Merge tag 'char-misc-4.2-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[deliverable/linux.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright © 2006-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
18 * Joerg Roedel <jroedel@suse.de>
19 */
20
21 #define pr_fmt(fmt) "DMAR: " fmt
22
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/debugfs.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/memory.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <linux/dma-contiguous.h>
46 #include <linux/crash_dump.h>
47 #include <asm/irq_remapping.h>
48 #include <asm/cacheflush.h>
49 #include <asm/iommu.h>
50
51 #include "irq_remapping.h"
52
53 #define ROOT_SIZE VTD_PAGE_SIZE
54 #define CONTEXT_SIZE VTD_PAGE_SIZE
55
56 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
60
61 #define IOAPIC_RANGE_START (0xfee00000)
62 #define IOAPIC_RANGE_END (0xfeefffff)
63 #define IOVA_START_ADDR (0x1000)
64
65 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
66
67 #define MAX_AGAW_WIDTH 64
68 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
69
70 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
71 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
72
73 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
74 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
75 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
76 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
77 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
78
79 /* IO virtual address start page frame number */
80 #define IOVA_START_PFN (1)
81
82 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
83 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
84 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
85
86 /* page table handling */
87 #define LEVEL_STRIDE (9)
88 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
89
90 /*
91 * This bitmap is used to advertise the page sizes our hardware support
92 * to the IOMMU core, which will then use this information to split
93 * physically contiguous memory regions it is mapping into page sizes
94 * that we support.
95 *
96 * Traditionally the IOMMU core just handed us the mappings directly,
97 * after making sure the size is an order of a 4KiB page and that the
98 * mapping has natural alignment.
99 *
100 * To retain this behavior, we currently advertise that we support
101 * all page sizes that are an order of 4KiB.
102 *
103 * If at some point we'd like to utilize the IOMMU core's new behavior,
104 * we could change this to advertise the real page sizes we support.
105 */
106 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
107
108 static inline int agaw_to_level(int agaw)
109 {
110 return agaw + 2;
111 }
112
113 static inline int agaw_to_width(int agaw)
114 {
115 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
116 }
117
118 static inline int width_to_agaw(int width)
119 {
120 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
121 }
122
123 static inline unsigned int level_to_offset_bits(int level)
124 {
125 return (level - 1) * LEVEL_STRIDE;
126 }
127
128 static inline int pfn_level_offset(unsigned long pfn, int level)
129 {
130 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
131 }
132
133 static inline unsigned long level_mask(int level)
134 {
135 return -1UL << level_to_offset_bits(level);
136 }
137
138 static inline unsigned long level_size(int level)
139 {
140 return 1UL << level_to_offset_bits(level);
141 }
142
143 static inline unsigned long align_to_level(unsigned long pfn, int level)
144 {
145 return (pfn + level_size(level) - 1) & level_mask(level);
146 }
147
148 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
149 {
150 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
151 }
152
153 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
154 are never going to work. */
155 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
156 {
157 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
158 }
159
160 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
161 {
162 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
163 }
164 static inline unsigned long page_to_dma_pfn(struct page *pg)
165 {
166 return mm_to_dma_pfn(page_to_pfn(pg));
167 }
168 static inline unsigned long virt_to_dma_pfn(void *p)
169 {
170 return page_to_dma_pfn(virt_to_page(p));
171 }
172
173 /* global iommu list, set NULL for ignored DMAR units */
174 static struct intel_iommu **g_iommus;
175
176 static void __init check_tylersburg_isoch(void);
177 static int rwbf_quirk;
178
179 /*
180 * set to 1 to panic kernel if can't successfully enable VT-d
181 * (used when kernel is launched w/ TXT)
182 */
183 static int force_on = 0;
184
185 /*
186 * 0: Present
187 * 1-11: Reserved
188 * 12-63: Context Ptr (12 - (haw-1))
189 * 64-127: Reserved
190 */
191 struct root_entry {
192 u64 lo;
193 u64 hi;
194 };
195 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
196
197 /*
198 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
199 * if marked present.
200 */
201 static phys_addr_t root_entry_lctp(struct root_entry *re)
202 {
203 if (!(re->lo & 1))
204 return 0;
205
206 return re->lo & VTD_PAGE_MASK;
207 }
208
209 /*
210 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
211 * if marked present.
212 */
213 static phys_addr_t root_entry_uctp(struct root_entry *re)
214 {
215 if (!(re->hi & 1))
216 return 0;
217
218 return re->hi & VTD_PAGE_MASK;
219 }
220 /*
221 * low 64 bits:
222 * 0: present
223 * 1: fault processing disable
224 * 2-3: translation type
225 * 12-63: address space root
226 * high 64 bits:
227 * 0-2: address width
228 * 3-6: aval
229 * 8-23: domain id
230 */
231 struct context_entry {
232 u64 lo;
233 u64 hi;
234 };
235
236 static inline void context_clear_pasid_enable(struct context_entry *context)
237 {
238 context->lo &= ~(1ULL << 11);
239 }
240
241 static inline bool context_pasid_enabled(struct context_entry *context)
242 {
243 return !!(context->lo & (1ULL << 11));
244 }
245
246 static inline void context_set_copied(struct context_entry *context)
247 {
248 context->hi |= (1ull << 3);
249 }
250
251 static inline bool context_copied(struct context_entry *context)
252 {
253 return !!(context->hi & (1ULL << 3));
254 }
255
256 static inline bool __context_present(struct context_entry *context)
257 {
258 return (context->lo & 1);
259 }
260
261 static inline bool context_present(struct context_entry *context)
262 {
263 return context_pasid_enabled(context) ?
264 __context_present(context) :
265 __context_present(context) && !context_copied(context);
266 }
267
268 static inline void context_set_present(struct context_entry *context)
269 {
270 context->lo |= 1;
271 }
272
273 static inline void context_set_fault_enable(struct context_entry *context)
274 {
275 context->lo &= (((u64)-1) << 2) | 1;
276 }
277
278 static inline void context_set_translation_type(struct context_entry *context,
279 unsigned long value)
280 {
281 context->lo &= (((u64)-1) << 4) | 3;
282 context->lo |= (value & 3) << 2;
283 }
284
285 static inline void context_set_address_root(struct context_entry *context,
286 unsigned long value)
287 {
288 context->lo &= ~VTD_PAGE_MASK;
289 context->lo |= value & VTD_PAGE_MASK;
290 }
291
292 static inline void context_set_address_width(struct context_entry *context,
293 unsigned long value)
294 {
295 context->hi |= value & 7;
296 }
297
298 static inline void context_set_domain_id(struct context_entry *context,
299 unsigned long value)
300 {
301 context->hi |= (value & ((1 << 16) - 1)) << 8;
302 }
303
304 static inline int context_domain_id(struct context_entry *c)
305 {
306 return((c->hi >> 8) & 0xffff);
307 }
308
309 static inline void context_clear_entry(struct context_entry *context)
310 {
311 context->lo = 0;
312 context->hi = 0;
313 }
314
315 /*
316 * 0: readable
317 * 1: writable
318 * 2-6: reserved
319 * 7: super page
320 * 8-10: available
321 * 11: snoop behavior
322 * 12-63: Host physcial address
323 */
324 struct dma_pte {
325 u64 val;
326 };
327
328 static inline void dma_clear_pte(struct dma_pte *pte)
329 {
330 pte->val = 0;
331 }
332
333 static inline u64 dma_pte_addr(struct dma_pte *pte)
334 {
335 #ifdef CONFIG_64BIT
336 return pte->val & VTD_PAGE_MASK;
337 #else
338 /* Must have a full atomic 64-bit read */
339 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
340 #endif
341 }
342
343 static inline bool dma_pte_present(struct dma_pte *pte)
344 {
345 return (pte->val & 3) != 0;
346 }
347
348 static inline bool dma_pte_superpage(struct dma_pte *pte)
349 {
350 return (pte->val & DMA_PTE_LARGE_PAGE);
351 }
352
353 static inline int first_pte_in_page(struct dma_pte *pte)
354 {
355 return !((unsigned long)pte & ~VTD_PAGE_MASK);
356 }
357
358 /*
359 * This domain is a statically identity mapping domain.
360 * 1. This domain creats a static 1:1 mapping to all usable memory.
361 * 2. It maps to each iommu if successful.
362 * 3. Each iommu mapps to this domain if successful.
363 */
364 static struct dmar_domain *si_domain;
365 static int hw_pass_through = 1;
366
367 /* domain represents a virtual machine, more than one devices
368 * across iommus may be owned in one domain, e.g. kvm guest.
369 */
370 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
371
372 /* si_domain contains mulitple devices */
373 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
374
375 struct dmar_domain {
376 int id; /* domain id */
377 int nid; /* node id */
378 DECLARE_BITMAP(iommu_bmp, DMAR_UNITS_SUPPORTED);
379 /* bitmap of iommus this domain uses*/
380
381 struct list_head devices; /* all devices' list */
382 struct iova_domain iovad; /* iova's that belong to this domain */
383
384 struct dma_pte *pgd; /* virtual address */
385 int gaw; /* max guest address width */
386
387 /* adjusted guest address width, 0 is level 2 30-bit */
388 int agaw;
389
390 int flags; /* flags to find out type of domain */
391
392 int iommu_coherency;/* indicate coherency of iommu access */
393 int iommu_snooping; /* indicate snooping control feature*/
394 int iommu_count; /* reference count of iommu */
395 int iommu_superpage;/* Level of superpages supported:
396 0 == 4KiB (no superpages), 1 == 2MiB,
397 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
398 spinlock_t iommu_lock; /* protect iommu set in domain */
399 u64 max_addr; /* maximum mapped address */
400
401 struct iommu_domain domain; /* generic domain data structure for
402 iommu core */
403 };
404
405 /* PCI domain-device relationship */
406 struct device_domain_info {
407 struct list_head link; /* link to domain siblings */
408 struct list_head global; /* link to global list */
409 u8 bus; /* PCI bus number */
410 u8 devfn; /* PCI devfn number */
411 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
412 struct intel_iommu *iommu; /* IOMMU used by this device */
413 struct dmar_domain *domain; /* pointer to domain */
414 };
415
416 struct dmar_rmrr_unit {
417 struct list_head list; /* list of rmrr units */
418 struct acpi_dmar_header *hdr; /* ACPI header */
419 u64 base_address; /* reserved base address*/
420 u64 end_address; /* reserved end address */
421 struct dmar_dev_scope *devices; /* target devices */
422 int devices_cnt; /* target device count */
423 };
424
425 struct dmar_atsr_unit {
426 struct list_head list; /* list of ATSR units */
427 struct acpi_dmar_header *hdr; /* ACPI header */
428 struct dmar_dev_scope *devices; /* target devices */
429 int devices_cnt; /* target device count */
430 u8 include_all:1; /* include all ports */
431 };
432
433 static LIST_HEAD(dmar_atsr_units);
434 static LIST_HEAD(dmar_rmrr_units);
435
436 #define for_each_rmrr_units(rmrr) \
437 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
438
439 static void flush_unmaps_timeout(unsigned long data);
440
441 static DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
442
443 #define HIGH_WATER_MARK 250
444 struct deferred_flush_tables {
445 int next;
446 struct iova *iova[HIGH_WATER_MARK];
447 struct dmar_domain *domain[HIGH_WATER_MARK];
448 struct page *freelist[HIGH_WATER_MARK];
449 };
450
451 static struct deferred_flush_tables *deferred_flush;
452
453 /* bitmap for indexing intel_iommus */
454 static int g_num_of_iommus;
455
456 static DEFINE_SPINLOCK(async_umap_flush_lock);
457 static LIST_HEAD(unmaps_to_do);
458
459 static int timer_on;
460 static long list_size;
461
462 static void domain_exit(struct dmar_domain *domain);
463 static void domain_remove_dev_info(struct dmar_domain *domain);
464 static void domain_remove_one_dev_info(struct dmar_domain *domain,
465 struct device *dev);
466 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
467 struct device *dev);
468 static int domain_detach_iommu(struct dmar_domain *domain,
469 struct intel_iommu *iommu);
470
471 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
472 int dmar_disabled = 0;
473 #else
474 int dmar_disabled = 1;
475 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
476
477 int intel_iommu_enabled = 0;
478 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
479
480 static int dmar_map_gfx = 1;
481 static int dmar_forcedac;
482 static int intel_iommu_strict;
483 static int intel_iommu_superpage = 1;
484 static int intel_iommu_ecs = 1;
485
486 /* We only actually use ECS when PASID support (on the new bit 40)
487 * is also advertised. Some early implementations — the ones with
488 * PASID support on bit 28 — have issues even when we *only* use
489 * extended root/context tables. */
490 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
491 ecap_pasid(iommu->ecap))
492
493 int intel_iommu_gfx_mapped;
494 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
495
496 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
497 static DEFINE_SPINLOCK(device_domain_lock);
498 static LIST_HEAD(device_domain_list);
499
500 static const struct iommu_ops intel_iommu_ops;
501
502 static bool translation_pre_enabled(struct intel_iommu *iommu)
503 {
504 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
505 }
506
507 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
508 {
509 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
510 }
511
512 static void init_translation_status(struct intel_iommu *iommu)
513 {
514 u32 gsts;
515
516 gsts = readl(iommu->reg + DMAR_GSTS_REG);
517 if (gsts & DMA_GSTS_TES)
518 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
519 }
520
521 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
522 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
523 {
524 return container_of(dom, struct dmar_domain, domain);
525 }
526
527 static int __init intel_iommu_setup(char *str)
528 {
529 if (!str)
530 return -EINVAL;
531 while (*str) {
532 if (!strncmp(str, "on", 2)) {
533 dmar_disabled = 0;
534 pr_info("IOMMU enabled\n");
535 } else if (!strncmp(str, "off", 3)) {
536 dmar_disabled = 1;
537 pr_info("IOMMU disabled\n");
538 } else if (!strncmp(str, "igfx_off", 8)) {
539 dmar_map_gfx = 0;
540 pr_info("Disable GFX device mapping\n");
541 } else if (!strncmp(str, "forcedac", 8)) {
542 pr_info("Forcing DAC for PCI devices\n");
543 dmar_forcedac = 1;
544 } else if (!strncmp(str, "strict", 6)) {
545 pr_info("Disable batched IOTLB flush\n");
546 intel_iommu_strict = 1;
547 } else if (!strncmp(str, "sp_off", 6)) {
548 pr_info("Disable supported super page\n");
549 intel_iommu_superpage = 0;
550 } else if (!strncmp(str, "ecs_off", 7)) {
551 printk(KERN_INFO
552 "Intel-IOMMU: disable extended context table support\n");
553 intel_iommu_ecs = 0;
554 }
555
556 str += strcspn(str, ",");
557 while (*str == ',')
558 str++;
559 }
560 return 0;
561 }
562 __setup("intel_iommu=", intel_iommu_setup);
563
564 static struct kmem_cache *iommu_domain_cache;
565 static struct kmem_cache *iommu_devinfo_cache;
566
567 static inline void *alloc_pgtable_page(int node)
568 {
569 struct page *page;
570 void *vaddr = NULL;
571
572 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
573 if (page)
574 vaddr = page_address(page);
575 return vaddr;
576 }
577
578 static inline void free_pgtable_page(void *vaddr)
579 {
580 free_page((unsigned long)vaddr);
581 }
582
583 static inline void *alloc_domain_mem(void)
584 {
585 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
586 }
587
588 static void free_domain_mem(void *vaddr)
589 {
590 kmem_cache_free(iommu_domain_cache, vaddr);
591 }
592
593 static inline void * alloc_devinfo_mem(void)
594 {
595 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
596 }
597
598 static inline void free_devinfo_mem(void *vaddr)
599 {
600 kmem_cache_free(iommu_devinfo_cache, vaddr);
601 }
602
603 static inline int domain_type_is_vm(struct dmar_domain *domain)
604 {
605 return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
606 }
607
608 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
609 {
610 return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
611 DOMAIN_FLAG_STATIC_IDENTITY);
612 }
613
614 static inline int domain_pfn_supported(struct dmar_domain *domain,
615 unsigned long pfn)
616 {
617 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
618
619 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
620 }
621
622 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
623 {
624 unsigned long sagaw;
625 int agaw = -1;
626
627 sagaw = cap_sagaw(iommu->cap);
628 for (agaw = width_to_agaw(max_gaw);
629 agaw >= 0; agaw--) {
630 if (test_bit(agaw, &sagaw))
631 break;
632 }
633
634 return agaw;
635 }
636
637 /*
638 * Calculate max SAGAW for each iommu.
639 */
640 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
641 {
642 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
643 }
644
645 /*
646 * calculate agaw for each iommu.
647 * "SAGAW" may be different across iommus, use a default agaw, and
648 * get a supported less agaw for iommus that don't support the default agaw.
