid looping forever on bad ACPI tables */
513 if (entry_header->length == 0) {
514 pr_warn("Invalid 0-length structure\n");
515 return 0;
516 }
517
518 if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
519 void __iomem *addr;
520 u64 cap, ecap;
521
522 drhd = (void *)entry_header;
523 if (!drhd->address) {
524 warn_invalid_dmar(0, "");
525 goto failed;
526 }
527
528 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
529 if (!addr ) {
530 printk("IOMMU: can't validate: %llx\n", drhd->address);
531 goto failed;
532 }
533 cap = dmar_readq(addr + DMAR_CAP_REG);
534 ecap = dmar_readq(addr + DMAR_ECAP_REG);
535 early_iounmap(addr, VTD_PAGE_SIZE);
536 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
537 warn_invalid_dmar(drhd->address,
538 " returns all ones");
539 goto failed;
540 }
541 }
542
543 entry_header = ((void *)entry_header + entry_header->length);
544 }
545 return 1;
546
547 failed:
548 return 0;
549 }
550
551 int __init detect_intel_iommu(void)
552 {
553 int ret;
554
555 ret = dmar_table_detect();
556 if (ret)
557 ret = check_zero_address();
558 {
559 struct acpi_table_dmar *dmar;
560
561 dmar = (struct acpi_table_dmar *) dmar_tbl;
562
563 if (ret && irq_remapping_enabled && cpu_has_x2apic &&
564 dmar->flags & 0x1)
565 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
566
567 if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
568 iommu_detected = 1;
569 /* Make sure ACS will be enabled */
570 pci_request_acs();
571 }
572
573 #ifdef CONFIG_X86
574 if (ret)
575 x86_init.iommu.iommu_init = intel_iommu_init;
576 #endif
577 }
578 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
579 dmar_tbl = NULL;
580
581 return ret ? 1 : -ENODEV;
582 }
583
584
585 static void unmap_iommu(struct intel_iommu *iommu)
586 {
587 iounmap(iommu->reg);
588 release_mem_region(iommu->reg_phys, iommu->reg_size);
589 }
590
591 /**
592 * map_iommu: map the iommu's registers
593 * @iommu: the iommu to map
594 * @phys_addr: the physical address of the base resgister
595 *
596 * Memory map the iommu's registers. Start w/ a single page, and
597 * possibly expand if that turns out to be insufficent.
598 */
599 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
600 {
601 int map_size, err=0;
602
603 iommu->reg_phys = phys_addr;
604 iommu->reg_size = VTD_PAGE_SIZE;
605
606 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
607 pr_err("IOMMU: can't reserve memory\n");
608 err = -EBUSY;
609 goto out;
610 }
611
612 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
613 if (!iommu->reg) {
614 pr_err("IOMMU: can't map the region\n");
615 err = -ENOMEM;
616 goto release;
617 }
618
619 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
620 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
621
622 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
623 err = -EINVAL;
624 warn_invalid_dmar(phys_addr, " returns all ones");
625 goto unmap;
626 }
627
628 /* the registers might be more than one page */
629 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
630 cap_max_fault_reg_offset(iommu->cap));
631 map_size = VTD_PAGE_ALIGN(map_size);
632 if (map_size > iommu->reg_size) {
633 iounmap(iommu->reg);
634 release_mem_region(iommu->reg_phys, iommu->reg_size);
635 iommu->reg_size = map_size;
636 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
637 iommu->name)) {
638 pr_err("IOMMU: can't reserve memory\n");
639 err = -EBUSY;
640 goto out;
641 }
642 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
643 if (!iommu->reg) {
644 pr_err("IOMMU: can't map the region\n");
645 err = -ENOMEM;
646 goto release;
647 }
648 }
649 err = 0;
650 goto out;
651
652 unmap:
