Merge tag 'dlm-3.6' of git://git.kernel.org/pub/scm/linux/kernel/git/teigland/linux-dlm
[deliverable/linux.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
22 */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <asm/irq_remapping.h>
46 #include <asm/cacheflush.h>
47 #include <asm/iommu.h>
48
49 #define ROOT_SIZE VTD_PAGE_SIZE
50 #define CONTEXT_SIZE VTD_PAGE_SIZE
51
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
55
56 #define IOAPIC_RANGE_START (0xfee00000)
57 #define IOAPIC_RANGE_END (0xfeefffff)
58 #define IOVA_START_ADDR (0x1000)
59
60 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
61
62 #define MAX_AGAW_WIDTH 64
63
64 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
65 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
66
67 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
68 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
69 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
70 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
71 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
72
73 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
74 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
75 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
76
77 /* page table handling */
78 #define LEVEL_STRIDE (9)
79 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
80
81 /*
82 * This bitmap is used to advertise the page sizes our hardware support
83 * to the IOMMU core, which will then use this information to split
84 * physically contiguous memory regions it is mapping into page sizes
85 * that we support.
86 *
87 * Traditionally the IOMMU core just handed us the mappings directly,
88 * after making sure the size is an order of a 4KiB page and that the
89 * mapping has natural alignment.
90 *
91 * To retain this behavior, we currently advertise that we support
92 * all page sizes that are an order of 4KiB.
93 *
94 * If at some point we'd like to utilize the IOMMU core's new behavior,
95 * we could change this to advertise the real page sizes we support.
96 */
97 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
98
99 static inline int agaw_to_level(int agaw)
100 {
101 return agaw + 2;
102 }
103
104 static inline int agaw_to_width(int agaw)
105 {
106 return 30 + agaw * LEVEL_STRIDE;
107 }
108
109 static inline int width_to_agaw(int width)
110 {
111 return (width - 30) / LEVEL_STRIDE;
112 }
113
114 static inline unsigned int level_to_offset_bits(int level)
115 {
116 return (level - 1) * LEVEL_STRIDE;
117 }
118
119 static inline int pfn_level_offset(unsigned long pfn, int level)
120 {
121 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
122 }
123
124 static inline unsigned long level_mask(int level)
125 {
126 return -1UL << level_to_offset_bits(level);
127 }
128
129 static inline unsigned long level_size(int level)
130 {
131 return 1UL << level_to_offset_bits(level);
132 }
133
134 static inline unsigned long align_to_level(unsigned long pfn, int level)
135 {
136 return (pfn + level_size(level) - 1) & level_mask(level);
137 }
138
139 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
140 {
141 return 1 << ((lvl - 1) * LEVEL_STRIDE);
142 }
143
144 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
145 are never going to work. */
146 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
147 {
148 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
149 }
150
151 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
152 {
153 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
154 }
155 static inline unsigned long page_to_dma_pfn(struct page *pg)
156 {
157 return mm_to_dma_pfn(page_to_pfn(pg));
158 }
159 static inline unsigned long virt_to_dma_pfn(void *p)
160 {
161 return page_to_dma_pfn(virt_to_page(p));
162 }
163
164 /* global iommu list, set NULL for ignored DMAR units */
165 static struct intel_iommu **g_iommus;
166
167 static void __init check_tylersburg_isoch(void);
168 static int rwbf_quirk;
169
170 /*
171 * set to 1 to panic kernel if can't successfully enable VT-d
172 * (used when kernel is launched w/ TXT)
173 */
174 static int force_on = 0;
175
176 /*
177 * 0: Present
178 * 1-11: Reserved
179 * 12-63: Context Ptr (12 - (haw-1))
180 * 64-127: Reserved
181 */