649 */
650 int iommu_calculate_agaw(struct intel_iommu *iommu)
651 {
652 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
653 }
654
655 /* This functionin only returns single iommu in a domain */
656 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
657 {
658 int iommu_id;
659
660 /* si_domain and vm domain should not get here. */
661 BUG_ON(domain_type_is_vm_or_si(domain));
662 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
663 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
664 return NULL;
665
666 return g_iommus[iommu_id];
667 }
668
669 static void domain_update_iommu_coherency(struct dmar_domain *domain)
670 {
671 struct dmar_drhd_unit *drhd;
672 struct intel_iommu *iommu;
673 bool found = false;
674 int i;
675
676 domain->iommu_coherency = 1;
677
678 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
679 found = true;
680 if (!ecap_coherent(g_iommus[i]->ecap)) {
681 domain->iommu_coherency = 0;
682 break;
683 }
684 }
685 if (found)
686 return;
687
688 /* No hardware attached; use lowest common denominator */
689 rcu_read_lock();
690 for_each_active_iommu(iommu, drhd) {
691 if (!ecap_coherent(iommu->ecap)) {
692 domain->iommu_coherency = 0;
693 break;
694 }
695 }
696 rcu_read_unlock();
697 }
698
699 static int domain_update_iommu_snooping(struct intel_iommu *skip)
700 {
701 struct dmar_drhd_unit *drhd;
702 struct intel_iommu *iommu;
703 int ret = 1;
704
705 rcu_read_lock();
706 for_each_active_iommu(iommu, drhd) {
707 if (iommu != skip) {
708 if (!ecap_sc_support(iommu->ecap)) {
709 ret = 0;
710 break;
711 }
712 }
713 }
714 rcu_read_unlock();
715
716 return ret;
717 }
718
719 static int domain_update_iommu_superpage(struct intel_iommu *skip)
720 {
721 struct dmar_drhd_unit *drhd;
722 struct intel_iommu *iommu;
723 int mask = 0xf;
724
725 if (!intel_iommu_superpage) {
726 return 0;
727 }
728
729 /* set iommu_superpage to the smallest common denominator */
730 rcu_read_lock();
731 for_each_active_iommu(iommu, drhd) {
732 if (iommu != skip) {
733 mask &= cap_super_page_val(iommu->cap);
734 if (!mask)
735 break;
736 }
737 }
738 rcu_read_unlock();
739
740 return fls(mask);
741 }
742
743 /* Some capabilities may be different across iommus */
744 static void domain_update_iommu_cap(struct dmar_domain *domain)
745 {
746 domain_update_iommu_coherency(domain);
747 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
748 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
749 }
750
751 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
752 u8 bus, u8 devfn, int alloc)
753 {
754 struct root_entry *root = &iommu->root_entry[bus];
755 struct context_entry *context;
756 u64 *entry;
757
758 if (ecs_enabled(iommu)) {
759 if (devfn >= 0x80) {
760 devfn -= 0x80;
761 entry = &root->hi;
762 }
763 devfn *= 2;
764 }
765 entry = &root->lo;
766 if (*entry & 1)
767 context = phys_to_virt(*entry & VTD_PAGE_MASK);
768 else {
769 unsigned long phy_addr;
770 if (!alloc)
771 return NULL;
772
773 context = alloc_pgtable_page(iommu->node);
774 if (!context)
775 return NULL;
776
777 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
778 phy_addr = virt_to_phys((void *)context);
779 *entry = phy_addr | 1;
780 __iommu_flush_cache(iommu, entry, sizeof(*entry));
781 }
782 return &context[devfn];
783 }
784
785 static int iommu_dummy(struct device *dev)
786 {
787 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
788 }
789
790 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
791 {
792 struct dmar_drhd_unit *drhd = NULL;
793 struct intel_iommu *iommu;
794 struct device *tmp;
795 struct pci_dev *ptmp, *pdev = NULL;
796 u16 segment = 0;
797 int i;
798
799 if (iommu_dummy(dev))
800 return NULL;
801
802 if (dev_is_pci(dev)) {
803 pdev = to_pci_dev(dev);
804 segment = pci_domain_nr(pdev->bus);
805 } else if (has_acpi_companion(dev))
806 dev = &ACPI_COMPANION(dev)->dev;
807
808 rcu_read_lock();
809 for_each_active_iommu(iommu, drhd) {
810 if (pdev && segment != drhd->segment)
811 continue;
812
813 for_each_active_dev_scope(drhd->devices,
814 drhd->devices_cnt, i, tmp) {
815 if (tmp == dev) {
816 *bus = drhd->devices[i].bus;
817 *devfn = drhd->devices[i].devfn;
818 goto out;
819 }
820
821 if (!pdev || !dev_is_pci(tmp))
822 continue;
823
824 ptmp = to_pci_dev(tmp);
825 if (ptmp->subordinate &&
826 ptmp->subordinate->number <= pdev->bus->number &&
827 ptmp->subordinate->busn_res.end >= pdev->bus->number)
828 goto got_pdev;
829 }
830
831 if (pdev && drhd->include_all) {
832 got_pdev:
833 *bus = pdev->bus->number;
834 *devfn = pdev->devfn;
835 goto out;
836 }
837 }
838 iommu = NULL;
839 out:
840 rcu_read_unlock();
841
842 return iommu;
843 }
844
845 static void domain_flush_cache(struct dmar_domain *domain,
846 void *addr, int size)
847 {
848 if (!domain->iommu_coherency)
849 clflush_cache_range(addr, size);
850 }
851
852 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
853 {
854 struct context_entry *context;
855 int ret = 0;
856 unsigned long flags;
857
858 spin_lock_irqsave(&iommu->lock, flags);
859 context = iommu_context_addr(iommu, bus, devfn, 0);
860 if (context)
861 ret = context_present(context);
862 spin_unlock_irqrestore(&iommu->lock, flags);
863 return ret;
864 }
865
866 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
867 {
868 struct context_entry *context;
869 unsigned long flags;
870
871 spin_lock_irqsave(&iommu->lock, flags);
872 context = iommu_context_addr(iommu, bus, devfn, 0);
873 if (context) {
874 context_clear_entry(context);
875 __iommu_flush_cache(iommu, context, sizeof(*context));
876 }
877 spin_unlock_irqrestore(&iommu->lock, flags);
878 }
879
880 static void free_context_table(struct intel_iommu *iommu)
881 {
882 int i;
883 unsigned long flags;
884 struct context_entry *context;
885
886 spin_lock_irqsave(&iommu->lock, flags);
887 if (!iommu->root_entry) {
888 goto out;
889 }
890 for (i = 0; i < ROOT_ENTRY_NR; i++) {
891 context = iommu_context_addr(iommu, i, 0, 0);
892 if (context)
893 free_pgtable_page(context);
894
895 if (!ecs_enabled(iommu))
896 continue;
897
898 context = iommu_context_addr(iommu, i, 0x80, 0);
899 if (context)
900 free_pgtable_page(context);
901
902 }
903 free_pgtable_page(iommu->root_entry);
904 iommu->root_entry = NULL;
905 out:
906 spin_unlock_irqrestore(&iommu->lock, flags);
907 }
908
909 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
910 unsigned long pfn, int *target_level)
911 {
912 struct dma_pte *parent, *pte = NULL;
913 int level = agaw_to_level(domain->agaw);
914 int offset;
915
916 BUG_ON(!domain->pgd);
917
918 if (!domain_pfn_supported(domain, pfn))
919 /* Address beyond IOMMU's addressing capabilities. */
920 return NULL;
921
922 parent = domain->pgd;
923
924 while (1) {
925 void *tmp_page;
926
927 offset = pfn_level_offset(pfn, level);
928 pte = &parent[offset];
929 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
930 break;
931 if (level == *target_level)
932 break;
933
934 if (!dma_pte_present(pte)) {
935 uint64_t pteval;
936
937 tmp_page = alloc_pgtable_page(domain->nid);
938
939 if (!tmp_page)
940 return NULL;
941
942 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
943 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
944 if (cmpxchg64(&pte->val, 0ULL, pteval))
945 /* Someone else set it while we were thinking; use theirs. */
946 free_pgtable_page(tmp_page);
947 else
948 domain_flush_cache(domain, pte, sizeof(*pte));
949 }
950 if (level == 1)
951 break;
952
953 parent = phys_to_virt(dma_pte_addr(pte));
954 level--;
955 }
956
957 if (!*target_level)
958 *target_level = level;
959
960 return pte;
961 }
962
963
964 /* return address's pte at specific level */
965 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
966 unsigned long pfn,
967 int level, int *large_page)
968 {
969 struct dma_pte *parent, *pte = NULL;
970 int total = agaw_to_level(domain->agaw);
971 int offset;
972
973 parent = domain->pgd;
974 while (level <= total) {
975 offset = pfn_level_offset(pfn, total);
976 pte = &parent[offset];
977 if (level == total)
978 return pte;
979
980 if (!dma_pte_present(pte)) {
981 *large_page = total;
982 break;
983 }
984
985 if (dma_pte_superpage(pte)) {
986 *large_page = total;
987 return pte;
988 }
989
990 parent = phys_to_virt(dma_pte_addr(pte));
991 total--;
992 }
993 return NULL;
994 }
995
996 /* clear last level pte, a tlb flush should be followed */
997 static void dma_pte_clear_range(struct dmar_domain *domain,
998 unsigned long start_pfn,
999 unsigned long last_pfn)
1000 {
1001 unsigned int large_page = 1;
1002 struct dma_pte *first_pte, *pte;
1003
1004 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1005 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1006 BUG_ON(start_pfn > last_pfn);
1007
1008 /* we don't need lock here; nobody else touches the iova range */
1009 do {
1010 large_page = 1;
1011 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1012 if (!pte) {
1013 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1014 continue;
1015 }
1016 do {
1017 dma_clear_pte(pte);
1018 start_pfn += lvl_to_nr_pages(large_page);
1019 pte++;
1020 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1021
1022 domain_flush_cache(domain, first_pte,
1023 (void *)pte - (void *)first_pte);
1024
1025 } while (start_pfn && start_pfn <= last_pfn);
1026 }
1027
1028 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1029 struct dma_pte *pte, unsigned long pfn,
1030 unsigned long start_pfn, unsigned long last_pfn)
1031 {
1032 pfn = max(start_pfn, pfn);
1033 pte = &pte[pfn_level_offset(pfn, level)];
1034
1035 do {
1036 unsigned long level_pfn;
1037 struct dma_pte *level_pte;
1038
1039 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1040 goto next;
1041
1042 level_pfn = pfn & level_mask(level - 1);
1043 level_pte = phys_to_virt(dma_pte_addr(pte));
1044
1045 if (level > 2)
1046 dma_pte_free_level(domain, level - 1, level_pte,
1047 level_pfn, start_pfn, last_pfn);
1048
1049 /* If range covers entire pagetable, free it */
1050 if (!(start_pfn > level_pfn ||
1051 last_pfn < level_pfn + level_size(level) - 1)) {
1052 dma_clear_pte(pte);
1053 domain_flush_cache(domain, pte, sizeof(*pte));
1054 free_pgtable_page(level_pte);
1055 }
1056 next:
1057 pfn += level_size(level);
1058 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1059 }
1060
1061 /* free page table pages. last level pte should already be cleared */
1062 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1063 unsigned long start_pfn,
1064 unsigned long last_pfn)
1065 {
1066 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1067 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1068 BUG_ON(start_pfn > last_pfn);
1069
1070 dma_pte_clear_range(domain, start_pfn, last_pfn);
1071
1072 /* We don't need lock here; nobody else touches the iova range */
1073 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1074 domain->pgd, 0, start_pfn, last_pfn);
1075
1076 /* free pgd */
1077 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1078 free_pgtable_page(domain->pgd);
1079 domain->pgd = NULL;
1080 }
1081 }
1082
1083 /* When a page at a given level is being unlinked from its parent, we don't
1084 need to *modify* it at all. All we need to do is make a list of all the
1085 pages which can be freed just as soon as we've flushed the IOTLB and we
1086 know the hardware page-walk will no longer touch them.
1087 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1088 be freed. */
1089 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1090 int level, struct dma_pte *pte,
1091 struct page *freelist)
1092 {
1093 struct page *pg;
1094
1095 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1096 pg->freelist = freelist;
1097 freelist = pg;
1098
1099 if (level == 1)
1100 return freelist;
1101
1102 pte = page_address(pg);
1103 do {
1104 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1105 freelist = dma_pte_list_pagetables(domain, level - 1,
1106 pte, freelist);
1107 pte++;
1108 } while (!first_pte_in_page(pte));
1109
1110 return freelist;
1111 }
1112
1113 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1114 struct dma_pte *pte, unsigned long pfn,
1115 unsigned long start_pfn,
1116 unsigned long last_pfn,
1117 struct page *freelist)
1118 {
1119 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1120
1121 pfn = max(start_pfn, pfn);
1122 pte = &pte[pfn_level_offset(pfn, level)];
1123
1124 do {
1125 unsigned long level_pfn;
1126
1127 if (!dma_pte_present(pte))
1128 goto next;
1129
1130 level_pfn = pfn & level_mask(level);
1131
1132 /* If range covers entire pagetable, free it */
1133 if (start_pfn <= level_pfn &&
1134 last_pfn >= level_pfn + level_size(level) - 1) {
1135 /* These suborbinate page tables are going away entirely. Don't
1136 bother to clear them; we're just going to *free* them. */
1137 if (level > 1 && !dma_pte_superpage(pte))
1138 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1139
1140 dma_clear_pte(pte);
1141 if (!first_pte)
1142 first_pte = pte;
1143 last_pte = pte;
1144 } else if (level > 1) {
1145 /* Recurse down into a level that isn't *entirely* obsolete */
1146 freelist = dma_pte_clear_level(domain, level - 1,
1147 phys_to_virt(dma_pte_addr(pte)),
1148 level_pfn, start_pfn, last_pfn,
1149 freelist);
1150 }
1151 next:
1152 pfn += level_size(level);
1153 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1154
1155 if (first_pte)
1156 domain_flush_cache(domain, first_pte,
1157 (void *)++last_pte - (void *)first_pte);
1158
1159 return freelist;
1160 }
1161
1162 /* We can't just free the pages because the IOMMU may still be walking
1163 the page tables, and may have cached the intermediate levels. The
1164 pages can only be freed after the IOTLB flush has been done. */
1165 struct page *domain_unmap(struct dmar_domain *domain,
1166 unsigned long start_pfn,
1167 unsigned long last_pfn)
1168 {
1169 struct page *freelist = NULL;
1170
1171 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1172 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1173 BUG_ON(start_pfn > last_pfn);
1174
1175 /* we don't need lock here; nobody else touches the iova range */
1176 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1177 domain->pgd, 0, start_pfn, last_pfn, NULL);
1178
1179 /* free pgd */
1180 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1181 struct page *pgd_page = virt_to_page(domain->pgd);
1182 pgd_page->freelist = freelist;
1183 freelist = pgd_page;
1184
1185 domain->pgd = NULL;
1186 }
1187
1188 return freelist;
1189 }
1190
1191 void dma_free_pagelist(struct page *freelist)
1192 {
1193 struct page *pg;
1194
1195 while ((pg = freelist)) {
1196 freelist = pg->freelist;
1197 free_pgtable_page(page_address(pg));
1198 }
1199 }
1200
1201 /* iommu handling */
1202 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1203 {
1204 struct root_entry *root;
1205 unsigned long flags;
1206
1207 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1208 if (!root) {
1209 pr_err("Allocating root entry for %s failed\n",
1210 iommu->name);
1211 return -ENOMEM;
1212 }
1213
1214 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1215
1216 spin_lock_irqsave(&iommu->lock, flags);
1217 iommu->root_entry = root;
1218 spin_unlock_irqrestore(&iommu->lock, flags);
1219
1220 return 0;
1221 }
1222
1223 static void iommu_set_root_entry(struct intel_iommu *iommu)
1224 {
1225 u64 addr;
1226 u32 sts;
1227 unsigned long flag;
1228
1229 addr = virt_to_phys(iommu->root_entry);
1230 if (ecs_enabled(iommu))
1231 addr |= DMA_RTADDR_RTT;
1232
1233 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1234 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1235
1236 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1237
1238 /* Make sure hardware complete it */
1239 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1240 readl, (sts & DMA_GSTS_RTPS), sts);
1241
1242 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1243 }
1244
1245 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1246 {
1247 u32 val;
1248 unsigned long flag;
1249
1250 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1251 return;
1252
1253 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1254 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1255
1256 /* Make sure hardware complete it */
1257 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1258 readl, (!(val & DMA_GSTS_WBFS)), val);
1259
1260 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1261 }
1262
1263 /* return value determine if we need a write buffer flush */
1264 static void __iommu_flush_context(struct intel_iommu *iommu,
1265 u16 did, u16 source_id, u8 function_mask,
1266 u64 type)
1267 {
1268 u64 val = 0;
1269 unsigned long flag;
1270
1271 switch (type) {
1272 case DMA_CCMD_GLOBAL_INVL:
1273 val = DMA_CCMD_GLOBAL_INVL;
1274 break;
1275 case DMA_CCMD_DOMAIN_INVL:
1276 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1277 break;
1278 case DMA_CCMD_DEVICE_INVL:
1279 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1280 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1281 break;
1282 default:
1283 BUG();
1284 }
1285 val |= DMA_CCMD_ICC;
1286
1287 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1288 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1289
1290 /* Make sure hardware complete it */
1291 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1292 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1293
1294 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1295 }
1296
1297 /* return value determine if we need a write buffer flush */
1298 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1299 u64 addr, unsigned int size_order, u64 type)
1300 {
1301 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1302 u64 val = 0, val_iva = 0;
1303 unsigned long flag;
1304
1305 switch (type) {
1306 case DMA_TLB_GLOBAL_FLUSH:
1307 /* global flush doesn't need set IVA_REG */
1308 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1309 break;
1310 case DMA_TLB_DSI_FLUSH:
1311 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1312 break;
1313 case DMA_TLB_PSI_FLUSH:
1314 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1315 /* IH bit is passed in as part of address */
1316 val_iva = size_order | addr;
1317 break;
1318 default:
1319 BUG();
1320 }
1321 /* Note: set drain read/write */
1322 #if 0
1323 /*
1324 * This is probably to be super secure.. Looks like we can
1325 * ignore it without any impact.