653 iounmap(iommu->reg);
654 release:
655 release_mem_region(iommu->reg_phys, iommu->reg_size);
656 out:
657 return err;
658 }
659
660 int alloc_iommu(struct dmar_drhd_unit *drhd)
661 {
662 struct intel_iommu *iommu;
663 u32 ver, sts;
664 static int iommu_allocated = 0;
665 int agaw = 0;
666 int msagaw = 0;
667 int err;
668
669 if (!drhd->reg_base_addr) {
670 warn_invalid_dmar(0, "");
671 return -EINVAL;
672 }
673
674 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
675 if (!iommu)
676 return -ENOMEM;
677
678 iommu->seq_id = iommu_allocated++;
679 sprintf (iommu->name, "dmar%d", iommu->seq_id);
680
681 err = map_iommu(iommu, drhd->reg_base_addr);
682 if (err) {
683 pr_err("IOMMU: failed to map %s\n", iommu->name);
684 goto error;
685 }
686
687 err = -EINVAL;
688 agaw = iommu_calculate_agaw(iommu);
689 if (agaw < 0) {
690 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
691 iommu->seq_id);
692 goto err_unmap;
693 }
694 msagaw = iommu_calculate_max_sagaw(iommu);
695 if (msagaw < 0) {
696 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
697 iommu->seq_id);
698 goto err_unmap;
699 }
700 iommu->agaw = agaw;
701 iommu->msagaw = msagaw;
702
703 iommu->node = -1;
704
705 ver = readl(iommu->reg + DMAR_VER_REG);
706 pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
707 iommu->seq_id,
708 (unsigned long long)drhd->reg_base_addr,
709 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
710 (unsigned long long)iommu->cap,
711 (unsigned long long)iommu->ecap);
712
713 /* Reflect status in gcmd */
714 sts = readl(iommu->reg + DMAR_GSTS_REG);
715 if (sts & DMA_GSTS_IRES)
716 iommu->gcmd |= DMA_GCMD_IRE;
717 if (sts & DMA_GSTS_TES)
718 iommu->gcmd |= DMA_GCMD_TE;
719 if (sts & DMA_GSTS_QIES)
720 iommu->gcmd |= DMA_GCMD_QIE;
721
722 raw_spin_lock_init(&iommu->register_lock);
723
724 drhd->iommu = iommu;
725 return 0;
726
727 err_unmap:
728 unmap_iommu(iommu);
729 error:
730 kfree(iommu);
731 return err;
732 }
733
734 void free_iommu(struct intel_iommu *iommu)
735 {
736 if (!iommu)
737 return;
738
739 free_dmar_iommu(iommu);
740
741 if (iommu->reg)
742 unmap_iommu(iommu);
743
744 kfree(iommu);
745 }
746
747 /*
748 * Reclaim all the submitted descriptors which have completed its work.
749 */
750 static inline void reclaim_free_desc(struct q_inval *qi)
751 {
752 while (qi->desc_status[qi->free_tail] == QI_DONE ||
753 qi->desc_status[qi->free_tail] == QI_ABORT) {
754 qi->desc_status[qi->free_tail] = QI_FREE;
755 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
756 qi->free_cnt++;
757 }
758 }
759
760 static int qi_check_fault(struct intel_iommu *iommu, int index)
761 {
762 u32 fault;
763 int head, tail;
764 struct q_inval *qi = iommu->qi;
765 int wait_index = (index + 1) % QI_LENGTH;
766
767 if (qi->desc_status[wait_index] == QI_ABORT)
768 return -EAGAIN;
769
770 fault = readl(iommu->reg + DMAR_FSTS_REG);
771
772 /*
773 * If IQE happens, the head points to the descriptor associated
774 * with the error. No new descriptors are fetched until the IQE
775 * is cleared.
776 */
777 if (fault & DMA_FSTS_IQE) {
778 head = readl(iommu->reg + DMAR_IQH_REG);
779 if ((head >> DMAR_IQ_SHIFT) == index) {
780 pr_err("VT-d detected invalid descriptor: "
781 "low=%llx, high=%llx\n",
782 (unsigned long long)qi->desc[index].low,
783 (unsigned long long)qi->desc[index].high);
784 memcpy(&qi->desc[index], &qi->desc[wait_index],
785 sizeof(struct qi_desc));
786 __iommu_flush_cache(iommu, &qi->desc[index],
787 sizeof(struct qi_desc));
788 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
789 return -EINVAL;
790 }
791 }
792
793 /*
794 * If ITE happens, all pending wait_desc commands are aborted.