182 struct root_entry {
183 u64 val;
184 u64 rsvd1;
185 };
186 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
187 static inline bool root_present(struct root_entry *root)
188 {
189 return (root->val & 1);
190 }
191 static inline void set_root_present(struct root_entry *root)
192 {
193 root->val |= 1;
194 }
195 static inline void set_root_value(struct root_entry *root, unsigned long value)
196 {
197 root->val |= value & VTD_PAGE_MASK;
198 }
199
200 static inline struct context_entry *
201 get_context_addr_from_root(struct root_entry *root)
202 {
203 return (struct context_entry *)
204 (root_present(root)?phys_to_virt(
205 root->val & VTD_PAGE_MASK) :
206 NULL);
207 }
208
209 /*
210 * low 64 bits:
211 * 0: present
212 * 1: fault processing disable
213 * 2-3: translation type
214 * 12-63: address space root
215 * high 64 bits:
216 * 0-2: address width
217 * 3-6: aval
218 * 8-23: domain id
219 */
220 struct context_entry {
221 u64 lo;
222 u64 hi;
223 };
224
225 static inline bool context_present(struct context_entry *context)
226 {
227 return (context->lo & 1);
228 }
229 static inline void context_set_present(struct context_entry *context)
230 {
231 context->lo |= 1;
232 }
233
234 static inline void context_set_fault_enable(struct context_entry *context)
235 {
236 context->lo &= (((u64)-1) << 2) | 1;
237 }
238
239 static inline void context_set_translation_type(struct context_entry *context,
240 unsigned long value)
241 {
242 context->lo &= (((u64)-1) << 4) | 3;
243 context->lo |= (value & 3) << 2;
244 }
245
246 static inline void context_set_address_root(struct context_entry *context,
247 unsigned long value)
248 {
249 context->lo |= value & VTD_PAGE_MASK;
250 }
251
252 static inline void context_set_address_width(struct context_entry *context,
253 unsigned long value)
254 {
255 context->hi |= value & 7;
256 }
257
258 static inline void context_set_domain_id(struct context_entry *context,
259 unsigned long value)
260 {
261 context->hi |= (value & ((1 << 16) - 1)) << 8;
262 }
263
264 static inline void context_clear_entry(struct context_entry *context)
265 {
266 context->lo = 0;
267 context->hi = 0;
268 }
269
270 /*
271 * 0: readable
272 * 1: writable
273 * 2-6: reserved
274 * 7: super page
275 * 8-10: available
276 * 11: snoop behavior
277 * 12-63: Host physcial address
278 */
279 struct dma_pte {
280 u64 val;
281 };
282
283 static inline void dma_clear_pte(struct dma_pte *pte)
284 {
285 pte->val = 0;
286 }
287
288 static inline void dma_set_pte_readable(struct dma_pte *pte)
289 {
290 pte->val |= DMA_PTE_READ;
291 }
292
293 static inline void dma_set_pte_writable(struct dma_pte *pte)
294 {
295 pte->val |= DMA_PTE_WRITE;
296 }
297
298 static inline void dma_set_pte_snp(struct dma_pte *pte)
299 {
300 pte->val |= DMA_PTE_SNP;
301 }
302
303 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
304 {
305 pte->val = (pte->val & ~3) | (prot & 3);
306 }
307
308 static inline u64 dma_pte_addr(struct dma_pte *pte)
309 {
310 #ifdef CONFIG_64BIT
311 return pte->val & VTD_PAGE_MASK;
312 #else
313 /* Must have a full atomic 64-bit read */
314 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
315 #endif
316 }
317
318 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
319 {
320 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
321 }
322
323 static inline bool dma_pte_present(struct dma_pte *pte)
324 {
325 return (pte->val & 3) != 0;
326 }
327
328 static inline bool dma_pte_superpage(struct dma_pte *pte)
329 {
330 return (pte->val & (1 << 7));
331 }
332
333 static inline int first_pte_in_page(struct dma_pte *pte)
334 {
335 return !((unsigned long)pte & ~VTD_PAGE_MASK);
336 }
337
338 /*
339 * This domain is a statically identity mapping domain.
340 * 1. This domain creats a static 1:1 mapping to all usable memory.
341 * 2. It maps to each iommu if successful.
342 * 3. Each iommu mapps to this domain if successful.
343 */
344 static struct dmar_domain *si_domain;
345 static int hw_pass_through = 1;
346
347 /* devices under the same p2p bridge are owned in one domain */
348 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
349
350 /* domain represents a virtual machine, more than one devices
351 * across iommus may be owned in one domain, e.g. kvm guest.