1326 */
1327 if (cap_read_drain(iommu->cap))
1328 val |= DMA_TLB_READ_DRAIN;
1329 #endif
1330 if (cap_write_drain(iommu->cap))
1331 val |= DMA_TLB_WRITE_DRAIN;
1332
1333 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1334 /* Note: Only uses first TLB reg currently */
1335 if (val_iva)
1336 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1337 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1338
1339 /* Make sure hardware complete it */
1340 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1341 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1342
1343 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1344
1345 /* check IOTLB invalidation granularity */
1346 if (DMA_TLB_IAIG(val) == 0)
1347 pr_err("Flush IOTLB failed\n");
1348 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1349 pr_debug("TLB flush request %Lx, actual %Lx\n",
1350 (unsigned long long)DMA_TLB_IIRG(type),
1351 (unsigned long long)DMA_TLB_IAIG(val));
1352 }
1353
1354 static struct device_domain_info *
1355 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1356 u8 bus, u8 devfn)
1357 {
1358 bool found = false;
1359 unsigned long flags;
1360 struct device_domain_info *info;
1361 struct pci_dev *pdev;
1362
1363 if (!ecap_dev_iotlb_support(iommu->ecap))
1364 return NULL;
1365
1366 if (!iommu->qi)
1367 return NULL;
1368
1369 spin_lock_irqsave(&device_domain_lock, flags);
1370 list_for_each_entry(info, &domain->devices, link)
1371 if (info->iommu == iommu && info->bus == bus &&
1372 info->devfn == devfn) {
1373 found = true;
1374 break;
1375 }
1376 spin_unlock_irqrestore(&device_domain_lock, flags);
1377
1378 if (!found || !info->dev || !dev_is_pci(info->dev))
1379 return NULL;
1380
1381 pdev = to_pci_dev(info->dev);
1382
1383 if (!pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS))
1384 return NULL;
1385
1386 if (!dmar_find_matched_atsr_unit(pdev))
1387 return NULL;
1388
1389 return info;
1390 }
1391
1392 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1393 {
1394 if (!info || !dev_is_pci(info->dev))
1395 return;
1396
1397 pci_enable_ats(to_pci_dev(info->dev), VTD_PAGE_SHIFT);
1398 }
1399
1400 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1401 {
1402 if (!info->dev || !dev_is_pci(info->dev) ||
1403 !pci_ats_enabled(to_pci_dev(info->dev)))
1404 return;
1405
1406 pci_disable_ats(to_pci_dev(info->dev));
1407 }
1408
1409 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1410 u64 addr, unsigned mask)
1411 {
1412 u16 sid, qdep;
1413 unsigned long flags;
1414 struct device_domain_info *info;
1415
1416 spin_lock_irqsave(&device_domain_lock, flags);
1417 list_for_each_entry(info, &domain->devices, link) {
1418 struct pci_dev *pdev;
1419 if (!info->dev || !dev_is_pci(info->dev))
1420 continue;
1421
1422 pdev = to_pci_dev(info->dev);
1423 if (!pci_ats_enabled(pdev))
1424 continue;
1425
1426 sid = info->bus << 8 | info->devfn;
1427 qdep = pci_ats_queue_depth(pdev);
1428 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1429 }
1430 spin_unlock_irqrestore(&device_domain_lock, flags);
1431 }
1432
1433 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1434 unsigned long pfn, unsigned int pages, int ih, int map)
1435 {
1436 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1437 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1438
1439 BUG_ON(pages == 0);
1440
1441 if (ih)
1442 ih = 1 << 6;
1443 /*
1444 * Fallback to domain selective flush if no PSI support or the size is
1445 * too big.
1446 * PSI requires page size to be 2 ^ x, and the base address is naturally
1447 * aligned to the size
1448 */
1449 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1450 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1451 DMA_TLB_DSI_FLUSH);
1452 else
1453 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1454 DMA_TLB_PSI_FLUSH);
1455
1456 /*
1457 * In caching mode, changes of pages from non-present to present require
1458 * flush. However, device IOTLB doesn't need to be flushed in this case.
1459 */
1460 if (!cap_caching_mode(iommu->cap) || !map)
1461 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1462 }
1463
1464 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1465 {
1466 u32 pmen;
1467 unsigned long flags;
1468
1469 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1470 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1471 pmen &= ~DMA_PMEN_EPM;
1472 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1473
1474 /* wait for the protected region status bit to clear */
1475 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1476 readl, !(pmen & DMA_PMEN_PRS), pmen);
1477
1478 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1479 }
1480
1481 static void iommu_enable_translation(struct intel_iommu *iommu)
1482 {
1483 u32 sts;
1484 unsigned long flags;
1485
1486 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1487 iommu->gcmd |= DMA_GCMD_TE;
1488 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1489
1490 /* Make sure hardware complete it */
1491 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1492 readl, (sts & DMA_GSTS_TES), sts);
1493
1494 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1495 }
1496
1497 static void iommu_disable_translation(struct intel_iommu *iommu)
1498 {
1499 u32 sts;
1500 unsigned long flag;
1501
1502 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1503 iommu->gcmd &= ~DMA_GCMD_TE;
1504 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1505
1506 /* Make sure hardware complete it */
1507 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1508 readl, (!(sts & DMA_GSTS_TES)), sts);
1509
1510 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1511 }
1512
1513
1514 static int iommu_init_domains(struct intel_iommu *iommu)
1515 {
1516 unsigned long ndomains;
1517 unsigned long nlongs;
1518
1519 ndomains = cap_ndoms(iommu->cap);
1520 pr_debug("%s: Number of Domains supported <%ld>\n",
1521 iommu->name, ndomains);
1522 nlongs = BITS_TO_LONGS(ndomains);
1523
1524 spin_lock_init(&iommu->lock);
1525
1526 /* TBD: there might be 64K domains,
1527 * consider other allocation for future chip
1528 */
1529 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1530 if (!iommu->domain_ids) {
1531 pr_err("%s: Allocating domain id array failed\n",
1532 iommu->name);
1533 return -ENOMEM;
1534 }
1535 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1536 GFP_KERNEL);
1537 if (!iommu->domains) {
1538 pr_err("%s: Allocating domain array failed\n",
1539 iommu->name);
1540 kfree(iommu->domain_ids);
1541 iommu->domain_ids = NULL;
1542 return -ENOMEM;
1543 }
1544
1545 /*
1546 * if Caching mode is set, then invalid translations are tagged
1547 * with domainid 0. Hence we need to pre-allocate it.
1548 */
1549 if (cap_caching_mode(iommu->cap))
1550 set_bit(0, iommu->domain_ids);
1551 return 0;
1552 }
1553
1554 static void disable_dmar_iommu(struct intel_iommu *iommu)
1555 {
1556 struct dmar_domain *domain;
1557 int i;
1558
1559 if ((iommu->domains) && (iommu->domain_ids)) {
1560 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1561 /*
1562 * Domain id 0 is reserved for invalid translation
1563 * if hardware supports caching mode.
1564 */
1565 if (cap_caching_mode(iommu->cap) && i == 0)
1566 continue;
1567
1568 domain = iommu->domains[i];
1569 clear_bit(i, iommu->domain_ids);
1570 if (domain_detach_iommu(domain, iommu) == 0 &&
1571 !domain_type_is_vm(domain))
1572 domain_exit(domain);
1573 }
1574 }
1575
1576 if (iommu->gcmd & DMA_GCMD_TE)
1577 iommu_disable_translation(iommu);
1578 }
1579
1580 static void free_dmar_iommu(struct intel_iommu *iommu)
1581 {
1582 if ((iommu->domains) && (iommu->domain_ids)) {
1583 kfree(iommu->domains);
1584 kfree(iommu->domain_ids);
1585 iommu->domains = NULL;
1586 iommu->domain_ids = NULL;
1587 }
1588
1589 g_iommus[iommu->seq_id] = NULL;
1590
1591 /* free context mapping */
1592 free_context_table(iommu);
1593 }
1594
1595 static struct dmar_domain *alloc_domain(int flags)
1596 {
1597 /* domain id for virtual machine, it won't be set in context */
1598 static atomic_t vm_domid = ATOMIC_INIT(0);
1599 struct dmar_domain *domain;
1600
1601 domain = alloc_domain_mem();
1602 if (!domain)
1603 return NULL;
1604
1605 memset(domain, 0, sizeof(*domain));
1606 domain->nid = -1;
1607 domain->flags = flags;
1608 spin_lock_init(&domain->iommu_lock);
1609 INIT_LIST_HEAD(&domain->devices);
1610 if (flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1611 domain->id = atomic_inc_return(&vm_domid);
1612
1613 return domain;
1614 }
1615
1616 static int __iommu_attach_domain(struct dmar_domain *domain,
1617 struct intel_iommu *iommu)
1618 {
1619 int num;
1620 unsigned long ndomains;
1621
1622 ndomains = cap_ndoms(iommu->cap);
1623 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1624 if (num < ndomains) {
1625 set_bit(num, iommu->domain_ids);
1626 iommu->domains[num] = domain;
1627 } else {
1628 num = -ENOSPC;
1629 }
1630
1631 return num;
1632 }
1633
1634 static int iommu_attach_domain(struct dmar_domain *domain,
1635 struct intel_iommu *iommu)
1636 {
1637 int num;
1638 unsigned long flags;
1639
1640 spin_lock_irqsave(&iommu->lock, flags);
1641 num = __iommu_attach_domain(domain, iommu);
1642 spin_unlock_irqrestore(&iommu->lock, flags);
1643 if (num < 0)
1644 pr_err("%s: No free domain ids\n", iommu->name);
1645
1646 return num;
1647 }
1648
1649 static int iommu_attach_vm_domain(struct dmar_domain *domain,
1650 struct intel_iommu *iommu)
1651 {
1652 int num;
1653 unsigned long ndomains;
1654
1655 ndomains = cap_ndoms(iommu->cap);
1656 for_each_set_bit(num, iommu->domain_ids, ndomains)
1657 if (iommu->domains[num] == domain)
1658 return num;
1659
1660 return __iommu_attach_domain(domain, iommu);
1661 }
1662
1663 static void iommu_detach_domain(struct dmar_domain *domain,
1664 struct intel_iommu *iommu)
1665 {
1666 unsigned long flags;
1667 int num, ndomains;
1668
1669 spin_lock_irqsave(&iommu->lock, flags);
1670 if (domain_type_is_vm_or_si(domain)) {
1671 ndomains = cap_ndoms(iommu->cap);
1672 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1673 if (iommu->domains[num] == domain) {
1674 clear_bit(num, iommu->domain_ids);
1675 iommu->domains[num] = NULL;
1676 break;
1677 }
1678 }
1679 } else {
1680 clear_bit(domain->id, iommu->domain_ids);
1681 iommu->domains[domain->id] = NULL;
1682 }
1683 spin_unlock_irqrestore(&iommu->lock, flags);
1684 }
1685
1686 static void domain_attach_iommu(struct dmar_domain *domain,
1687 struct intel_iommu *iommu)
1688 {
1689 unsigned long flags;
1690
1691 spin_lock_irqsave(&domain->iommu_lock, flags);
1692 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1693 domain->iommu_count++;
1694 if (domain->iommu_count == 1)
1695 domain->nid = iommu->node;
1696 domain_update_iommu_cap(domain);
1697 }
1698 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1699 }
1700
1701 static int domain_detach_iommu(struct dmar_domain *domain,
1702 struct intel_iommu *iommu)
1703 {
1704 unsigned long flags;
1705 int count = INT_MAX;
1706
1707 spin_lock_irqsave(&domain->iommu_lock, flags);
1708 if (test_and_clear_bit(iommu->seq_id, domain->iommu_bmp)) {
1709 count = --domain->iommu_count;
1710 domain_update_iommu_cap(domain);
1711 }
1712 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1713
1714 return count;
1715 }
1716
1717 static struct iova_domain reserved_iova_list;
1718 static struct lock_class_key reserved_rbtree_key;
1719
1720 static int dmar_init_reserved_ranges(void)
1721 {
1722 struct pci_dev *pdev = NULL;
1723 struct iova *iova;
1724 int i;
1725
1726 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1727 DMA_32BIT_PFN);
1728
1729 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1730 &reserved_rbtree_key);
1731
1732 /* IOAPIC ranges shouldn't be accessed by DMA */
1733 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1734 IOVA_PFN(IOAPIC_RANGE_END));
1735 if (!iova) {
1736 pr_err("Reserve IOAPIC range failed\n");
1737 return -ENODEV;
1738 }
1739
1740 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1741 for_each_pci_dev(pdev) {
1742 struct resource *r;
1743
1744 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1745 r = &pdev->resource[i];
1746 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1747 continue;
1748 iova = reserve_iova(&reserved_iova_list,
1749 IOVA_PFN(r->start),
1750 IOVA_PFN(r->end));
1751 if (!iova) {
1752 pr_err("Reserve iova failed\n");
1753 return -ENODEV;
1754 }
1755 }
1756 }
1757 return 0;
1758 }
1759
1760 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1761 {
1762 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1763 }
1764
1765 static inline int guestwidth_to_adjustwidth(int gaw)
1766 {
1767 int agaw;
1768 int r = (gaw - 12) % 9;
1769
1770 if (r == 0)
1771 agaw = gaw;
1772 else
1773 agaw = gaw + 9 - r;
1774 if (agaw > 64)
1775 agaw = 64;
1776 return agaw;
1777 }
1778
1779 static int domain_init(struct dmar_domain *domain, int guest_width)
1780 {
1781 struct intel_iommu *iommu;
1782 int adjust_width, agaw;
1783 unsigned long sagaw;
1784
1785 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1786 DMA_32BIT_PFN);
1787 domain_reserve_special_ranges(domain);
1788
1789 /* calculate AGAW */
1790 iommu = domain_get_iommu(domain);
1791 if (guest_width > cap_mgaw(iommu->cap))
1792 guest_width = cap_mgaw(iommu->cap);
1793 domain->gaw = guest_width;
1794 adjust_width = guestwidth_to_adjustwidth(guest_width);
1795 agaw = width_to_agaw(adjust_width);
1796 sagaw = cap_sagaw(iommu->cap);
1797 if (!test_bit(agaw, &sagaw)) {
1798 /* hardware doesn't support it, choose a bigger one */
1799 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1800 agaw = find_next_bit(&sagaw, 5, agaw);
1801 if (agaw >= 5)
1802 return -ENODEV;
1803 }
1804 domain->agaw = agaw;
1805
1806 if (ecap_coherent(iommu->ecap))
1807 domain->iommu_coherency = 1;
1808 else
1809 domain->iommu_coherency = 0;
1810
1811 if (ecap_sc_support(iommu->ecap))
1812 domain->iommu_snooping = 1;
1813 else
1814 domain->iommu_snooping = 0;
1815
1816 if (intel_iommu_superpage)
1817 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1818 else
1819 domain->iommu_superpage = 0;
1820
1821 domain->nid = iommu->node;
1822
1823 /* always allocate the top pgd */
1824 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1825 if (!domain->pgd)
1826 return -ENOMEM;
1827 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1828 return 0;
1829 }
1830
1831 static void domain_exit(struct dmar_domain *domain)
1832 {
1833 struct dmar_drhd_unit *drhd;
1834 struct intel_iommu *iommu;
1835 struct page *freelist = NULL;
1836
1837 /* Domain 0 is reserved, so dont process it */
1838 if (!domain)
1839 return;
1840
1841 /* Flush any lazy unmaps that may reference this domain */
1842 if (!intel_iommu_strict)
1843 flush_unmaps_timeout(0);
1844
1845 /* remove associated devices */
1846 domain_remove_dev_info(domain);
1847
1848 /* destroy iovas */
1849 put_iova_domain(&domain->iovad);
1850
1851 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1852
1853 /* clear attached or cached domains */
1854 rcu_read_lock();
1855 for_each_active_iommu(iommu, drhd)
1856 if (domain_type_is_vm(domain) ||
1857 test_bit(iommu->seq_id, domain->iommu_bmp))
1858 iommu_detach_domain(domain, iommu);
1859 rcu_read_unlock();
1860
1861 dma_free_pagelist(freelist);
1862
1863 free_domain_mem(domain);
1864 }
1865
1866 static int domain_context_mapping_one(struct dmar_domain *domain,
1867 struct intel_iommu *iommu,
1868 u8 bus, u8 devfn, int translation)
1869 {
1870 struct context_entry *context;
1871 unsigned long flags;
1872 struct dma_pte *pgd;
1873 int id;
1874 int agaw;
1875 struct device_domain_info *info = NULL;
1876
1877 pr_debug("Set context mapping for %02x:%02x.%d\n",
1878 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1879
1880 BUG_ON(!domain->pgd);
1881 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1882 translation != CONTEXT_TT_MULTI_LEVEL);
1883
1884 spin_lock_irqsave(&iommu->lock, flags);
1885 context = iommu_context_addr(iommu, bus, devfn, 1);
1886 spin_unlock_irqrestore(&iommu->lock, flags);
1887 if (!context)
1888 return -ENOMEM;
1889 spin_lock_irqsave(&iommu->lock, flags);
1890 if (context_present(context)) {
1891 spin_unlock_irqrestore(&iommu->lock, flags);
1892 return 0;
1893 }
1894
1895 context_clear_entry(context);
1896
1897 id = domain->id;
1898 pgd = domain->pgd;
1899
1900 if (domain_type_is_vm_or_si(domain)) {
1901 if (domain_type_is_vm(domain)) {
1902 id = iommu_attach_vm_domain(domain, iommu);
1903 if (id < 0) {
1904 spin_unlock_irqrestore(&iommu->lock, flags);
1905 pr_err("%s: No free domain ids\n", iommu->name);
1906 return -EFAULT;
1907 }
1908 }
1909
1910 /* Skip top levels of page tables for
1911 * iommu which has less agaw than default.
1912 * Unnecessary for PT mode.
1913 */
1914 if (translation != CONTEXT_TT_PASS_THROUGH) {
1915 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1916 pgd = phys_to_virt(dma_pte_addr(pgd));
1917 if (!dma_pte_present(pgd)) {
1918 spin_unlock_irqrestore(&iommu->lock, flags);
1919 return -ENOMEM;
1920 }
1921 }
1922 }
1923 }
1924
1925 context_set_domain_id(context, id);
1926
1927 if (translation != CONTEXT_TT_PASS_THROUGH) {
1928 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
1929 translation = info ? CONTEXT_TT_DEV_IOTLB :
1930 CONTEXT_TT_MULTI_LEVEL;
1931 }
1932 /*
1933 * In pass through mode, AW must be programmed to indicate the largest
1934 * AGAW value supported by hardware. And ASR is ignored by hardware.