795 * No new descriptors are fetched until the ITE is cleared.
796 */
797 if (fault & DMA_FSTS_ITE) {
798 head = readl(iommu->reg + DMAR_IQH_REG);
799 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
800 head |= 1;
801 tail = readl(iommu->reg + DMAR_IQT_REG);
802 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
803
804 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
805
806 do {
807 if (qi->desc_status[head] == QI_IN_USE)
808 qi->desc_status[head] = QI_ABORT;
809 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
810 } while (head != tail);
811
812 if (qi->desc_status[wait_index] == QI_ABORT)
813 return -EAGAIN;
814 }
815
816 if (fault & DMA_FSTS_ICE)
817 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
818
819 return 0;
820 }
821
822 /*
823 * Submit the queued invalidation descriptor to the remapping
824 * hardware unit and wait for its completion.
825 */
826 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
827 {
828 int rc;
829 struct q_inval *qi = iommu->qi;
830 struct qi_desc *hw, wait_desc;
831 int wait_index, index;
832 unsigned long flags;
833
834 if (!qi)
835 return 0;
836
837 hw = qi->desc;
838
839 restart:
840 rc = 0;
841
842 raw_spin_lock_irqsave(&qi->q_lock, flags);
843 while (qi->free_cnt < 3) {
844 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
845 cpu_relax();
846 raw_spin_lock_irqsave(&qi->q_lock, flags);
847 }
848
849 index = qi->free_head;
850 wait_index = (index + 1) % QI_LENGTH;
851
852 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
853
854 hw[index] = *desc;
855
856 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
857 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
858 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
859
860 hw[wait_index] = wait_desc;
861
862 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
863 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
864
865 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
866 qi->free_cnt -= 2;
867
868 /*
869 * update the HW tail register indicating the presence of
870 * new descriptors.
871 */
872 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
873
874 while (qi->desc_status[wait_index] != QI_DONE) {
875 /*
876 * We will leave the interrupts disabled, to prevent interrupt
877 * context to queue another cmd while a cmd is already submitted
878 * and waiting for completion on this cpu. This is to avoid
879 * a deadlock where the interrupt context can wait indefinitely
880 * for free slots in the queue.
881 */
882 rc = qi_check_fault(iommu, index);
883 if (rc)
884 break;
885
886 raw_spin_unlock(&qi->q_lock);
887 cpu_relax();
888 raw_spin_lock(&qi->q_lock);
889 }
890
891 qi->desc_status[index] = QI_DONE;
892
893 reclaim_free_desc(qi);
894 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
895
896 if (rc == -EAGAIN)
897 goto restart;
898
899 return rc;
900 }
901
902 /*
903 * Flush the global interrupt entry cache.
904 */
905 void qi_global_iec(struct intel_iommu *iommu)
906 {
907 struct qi_desc desc;
908
909 desc.low = QI_IEC_TYPE;
910 desc.high = 0;
911
912 /* should never fail */
913 qi_submit_sync(&desc, iommu);
914 }
915
916 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
917 u64 type)
918 {
919 struct qi_desc desc;
920
921 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
922 | QI_CC_GRAN(type) | QI_CC_TYPE;
923 desc.high = 0;
924
925 qi_submit_sync(&desc, iommu);
926 }
927
928 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
929 unsigned int size_order, u64 type)
930 {
931 u8 dw = 0, dr = 0;
932
933 struct qi_desc desc;
934 int ih = 0;
935
936 if (cap_write_drain(iommu->cap))
937 dw = 1;
938
939 if (cap_read_drain(iommu->cap))
940 dr = 1;
941
942 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
943 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
944 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
945 | QI_IOTLB_AM(size_order);
946
947 qi_submit_sync(&desc, iommu);
948 }
949
950 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
951 u64 addr, unsigned mask)
952 {
953 struct qi_desc desc;
954
955 if (mask) {
956 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
957 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
958 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
959 } else
960 desc.high = QI_DEV_IOTLB_ADDR(addr);
961
962 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
963 qdep = 0;
964
965 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
966 QI_DIOTLB_TYPE;
967
968 qi_submit_sync(&desc, iommu);
969 }
970
971 /*
972 * Disable Queued Invalidation interface.