352 */
353 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
354
355 /* si_domain contains mulitple devices */
356 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
357
358 /* define the limit of IOMMUs supported in each domain */
359 #ifdef CONFIG_X86
360 # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS
361 #else
362 # define IOMMU_UNITS_SUPPORTED 64
363 #endif
364
365 struct dmar_domain {
366 int id; /* domain id */
367 int nid; /* node id */
368 DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED);
369 /* bitmap of iommus this domain uses*/
370
371 struct list_head devices; /* all devices' list */
372 struct iova_domain iovad; /* iova's that belong to this domain */
373
374 struct dma_pte *pgd; /* virtual address */
375 int gaw; /* max guest address width */
376
377 /* adjusted guest address width, 0 is level 2 30-bit */
378 int agaw;
379
380 int flags; /* flags to find out type of domain */
381
382 int iommu_coherency;/* indicate coherency of iommu access */
383 int iommu_snooping; /* indicate snooping control feature*/
384 int iommu_count; /* reference count of iommu */
385 int iommu_superpage;/* Level of superpages supported:
386 0 == 4KiB (no superpages), 1 == 2MiB,
387 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
388 spinlock_t iommu_lock; /* protect iommu set in domain */
389 u64 max_addr; /* maximum mapped address */
390 };
391
392 /* PCI domain-device relationship */
393 struct device_domain_info {
394 struct list_head link; /* link to domain siblings */
395 struct list_head global; /* link to global list */
396 int segment; /* PCI domain */
397 u8 bus; /* PCI bus number */
398 u8 devfn; /* PCI devfn number */
399 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
400 struct intel_iommu *iommu; /* IOMMU used by this device */
401 struct dmar_domain *domain; /* pointer to domain */
402 };
403
404 static void flush_unmaps_timeout(unsigned long data);
405
406 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
407
408 #define HIGH_WATER_MARK 250
409 struct deferred_flush_tables {
410 int next;
411 struct iova *iova[HIGH_WATER_MARK];
412 struct dmar_domain *domain[HIGH_WATER_MARK];
413 };
414
415 static struct deferred_flush_tables *deferred_flush;
416
417 /* bitmap for indexing intel_iommus */
418 static int g_num_of_iommus;
419
420 static DEFINE_SPINLOCK(async_umap_flush_lock);
421 static LIST_HEAD(unmaps_to_do);
422
423 static int timer_on;
424 static long list_size;
425
426 static void domain_remove_dev_info(struct dmar_domain *domain);
427
428 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
429 int dmar_disabled = 0;
430 #else
431 int dmar_disabled = 1;
432 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
433
434 int intel_iommu_enabled = 0;
435 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
436
437 static int dmar_map_gfx = 1;
438 static int dmar_forcedac;
439 static int intel_iommu_strict;
440 static int intel_iommu_superpage = 1;
441
442 int intel_iommu_gfx_mapped;
443 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
444
445 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
446 static DEFINE_SPINLOCK(device_domain_lock);
447 static LIST_HEAD(device_domain_list);
448
449 static struct iommu_ops intel_iommu_ops;
450
451 static int __init intel_iommu_setup(char *str)
452 {
453 if (!str)
454 return -EINVAL;
455 while (*str) {
456 if (!strncmp(str, "on", 2)) {
457 dmar_disabled = 0;
458 printk(KERN_INFO "Intel-IOMMU: enabled\n");
459 } else if (!strncmp(str, "off", 3)) {
460 dmar_disabled = 1;
461 printk(KERN_INFO "Intel-IOMMU: disabled\n");
462 } else if (!strncmp(str, "igfx_off", 8)) {
463 dmar_map_gfx = 0;
464 printk(KERN_INFO
465 "Intel-IOMMU: disable GFX device mapping\n");
466 } else if (!strncmp(str, "forcedac", 8)) {
467 printk(KERN_INFO
468 "Intel-IOMMU: Forcing DAC for PCI devices\n");
469 dmar_forcedac = 1;
470 } else if (!strncmp(str, "strict", 6)) {
471 printk(KERN_INFO
472 "Intel-IOMMU: disable batched IOTLB flush\n");
473 intel_iommu_strict = 1;
474 } else if (!strncmp(str, "sp_off", 6)) {
475 printk(KERN_INFO
476 "Intel-IOMMU: disable supported super page\n");
477 intel_iommu_superpage = 0;
478 }
479
480 str += strcspn(str, ",");
481 while (*str == ',')
482 str++;
483 }
484 return 0;
485 }
486 __setup("intel_iommu=", intel_iommu_setup);
487
488 static struct kmem_cache *iommu_domain_cache;
489 static struct kmem_cache *iommu_devinfo_cache;
490 static struct kmem_cache *iommu_iova_cache;
491
492 static inline void *alloc_pgtable_page(int node)
493 {
494 struct page *page;
495 void *vaddr = NULL;
496
497 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
498 if (page)
499 vaddr = page_address(page);
500 return vaddr;
501 }
502
503 static inline void free_pgtable_page(void *vaddr)
504 {
505 free_page((unsigned long)vaddr);
506 }
507
508 static inline void *alloc_domain_mem(void)
509 {
510 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
511 }
512
513 static void free_domain_mem(void *vaddr)
514 {
515 kmem_cache_free(iommu_domain_cache, vaddr);
516 }
517
518 static inline void * alloc_devinfo_mem(void)
519 {
520 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
521 }
522
523 static inline void free_devinfo_mem(void *vaddr)
524 {
525 kmem_cache_free(iommu_devinfo_cache, vaddr);
526 }
527
528 struct iova *alloc_iova_mem(void)
529 {
530 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
531 }
532
533 void free_iova_mem(struct iova *iova)
534 {
535 kmem_cache_free(iommu_iova_cache, iova);
536 }
537
538
539 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
540 {
541 unsigned long sagaw;
542 int agaw = -1;
543
544 sagaw = cap_sagaw(iommu->cap);
545 for (agaw = width_to_agaw(max_gaw);
546 agaw >= 0; agaw--) {
547 if (test_bit(agaw, &sagaw))
548 break;
549 }
550
551 return agaw;
552 }
553
554 /*
555 * Calculate max SAGAW for each iommu.