1935 */
1936 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1937 context_set_address_width(context, iommu->msagaw);
1938 else {
1939 context_set_address_root(context, virt_to_phys(pgd));
1940 context_set_address_width(context, iommu->agaw);
1941 }
1942
1943 context_set_translation_type(context, translation);
1944 context_set_fault_enable(context);
1945 context_set_present(context);
1946 domain_flush_cache(domain, context, sizeof(*context));
1947
1948 /*
1949 * It's a non-present to present mapping. If hardware doesn't cache
1950 * non-present entry we only need to flush the write-buffer. If the
1951 * _does_ cache non-present entries, then it does so in the special
1952 * domain #0, which we have to flush:
1953 */
1954 if (cap_caching_mode(iommu->cap)) {
1955 iommu->flush.flush_context(iommu, 0,
1956 (((u16)bus) << 8) | devfn,
1957 DMA_CCMD_MASK_NOBIT,
1958 DMA_CCMD_DEVICE_INVL);
1959 iommu->flush.flush_iotlb(iommu, id, 0, 0, DMA_TLB_DSI_FLUSH);
1960 } else {
1961 iommu_flush_write_buffer(iommu);
1962 }
1963 iommu_enable_dev_iotlb(info);
1964 spin_unlock_irqrestore(&iommu->lock, flags);
1965
1966 domain_attach_iommu(domain, iommu);
1967
1968 return 0;
1969 }
1970
1971 struct domain_context_mapping_data {
1972 struct dmar_domain *domain;
1973 struct intel_iommu *iommu;
1974 int translation;
1975 };
1976
1977 static int domain_context_mapping_cb(struct pci_dev *pdev,
1978 u16 alias, void *opaque)
1979 {
1980 struct domain_context_mapping_data *data = opaque;
1981
1982 return domain_context_mapping_one(data->domain, data->iommu,
1983 PCI_BUS_NUM(alias), alias & 0xff,
1984 data->translation);
1985 }
1986
1987 static int
1988 domain_context_mapping(struct dmar_domain *domain, struct device *dev,
1989 int translation)
1990 {
1991 struct intel_iommu *iommu;
1992 u8 bus, devfn;
1993 struct domain_context_mapping_data data;
1994
1995 iommu = device_to_iommu(dev, &bus, &devfn);
1996 if (!iommu)
1997 return -ENODEV;
1998
1999 if (!dev_is_pci(dev))
2000 return domain_context_mapping_one(domain, iommu, bus, devfn,
2001 translation);
2002
2003 data.domain = domain;
2004 data.iommu = iommu;
2005 data.translation = translation;
2006
2007 return pci_for_each_dma_alias(to_pci_dev(dev),
2008 &domain_context_mapping_cb, &data);
2009 }
2010
2011 static int domain_context_mapped_cb(struct pci_dev *pdev,
2012 u16 alias, void *opaque)
2013 {
2014 struct intel_iommu *iommu = opaque;
2015
2016 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2017 }
2018
2019 static int domain_context_mapped(struct device *dev)
2020 {
2021 struct intel_iommu *iommu;
2022 u8 bus, devfn;
2023
2024 iommu = device_to_iommu(dev, &bus, &devfn);
2025 if (!iommu)
2026 return -ENODEV;
2027
2028 if (!dev_is_pci(dev))
2029 return device_context_mapped(iommu, bus, devfn);
2030
2031 return !pci_for_each_dma_alias(to_pci_dev(dev),
2032 domain_context_mapped_cb, iommu);
2033 }
2034
2035 /* Returns a number of VTD pages, but aligned to MM page size */
2036 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2037 size_t size)
2038 {
2039 host_addr &= ~PAGE_MASK;
2040 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2041 }
2042
2043 /* Return largest possible superpage level for a given mapping */
2044 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2045 unsigned long iov_pfn,
2046 unsigned long phy_pfn,
2047 unsigned long pages)
2048 {
2049 int support, level = 1;
2050 unsigned long pfnmerge;
2051
2052 support = domain->iommu_superpage;
2053
2054 /* To use a large page, the virtual *and* physical addresses
2055 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2056 of them will mean we have to use smaller pages. So just
2057 merge them and check both at once. */
2058 pfnmerge = iov_pfn | phy_pfn;
2059
2060 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2061 pages >>= VTD_STRIDE_SHIFT;
2062 if (!pages)
2063 break;
2064 pfnmerge >>= VTD_STRIDE_SHIFT;
2065 level++;
2066 support--;
2067 }
2068 return level;
2069 }
2070
2071 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2072 struct scatterlist *sg, unsigned long phys_pfn,
2073 unsigned long nr_pages, int prot)
2074 {
2075 struct dma_pte *first_pte = NULL, *pte = NULL;
2076 phys_addr_t uninitialized_var(pteval);
2077 unsigned long sg_res = 0;
2078 unsigned int largepage_lvl = 0;
2079 unsigned long lvl_pages = 0;
2080
2081 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2082
2083 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2084 return -EINVAL;
2085
2086 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2087
2088 if (!sg) {
2089 sg_res = nr_pages;
2090 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2091 }
2092
2093 while (nr_pages > 0) {
2094 uint64_t tmp;
2095
2096 if (!sg_res) {
2097 sg_res = aligned_nrpages(sg->offset, sg->length);
2098 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2099 sg->dma_length = sg->length;
2100 pteval = page_to_phys(sg_page(sg)) | prot;
2101 phys_pfn = pteval >> VTD_PAGE_SHIFT;
2102 }
2103
2104 if (!pte) {
2105 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2106
2107 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2108 if (!pte)
2109 return -ENOMEM;
2110 /* It is large page*/
2111 if (largepage_lvl > 1) {
2112 pteval |= DMA_PTE_LARGE_PAGE;
2113 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2114 /*
2115 * Ensure that old small page tables are
2116 * removed to make room for superpage,
2117 * if they exist.
2118 */
2119 dma_pte_free_pagetable(domain, iov_pfn,
2120 iov_pfn + lvl_pages - 1);
2121 } else {
2122 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2123 }
2124
2125 }
2126 /* We don't need lock here, nobody else
2127 * touches the iova range
2128 */
2129 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2130 if (tmp) {
2131 static int dumps = 5;
2132 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2133 iov_pfn, tmp, (unsigned long long)pteval);
2134 if (dumps) {
2135 dumps--;
2136 debug_dma_dump_mappings(NULL);
2137 }
2138 WARN_ON(1);
2139 }
2140
2141 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2142
2143 BUG_ON(nr_pages < lvl_pages);
2144 BUG_ON(sg_res < lvl_pages);
2145
2146 nr_pages -= lvl_pages;
2147 iov_pfn += lvl_pages;
2148 phys_pfn += lvl_pages;
2149 pteval += lvl_pages * VTD_PAGE_SIZE;
2150 sg_res -= lvl_pages;
2151
2152 /* If the next PTE would be the first in a new page, then we
2153 need to flush the cache on the entries we've just written.
2154 And then we'll need to recalculate 'pte', so clear it and
2155 let it get set again in the if (!pte) block above.
2156
2157 If we're done (!nr_pages) we need to flush the cache too.
2158
2159 Also if we've been setting superpages, we may need to
2160 recalculate 'pte' and switch back to smaller pages for the
2161 end of the mapping, if the trailing size is not enough to
2162 use another superpage (i.e. sg_res < lvl_pages). */
2163 pte++;
2164 if (!nr_pages || first_pte_in_page(pte) ||
2165 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2166 domain_flush_cache(domain, first_pte,
2167 (void *)pte - (void *)first_pte);
2168 pte = NULL;
2169 }
2170
2171 if (!sg_res && nr_pages)
2172 sg = sg_next(sg);
2173 }
2174 return 0;
2175 }
2176
2177 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2178 struct scatterlist *sg, unsigned long nr_pages,
2179 int prot)
2180 {
2181 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2182 }
2183
2184 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2185 unsigned long phys_pfn, unsigned long nr_pages,
2186 int prot)
2187 {
2188 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2189 }
2190
2191 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
2192 {
2193 if (!iommu)
2194 return;
2195
2196 clear_context_table(iommu, bus, devfn);
2197 iommu->flush.flush_context(iommu, 0, 0, 0,
2198 DMA_CCMD_GLOBAL_INVL);
2199 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2200 }
2201
2202 static inline void unlink_domain_info(struct device_domain_info *info)
2203 {
2204 assert_spin_locked(&device_domain_lock);
2205 list_del(&info->link);
2206 list_del(&info->global);
2207 if (info->dev)
2208 info->dev->archdata.iommu = NULL;
2209 }
2210
2211 static void domain_remove_dev_info(struct dmar_domain *domain)
2212 {
2213 struct device_domain_info *info, *tmp;
2214 unsigned long flags;
2215
2216 spin_lock_irqsave(&device_domain_lock, flags);
2217 list_for_each_entry_safe(info, tmp, &domain->devices, link) {
2218 unlink_domain_info(info);
2219 spin_unlock_irqrestore(&device_domain_lock, flags);
2220
2221 iommu_disable_dev_iotlb(info);
2222 iommu_detach_dev(info->iommu, info->bus, info->devfn);
2223
2224 if (domain_type_is_vm(domain)) {
2225 iommu_detach_dependent_devices(info->iommu, info->dev);
2226 domain_detach_iommu(domain, info->iommu);
2227 }
2228
2229 free_devinfo_mem(info);
2230 spin_lock_irqsave(&device_domain_lock, flags);
2231 }
2232 spin_unlock_irqrestore(&device_domain_lock, flags);
2233 }
2234
2235 /*
2236 * find_domain
2237 * Note: we use struct device->archdata.iommu stores the info
2238 */
2239 static struct dmar_domain *find_domain(struct device *dev)
2240 {
2241 struct device_domain_info *info;
2242
2243 /* No lock here, assumes no domain exit in normal case */
2244 info = dev->archdata.iommu;
2245 if (info)
2246 return info->domain;
2247 return NULL;
2248 }
2249
2250 static inline struct device_domain_info *
2251 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2252 {
2253 struct device_domain_info *info;
2254
2255 list_for_each_entry(info, &device_domain_list, global)
2256 if (info->iommu->segment == segment && info->bus == bus &&
2257 info->devfn == devfn)
2258 return info;
2259
2260 return NULL;
2261 }
2262
2263 static struct dmar_domain *dmar_insert_dev_info(struct intel_iommu *iommu,
2264 int bus, int devfn,
2265 struct device *dev,
2266 struct dmar_domain *domain)
2267 {
2268 struct dmar_domain *found = NULL;
2269 struct device_domain_info *info;
2270 unsigned long flags;
2271
2272 info = alloc_devinfo_mem();
2273 if (!info)
2274 return NULL;
2275
2276 info->bus = bus;
2277 info->devfn = devfn;
2278 info->dev = dev;
2279 info->domain = domain;
2280 info->iommu = iommu;
2281
2282 spin_lock_irqsave(&device_domain_lock, flags);
2283 if (dev)
2284 found = find_domain(dev);
2285 else {
2286 struct device_domain_info *info2;
2287 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2288 if (info2)
2289 found = info2->domain;
2290 }
2291 if (found) {
2292 spin_unlock_irqrestore(&device_domain_lock, flags);
2293 free_devinfo_mem(info);
2294 /* Caller must free the original domain */
2295 return found;
2296 }
2297
2298 list_add(&info->link, &domain->devices);
2299 list_add(&info->global, &device_domain_list);
2300 if (dev)
2301 dev->archdata.iommu = info;
2302 spin_unlock_irqrestore(&device_domain_lock, flags);
2303
2304 return domain;
2305 }
2306
2307 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2308 {
2309 *(u16 *)opaque = alias;
2310 return 0;
2311 }
2312
2313 /* domain is initialized */
2314 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2315 {
2316 struct dmar_domain *domain, *tmp;
2317 struct intel_iommu *iommu;
2318 struct device_domain_info *info;
2319 u16 dma_alias;
2320 unsigned long flags;
2321 u8 bus, devfn;
2322
2323 domain = find_domain(dev);
2324 if (domain)
2325 return domain;
2326
2327 iommu = device_to_iommu(dev, &bus, &devfn);
2328 if (!iommu)
2329 return NULL;
2330
2331 if (dev_is_pci(dev)) {
2332 struct pci_dev *pdev = to_pci_dev(dev);
2333
2334 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2335
2336 spin_lock_irqsave(&device_domain_lock, flags);
2337 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2338 PCI_BUS_NUM(dma_alias),
2339 dma_alias & 0xff);
2340 if (info) {
2341 iommu = info->iommu;
2342 domain = info->domain;
2343 }
2344 spin_unlock_irqrestore(&device_domain_lock, flags);
2345
2346 /* DMA alias already has a domain, uses it */
2347 if (info)
2348 goto found_domain;
2349 }
2350
2351 /* Allocate and initialize new domain for the device */
2352 domain = alloc_domain(0);
2353 if (!domain)
2354 return NULL;
2355 domain->id = iommu_attach_domain(domain, iommu);
2356 if (domain->id < 0) {
2357 free_domain_mem(domain);
2358 return NULL;
2359 }
2360 domain_attach_iommu(domain, iommu);
2361 if (domain_init(domain, gaw)) {
2362 domain_exit(domain);
2363 return NULL;
2364 }
2365
2366 /* register PCI DMA alias device */
2367 if (dev_is_pci(dev)) {
2368 tmp = dmar_insert_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2369 dma_alias & 0xff, NULL, domain);
2370
2371 if (!tmp || tmp != domain) {
2372 domain_exit(domain);
2373 domain = tmp;
2374 }
2375
2376 if (!domain)
2377 return NULL;
2378 }
2379
2380 found_domain:
2381 tmp = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2382
2383 if (!tmp || tmp != domain) {
2384 domain_exit(domain);
2385 domain = tmp;
2386 }
2387
2388 return domain;
2389 }
2390
2391 static int iommu_identity_mapping;
2392 #define IDENTMAP_ALL 1
2393 #define IDENTMAP_GFX 2
2394 #define IDENTMAP_AZALIA 4
2395
2396 static int iommu_domain_identity_map(struct dmar_domain *domain,
2397 unsigned long long start,
2398 unsigned long long end)
2399 {
2400 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2401 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2402
2403 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2404 dma_to_mm_pfn(last_vpfn))) {
2405 pr_err("Reserving iova failed\n");
2406 return -ENOMEM;
2407 }
2408
2409 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2410 start, end, domain->id);
2411 /*
2412 * RMRR range might have overlap with physical memory range,
2413 * clear it first
2414 */
2415 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2416
2417 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2418 last_vpfn - first_vpfn + 1,
2419 DMA_PTE_READ|DMA_PTE_WRITE);
2420 }
2421
2422 static int iommu_prepare_identity_map(struct device *dev,
2423 unsigned long long start,
2424 unsigned long long end)
2425 {
2426 struct dmar_domain *domain;
2427 int ret;
2428
2429 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2430 if (!domain)
2431 return -ENOMEM;
2432
2433 /* For _hardware_ passthrough, don't bother. But for software
2434 passthrough, we do it anyway -- it may indicate a memory
2435 range which is reserved in E820, so which didn't get set
2436 up to start with in si_domain */
2437 if (domain == si_domain && hw_pass_through) {
2438 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2439 dev_name(dev), start, end);
2440 return 0;
2441 }
2442
2443 pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2444 dev_name(dev), start, end);
2445
2446 if (end < start) {
2447 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2448 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2449 dmi_get_system_info(DMI_BIOS_VENDOR),
2450 dmi_get_system_info(DMI_BIOS_VERSION),
2451 dmi_get_system_info(DMI_PRODUCT_VERSION));
2452 ret = -EIO;
2453 goto error;
2454 }
2455
2456 if (end >> agaw_to_width(domain->agaw)) {
2457 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2458 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2459 agaw_to_width(domain->agaw),
2460 dmi_get_system_info(DMI_BIOS_VENDOR),
2461 dmi_get_system_info(DMI_BIOS_VERSION),
2462 dmi_get_system_info(DMI_PRODUCT_VERSION));
2463 ret = -EIO;
2464 goto error;
2465 }
2466
2467 ret = iommu_domain_identity_map(domain, start, end);
2468 if (ret)
2469 goto error;
2470
2471 /* context entry init */
2472 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2473 if (ret)
2474 goto error;
2475
2476 return 0;
2477
2478 error:
2479 domain_exit(domain);
2480 return ret;
2481 }
2482
2483 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2484 struct device *dev)
2485 {
2486 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2487 return 0;
2488 return iommu_prepare_identity_map(dev, rmrr->base_address,
2489 rmrr->end_address);
2490 }
2491
2492 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2493 static inline void iommu_prepare_isa(void)
2494 {
2495 struct pci_dev *pdev;
2496 int ret;
2497
2498 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2499 if (!pdev)
2500 return;
2501
2502 pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2503 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2504
2505 if (ret)
2506 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2507
2508 pci_dev_put(pdev);
2509 }
2510 #else
2511 static inline void iommu_prepare_isa(void)
2512 {
2513 return;
2514 }
2515 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2516
2517 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2518
2519 static int __init si_domain_init(int hw)
2520 {
2521 struct dmar_drhd_unit *drhd;
2522 struct intel_iommu *iommu;
2523 int nid, ret = 0;
2524 bool first = true;
2525
2526 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2527 if (!si_domain)
2528 return -EFAULT;
2529
2530 for_each_active_iommu(iommu, drhd) {
2531 ret = iommu_attach_domain(si_domain, iommu);
2532 if (ret < 0) {
2533 domain_exit(si_domain);
2534 return -EFAULT;
2535 } else if (first) {
2536 si_domain->id = ret;
2537 first = false;
2538 } else if (si_domain->id != ret) {
2539 domain_exit(si_domain);
2540 return -EFAULT;
2541 }
2542 domain_attach_iommu(si_domain, iommu);
2543 }
2544
2545 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2546 domain_exit(si_domain);
2547 return -EFAULT;
2548 }
2549
2550 pr_debug("Identity mapping domain is domain %d\n",
2551 si_domain->id);
2552
2553 if (hw)
2554 return 0;
2555
2556 for_each_online_node(nid) {
2557 unsigned long start_pfn, end_pfn;
2558 int i;
2559
2560 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2561 ret = iommu_domain_identity_map(si_domain,
2562 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2563 if (ret)
2564 return ret;
2565 }
2566 }
2567
2568 return 0;
2569 }
2570
2571 static int identity_mapping(struct device *dev)
2572 {
2573 struct device_domain_info *info;
2574
2575 if (likely(!iommu_identity_mapping))
2576 return 0;
2577
2578 info = dev->archdata.iommu;
2579 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2580 return (info->domain == si_domain);
2581
2582 return 0;
2583 }
2584
2585 static int domain_add_dev_info(struct dmar_domain *domain,
2586 struct device *dev, int translation)
2587 {
2588 struct dmar_domain *ndomain;
2589 struct intel_iommu *iommu;
2590 u8 bus, devfn;
2591 int ret;
2592
2593 iommu = device_to_iommu(dev, &bus, &devfn);
2594 if (!iommu)
2595 return -ENODEV;
2596
2597 ndomain = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2598 if (ndomain != domain)
2599 return -EBUSY;
2600
2601 ret = domain_context_mapping(domain, dev, translation);
2602 if (ret) {
2603 domain_remove_one_dev_info(domain, dev);
2604 return ret;
2605 }
2606
2607 return 0;
2608 }
2609
2610 static bool device_has_rmrr(struct device *dev)
2611 {
2612 struct dmar_rmrr_unit *rmrr;
2613 struct device *tmp;
2614 int i;
2615
2616 rcu_read_lock();
2617 for_each_rmrr_units(rmrr) {
2618 /*
2619 * Return TRUE if this RMRR contains the device that
2620 * is passed in.