973 */
974 void dmar_disable_qi(struct intel_iommu *iommu)
975 {
976 unsigned long flags;
977 u32 sts;
978 cycles_t start_time = get_cycles();
979
980 if (!ecap_qis(iommu->ecap))
981 return;
982
983 raw_spin_lock_irqsave(&iommu->register_lock, flags);
984
985 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
986 if (!(sts & DMA_GSTS_QIES))
987 goto end;
988
989 /*
990 * Give a chance to HW to complete the pending invalidation requests.
991 */
992 while ((readl(iommu->reg + DMAR_IQT_REG) !=
993 readl(iommu->reg + DMAR_IQH_REG)) &&
994 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
995 cpu_relax();
996
997 iommu->gcmd &= ~DMA_GCMD_QIE;
998 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
999
1000 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1001 !(sts & DMA_GSTS_QIES), sts);
1002 end:
1003 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1004 }
1005
1006 /*
1007 * Enable queued invalidation.
1008 */
1009 static void __dmar_enable_qi(struct intel_iommu *iommu)
1010 {
1011 u32 sts;
1012 unsigned long flags;
1013 struct q_inval *qi = iommu->qi;
1014
1015 qi->free_head = qi->free_tail = 0;
1016 qi->free_cnt = QI_LENGTH;
1017
1018 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1019
1020 /* write zero to the tail reg */
1021 writel(0, iommu->reg + DMAR_IQT_REG);
1022
1023 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1024
1025 iommu->gcmd |= DMA_GCMD_QIE;
1026 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1027
1028 /* Make sure hardware complete it */
1029 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1030
1031 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1032 }
1033
1034 /*
1035 * Enable Queued Invalidation interface. This is a must to support
1036 * interrupt-remapping. Also used by DMA-remapping, which replaces
1037 * register based IOTLB invalidation.
1038 */
1039 int dmar_enable_qi(struct intel_iommu *iommu)
1040 {
1041 struct q_inval *qi;
1042 struct page *desc_page;
1043
1044 if (!ecap_qis(iommu->ecap))
1045 return -ENOENT;
1046
1047 /*
1048 * queued invalidation is already setup and enabled.
1049 */
1050 if (iommu->qi)
1051 return 0;
1052
1053 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1054 if (!iommu->qi)
1055 return -ENOMEM;
1056
1057 qi = iommu->qi;
1058
1059
1060 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1061 if (!desc_page) {
1062 kfree(qi);
1063 iommu->qi = 0;
1064 return -ENOMEM;
1065 }
1066
1067 qi->desc = page_address(desc_page);
1068
1069 qi->desc_status = kzalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1070 if (!qi->desc_status) {
1071 free_page((unsigned long) qi->desc);
1072 kfree(qi);
1073 iommu->qi = 0;
1074 return -ENOMEM;
1075 }
1076
1077 qi->free_head = qi->free_tail = 0;
1078 qi->free_cnt = QI_LENGTH;
1079
1080 raw_spin_lock_init(&qi->q_lock);
1081
1082 __dmar_enable_qi(iommu);
1083
1084 return 0;
1085 }
1086
1087 /* iommu interrupt handling. Most stuff are MSI-like. */
1088
1089 enum faulttype {
1090 DMA_REMAP,
1091 INTR_REMAP,
1092 UNKNOWN,
1093 };
1094
1095 static const char *dma_remap_fault_reasons[] =
1096 {
1097 "Software",
1098 "Present bit in root entry is clear",
1099 "Present bit in context entry is clear",
1100 "Invalid context entry",
1101 "Access beyond MGAW",
1102 "PTE Write access is not set",
1103 "PTE Read access is not set",
1104 "Next page table ptr is invalid",
1105 "Root table address invalid",
1106 "Context table ptr is invalid",
1107 "non-zero reserved fields in RTP",
1108 "non-zero reserved fields in CTP",
1109 "non-zero reserved fields in PTE",
1110 "PCE for translation request specifies blocking",
1111 };
1112
1113 static const char *irq_remap_fault_reasons[] =
1114 {
1115 "Detected reserved fields in the decoded interrupt-remapped request",
1116 "Interrupt index exceeded the interrupt-remapping table size",
1117 "Present field in the IRTE entry is clear",