556 */
557 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
558 {
559 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
560 }
561
562 /*
563 * calculate agaw for each iommu.
564 * "SAGAW" may be different across iommus, use a default agaw, and
565 * get a supported less agaw for iommus that don't support the default agaw.
566 */
567 int iommu_calculate_agaw(struct intel_iommu *iommu)
568 {
569 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
570 }
571
572 /* This functionin only returns single iommu in a domain */
573 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
574 {
575 int iommu_id;
576
577 /* si_domain and vm domain should not get here. */
578 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
579 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
580
581 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
582 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
583 return NULL;
584
585 return g_iommus[iommu_id];
586 }
587
588 static void domain_update_iommu_coherency(struct dmar_domain *domain)
589 {
590 int i;
591
592 domain->iommu_coherency = 1;
593
594 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
595 if (!ecap_coherent(g_iommus[i]->ecap)) {
596 domain->iommu_coherency = 0;
597 break;
598 }
599 }
600 }
601
602 static void domain_update_iommu_snooping(struct dmar_domain *domain)
603 {
604 int i;
605
606 domain->iommu_snooping = 1;
607
608 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
609 if (!ecap_sc_support(g_iommus[i]->ecap)) {
610 domain->iommu_snooping = 0;
611 break;
612 }
613 }
614 }
615
616 static void domain_update_iommu_superpage(struct dmar_domain *domain)
617 {
618 struct dmar_drhd_unit *drhd;
619 struct intel_iommu *iommu = NULL;
620 int mask = 0xf;
621
622 if (!intel_iommu_superpage) {
623 domain->iommu_superpage = 0;
624 return;
625 }
626
627 /* set iommu_superpage to the smallest common denominator */
628 for_each_active_iommu(iommu, drhd) {
629 mask &= cap_super_page_val(iommu->cap);
630 if (!mask) {
631 break;
632 }
633 }
634 domain->iommu_superpage = fls(mask);
635 }
636
637 /* Some capabilities may be different across iommus */
638 static void domain_update_iommu_cap(struct dmar_domain *domain)
639 {
640 domain_update_iommu_coherency(domain);
641 domain_update_iommu_snooping(domain);
642 domain_update_iommu_superpage(domain);
643 }
644
645 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
646 {
647 struct dmar_drhd_unit *drhd = NULL;
648 int i;
649
650 for_each_drhd_unit(drhd) {
651 if (drhd->ignored)
652 continue;
653 if (segment != drhd->segment)
654 continue;
655
656 for (i = 0; i < drhd->devices_cnt; i++) {
657 if (drhd->devices[i] &&
658 drhd->devices[i]->bus->number == bus &&
659 drhd->devices[i]->devfn == devfn)
660 return drhd->iommu;
661 if (drhd->devices[i] &&
662 drhd->devices[i]->subordinate &&
663 drhd->devices[i]->subordinate->number <= bus &&
664 drhd->devices[i]->subordinate->busn_res.end >= bus)
665 return drhd->iommu;
666 }
667
668 if (drhd->include_all)
669 return drhd->iommu;
670 }
671
672 return NULL;
673 }
674
675 static void domain_flush_cache(struct dmar_domain *domain,
676 void *addr, int size)
677 {
678 if (!domain->iommu_coherency)
679 clflush_cache_range(addr, size);
680 }
681
682 /* Gets context entry for a given bus and devfn */
683 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
684 u8 bus, u8 devfn)
685 {
686 struct root_entry *root;
687 struct context_entry *context;
688 unsigned long phy_addr;
689 unsigned long flags;
690
691 spin_lock_irqsave(&iommu->lock, flags);
692 root = &iommu->root_entry[bus];
693 context = get_context_addr_from_root(root);
694 if (!context) {
695 context = (struct context_entry *)
696 alloc_pgtable_page(iommu->node);
697 if (!context) {
698 spin_unlock_irqrestore(&iommu->lock, flags);
699 return NULL;
700 }
701 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
702 phy_addr = virt_to_phys((void *)context);
703 set_root_value(root, phy_addr);
704 set_root_present(root);
705 __iommu_flush_cache(iommu, root, sizeof(*root));
706 }
707 spin_unlock_irqrestore(&iommu->lock, flags);
708 return &context[devfn];
709 }
710
711 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
712 {
713 struct root_entry *root;
714 struct context_entry *context;
715 int ret;
716 unsigned long flags;
717
718 spin_lock_irqsave(&iommu->lock, flags);
719 root = &iommu->root_entry[bus];
720 context = get_context_addr_from_root(root);
721 if (!context) {
722 ret = 0;
723 goto out;
724 }
725 ret = context_present(&context[devfn]);
726 out:
727 spin_unlock_irqrestore(&iommu->lock, flags);
728 return ret;
729 }
730