2621 */
2622 for_each_active_dev_scope(rmrr->devices,
2623 rmrr->devices_cnt, i, tmp)
2624 if (tmp == dev) {
2625 rcu_read_unlock();
2626 return true;
2627 }
2628 }
2629 rcu_read_unlock();
2630 return false;
2631 }
2632
2633 /*
2634 * There are a couple cases where we need to restrict the functionality of
2635 * devices associated with RMRRs. The first is when evaluating a device for
2636 * identity mapping because problems exist when devices are moved in and out
2637 * of domains and their respective RMRR information is lost. This means that
2638 * a device with associated RMRRs will never be in a "passthrough" domain.
2639 * The second is use of the device through the IOMMU API. This interface
2640 * expects to have full control of the IOVA space for the device. We cannot
2641 * satisfy both the requirement that RMRR access is maintained and have an
2642 * unencumbered IOVA space. We also have no ability to quiesce the device's
2643 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2644 * We therefore prevent devices associated with an RMRR from participating in
2645 * the IOMMU API, which eliminates them from device assignment.
2646 *
2647 * In both cases we assume that PCI USB devices with RMRRs have them largely
2648 * for historical reasons and that the RMRR space is not actively used post
2649 * boot. This exclusion may change if vendors begin to abuse it.
2650 *
2651 * The same exception is made for graphics devices, with the requirement that
2652 * any use of the RMRR regions will be torn down before assigning the device
2653 * to a guest.
2654 */
2655 static bool device_is_rmrr_locked(struct device *dev)
2656 {
2657 if (!device_has_rmrr(dev))
2658 return false;
2659
2660 if (dev_is_pci(dev)) {
2661 struct pci_dev *pdev = to_pci_dev(dev);
2662
2663 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2664 return false;
2665 }
2666
2667 return true;
2668 }
2669
2670 static int iommu_should_identity_map(struct device *dev, int startup)
2671 {
2672
2673 if (dev_is_pci(dev)) {
2674 struct pci_dev *pdev = to_pci_dev(dev);
2675
2676 if (device_is_rmrr_locked(dev))
2677 return 0;
2678
2679 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2680 return 1;
2681
2682 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2683 return 1;
2684
2685 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2686 return 0;
2687
2688 /*
2689 * We want to start off with all devices in the 1:1 domain, and
2690 * take them out later if we find they can't access all of memory.
2691 *
2692 * However, we can't do this for PCI devices behind bridges,
2693 * because all PCI devices behind the same bridge will end up
2694 * with the same source-id on their transactions.
2695 *
2696 * Practically speaking, we can't change things around for these
2697 * devices at run-time, because we can't be sure there'll be no
2698 * DMA transactions in flight for any of their siblings.
2699 *
2700 * So PCI devices (unless they're on the root bus) as well as
2701 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2702 * the 1:1 domain, just in _case_ one of their siblings turns out
2703 * not to be able to map all of memory.
2704 */
2705 if (!pci_is_pcie(pdev)) {
2706 if (!pci_is_root_bus(pdev->bus))
2707 return 0;
2708 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2709 return 0;
2710 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2711 return 0;
2712 } else {
2713 if (device_has_rmrr(dev))
2714 return 0;
2715 }
2716
2717 /*
2718 * At boot time, we don't yet know if devices will be 64-bit capable.
2719 * Assume that they will — if they turn out not to be, then we can
2720 * take them out of the 1:1 domain later.
2721 */
2722 if (!startup) {
2723 /*
2724 * If the device's dma_mask is less than the system's memory
2725 * size then this is not a candidate for identity mapping.
2726 */
2727 u64 dma_mask = *dev->dma_mask;
2728
2729 if (dev->coherent_dma_mask &&
2730 dev->coherent_dma_mask < dma_mask)
2731 dma_mask = dev->coherent_dma_mask;
2732
2733 return dma_mask >= dma_get_required_mask(dev);
2734 }
2735
2736 return 1;
2737 }
2738
2739 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2740 {
2741 int ret;
2742
2743 if (!iommu_should_identity_map(dev, 1))
2744 return 0;
2745
2746 ret = domain_add_dev_info(si_domain, dev,
2747 hw ? CONTEXT_TT_PASS_THROUGH :
2748 CONTEXT_TT_MULTI_LEVEL);
2749 if (!ret)
2750 pr_info("%s identity mapping for device %s\n",
2751 hw ? "Hardware" : "Software", dev_name(dev));
2752 else if (ret == -ENODEV)
2753 /* device not associated with an iommu */
2754 ret = 0;
2755
2756 return ret;
2757 }
2758
2759
2760 static int __init iommu_prepare_static_identity_mapping(int hw)
2761 {
2762 struct pci_dev *pdev = NULL;
2763 struct dmar_drhd_unit *drhd;
2764 struct intel_iommu *iommu;
2765 struct device *dev;
2766 int i;
2767 int ret = 0;
2768
2769 for_each_pci_dev(pdev) {
2770 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2771 if (ret)
2772 return ret;
2773 }
2774
2775 for_each_active_iommu(iommu, drhd)
2776 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2777 struct acpi_device_physical_node *pn;
2778 struct acpi_device *adev;
2779
2780 if (dev->bus != &acpi_bus_type)
2781 continue;
2782
2783 adev= to_acpi_device(dev);
2784 mutex_lock(&adev->physical_node_lock);
2785 list_for_each_entry(pn, &adev->physical_node_list, node) {
2786 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2787 if (ret)
2788 break;
2789 }
2790 mutex_unlock(&adev->physical_node_lock);
2791 if (ret)
2792 return ret;
2793 }
2794
2795 return 0;
2796 }
2797
2798 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2799 {
2800 /*
2801 * Start from the sane iommu hardware state.
2802 * If the queued invalidation is already initialized by us
2803 * (for example, while enabling interrupt-remapping) then
2804 * we got the things already rolling from a sane state.
2805 */
2806 if (!iommu->qi) {
2807 /*
2808 * Clear any previous faults.
2809 */
2810 dmar_fault(-1, iommu);
2811 /*
2812 * Disable queued invalidation if supported and already enabled
2813 * before OS handover.
2814 */
2815 dmar_disable_qi(iommu);
2816 }
2817
2818 if (dmar_enable_qi(iommu)) {
2819 /*
2820 * Queued Invalidate not enabled, use Register Based Invalidate
2821 */
2822 iommu->flush.flush_context = __iommu_flush_context;
2823 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2824 pr_info("%s: Using Register based invalidation\n",
2825 iommu->name);
2826 } else {
2827 iommu->flush.flush_context = qi_flush_context;
2828 iommu->flush.flush_iotlb = qi_flush_iotlb;
2829 pr_info("%s: Using Queued invalidation\n", iommu->name);
2830 }
2831 }
2832
2833 static int copy_context_table(struct intel_iommu *iommu,
2834 struct root_entry *old_re,
2835 struct context_entry **tbl,
2836 int bus, bool ext)
2837 {
2838 struct context_entry *old_ce = NULL, *new_ce = NULL, ce;
2839 int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2840 phys_addr_t old_ce_phys;
2841
2842 tbl_idx = ext ? bus * 2 : bus;
2843
2844 for (devfn = 0; devfn < 256; devfn++) {
2845 /* First calculate the correct index */
2846 idx = (ext ? devfn * 2 : devfn) % 256;
2847
2848 if (idx == 0) {
2849 /* First save what we may have and clean up */
2850 if (new_ce) {
2851 tbl[tbl_idx] = new_ce;
2852 __iommu_flush_cache(iommu, new_ce,
2853 VTD_PAGE_SIZE);
2854 pos = 1;
2855 }
2856
2857 if (old_ce)
2858 iounmap(old_ce);
2859
2860 ret = 0;
2861 if (devfn < 0x80)
2862 old_ce_phys = root_entry_lctp(old_re);
2863 else
2864 old_ce_phys = root_entry_uctp(old_re);
2865
2866 if (!old_ce_phys) {
2867 if (ext && devfn == 0) {
2868 /* No LCTP, try UCTP */
2869 devfn = 0x7f;
2870 continue;
2871 } else {
2872 goto out;
2873 }
2874 }
2875
2876 ret = -ENOMEM;
2877 old_ce = ioremap_cache(old_ce_phys, PAGE_SIZE);
2878 if (!old_ce)
2879 goto out;
2880
2881 new_ce = alloc_pgtable_page(iommu->node);
2882 if (!new_ce)
2883 goto out_unmap;
2884
2885 ret = 0;
2886 }
2887
2888 /* Now copy the context entry */
2889 ce = old_ce[idx];
2890
2891 if (!__context_present(&ce))
2892 continue;
2893
2894 did = context_domain_id(&ce);
2895 if (did >= 0 && did < cap_ndoms(iommu->cap))
2896 set_bit(did, iommu->domain_ids);
2897
2898 /*
2899 * We need a marker for copied context entries. This
2900 * marker needs to work for the old format as well as
2901 * for extended context entries.
2902 *
2903 * Bit 67 of the context entry is used. In the old
2904 * format this bit is available to software, in the
2905 * extended format it is the PGE bit, but PGE is ignored
2906 * by HW if PASIDs are disabled (and thus still
2907 * available).
2908 *
2909 * So disable PASIDs first and then mark the entry
2910 * copied. This means that we don't copy PASID
2911 * translations from the old kernel, but this is fine as
2912 * faults there are not fatal.
2913 */
2914 context_clear_pasid_enable(&ce);
2915 context_set_copied(&ce);
2916
2917 new_ce[idx] = ce;
2918 }
2919
2920 tbl[tbl_idx + pos] = new_ce;
2921
2922 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
2923
2924 out_unmap:
2925 iounmap(old_ce);
2926
2927 out:
2928 return ret;
2929 }
2930
2931 static int copy_translation_tables(struct intel_iommu *iommu)
2932 {
2933 struct context_entry **ctxt_tbls;
2934 struct root_entry *old_rt;
2935 phys_addr_t old_rt_phys;
2936 int ctxt_table_entries;
2937 unsigned long flags;
2938 u64 rtaddr_reg;
2939 int bus, ret;
2940 bool new_ext, ext;
2941
2942 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
2943 ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
2944 new_ext = !!ecap_ecs(iommu->ecap);
2945
2946 /*
2947 * The RTT bit can only be changed when translation is disabled,
2948 * but disabling translation means to open a window for data
2949 * corruption. So bail out and don't copy anything if we would
2950 * have to change the bit.
2951 */
2952 if (new_ext != ext)
2953 return -EINVAL;
2954
2955 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
2956 if (!old_rt_phys)
2957 return -EINVAL;
2958
2959 old_rt = ioremap_cache(old_rt_phys, PAGE_SIZE);
2960 if (!old_rt)
2961 return -ENOMEM;
2962
2963 /* This is too big for the stack - allocate it from slab */
2964 ctxt_table_entries = ext ? 512 : 256;
2965 ret = -ENOMEM;
2966 ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
2967 if (!ctxt_tbls)
2968 goto out_unmap;
2969
2970 for (bus = 0; bus < 256; bus++) {
2971 ret = copy_context_table(iommu, &old_rt[bus],
2972 ctxt_tbls, bus, ext);
2973 if (ret) {
2974 pr_err("%s: Failed to copy context table for bus %d\n",
2975 iommu->name, bus);
2976 continue;
2977 }
2978 }
2979
2980 spin_lock_irqsave(&iommu->lock, flags);
2981
2982 /* Context tables are copied, now write them to the root_entry table */
2983 for (bus = 0; bus < 256; bus++) {
2984 int idx = ext ? bus * 2 : bus;
2985 u64 val;
2986
2987 if (ctxt_tbls[idx]) {
2988 val = virt_to_phys(ctxt_tbls[idx]) | 1;
2989 iommu->root_entry[bus].lo = val;
2990 }
2991
2992 if (!ext || !ctxt_tbls[idx + 1])
2993 continue;
2994
2995 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
2996 iommu->root_entry[bus].hi = val;
2997 }
2998
2999 spin_unlock_irqrestore(&iommu->lock, flags);
3000
3001 kfree(ctxt_tbls);
3002
3003 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3004
3005 ret = 0;
3006
3007 out_unmap:
3008 iounmap(old_rt);
3009
3010 return ret;
3011 }
3012
3013 static int __init init_dmars(void)
3014 {
3015 struct dmar_drhd_unit *drhd;
3016 struct dmar_rmrr_unit *rmrr;
3017 bool copied_tables = false;
3018 struct device *dev;
3019 struct intel_iommu *iommu;
3020 int i, ret;
3021
3022 /*
3023 * for each drhd
3024 * allocate root
3025 * initialize and program root entry to not present
3026 * endfor
3027 */
3028 for_each_drhd_unit(drhd) {
3029 /*
3030 * lock not needed as this is only incremented in the single
3031 * threaded kernel __init code path all other access are read
3032 * only
3033 */
3034 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3035 g_num_of_iommus++;
3036 continue;
3037 }
3038 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3039 }
3040
3041 /* Preallocate enough resources for IOMMU hot-addition */
3042 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3043 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3044
3045 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3046 GFP_KERNEL);
3047 if (!g_iommus) {
3048 pr_err("Allocating global iommu array failed\n");
3049 ret = -ENOMEM;
3050 goto error;
3051 }
3052
3053 deferred_flush = kzalloc(g_num_of_iommus *
3054 sizeof(struct deferred_flush_tables), GFP_KERNEL);
3055 if (!deferred_flush) {
3056 ret = -ENOMEM;
3057 goto free_g_iommus;
3058 }
3059
3060 for_each_active_iommu(iommu, drhd) {
3061 g_iommus[iommu->seq_id] = iommu;
3062
3063 intel_iommu_init_qi(iommu);
3064
3065 ret = iommu_init_domains(iommu);
3066 if (ret)
3067 goto free_iommu;
3068
3069 init_translation_status(iommu);
3070
3071 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3072 iommu_disable_translation(iommu);
3073 clear_translation_pre_enabled(iommu);
3074 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3075 iommu->name);
3076 }
3077
3078 /*
3079 * TBD:
3080 * we could share the same root & context tables
3081 * among all IOMMU's. Need to Split it later.
3082 */
3083 ret = iommu_alloc_root_entry(iommu);
3084 if (ret)
3085 goto free_iommu;
3086
3087 if (translation_pre_enabled(iommu)) {
3088 pr_info("Translation already enabled - trying to copy translation structures\n");
3089
3090 ret = copy_translation_tables(iommu);
3091 if (ret) {
3092 /*
3093 * We found the IOMMU with translation
3094 * enabled - but failed to copy over the
3095 * old root-entry table. Try to proceed
3096 * by disabling translation now and
3097 * allocating a clean root-entry table.
3098 * This might cause DMAR faults, but
3099 * probably the dump will still succeed.
3100 */
3101 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3102 iommu->name);
3103 iommu_disable_translation(iommu);
3104 clear_translation_pre_enabled(iommu);
3105 } else {
3106 pr_info("Copied translation tables from previous kernel for %s\n",
3107 iommu->name);
3108 copied_tables = true;
3109 }
3110 }
3111
3112 iommu_flush_write_buffer(iommu);
3113 iommu_set_root_entry(iommu);
3114 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3115 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3116
3117 if (!ecap_pass_through(iommu->ecap))
3118 hw_pass_through = 0;
3119 }
3120
3121 if (iommu_pass_through)
3122 iommu_identity_mapping |= IDENTMAP_ALL;
3123
3124 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3125 iommu_identity_mapping |= IDENTMAP_GFX;
3126 #endif
3127
3128 if (iommu_identity_mapping) {
3129 ret = si_domain_init(hw_pass_through);
3130 if (ret)
3131 goto free_iommu;
3132 }
3133
3134 check_tylersburg_isoch();
3135
3136 /*
3137 * If we copied translations from a previous kernel in the kdump
3138 * case, we can not assign the devices to domains now, as that
3139 * would eliminate the old mappings. So skip this part and defer
3140 * the assignment to device driver initialization time.
3141 */
3142 if (copied_tables)
3143 goto domains_done;
3144
3145 /*
3146 * If pass through is not set or not enabled, setup context entries for
3147 * identity mappings for rmrr, gfx, and isa and may fall back to static
3148 * identity mapping if iommu_identity_mapping is set.