1118 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1119 "Detected reserved fields in the IRTE entry",
1120 "Blocked a compatibility format interrupt request",
1121 "Blocked an interrupt request due to source-id verification failure",
1122 };
1123
1124 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
1125
1126 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1127 {
1128 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1129 ARRAY_SIZE(irq_remap_fault_reasons))) {
1130 *fault_type = INTR_REMAP;
1131 return irq_remap_fault_reasons[fault_reason - 0x20];
1132 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1133 *fault_type = DMA_REMAP;
1134 return dma_remap_fault_reasons[fault_reason];
1135 } else {
1136 *fault_type = UNKNOWN;
1137 return "Unknown";
1138 }
1139 }
1140
1141 void dmar_msi_unmask(struct irq_data *data)
1142 {
1143 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1144 unsigned long flag;
1145
1146 /* unmask it */
1147 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1148 writel(0, iommu->reg + DMAR_FECTL_REG);
1149 /* Read a reg to force flush the post write */
1150 readl(iommu->reg + DMAR_FECTL_REG);
1151 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1152 }
1153
1154 void dmar_msi_mask(struct irq_data *data)
1155 {
1156 unsigned long flag;
1157 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1158
1159 /* mask it */
1160 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1161 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1162 /* Read a reg to force flush the post write */
1163 readl(iommu->reg + DMAR_FECTL_REG);
1164 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1165 }
1166
1167 void dmar_msi_write(int irq, struct msi_msg *msg)
1168 {
1169 struct intel_iommu *iommu = irq_get_handler_data(irq);
1170 unsigned long flag;
1171
1172 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1173 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1174 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1175 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1176 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1177 }
1178
1179 void dmar_msi_read(int irq, struct msi_msg *msg)
1180 {
1181 struct intel_iommu *iommu = irq_get_handler_data(irq);
1182 unsigned long flag;
1183
1184 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1185 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1186 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1187 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1188 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1189 }
1190
1191 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1192 u8 fault_reason, u16 source_id, unsigned long long addr)
1193 {
1194 const char *reason;
1195 int fault_type;
1196
1197 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1198
1199 if (fault_type == INTR_REMAP)
1200 pr_err("INTR-REMAP: Request device [[%02x:%02x.%d] "
1201 "fault index %llx\n"
1202 "INTR-REMAP:[fault reason %02d] %s\n",
1203 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1204 PCI_FUNC(source_id & 0xFF), addr >> 48,
1205 fault_reason, reason);
1206 else
1207 pr_err("DMAR:[%s] Request device [%02x:%02x.%d] "
1208 "fault addr %llx \n"
1209 "DMAR:[fault reason %02d] %s\n",
1210 (type ? "DMA Read" : "DMA Write"),
1211 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1212 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1213 return 0;
1214 }
1215
1216 #define PRIMARY_FAULT_REG_LEN (16)
1217 irqreturn_t dmar_fault(int irq, void *dev_id)
1218 {
1219 struct intel_iommu *iommu = dev_id;
1220 int reg, fault_index;
1221 u32 fault_status;
1222 unsigned long flag;
1223
1224 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1225 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1226 if (fault_status)
1227 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1228