731 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
732 {
733 struct root_entry *root;
734 struct context_entry *context;
735 unsigned long flags;
736
737 spin_lock_irqsave(&iommu->lock, flags);
738 root = &iommu->root_entry[bus];
739 context = get_context_addr_from_root(root);
740 if (context) {
741 context_clear_entry(&context[devfn]);
742 __iommu_flush_cache(iommu, &context[devfn], \
743 sizeof(*context));
744 }
745 spin_unlock_irqrestore(&iommu->lock, flags);
746 }
747
748 static void free_context_table(struct intel_iommu *iommu)
749 {
750 struct root_entry *root;
751 int i;
752 unsigned long flags;
753 struct context_entry *context;
754
755 spin_lock_irqsave(&iommu->lock, flags);
756 if (!iommu->root_entry) {
757 goto out;
758 }
759 for (i = 0; i < ROOT_ENTRY_NR; i++) {
760 root = &iommu->root_entry[i];
761 context = get_context_addr_from_root(root);
762 if (context)
763 free_pgtable_page(context);
764 }
765 free_pgtable_page(iommu->root_entry);
766 iommu->root_entry = NULL;
767 out:
768 spin_unlock_irqrestore(&iommu->lock, flags);
769 }
770
771 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
772 unsigned long pfn, int target_level)
773 {
774 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
775 struct dma_pte *parent, *pte = NULL;
776 int level = agaw_to_level(domain->agaw);
777 int offset;
778
779 BUG_ON(!domain->pgd);
780 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
781 parent = domain->pgd;
782
783 while (level > 0) {
784 void *tmp_page;
785
786 offset = pfn_level_offset(pfn, level);
787 pte = &parent[offset];
788 if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
789 break;
790 if (level == target_level)
791 break;
792
793 if (!dma_pte_present(pte)) {
794 uint64_t pteval;
795
796 tmp_page = alloc_pgtable_page(domain->nid);
797
798 if (!tmp_page)
799 return NULL;
800
801 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
802 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
803 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
804 /* Someone else set it while we were thinking; use theirs. */
805 free_pgtable_page(tmp_page);
806 } else {
807 dma_pte_addr(pte);
808 domain_flush_cache(domain, pte, sizeof(*pte));
809 }
810 }
811 parent = phys_to_virt(dma_pte_addr(pte));
812 level--;
813 }
814
815 return pte;
816 }
817
818
819 /* return address's pte at specific level */
820 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
821 unsigned long pfn,
822 int level, int *large_page)
823 {
824 struct dma_pte *parent, *pte = NULL;
825 int total = agaw_to_level(domain->agaw);
826 int offset;
827
828 parent = domain->pgd;
829 while (level <= total) {
830 offset = pfn_level_offset(pfn, total);
831 pte = &parent[offset];
832 if (level == total)
833 return pte;
834
835 if (!dma_pte_present(pte)) {
836 *large_page = total;
837 break;
838 }
839
840 if (pte->val & DMA_PTE_LARGE_PAGE) {
841 *large_page = total;
842 return pte;
843 }
844
845 parent = phys_to_virt(dma_pte_addr(pte));
846 total--;
847 }
848 return NULL;
849 }
850
851 /* clear last level pte, a tlb flush should be followed */
852 static int dma_pte_clear_range(struct dmar_domain *domain,
853 unsigned long start_pfn,
854 unsigned long last_pfn)
855 {
856 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
857 unsigned int large_page = 1;
858 struct dma_pte *first_pte, *pte;
859 int order;
860
861 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
862 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
863 BUG_ON(start_pfn > last_pfn);
864
865 /* we don't need lock here; nobody else touches the iova range */
866 do {
867 large_page = 1;
868 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
869 if (!pte) {
870 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
871 continue;
872 }
873 do {
874 dma_clear_pte(pte);
875 start_pfn += lvl_to_nr_pages(large_page);
876 pte++;
877 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
878
879 domain_flush_cache(domain, first_pte,
880 (void *)pte - (void *)first_pte);
881
882 } while (start_pfn && start_pfn <= last_pfn);
883
884 order = (large_page - 1) * 9;
885 return order;
886 }
887
888 /* free page table pages. last level pte should already be cleared */
889 static void dma_pte_free_pagetable(struct dmar_domain *domain,
890 unsigned long start_pfn,
891 unsigned long last_pfn)
892 {
893 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
894 struct dma_pte *first_pte, *pte;
895 int total = agaw_to_level(domain->agaw);
896 int level;
897 unsigned long tmp;
898 int large_page = 2;
899
900 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
901 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