3149 */
3150 if (iommu_identity_mapping) {
3151 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3152 if (ret) {
3153 pr_crit("Failed to setup IOMMU pass-through\n");
3154 goto free_iommu;
3155 }
3156 }
3157 /*
3158 * For each rmrr
3159 * for each dev attached to rmrr
3160 * do
3161 * locate drhd for dev, alloc domain for dev
3162 * allocate free domain
3163 * allocate page table entries for rmrr
3164 * if context not allocated for bus
3165 * allocate and init context
3166 * set present in root table for this bus
3167 * init context with domain, translation etc
3168 * endfor
3169 * endfor
3170 */
3171 pr_info("Setting RMRR:\n");
3172 for_each_rmrr_units(rmrr) {
3173 /* some BIOS lists non-exist devices in DMAR table. */
3174 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3175 i, dev) {
3176 ret = iommu_prepare_rmrr_dev(rmrr, dev);
3177 if (ret)
3178 pr_err("Mapping reserved region failed\n");
3179 }
3180 }
3181
3182 iommu_prepare_isa();
3183
3184 domains_done:
3185
3186 /*
3187 * for each drhd
3188 * enable fault log
3189 * global invalidate context cache
3190 * global invalidate iotlb
3191 * enable translation
3192 */
3193 for_each_iommu(iommu, drhd) {
3194 if (drhd->ignored) {
3195 /*
3196 * we always have to disable PMRs or DMA may fail on
3197 * this device
3198 */
3199 if (force_on)
3200 iommu_disable_protect_mem_regions(iommu);
3201 continue;
3202 }
3203
3204 iommu_flush_write_buffer(iommu);
3205
3206 ret = dmar_set_interrupt(iommu);
3207 if (ret)
3208 goto free_iommu;
3209
3210 if (!translation_pre_enabled(iommu))
3211 iommu_enable_translation(iommu);
3212
3213 iommu_disable_protect_mem_regions(iommu);
3214 }
3215
3216 return 0;
3217
3218 free_iommu:
3219 for_each_active_iommu(iommu, drhd) {
3220 disable_dmar_iommu(iommu);
3221 free_dmar_iommu(iommu);
3222 }
3223 kfree(deferred_flush);
3224 free_g_iommus:
3225 kfree(g_iommus);
3226 error:
3227 return ret;
3228 }
3229
3230 /* This takes a number of _MM_ pages, not VTD pages */
3231 static struct iova *intel_alloc_iova(struct device *dev,
3232 struct dmar_domain *domain,
3233 unsigned long nrpages, uint64_t dma_mask)
3234 {
3235 struct iova *iova = NULL;
3236
3237 /* Restrict dma_mask to the width that the iommu can handle */
3238 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3239
3240 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3241 /*
3242 * First try to allocate an io virtual address in
3243 * DMA_BIT_MASK(32) and if that fails then try allocating
3244 * from higher range
3245 */
3246 iova = alloc_iova(&domain->iovad, nrpages,
3247 IOVA_PFN(DMA_BIT_MASK(32)), 1);
3248 if (iova)
3249 return iova;
3250 }
3251 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
3252 if (unlikely(!iova)) {
3253 pr_err("Allocating %ld-page iova for %s failed",
3254 nrpages, dev_name(dev));
3255 return NULL;
3256 }
3257
3258 return iova;
3259 }
3260
3261 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
3262 {
3263 struct dmar_domain *domain;
3264 int ret;
3265
3266 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3267 if (!domain) {
3268 pr_err("Allocating domain for %s failed\n",
3269 dev_name(dev));
3270 return NULL;
3271 }
3272
3273 /* make sure context mapping is ok */
3274 if (unlikely(!domain_context_mapped(dev))) {
3275 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
3276 if (ret) {
3277 pr_err("Domain context map for %s failed\n",
3278 dev_name(dev));
3279 return NULL;
3280 }
3281 }
3282
3283 return domain;
3284 }
3285
3286 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3287 {
3288 struct device_domain_info *info;
3289
3290 /* No lock here, assumes no domain exit in normal case */
3291 info = dev->archdata.iommu;
3292 if (likely(info))
3293 return info->domain;
3294
3295 return __get_valid_domain_for_dev(dev);
3296 }
3297
3298 /* Check if the dev needs to go through non-identity map and unmap process.*/
3299 static int iommu_no_mapping(struct device *dev)
3300 {
3301 int found;
3302
3303 if (iommu_dummy(dev))
3304 return 1;
3305
3306 if (!iommu_identity_mapping)
3307 return 0;
3308
3309 found = identity_mapping(dev);
3310 if (found) {
3311 if (iommu_should_identity_map(dev, 0))
3312 return 1;
3313 else {
3314 /*
3315 * 32 bit DMA is removed from si_domain and fall back
3316 * to non-identity mapping.
3317 */
3318 domain_remove_one_dev_info(si_domain, dev);
3319 pr_info("32bit %s uses non-identity mapping\n",
3320 dev_name(dev));
3321 return 0;
3322 }
3323 } else {
3324 /*
3325 * In case of a detached 64 bit DMA device from vm, the device
3326 * is put into si_domain for identity mapping.
3327 */
3328 if (iommu_should_identity_map(dev, 0)) {
3329 int ret;
3330 ret = domain_add_dev_info(si_domain, dev,
3331 hw_pass_through ?
3332 CONTEXT_TT_PASS_THROUGH :
3333 CONTEXT_TT_MULTI_LEVEL);
3334 if (!ret) {
3335 pr_info("64bit %s uses identity mapping\n",
3336 dev_name(dev));
3337 return 1;
3338 }
3339 }
3340 }
3341
3342 return 0;
3343 }
3344
3345 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3346 size_t size, int dir, u64 dma_mask)
3347 {
3348 struct dmar_domain *domain;
3349 phys_addr_t start_paddr;
3350 struct iova *iova;
3351 int prot = 0;
3352 int ret;
3353 struct intel_iommu *iommu;
3354 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3355
3356 BUG_ON(dir == DMA_NONE);
3357
3358 if (iommu_no_mapping(dev))
3359 return paddr;
3360
3361 domain = get_valid_domain_for_dev(dev);
3362 if (!domain)
3363 return 0;
3364
3365 iommu = domain_get_iommu(domain);
3366 size = aligned_nrpages(paddr, size);
3367
3368 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3369 if (!iova)
3370 goto error;
3371
3372 /*
3373 * Check if DMAR supports zero-length reads on write only
3374 * mappings..
3375 */
3376 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3377 !cap_zlr(iommu->cap))
3378 prot |= DMA_PTE_READ;
3379 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3380 prot |= DMA_PTE_WRITE;
3381 /*
3382 * paddr - (paddr + size) might be partial page, we should map the whole
3383 * page. Note: if two part of one page are separately mapped, we
3384 * might have two guest_addr mapping to the same host paddr, but this
3385 * is not a big problem
3386 */
3387 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
3388 mm_to_dma_pfn(paddr_pfn), size, prot);
3389 if (ret)
3390 goto error;
3391
3392 /* it's a non-present to present mapping. Only flush if caching mode */
3393 if (cap_caching_mode(iommu->cap))
3394 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 0, 1);
3395 else
3396 iommu_flush_write_buffer(iommu);
3397
3398 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
3399 start_paddr += paddr & ~PAGE_MASK;
3400 return start_paddr;
3401
3402 error:
3403 if (iova)
3404 __free_iova(&domain->iovad, iova);
3405 pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3406 dev_name(dev), size, (unsigned long long)paddr, dir);
3407 return 0;
3408 }
3409
3410 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3411 unsigned long offset, size_t size,
3412 enum dma_data_direction dir,
3413 struct dma_attrs *attrs)
3414 {
3415 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3416 dir, *dev->dma_mask);
3417 }
3418
3419 static void flush_unmaps(void)
3420 {
3421 int i, j;
3422
3423 timer_on = 0;
3424
3425 /* just flush them all */
3426 for (i = 0; i < g_num_of_iommus; i++) {
3427 struct intel_iommu *iommu = g_iommus[i];
3428 if (!iommu)
3429 continue;
3430
3431 if (!deferred_flush[i].next)
3432 continue;
3433
3434 /* In caching mode, global flushes turn emulation expensive */
3435 if (!cap_caching_mode(iommu->cap))
3436 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3437 DMA_TLB_GLOBAL_FLUSH);
3438 for (j = 0; j < deferred_flush[i].next; j++) {
3439 unsigned long mask;
3440 struct iova *iova = deferred_flush[i].iova[j];
3441 struct dmar_domain *domain = deferred_flush[i].domain[j];
3442
3443 /* On real hardware multiple invalidations are expensive */
3444 if (cap_caching_mode(iommu->cap))
3445 iommu_flush_iotlb_psi(iommu, domain->id,
3446 iova->pfn_lo, iova_size(iova),
3447 !deferred_flush[i].freelist[j], 0);
3448 else {
3449 mask = ilog2(mm_to_dma_pfn(iova_size(iova)));
3450 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3451 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3452 }
3453 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
3454 if (deferred_flush[i].freelist[j])
3455 dma_free_pagelist(deferred_flush[i].freelist[j]);
3456 }
3457 deferred_flush[i].next = 0;
3458 }
3459
3460 list_size = 0;
3461 }
3462
3463 static void flush_unmaps_timeout(unsigned long data)
3464 {
3465 unsigned long flags;
3466
3467 spin_lock_irqsave(&async_umap_flush_lock, flags);
3468 flush_unmaps();
3469 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3470 }
3471
3472 static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
3473 {
3474 unsigned long flags;
3475 int next, iommu_id;
3476 struct intel_iommu *iommu;
3477
3478 spin_lock_irqsave(&async_umap_flush_lock, flags);
3479 if (list_size == HIGH_WATER_MARK)
3480 flush_unmaps();
3481
3482 iommu = domain_get_iommu(dom);
3483 iommu_id = iommu->seq_id;
3484
3485 next = deferred_flush[iommu_id].next;
3486 deferred_flush[iommu_id].domain[next] = dom;
3487 deferred_flush[iommu_id].iova[next] = iova;
3488 deferred_flush[iommu_id].freelist[next] = freelist;
3489 deferred_flush[iommu_id].next++;
3490
3491 if (!timer_on) {
3492 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3493 timer_on = 1;
3494 }
3495 list_size++;
3496 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3497 }
3498
3499 static void intel_unmap(struct device *dev, dma_addr_t dev_addr)
3500 {
3501 struct dmar_domain *domain;
3502 unsigned long start_pfn, last_pfn;
3503 struct iova *iova;
3504 struct intel_iommu *iommu;
3505 struct page *freelist;
3506
3507 if (iommu_no_mapping(dev))
3508 return;
3509
3510 domain = find_domain(dev);
3511 BUG_ON(!domain);
3512
3513 iommu = domain_get_iommu(domain);
3514
3515 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
3516 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3517 (unsigned long long)dev_addr))
3518 return;
3519
3520 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3521 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3522
3523 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3524 dev_name(dev), start_pfn, last_pfn);
3525
3526 freelist = domain_unmap(domain, start_pfn, last_pfn);
3527
3528 if (intel_iommu_strict) {
3529 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3530 last_pfn - start_pfn + 1, !freelist, 0);
3531 /* free iova */
3532 __free_iova(&domain->iovad, iova);
3533 dma_free_pagelist(freelist);
3534 } else {
3535 add_unmap(domain, iova, freelist);
3536 /*
3537 * queue up the release of the unmap to save the 1/6th of the
3538 * cpu used up by the iotlb flush operation...
3539 */
3540 }
3541 }
3542
3543 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3544 size_t size, enum dma_data_direction dir,
3545 struct dma_attrs *attrs)
3546 {
3547 intel_unmap(dev, dev_addr);
3548 }
3549
3550 static void *intel_alloc_coherent(struct device *dev, size_t size,
3551 dma_addr_t *dma_handle, gfp_t flags,
3552 struct dma_attrs *attrs)
3553 {
3554 struct page *page = NULL;
3555 int order;
3556
3557 size = PAGE_ALIGN(size);
3558 order = get_order(size);
3559
3560 if (!iommu_no_mapping(dev))
3561 flags &= ~(GFP_DMA | GFP_DMA32);
3562 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3563 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3564 flags |= GFP_DMA;
3565 else
3566 flags |= GFP_DMA32;
3567 }
3568
3569 if (flags & __GFP_WAIT) {
3570 unsigned int count = size >> PAGE_SHIFT;
3571
3572 page = dma_alloc_from_contiguous(dev, count, order);
3573 if (page && iommu_no_mapping(dev) &&
3574 page_to_phys(page) + size > dev->coherent_dma_mask) {
3575 dma_release_from_contiguous(dev, page, count);
3576 page = NULL;
3577 }
3578 }
3579
3580 if (!page)
3581 page = alloc_pages(flags, order);
3582 if (!page)
3583 return NULL;
3584 memset(page_address(page), 0, size);
3585
3586 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3587 DMA_BIDIRECTIONAL,
3588 dev->coherent_dma_mask);
3589 if (*dma_handle)
3590 return page_address(page);
3591 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3592 __free_pages(page, order);
3593
3594 return NULL;
3595 }
3596
3597 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3598 dma_addr_t dma_handle, struct dma_attrs *attrs)
3599 {
3600 int order;
3601 struct page *page = virt_to_page(vaddr);
3602
3603 size = PAGE_ALIGN(size);
3604 order = get_order(size);
3605
3606 intel_unmap(dev, dma_handle);
3607 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3608 __free_pages(page, order);
3609 }
3610
3611 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3612 int nelems, enum dma_data_direction dir,
3613 struct dma_attrs *attrs)
3614 {
3615 intel_unmap(dev, sglist[0].dma_address);
3616 }
3617
3618 static int intel_nontranslate_map_sg(struct device *hddev,
3619 struct scatterlist *sglist, int nelems, int dir)
3620 {
3621 int i;
3622 struct scatterlist *sg;
3623
3624 for_each_sg(sglist, sg, nelems, i) {
3625 BUG_ON(!sg_page(sg));
3626 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3627 sg->dma_length = sg->length;
3628 }
3629 return nelems;
3630 }
3631
3632 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3633 enum dma_data_direction dir, struct dma_attrs *attrs)
3634 {
3635 int i;
3636 struct dmar_domain *domain;
3637 size_t size = 0;
3638 int prot = 0;
3639 struct iova *iova = NULL;
3640 int ret;
3641 struct scatterlist *sg;
3642 unsigned long start_vpfn;
3643 struct intel_iommu *iommu;
3644
3645 BUG_ON(dir == DMA_NONE);
3646 if (iommu_no_mapping(dev))
3647 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3648
3649 domain = get_valid_domain_for_dev(dev);
3650 if (!domain)
3651 return 0;
3652
3653 iommu = domain_get_iommu(domain);
3654
3655 for_each_sg(sglist, sg, nelems, i)
3656 size += aligned_nrpages(sg->offset, sg->length);
3657
3658 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3659 *dev->dma_mask);
3660 if (!iova) {
3661 sglist->dma_length = 0;
3662 return 0;
3663 }
3664
3665 /*
3666 * Check if DMAR supports zero-length reads on write only
3667 * mappings..
3668 */
3669 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3670 !cap_zlr(iommu->cap))
3671 prot |= DMA_PTE_READ;
3672 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3673 prot |= DMA_PTE_WRITE;
3674
3675 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3676
3677 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3678 if (unlikely(ret)) {
3679 dma_pte_free_pagetable(domain, start_vpfn,
3680 start_vpfn + size - 1);
3681 __free_iova(&domain->iovad, iova);
3682 return 0;
3683 }
3684
3685 /* it's a non-present to present mapping. Only flush if caching mode */
3686 if (cap_caching_mode(iommu->cap))
3687 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 0, 1);
3688 else
3689 iommu_flush_write_buffer(iommu);
3690
3691 return nelems;
3692 }
3693
3694 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3695 {
3696 return !dma_addr;
3697 }
3698
3699 struct dma_map_ops intel_dma_ops = {
3700 .alloc = intel_alloc_coherent,
3701 .free = intel_free_coherent,
3702 .map_sg = intel_map_sg,
3703 .unmap_sg = intel_unmap_sg,
3704 .map_page = intel_map_page,
3705 .unmap_page = intel_unmap_page,
3706 .mapping_error = intel_mapping_error,
3707 };
3708
3709 static inline int iommu_domain_cache_init(void)
3710 {
3711 int ret = 0;
3712
3713 iommu_domain_cache = kmem_cache_create("iommu_domain",
3714 sizeof(struct dmar_domain),
3715 0,
3716 SLAB_HWCACHE_ALIGN,
3717
3718 NULL);
3719 if (!iommu_domain_cache) {
3720 pr_err("Couldn't create iommu_domain cache\n");
3721 ret = -ENOMEM;
3722 }
3723
3724 return ret;
3725 }
3726
3727 static inline int iommu_devinfo_cache_init(void)
3728 {
3729 int ret = 0;
3730
3731 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3732 sizeof(struct device_domain_info),
3733 0,
3734 SLAB_HWCACHE_ALIGN,
3735 NULL);
3736 if (!iommu_devinfo_cache) {
3737 pr_err("Couldn't create devinfo cache\n");
3738 ret = -ENOMEM;
3739 }
3740
3741 return ret;
3742 }
3743
3744 static int __init iommu_init_mempool(void)
3745 {
3746 int ret;
3747 ret = iommu_iova_cache_init();
3748 if (ret)
3749 return ret;
3750
3751 ret = iommu_domain_cache_init();
3752 if (ret)
3753 goto domain_error;
3754
3755 ret = iommu_devinfo_cache_init();
3756 if (!ret)
3757 return ret;
3758
3759 kmem_cache_destroy(iommu_domain_cache);
3760 domain_error:
3761 iommu_iova_cache_destroy();
3762
3763 return -ENOMEM;
3764 }
3765
3766 static void __init iommu_exit_mempool(void)
3767 {
3768 kmem_cache_destroy(iommu_devinfo_cache);
3769 kmem_cache_destroy(iommu_domain_cache);
3770 iommu_iova_cache_destroy();
3771 }
3772
3773 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3774 {
3775 struct dmar_drhd_unit *drhd;
3776 u32 vtbar;
3777 int rc;
3778
3779 /* We know that this device on this chipset has its own IOMMU.
3780 * If we find it under a different IOMMU, then the BIOS is lying
3781 * to us. Hope that the IOMMU for this device is actually
3782 * disabled, and it needs no translation...