1229 /* TBD: ignore advanced fault log currently */
1230 if (!(fault_status & DMA_FSTS_PPF))
1231 goto unlock_exit;
1232
1233 fault_index = dma_fsts_fault_record_index(fault_status);
1234 reg = cap_fault_reg_offset(iommu->cap);
1235 while (1) {
1236 u8 fault_reason;
1237 u16 source_id;
1238 u64 guest_addr;
1239 int type;
1240 u32 data;
1241
1242 /* highest 32 bits */
1243 data = readl(iommu->reg + reg +
1244 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1245 if (!(data & DMA_FRCD_F))
1246 break;
1247
1248 fault_reason = dma_frcd_fault_reason(data);
1249 type = dma_frcd_type(data);
1250
1251 data = readl(iommu->reg + reg +
1252 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1253 source_id = dma_frcd_source_id(data);
1254
1255 guest_addr = dmar_readq(iommu->reg + reg +
1256 fault_index * PRIMARY_FAULT_REG_LEN);
1257 guest_addr = dma_frcd_page_addr(guest_addr);
1258 /* clear the fault */
1259 writel(DMA_FRCD_F, iommu->reg + reg +
1260 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1261
1262 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1263
1264 dmar_fault_do_one(iommu, type, fault_reason,
1265 source_id, guest_addr);
1266
1267 fault_index++;
1268 if (fault_index >= cap_num_fault_regs(iommu->cap))
1269 fault_index = 0;
1270 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1271 }
1272
1273 writel(DMA_FSTS_PFO | DMA_FSTS_PPF, iommu->reg + DMAR_FSTS_REG);
1274
1275 unlock_exit:
1276 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1277 return IRQ_HANDLED;
1278 }
1279
1280 int dmar_set_interrupt(struct intel_iommu *iommu)
1281 {
1282 int irq, ret;
1283
1284 /*
1285 * Check if the fault interrupt is already initialized.
1286 */
1287 if (iommu->irq)
1288 return 0;
1289
1290 irq = create_irq();
1291 if (!irq) {
1292 pr_err("IOMMU: no free vectors\n");
1293 return -EINVAL;
1294 }
1295
1296 irq_set_handler_data(irq, iommu);
1297 iommu->irq = irq;
1298
1299 ret = arch_setup_dmar_msi(irq);
1300 if (ret) {
1301 irq_set_handler_data(irq, NULL);
1302 iommu->irq = 0;
1303 destroy_irq(irq);
1304 return ret;
1305 }
1306
1307 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1308 if (ret)
1309 pr_err("IOMMU: can't request irq\n");
1310 return ret;
1311 }
1312
1313 int __init enable_drhd_fault_handling(void)
1314 {
1315 struct dmar_drhd_unit *drhd;
1316
1317 /*
1318 * Enable fault control interrupt.
1319 */
1320 for_each_drhd_unit(drhd) {
1321 int ret;
1322 struct intel_iommu *iommu = drhd->iommu;
1323 u32 fault_status;
1324 ret = dmar_set_interrupt(iommu);
1325
1326 if (ret) {
1327 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1328 (unsigned long long)drhd->reg_base_addr, ret);
1329 return -1;
1330 }
1331
1332 /*
1333 * Clear any previous faults.
1334 */
1335 dmar_fault(iommu->irq, iommu);
1336 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1337 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1338 }
1339
1340 return 0;
1341 }
1342
1343 /*
1344 * Re-enable Queued Invalidation interface.
1345 */
1346 int dmar_reenable_qi(struct intel_iommu *iommu)
1347 {
1348 if (!ecap_qis(iommu->ecap))
1349 return -ENOENT;
1350
1351 if (!iommu->qi)
1352 return -ENOENT;
1353
1354 /*
1355 * First disable queued invalidation.
1356 */
1357 dmar_disable_qi(iommu);
1358 /*
1359 * Then enable queued invalidation again. Since there is no pending
1360 * invalidation requests now, it's safe to re-enable queued
1361 * invalidation.
1362 */
1363 __dmar_enable_qi(iommu);
1364
1365 return 0;
1366 }
1367
1368 /*
1369 * Check interrupt remapping support in DMAR table description.
1370 */
1371 int __init dmar_ir_support(void)
1372 {
1373 struct acpi_table_dmar *dmar;
1374 dmar = (struct acpi_table_dmar *)dmar_tbl;
1375 if (!dmar)
1376 return 0;
1377 return dmar->flags & 0x1;
1378 }
1379 IOMMU_INIT_POST(detect_intel_iommu);
This page took 0.075752 seconds and 6 git commands to generate.