902 BUG_ON(start_pfn > last_pfn);
903
904 /* We don't need lock here; nobody else touches the iova range */
905 level = 2;
906 while (level <= total) {
907 tmp = align_to_level(start_pfn, level);
908
909 /* If we can't even clear one PTE at this level, we're done */
910 if (tmp + level_size(level) - 1 > last_pfn)
911 return;
912
913 do {
914 large_page = level;
915 first_pte = pte = dma_pfn_level_pte(domain, tmp, level, &large_page);
916 if (large_page > level)
917 level = large_page + 1;
918 if (!pte) {
919 tmp = align_to_level(tmp + 1, level + 1);
920 continue;
921 }
922 do {
923 if (dma_pte_present(pte)) {
924 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
925 dma_clear_pte(pte);
926 }
927 pte++;
928 tmp += level_size(level);
929 } while (!first_pte_in_page(pte) &&
930 tmp + level_size(level) - 1 <= last_pfn);
931
932 domain_flush_cache(domain, first_pte,
933 (void *)pte - (void *)first_pte);
934
935 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
936 level++;
937 }
938 /* free pgd */
939 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
940 free_pgtable_page(domain->pgd);
941 domain->pgd = NULL;
942 }
943 }
944
945 /* iommu handling */
946 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
947 {
948 struct root_entry *root;
949 unsigned long flags;
950
951 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
952 if (!root)
953 return -ENOMEM;
954
955 __iommu_flush_cache(iommu, root, ROOT_SIZE);
956
957 spin_lock_irqsave(&iommu->lock, flags);
958 iommu->root_entry = root;
959 spin_unlock_irqrestore(&iommu->lock, flags);
960
961 return 0;
962 }
963
964 static void iommu_set_root_entry(struct intel_iommu *iommu)
965 {
966 void *addr;
967 u32 sts;
968 unsigned long flag;
969
970 addr = iommu->root_entry;
971
972 raw_spin_lock_irqsave(&iommu->register_lock, flag);
973 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
974
975 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
976
977 /* Make sure hardware complete it */
978 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
979 readl, (sts & DMA_GSTS_RTPS), sts);
980
981 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
982 }
983
984 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
985 {
986 u32 val;
987 unsigned long flag;
988
989 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
990 return;
991
992 raw_spin_lock_irqsave(&iommu->register_lock, flag);
993 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
994
995 /* Make sure hardware complete it */
996 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
997 readl, (!(val & DMA_GSTS_WBFS)), val);
998
999 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1000 }
1001
1002 /* return value determine if we need a write buffer flush */
1003 static void __iommu_flush_context(struct intel_iommu *iommu,
1004 u16 did, u16 source_id, u8 function_mask,
1005 u64 type)
1006 {
1007 u64 val = 0;
1008 unsigned long flag;
1009
1010 switch (type) {
1011 case DMA_CCMD_GLOBAL_INVL:
1012 val = DMA_CCMD_GLOBAL_INVL;
1013 break;
1014 case DMA_CCMD_DOMAIN_INVL:
1015 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1016 break;
1017 case DMA_CCMD_DEVICE_INVL:
1018 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1019 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1020 break;
1021 default:
1022 BUG();
1023 }
1024 val |= DMA_CCMD_ICC;
1025
1026 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1027 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1028
1029 /* Make sure hardware complete it */
1030 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1031 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1032
1033 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1034 }
1035
1036 /* return value determine if we need a write buffer flush */
1037 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1038 u64 addr, unsigned int size_order, u64 type)
1039 {
1040 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1041 u64 val = 0, val_iva = 0;
1042 unsigned long flag;
1043
1044 switch (type) {
1045 case DMA_TLB_GLOBAL_FLUSH:
1046 /* global flush doesn't need set IVA_REG */
1047 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1048 break;
1049 case DMA_TLB_DSI_FLUSH:
1050 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1051 break;
1052 case DMA_TLB_PSI_FLUSH:
1053 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1054 /* Note: always flush non-leaf currently */
1055 val_iva = size_order | addr;
1056 break;
1057 default:
1058 BUG();
1059 }
1060 /* Note: set drain read/write */
1061 #if 0
1062 /*
1063 * This is probably to be super secure.. Looks like we can
1064 * ignore it without any impact.