3783 */
3784 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3785 if (rc) {
3786 /* "can't" happen */
3787 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3788 return;
3789 }
3790 vtbar &= 0xffff0000;
3791
3792 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3793 drhd = dmar_find_matched_drhd_unit(pdev);
3794 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3795 TAINT_FIRMWARE_WORKAROUND,
3796 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3797 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3798 }
3799 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3800
3801 static void __init init_no_remapping_devices(void)
3802 {
3803 struct dmar_drhd_unit *drhd;
3804 struct device *dev;
3805 int i;
3806
3807 for_each_drhd_unit(drhd) {
3808 if (!drhd->include_all) {
3809 for_each_active_dev_scope(drhd->devices,
3810 drhd->devices_cnt, i, dev)
3811 break;
3812 /* ignore DMAR unit if no devices exist */
3813 if (i == drhd->devices_cnt)
3814 drhd->ignored = 1;
3815 }
3816 }
3817
3818 for_each_active_drhd_unit(drhd) {
3819 if (drhd->include_all)
3820 continue;
3821
3822 for_each_active_dev_scope(drhd->devices,
3823 drhd->devices_cnt, i, dev)
3824 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3825 break;
3826 if (i < drhd->devices_cnt)
3827 continue;
3828
3829 /* This IOMMU has *only* gfx devices. Either bypass it or
3830 set the gfx_mapped flag, as appropriate */
3831 if (dmar_map_gfx) {
3832 intel_iommu_gfx_mapped = 1;
3833 } else {
3834 drhd->ignored = 1;
3835 for_each_active_dev_scope(drhd->devices,
3836 drhd->devices_cnt, i, dev)
3837 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3838 }
3839 }
3840 }
3841
3842 #ifdef CONFIG_SUSPEND
3843 static int init_iommu_hw(void)
3844 {
3845 struct dmar_drhd_unit *drhd;
3846 struct intel_iommu *iommu = NULL;
3847
3848 for_each_active_iommu(iommu, drhd)
3849 if (iommu->qi)
3850 dmar_reenable_qi(iommu);
3851
3852 for_each_iommu(iommu, drhd) {
3853 if (drhd->ignored) {
3854 /*
3855 * we always have to disable PMRs or DMA may fail on
3856 * this device
3857 */
3858 if (force_on)
3859 iommu_disable_protect_mem_regions(iommu);
3860 continue;
3861 }
3862
3863 iommu_flush_write_buffer(iommu);
3864
3865 iommu_set_root_entry(iommu);
3866
3867 iommu->flush.flush_context(iommu, 0, 0, 0,
3868 DMA_CCMD_GLOBAL_INVL);
3869 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3870 iommu_enable_translation(iommu);
3871 iommu_disable_protect_mem_regions(iommu);
3872 }
3873
3874 return 0;
3875 }
3876
3877 static void iommu_flush_all(void)
3878 {
3879 struct dmar_drhd_unit *drhd;
3880 struct intel_iommu *iommu;
3881
3882 for_each_active_iommu(iommu, drhd) {
3883 iommu->flush.flush_context(iommu, 0, 0, 0,
3884 DMA_CCMD_GLOBAL_INVL);
3885 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3886 DMA_TLB_GLOBAL_FLUSH);
3887 }
3888 }
3889
3890 static int iommu_suspend(void)
3891 {
3892 struct dmar_drhd_unit *drhd;
3893 struct intel_iommu *iommu = NULL;
3894 unsigned long flag;
3895
3896 for_each_active_iommu(iommu, drhd) {
3897 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3898 GFP_ATOMIC);
3899 if (!iommu->iommu_state)
3900 goto nomem;
3901 }
3902
3903 iommu_flush_all();
3904
3905 for_each_active_iommu(iommu, drhd) {
3906 iommu_disable_translation(iommu);
3907
3908 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3909
3910 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3911 readl(iommu->reg + DMAR_FECTL_REG);
3912 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3913 readl(iommu->reg + DMAR_FEDATA_REG);
3914 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3915 readl(iommu->reg + DMAR_FEADDR_REG);
3916 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3917 readl(iommu->reg + DMAR_FEUADDR_REG);
3918
3919 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3920 }
3921 return 0;
3922
3923 nomem:
3924 for_each_active_iommu(iommu, drhd)
3925 kfree(iommu->iommu_state);
3926
3927 return -ENOMEM;
3928 }
3929
3930 static void iommu_resume(void)
3931 {
3932 struct dmar_drhd_unit *drhd;
3933 struct intel_iommu *iommu = NULL;
3934 unsigned long flag;
3935
3936 if (init_iommu_hw()) {
3937 if (force_on)
3938 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3939 else
3940 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3941 return;
3942 }
3943
3944 for_each_active_iommu(iommu, drhd) {
3945
3946 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3947
3948 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3949 iommu->reg + DMAR_FECTL_REG);
3950 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3951 iommu->reg + DMAR_FEDATA_REG);
3952 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3953 iommu->reg + DMAR_FEADDR_REG);
3954 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3955 iommu->reg + DMAR_FEUADDR_REG);
3956
3957 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3958 }
3959
3960 for_each_active_iommu(iommu, drhd)
3961 kfree(iommu->iommu_state);
3962 }
3963
3964 static struct syscore_ops iommu_syscore_ops = {
3965 .resume = iommu_resume,
3966 .suspend = iommu_suspend,
3967 };
3968
3969 static void __init init_iommu_pm_ops(void)
3970 {
3971 register_syscore_ops(&iommu_syscore_ops);
3972 }
3973
3974 #else
3975 static inline void init_iommu_pm_ops(void) {}
3976 #endif /* CONFIG_PM */
3977
3978
3979 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
3980 {
3981 struct acpi_dmar_reserved_memory *rmrr;
3982 struct dmar_rmrr_unit *rmrru;
3983
3984 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3985 if (!rmrru)
3986 return -ENOMEM;
3987
3988 rmrru->hdr = header;
3989 rmrr = (struct acpi_dmar_reserved_memory *)header;
3990 rmrru->base_address = rmrr->base_address;
3991 rmrru->end_address = rmrr->end_address;
3992 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3993 ((void *)rmrr) + rmrr->header.length,
3994 &rmrru->devices_cnt);
3995 if (rmrru->devices_cnt && rmrru->devices == NULL) {
3996 kfree(rmrru);
3997 return -ENOMEM;
3998 }
3999
4000 list_add(&rmrru->list, &dmar_rmrr_units);
4001
4002 return 0;
4003 }
4004
4005 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4006 {
4007 struct dmar_atsr_unit *atsru;
4008 struct acpi_dmar_atsr *tmp;
4009
4010 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4011 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4012 if (atsr->segment != tmp->segment)
4013 continue;
4014 if (atsr->header.length != tmp->header.length)
4015 continue;
4016 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4017 return atsru;
4018 }
4019
4020 return NULL;
4021 }
4022
4023 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4024 {
4025 struct acpi_dmar_atsr *atsr;
4026 struct dmar_atsr_unit *atsru;
4027
4028 if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
4029 return 0;
4030
4031 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4032 atsru = dmar_find_atsr(atsr);
4033 if (atsru)
4034 return 0;
4035
4036 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4037 if (!atsru)
4038 return -ENOMEM;
4039
4040 /*
4041 * If memory is allocated from slab by ACPI _DSM method, we need to
4042 * copy the memory content because the memory buffer will be freed
4043 * on return.
4044 */
4045 atsru->hdr = (void *)(atsru + 1);
4046 memcpy(atsru->hdr, hdr, hdr->length);
4047 atsru->include_all = atsr->flags & 0x1;
4048 if (!atsru->include_all) {
4049 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4050 (void *)atsr + atsr->header.length,
4051 &atsru->devices_cnt);
4052 if (atsru->devices_cnt && atsru->devices == NULL) {
4053 kfree(atsru);
4054 return -ENOMEM;
4055 }
4056 }
4057
4058 list_add_rcu(&atsru->list, &dmar_atsr_units);
4059
4060 return 0;
4061 }
4062
4063 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4064 {
4065 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4066 kfree(atsru);
4067 }
4068
4069 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4070 {
4071 struct acpi_dmar_atsr *atsr;
4072 struct dmar_atsr_unit *atsru;
4073
4074 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4075 atsru = dmar_find_atsr(atsr);
4076 if (atsru) {
4077 list_del_rcu(&atsru->list);
4078 synchronize_rcu();
4079 intel_iommu_free_atsr(atsru);
4080 }
4081
4082 return 0;
4083 }
4084
4085 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4086 {
4087 int i;
4088 struct device *dev;
4089 struct acpi_dmar_atsr *atsr;
4090 struct dmar_atsr_unit *atsru;
4091
4092 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4093 atsru = dmar_find_atsr(atsr);
4094 if (!atsru)
4095 return 0;
4096
4097 if (!atsru->include_all && atsru->devices && atsru->devices_cnt)
4098 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4099 i, dev)
4100 return -EBUSY;
4101
4102 return 0;
4103 }
4104
4105 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4106 {
4107 int sp, ret = 0;
4108 struct intel_iommu *iommu = dmaru->iommu;
4109
4110 if (g_iommus[iommu->seq_id])
4111 return 0;
4112
4113 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4114 pr_warn("%s: Doesn't support hardware pass through.\n",
4115 iommu->name);
4116 return -ENXIO;
4117 }
4118 if (!ecap_sc_support(iommu->ecap) &&
4119 domain_update_iommu_snooping(iommu)) {
4120 pr_warn("%s: Doesn't support snooping.\n",
4121 iommu->name);
4122 return -ENXIO;
4123 }
4124 sp = domain_update_iommu_superpage(iommu) - 1;
4125 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4126 pr_warn("%s: Doesn't support large page.\n",
4127 iommu->name);
4128 return -ENXIO;
4129 }
4130
4131 /*
4132 * Disable translation if already enabled prior to OS handover.
4133 */
4134 if (iommu->gcmd & DMA_GCMD_TE)
4135 iommu_disable_translation(iommu);
4136
4137 g_iommus[iommu->seq_id] = iommu;
4138 ret = iommu_init_domains(iommu);
4139 if (ret == 0)
4140 ret = iommu_alloc_root_entry(iommu);
4141 if (ret)
4142 goto out;
4143
4144 if (dmaru->ignored) {
4145 /*
4146 * we always have to disable PMRs or DMA may fail on this device
4147 */
4148 if (force_on)
4149 iommu_disable_protect_mem_regions(iommu);
4150 return 0;
4151 }
4152
4153 intel_iommu_init_qi(iommu);
4154 iommu_flush_write_buffer(iommu);
4155 ret = dmar_set_interrupt(iommu);
4156 if (ret)
4157 goto disable_iommu;
4158
4159 iommu_set_root_entry(iommu);
4160 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4161 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4162 iommu_enable_translation(iommu);
4163
4164 if (si_domain) {
4165 ret = iommu_attach_domain(si_domain, iommu);
4166 if (ret < 0 || si_domain->id != ret)
4167 goto disable_iommu;
4168 domain_attach_iommu(si_domain, iommu);
4169 }
4170
4171 iommu_disable_protect_mem_regions(iommu);
4172 return 0;
4173
4174 disable_iommu:
4175 disable_dmar_iommu(iommu);
4176 out:
4177 free_dmar_iommu(iommu);
4178 return ret;
4179 }
4180
4181 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4182 {
4183 int ret = 0;
4184 struct intel_iommu *iommu = dmaru->iommu;
4185
4186 if (!intel_iommu_enabled)
4187 return 0;
4188 if (iommu == NULL)
4189 return -EINVAL;
4190
4191 if (insert) {
4192 ret = intel_iommu_add(dmaru);
4193 } else {
4194 disable_dmar_iommu(iommu);
4195 free_dmar_iommu(iommu);
4196 }
4197
4198 return ret;
4199 }
4200
4201 static void intel_iommu_free_dmars(void)
4202 {
4203 struct dmar_rmrr_unit *rmrru, *rmrr_n;
4204 struct dmar_atsr_unit *atsru, *atsr_n;
4205
4206 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4207 list_del(&rmrru->list);
4208 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4209 kfree(rmrru);
4210 }
4211
4212 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4213 list_del(&atsru->list);
4214 intel_iommu_free_atsr(atsru);
4215 }
4216 }
4217
4218 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4219 {
4220 int i, ret = 1;
4221 struct pci_bus *bus;
4222 struct pci_dev *bridge = NULL;
4223 struct device *tmp;
4224 struct acpi_dmar_atsr *atsr;
4225 struct dmar_atsr_unit *atsru;
4226
4227 dev = pci_physfn(dev);
4228 for (bus = dev->bus; bus; bus = bus->parent) {
4229 bridge = bus->self;
4230 if (!bridge || !pci_is_pcie(bridge) ||
4231 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4232 return 0;
4233 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4234 break;
4235 }
4236 if (!bridge)
4237 return 0;
4238
4239 rcu_read_lock();
4240 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4241 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4242 if (atsr->segment != pci_domain_nr(dev->bus))
4243 continue;
4244
4245 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4246 if (tmp == &bridge->dev)
4247 goto out;
4248
4249 if (atsru->include_all)
4250 goto out;
4251 }
4252 ret = 0;
4253 out:
4254 rcu_read_unlock();
4255
4256 return ret;
4257 }
4258
4259 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4260 {
4261 int ret = 0;
4262 struct dmar_rmrr_unit *rmrru;
4263 struct dmar_atsr_unit *atsru;
4264 struct acpi_dmar_atsr *atsr;
4265 struct acpi_dmar_reserved_memory *rmrr;
4266
4267 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
4268 return 0;
4269
4270 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4271 rmrr = container_of(rmrru->hdr,
4272 struct acpi_dmar_reserved_memory, header);
4273 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4274 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4275 ((void *)rmrr) + rmrr->header.length,
4276 rmrr->segment, rmrru->devices,
4277 rmrru->devices_cnt);
4278 if(ret < 0)
4279 return ret;
4280 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
4281 dmar_remove_dev_scope(info, rmrr->segment,
4282 rmrru->devices, rmrru->devices_cnt);
4283 }
4284 }
4285
4286 list_for_each_entry(atsru, &dmar_atsr_units, list) {
4287 if (atsru->include_all)
4288 continue;
4289
4290 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4291 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4292 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4293 (void *)atsr + atsr->header.length,
4294 atsr->segment, atsru->devices,
4295 atsru->devices_cnt);
4296 if (ret > 0)
4297 break;
4298 else if(ret < 0)
4299 return ret;
4300 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
4301 if (dmar_remove_dev_scope(info, atsr->segment,
4302 atsru->devices, atsru->devices_cnt))
4303 break;
4304 }
4305 }
4306
4307 return 0;
4308 }
4309
4310 /*
4311 * Here we only respond to action of unbound device from driver.
4312 *
4313 * Added device is not attached to its DMAR domain here yet. That will happen
4314 * when mapping the device to iova.
4315 */
4316 static int device_notifier(struct notifier_block *nb,
4317 unsigned long action, void *data)
4318 {
4319 struct device *dev = data;
4320 struct dmar_domain *domain;
4321
4322 if (iommu_dummy(dev))
4323 return 0;
4324
4325 if (action != BUS_NOTIFY_REMOVED_DEVICE)
4326 return 0;
4327
4328 domain = find_domain(dev);
4329 if (!domain)
4330 return 0;
4331
4332 down_read(&dmar_global_lock);
4333 domain_remove_one_dev_info(domain, dev);
4334 if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4335 domain_exit(domain);
4336 up_read(&dmar_global_lock);
4337
4338 return 0;
4339 }
4340
4341 static struct notifier_block device_nb = {
4342 .notifier_call = device_notifier,
4343 };
4344
4345 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4346 unsigned long val, void *v)
4347 {
4348 struct memory_notify *mhp = v;
4349 unsigned long long start, end;
4350 unsigned long start_vpfn, last_vpfn;
4351
4352 switch (val) {
4353 case MEM_GOING_ONLINE:
4354 start = mhp->start_pfn << PAGE_SHIFT;
4355 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4356 if (iommu_domain_identity_map(si_domain, start, end)) {
4357 pr_warn("Failed to build identity map for [%llx-%llx]\n",
4358 start, end);
4359 return NOTIFY_BAD;
4360 }
4361 break;
4362
4363 case MEM_OFFLINE:
4364 case MEM_CANCEL_ONLINE:
4365 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4366 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4367 while (start_vpfn <= last_vpfn) {
4368 struct iova *iova;
4369 struct dmar_drhd_unit *drhd;
4370 struct intel_iommu *iommu;
4371 struct page *freelist;
4372
4373 iova = find_iova(&si_domain->iovad, start_vpfn);
4374 if (iova == NULL) {
4375 pr_debug("Failed get IOVA for PFN %lx\n",
4376 start_vpfn);
4377 break;
4378 }
4379
4380 iova = split_and_remove_iova(&si_domain->iovad, iova,
4381 start_vpfn, last_vpfn);
4382 if (iova == NULL) {
4383 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4384 start_vpfn, last_vpfn);
4385 return NOTIFY_BAD;
4386 }
4387
4388 freelist = domain_unmap(si_domain, iova->pfn_lo,
4389 iova->pfn_hi);
4390
4391 rcu_read_lock();
4392 for_each_active_iommu(iommu, drhd)
4393 iommu_flush_iotlb_psi(iommu, si_domain->id,
4394 iova->pfn_lo, iova_size(iova),
4395 !freelist, 0);
4396 rcu_read_unlock();
4397 dma_free_pagelist(freelist);
4398
4399 start_vpfn = iova->pfn_hi + 1;
4400 free_iova_mem(iova);
4401 }
4402 break;
4403 }
4404
4405 return NOTIFY_OK;
4406 }
4407
4408 static struct notifier_block intel_iommu_memory_nb = {
4409 .notifier_call = intel_iommu_memory_notifier,
4410 .priority = 0
4411 };
4412
4413
4414 static ssize_t intel_iommu_show_version(struct device *dev,
4415 struct device_attribute *attr,
4416 char *buf)
4417 {
4418 struct intel_iommu *iommu = dev_get_drvdata(dev);
4419 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4420 return sprintf(buf, "%d:%d\n",
4421 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4422 }
4423 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4424
4425 static ssize_t intel_iommu_show_address(struct device *dev,
4426 struct device_attribute *attr,
4427 char *buf)
4428 {
4429 struct intel_iommu *iommu = dev_get_drvdata(dev);
4430 return sprintf(buf, "%llx\n", iommu->reg_phys);
4431 }
4432 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4433
4434 static ssize_t intel_iommu_show_cap(struct device *dev,
4435 struct device_attribute *attr,
4436 char *buf)
4437 {
4438 struct intel_iommu *iommu = dev_get_drvdata(dev);
4439 return sprintf(buf, "%llx\n", iommu->cap);
4440 }
4441 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4442
4443 static ssize_t intel_iommu_show_ecap(struct device *dev,
4444 struct device_attribute *attr,
4445 char *buf)
4446 {
4447 struct intel_iommu *iommu = dev_get_drvdata(dev);
4448 return sprintf(buf, "%llx\n", iommu->ecap);
4449 }
4450 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4451
4452 static struct attribute *intel_iommu_attrs[] = {
4453 &dev_attr_version.attr,
4454 &dev_attr_address.attr,
4455 &dev_attr_cap.attr,
4456 &dev_attr_ecap.attr,
4457 NULL,
4458 };
4459
4460 static struct attribute_group intel_iommu_group = {
4461 .name = "intel-iommu",
4462 .attrs = intel_iommu_attrs,
4463 };
4464
4465 const struct attribute_group *intel_iommu_groups[] = {
4466 &intel_iommu_group,
4467 NULL,
4468 };
4469
4470 int __init intel_iommu_init(void)
4471 {
4472 int ret = -ENODEV;
4473 struct dmar_drhd_unit *drhd;
4474 struct intel_iommu *iommu;
4475
4476 /* VT-d is required for a TXT/tboot launch, so enforce that */
4477 force_on = tboot_force_iommu();
4478
4479 if (iommu_init_mempool()) {
4480 if (force_on)
4481 panic("tboot: Failed to initialize iommu memory\n");
4482 return -ENOMEM;
4483 }
4484
4485 down_write(&dmar_global_lock);
4486 if (dmar_table_init()) {
4487 if (force_on)
4488 panic("tboot: Failed to initialize DMAR table\n");
4489 goto out_free_dmar;
4490 }
4491
4492 if (dmar_dev_scope_init() < 0) {
4493 if (force_on)
4494 panic("tboot: Failed to initialize DMAR device scope\n");
4495 goto out_free_dmar;
4496 }
4497
4498 if (no_iommu || dmar_disabled)
4499 goto out_free_dmar;
4500
4501 if (list_empty(&dmar_rmrr_units))
4502 pr_info("No RMRR found\n");
4503
4504 if (list_empty(&dmar_atsr_units))
4505 pr_info("No ATSR found\n");
4506
4507 if (dmar_init_reserved_ranges()) {
4508 if (force_on)
4509 panic("tboot: Failed to reserve iommu ranges\n");
4510 goto out_free_reserved_range;
4511 }
4512
4513 init_no_remapping_devices();
4514
4515 ret = init_dmars();
4516 if (ret) {
4517 if (force_on)
4518 panic("tboot: Failed to initialize DMARs\n");
4519 pr_err("Initialization failed\n");
4520 goto out_free_reserved_range;
4521 }
4522 up_write(&dmar_global_lock);
4523 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4524
4525 init_timer(&unmap_timer);
4526 #ifdef CONFIG_SWIOTLB
4527 swiotlb = 0;
4528 #endif
4529 dma_ops = &intel_dma_ops;
4530
4531 init_iommu_pm_ops();
4532
4533 for_each_active_iommu(iommu, drhd)
4534 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4535 intel_iommu_groups,
4536 iommu->name);
4537
4538 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4539 bus_register_notifier(&pci_bus_type, &device_nb);
4540 if (si_domain && !hw_pass_through)
4541 register_memory_notifier(&intel_iommu_memory_nb);
4542
4543 intel_iommu_enabled = 1;
4544
4545 return 0;
4546
4547 out_free_reserved_range:
4548 put_iova_domain(&reserved_iova_list);
4549 out_free_dmar:
4550 intel_iommu_free_dmars();
4551 up_write(&dmar_global_lock);
4552 iommu_exit_mempool();
4553 return ret;
4554 }
4555
4556 static int iommu_detach_dev_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4557 {
4558 struct intel_iommu *iommu = opaque;
4559
4560 iommu_detach_dev(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4561 return 0;
4562 }
4563
4564 /*
4565 * NB - intel-iommu lacks any sort of reference counting for the users of
4566 * dependent devices. If multiple endpoints have intersecting dependent
4567 * devices, unbinding the driver from any one of them will possibly leave
4568 * the others unable to operate.
4569 */
4570 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
4571 struct device *dev)
4572 {
4573 if (!iommu || !dev || !dev_is_pci(dev))
4574 return;
4575
4576 pci_for_each_dma_alias(to_pci_dev(dev), &iommu_detach_dev_cb, iommu);
4577 }
4578
4579 static void domain_remove_one_dev_info(struct dmar_domain *domain,
4580 struct device *dev)
4581 {
4582 struct device_domain_info *info, *tmp;
4583 struct intel_iommu *iommu;
4584 unsigned long flags;
4585 bool found = false;
4586 u8 bus, devfn;
4587
4588 iommu = device_to_iommu(dev, &bus, &devfn);
4589 if (!iommu)
4590 return;
4591
4592 spin_lock_irqsave(&device_domain_lock, flags);
4593 list_for_each_entry_safe(info, tmp, &domain->devices, link) {
4594 if (info->iommu == iommu && info->bus == bus &&
4595 info->devfn == devfn) {
4596 unlink_domain_info(info);
4597 spin_unlock_irqrestore(&device_domain_lock, flags);
4598
4599 iommu_disable_dev_iotlb(info);
4600 iommu_detach_dev(iommu, info->bus, info->devfn);
4601 iommu_detach_dependent_devices(iommu, dev);
4602 free_devinfo_mem(info);
4603
4604 spin_lock_irqsave(&device_domain_lock, flags);
4605
4606 if (found)
4607 break;
4608 else
4609 continue;
4610 }
4611
4612 /* if there is no other devices under the same iommu
4613 * owned by this domain, clear this iommu in iommu_bmp
4614 * update iommu count and coherency
4615 */
4616 if (info->iommu == iommu)
4617 found = true;
4618 }
4619
4620 spin_unlock_irqrestore(&device_domain_lock, flags);
4621
4622 if (found == 0) {
4623 domain_detach_iommu(domain, iommu);
4624 if (!domain_type_is_vm_or_si(domain))
4625 iommu_detach_domain(domain, iommu);
4626 }
4627 }
4628
4629 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4630 {
4631 int adjust_width;
4632
4633 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4634 DMA_32BIT_PFN);
4635 domain_reserve_special_ranges(domain);
4636
4637 /* calculate AGAW */
4638 domain->gaw = guest_width;
4639 adjust_width = guestwidth_to_adjustwidth(guest_width);
4640 domain->agaw = width_to_agaw(adjust_width);
4641
4642 domain->iommu_coherency = 0;
4643 domain->iommu_snooping = 0;
4644 domain->iommu_superpage = 0;
4645 domain->max_addr = 0;
4646
4647 /* always allocate the top pgd */
4648 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4649 if (!domain->pgd)
4650 return -ENOMEM;
4651 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4652 return 0;
4653 }
4654
4655 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4656 {
4657 struct dmar_domain *dmar_domain;
4658 struct iommu_domain *domain;
4659
4660 if (type != IOMMU_DOMAIN_UNMANAGED)
4661 return NULL;
4662
4663 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4664 if (!dmar_domain) {
4665 pr_err("Can't allocate dmar_domain\n");
4666 return NULL;
4667 }
4668 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4669 pr_err("Domain initialization failed\n");
4670 domain_exit(dmar_domain);
4671 return NULL;
4672 }
4673 domain_update_iommu_cap(dmar_domain);
4674
4675 domain = &dmar_domain->domain;
4676 domain->geometry.aperture_start = 0;
4677 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4678 domain->geometry.force_aperture = true;
4679
4680 return domain;
4681 }
4682
4683 static void intel_iommu_domain_free(struct iommu_domain *domain)
4684 {
4685 domain_exit(to_dmar_domain(domain));
4686 }
4687
4688 static int intel_iommu_attach_device(struct iommu_domain *domain,
4689 struct device *dev)
4690 {
4691 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4692 struct intel_iommu *iommu;
4693 int addr_width;
4694 u8 bus, devfn;
4695
4696 if (device_is_rmrr_locked(dev)) {
4697 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
4698 return -EPERM;
4699 }
4700
4701 /* normally dev is not mapped */
4702 if (unlikely(domain_context_mapped(dev))) {
4703 struct dmar_domain *old_domain;
4704
4705 old_domain = find_domain(dev);
4706 if (old_domain) {
4707 if (domain_type_is_vm_or_si(dmar_domain))
4708 domain_remove_one_dev_info(old_domain, dev);
4709 else
4710 domain_remove_dev_info(old_domain);
4711
4712 if (!domain_type_is_vm_or_si(old_domain) &&
4713 list_empty(&old_domain->devices))
4714 domain_exit(old_domain);
4715 }
4716 }
4717
4718 iommu = device_to_iommu(dev, &bus, &devfn);
4719 if (!iommu)
4720 return -ENODEV;
4721
4722 /* check if this iommu agaw is sufficient for max mapped address */
4723 addr_width = agaw_to_width(iommu->agaw);
4724 if (addr_width > cap_mgaw(iommu->cap))
4725 addr_width = cap_mgaw(iommu->cap);
4726
4727 if (dmar_domain->max_addr > (1LL << addr_width)) {
4728 pr_err("%s: iommu width (%d) is not "
4729 "sufficient for the mapped address (%llx)\n",
4730 __func__, addr_width, dmar_domain->max_addr);
4731 return -EFAULT;
4732 }
4733 dmar_domain->gaw = addr_width;
4734
4735 /*
4736 * Knock out extra levels of page tables if necessary
4737 */
4738 while (iommu->agaw < dmar_domain->agaw) {
4739 struct dma_pte *pte;
4740
4741 pte = dmar_domain->pgd;
4742 if (dma_pte_present(pte)) {
4743 dmar_domain->pgd = (struct dma_pte *)
4744 phys_to_virt(dma_pte_addr(pte));
4745 free_pgtable_page(pte);
4746 }
4747 dmar_domain->agaw--;
4748 }
4749
4750 return domain_add_dev_info(dmar_domain, dev, CONTEXT_TT_MULTI_LEVEL);
4751 }
4752
4753 static void intel_iommu_detach_device(struct iommu_domain *domain,
4754 struct device *dev)
4755 {
4756 domain_remove_one_dev_info(to_dmar_domain(domain), dev);
4757 }
4758
4759 static int intel_iommu_map(struct iommu_domain *domain,
4760 unsigned long iova, phys_addr_t hpa,
4761 size_t size, int iommu_prot)
4762 {
4763 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4764 u64 max_addr;
4765 int prot = 0;
4766 int ret;
4767
4768 if (iommu_prot & IOMMU_READ)
4769 prot |= DMA_PTE_READ;
4770 if (iommu_prot & IOMMU_WRITE)
4771 prot |= DMA_PTE_WRITE;
4772 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4773 prot |= DMA_PTE_SNP;
4774
4775 max_addr = iova + size;
4776 if (dmar_domain->max_addr < max_addr) {
4777 u64 end;
4778
4779 /* check if minimum agaw is sufficient for mapped address */
4780 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4781 if (end < max_addr) {
4782 pr_err("%s: iommu width (%d) is not "
4783 "sufficient for the mapped address (%llx)\n",
4784 __func__, dmar_domain->gaw, max_addr);
4785 return -EFAULT;
4786 }
4787 dmar_domain->max_addr = max_addr;
4788 }
4789 /* Round up size to next multiple of PAGE_SIZE, if it and
4790 the low bits of hpa would take us onto the next page */
4791 size = aligned_nrpages(hpa, size);
4792 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4793 hpa >> VTD_PAGE_SHIFT, size, prot);
4794 return ret;
4795 }
4796
4797 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4798 unsigned long iova, size_t size)
4799 {
4800 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4801 struct page *freelist = NULL;
4802 struct intel_iommu *iommu;
4803 unsigned long start_pfn, last_pfn;
4804 unsigned int npages;
4805 int iommu_id, num, ndomains, level = 0;
4806
4807 /* Cope with horrid API which requires us to unmap more than the
4808 size argument if it happens to be a large-page mapping. */
4809 if (!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level))
4810 BUG();
4811
4812 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4813 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4814
4815 start_pfn = iova >> VTD_PAGE_SHIFT;
4816 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4817
4818 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4819
4820 npages = last_pfn - start_pfn + 1;
4821
4822 for_each_set_bit(iommu_id, dmar_domain->iommu_bmp, g_num_of_iommus) {
4823 iommu = g_iommus[iommu_id];
4824
4825 /*
4826 * find bit position of dmar_domain
4827 */
4828 ndomains = cap_ndoms(iommu->cap);
4829 for_each_set_bit(num, iommu->domain_ids, ndomains) {
4830 if (iommu->domains[num] == dmar_domain)
4831 iommu_flush_iotlb_psi(iommu, num, start_pfn,
4832 npages, !freelist, 0);
4833 }
4834
4835 }
4836
4837 dma_free_pagelist(freelist);
4838
4839 if (dmar_domain->max_addr == iova + size)
4840 dmar_domain->max_addr = iova;
4841
4842 return size;
4843 }
4844
4845 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4846 dma_addr_t iova)
4847 {
4848 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4849 struct dma_pte *pte;
4850 int level = 0;
4851 u64 phys = 0;
4852
4853 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4854 if (pte)
4855 phys = dma_pte_addr(pte);
4856
4857 return phys;
4858 }
4859
4860 static bool intel_iommu_capable(enum iommu_cap cap)
4861 {
4862 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4863 return domain_update_iommu_snooping(NULL) == 1;
4864 if (cap == IOMMU_CAP_INTR_REMAP)
4865 return irq_remapping_enabled == 1;
4866
4867 return false;
4868 }
4869
4870 static int intel_iommu_add_device(struct device *dev)
4871 {
4872 struct intel_iommu *iommu;
4873 struct iommu_group *group;
4874 u8 bus, devfn;
4875
4876 iommu = device_to_iommu(dev, &bus, &devfn);
4877 if (!iommu)
4878 return -ENODEV;
4879
4880 iommu_device_link(iommu->iommu_dev, dev);
4881
4882 group = iommu_group_get_for_dev(dev);
4883
4884 if (IS_ERR(group))
4885 return PTR_ERR(group);
4886
4887 iommu_group_put(group);
4888 return 0;
4889 }
4890
4891 static void intel_iommu_remove_device(struct device *dev)
4892 {
4893 struct intel_iommu *iommu;
4894 u8 bus, devfn;
4895
4896 iommu = device_to_iommu(dev, &bus, &devfn);
4897 if (!iommu)
4898 return;
4899
4900 iommu_group_remove_device(dev);
4901
4902 iommu_device_unlink(iommu->iommu_dev, dev);
4903 }
4904
4905 static const struct iommu_ops intel_iommu_ops = {
4906 .capable = intel_iommu_capable,
4907 .domain_alloc = intel_iommu_domain_alloc,
4908 .domain_free = intel_iommu_domain_free,
4909 .attach_dev = intel_iommu_attach_device,
4910 .detach_dev = intel_iommu_detach_device,
4911 .map = intel_iommu_map,
4912 .unmap = intel_iommu_unmap,
4913 .map_sg = default_iommu_map_sg,
4914 .iova_to_phys = intel_iommu_iova_to_phys,
4915 .add_device = intel_iommu_add_device,
4916 .remove_device = intel_iommu_remove_device,
4917 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4918 };
4919
4920 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4921 {
4922 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4923 pr_info("Disabling IOMMU for graphics on this chipset\n");
4924 dmar_map_gfx = 0;
4925 }
4926
4927 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4928 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4929 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4930 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4931 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4932 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4933 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4934
4935 static void quirk_iommu_rwbf(struct pci_dev *dev)
4936 {
4937 /*
4938 * Mobile 4 Series Chipset neglects to set RWBF capability,
4939 * but needs it. Same seems to hold for the desktop versions.
4940 */
4941 pr_info("Forcing write-buffer flush capability\n");
4942 rwbf_quirk = 1;
4943 }
4944
4945 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4946 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4947 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4948 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4949 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4950 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4951 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4952
4953 #define GGC 0x52
4954 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4955 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4956 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4957 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4958 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4959 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4960 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4961 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4962
4963 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4964 {
4965 unsigned short ggc;
4966
4967 if (pci_read_config_word(dev, GGC, &ggc))
4968 return;
4969
4970 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4971 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4972 dmar_map_gfx = 0;
4973 } else if (dmar_map_gfx) {
4974 /* we have to ensure the gfx device is idle before we flush */
4975 pr_info("Disabling batched IOTLB flush on Ironlake\n");
4976 intel_iommu_strict = 1;
4977 }
4978 }
4979 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4980 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4981 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4982 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4983
4984 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4985 ISOCH DMAR unit for the Azalia sound device, but not give it any
4986 TLB entries, which causes it to deadlock. Check for that. We do
4987 this in a function called from init_dmars(), instead of in a PCI
4988 quirk, because we don't want to print the obnoxious "BIOS broken"
4989 message if VT-d is actually disabled.
4990 */
4991 static void __init check_tylersburg_isoch(void)
4992 {
4993 struct pci_dev *pdev;
4994 uint32_t vtisochctrl;
4995
4996 /* If there's no Azalia in the system anyway, forget it. */
4997 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4998 if (!pdev)
4999 return;
5000 pci_dev_put(pdev);
5001
5002 /* System Management Registers. Might be hidden, in which case
5003 we can't do the sanity check. But that's OK, because the
5004 known-broken BIOSes _don't_ actually hide it, so far. */
5005 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5006 if (!pdev)
5007 return;
5008
5009 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5010 pci_dev_put(pdev);
5011 return;
5012 }
5013
5014 pci_dev_put(pdev);
5015
5016 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5017 if (vtisochctrl & 1)
5018 return;
5019
5020 /* Drop all bits other than the number of TLB entries */
5021 vtisochctrl &= 0x1c;
5022
5023 /* If we have the recommended number of TLB entries (16), fine. */
5024 if (vtisochctrl == 0x10)
5025 return;
5026
5027 /* Zero TLB entries? You get to ride the short bus to school. */
5028 if (!vtisochctrl) {
5029 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5030 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5031 dmi_get_system_info(DMI_BIOS_VENDOR),
5032 dmi_get_system_info(DMI_BIOS_VERSION),
5033 dmi_get_system_info(DMI_PRODUCT_VERSION));
5034 iommu_identity_mapping |= IDENTMAP_AZALIA;
5035 return;
5036 }
5037
5038 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5039 vtisochctrl);
5040 }
This page took 0.1888 seconds and 5 git commands to generate.