1065 */
1066 if (cap_read_drain(iommu->cap))
1067 val |= DMA_TLB_READ_DRAIN;
1068 #endif
1069 if (cap_write_drain(iommu->cap))
1070 val |= DMA_TLB_WRITE_DRAIN;
1071
1072 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1073 /* Note: Only uses first TLB reg currently */
1074 if (val_iva)
1075 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1076 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1077
1078 /* Make sure hardware complete it */
1079 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1080 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1081
1082 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1083
1084 /* check IOTLB invalidation granularity */
1085 if (DMA_TLB_IAIG(val) == 0)
1086 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1087 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1088 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1089 (unsigned long long)DMA_TLB_IIRG(type),
1090 (unsigned long long)DMA_TLB_IAIG(val));
1091 }
1092
1093 static struct device_domain_info *iommu_support_dev_iotlb(
1094 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1095 {
1096 int found = 0;
1097 unsigned long flags;
1098 struct device_domain_info *info;
1099 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1100
1101 if (!ecap_dev_iotlb_support(iommu->ecap))
1102 return NULL;
1103
1104 if (!iommu->qi)
1105 return NULL;
1106
1107 spin_lock_irqsave(&device_domain_lock, flags);
1108 list_for_each_entry(info, &domain->devices, link)
1109 if (info->bus == bus && info->devfn == devfn) {
1110 found = 1;
1111 break;
1112 }
1113 spin_unlock_irqrestore(&device_domain_lock, flags);
1114
1115 if (!found || !info->dev)
1116 return NULL;
1117
1118 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1119 return NULL;
1120
1121 if (!dmar_find_matched_atsr_unit(info->dev))
1122 return NULL;
1123
1124 info->iommu = iommu;
1125
1126 return info;
1127 }
1128
1129 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1130 {
1131 if (!info)
1132 return;
1133
1134 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1135 }
1136
1137 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1138 {
1139 if (!info->dev || !pci_ats_enabled(info->dev))
1140 return;
1141
1142 pci_disable_ats(info->dev);
1143 }
1144
1145 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1146 u64 addr, unsigned mask)
1147 {
1148 u16 sid, qdep;
1149 unsigned long flags;
1150 struct device_domain_info *info;
1151
1152 spin_lock_irqsave(&device_domain_lock, flags);
1153 list_for_each_entry(info, &domain->devices, link) {
1154 if (!info->dev || !pci_ats_enabled(info->dev))
1155 continue;
1156
1157 sid = info->bus << 8 | info->devfn;
1158 qdep = pci_ats_queue_depth(info->dev);
1159 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1160 }
1161 spin_unlock_irqrestore(&device_domain_lock, flags);
1162 }
1163
1164 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1165 unsigned long pfn, unsigned int pages, int map)
1166 {
1167 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1168 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1169
1170 BUG_ON(pages == 0);
1171
1172 /*
1173 * Fallback to domain selective flush if no PSI support or the size is
1174 * too big.
1175 * PSI requires page size to be 2 ^ x, and the base address is naturally
1176 * aligned to the size
1177 */
1178 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1179 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1180 DMA_TLB_DSI_FLUSH);
1181 else
1182 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1183 DMA_TLB_PSI_FLUSH);
1184
1185 /*
1186 * In caching mode, changes of pages from non-present to present require
1187 * flush. However, device IOTLB doesn't need to be flushed in this case.
1188 */
1189 if (!cap_caching_mode(iommu->cap) || !map)
1190 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1191 }
1192
1193 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1194 {
1195 u32 pmen;
1196 unsigned long flags;
1197
1198 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1199 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1200 pmen &= ~DMA_PMEN_EPM;
1201 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1202
1203 /* wait for the protected region status bit to clear */
1204 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1205 readl, !(pmen & DMA_PMEN_PRS), pmen);
1206
1207 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1208 }
1209
1210 static int iommu_enable_translation(struct intel_iommu *iommu)
1211 {
1212 u32 sts;
1213 unsigned long flags;
1214
1215 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1216 iommu->gcmd |= DMA_GCMD_TE;
1217 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1218
1219 /* Make sure hardware complete it */
1220 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1221 readl, (sts & DMA_GSTS_TES), sts);
1222
1223 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1224 return 0;
1225 }
1226
1227 static int iommu_disable_translation(struct intel_iommu *iommu)
1228 {
1229 u32 sts;
1230 unsigned long flag;
1231
1232 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1233 iommu->gcmd &= ~DMA_GCMD_TE;
1234 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1235
1236 /* Make sure hardware complete it */
1237 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1238 readl, (!(sts & DMA_GSTS_TES)), sts);
1239
1240 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1241 return 0;
1242 }
1243
1244
1245 static int iommu_init_domains(struct intel_iommu *iommu)
1246 {
1247 unsigned long ndomains;
1248 unsigned long nlongs;
1249
1250 ndomains = cap_ndoms(iommu->cap);
1251 pr_debug("IOMMU %d: Number of Domains supported <%ld>\n", iommu->seq_id,
1252 ndomains);
1253 nlongs = BITS_TO_LONGS(ndomains);
1254
1255 spin_lock_init(&iommu->lock);
1256
1257 /* TBD: there might be 64K domains,
1258 * consider other allocation for future chip
1259 */
1260 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1261 if (!iommu->domain_ids) {
1262 printk(KERN_ERR "Allocating domain id array failed\n");
1263 return -ENOMEM;
1264 }
1265 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1266 GFP_KERNEL);
1267 if (!iommu->domains) {
1268 printk(KERN_ERR "Allocating domain array failed\n");
1269 return -ENOMEM;
1270 }
1271
1272 /*
1273 * if Caching mode is set, then invalid translations are tagged
1274 * with domainid 0. Hence we need to pre-allocate it.
1275 */
1276 if (cap_caching_mode(iommu->cap))
1277 set_bit(0, iommu->domain_ids);
1278 return 0;
1279 }
1280
1281
1282 static void domain_exit(struct dmar_domain *domain);
1283 static void vm_domain_exit(struct dmar_domain *domain);
1284
1285 void free_dmar_iommu(struct intel_iommu *iommu)
1286 {
1287 struct dmar_domain *domain;
1288 int i;
1289 unsigned long flags;
1290
1291 if ((iommu->domains) && (iommu->domain_ids)) {
1292 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1293 domain = iommu->domains[i];
1294 clear_bit(i, iommu->domain_ids);
1295
1296 spin_lock_irqsave(&domain->iommu_lock, flags);
1297 if (--domain->iommu_count == 0) {
1298 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1299 vm_domain_exit(domain);
1300 else
1301 domain_exit(domain);
1302 }
1303 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1304 }
1305 }
1306
1307 if (iommu->gcmd & DMA_GCMD_TE)
1308 iommu_disable_translation(iommu);
1309
1310 if (iommu->irq) {
1311 irq_set_handler_data(iommu->irq, NULL);
1312 /* This will mask the irq */
1313 free_irq(iommu->irq, iommu);
1314 destroy_irq(iommu->irq);
1315 }
1316
1317 kfree(iommu->domains);
1318 kfree(iommu->domain_ids);
1319
1320 g_iommus[iommu->seq_id] = NULL;
1321
1322 /* if all iommus are freed, free g_iommus */
1323 for (i = 0; i < g_num_of_iommus; i++) {
1324 if (g_iommus[i])
1325 break;
1326 }
1327
1328 if (i == g_num_of_iommus)
1329 kfree(g_iommus);
1330
1331 /* free context mapping */
1332 free_context_table(iommu);
1333 }
1334
1335 static struct dmar_domain *alloc_domain(void)
1336 {
1337 struct dmar_domain *domain;
1338
1339 domain = alloc_domain_mem();
1340 if (!domain)
1341 return NULL;
1342
1343 domain->nid = -1;
1344 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
1345 domain->flags = 0;
1346
1347 return domain;
1348 }
1349
1350 static int iommu_attach_domain(struct dmar_domain *domain,
1351 struct intel_iommu *iommu)
1352 {
1353 int num;
1354 unsigned long ndomains;
1355 unsigned long flags;
1356
1357 ndomains = cap_ndoms(iommu->cap);
1358
1359 spin_lock_irqsave(&iommu->lock, flags);
1360
1361 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1362 if (num >= ndomains) {
1363 spin_unlock_irqrestore(&iommu->lock, flags);
1364 printk(KERN_ERR "IOMMU: no free domain ids\n");
1365 return -ENOMEM;
1366 }
1367
1368 domain->id = num;
1369 set_bit(num, iommu->domain_ids);
1370 set_bit(iommu->seq_id, domain->iommu_bmp);
1371 iommu->domains[num] = domain;
1372 spin_unlock_irqrestore(&iommu->lock, flags);
1373
1374 return 0;
1375 }
1376
1377 static void iommu_detach_domain(struct dmar_domain *domain,
1378 struct intel_iommu *iommu)
1379 {
1380 unsigned long flags;
1381 int num, ndomains;
1382 int found = 0;
1383
1384 spin_lock_irqsave(&iommu->lock, flags);
1385 ndomains = cap_ndoms(iommu->cap);
1386 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1387 if (iommu->domains[num] == domain) {
1388 found = 1;
1389 break;
1390 }
1391 }
1392
1393 if (found) {
1394 clear_bit(num, iommu->domain_ids);
1395 clear_bit(iommu->seq_id, domain->iommu_bmp);
1396 iommu->domains[num] = NULL;
1397 }
1398 spin_unlock_irqrestore(&iommu->lock, flags);
1399 }
1400
1401 static struct iova_domain reserved_iova_list;
1402 static struct lock_class_key reserved_rbtree_key;
1403
1404 static int dmar_init_reserved_ranges(void)
1405 {
1406 struct pci_dev *pdev = NULL;
1407 struct iova *iova;
1408 int i;
1409
1410 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1411
1412 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1413 &reserved_rbtree_key);
1414
1415 /* IOAPIC ranges shouldn't be accessed by DMA */
1416 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1417 IOVA_PFN(IOAPIC_RANGE_END));
1418 if (!iova) {
1419 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1420 return -ENODEV;
1421 }
1422
1423 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1424 for_each_pci_dev(pdev) {
1425 struct resource *r;
1426
1427 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1428 r = &pdev->resource[i];
1429 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1430 continue;
1431 iova = reserve_iova(&reserved_iova_list,
1432 IOVA_PFN(r->start),
1433 IOVA_PFN(r->end));
1434 if (!iova) {
1435 printk(KERN_ERR "Reserve iova failed\n");
1436 return -ENODEV;
1437 }
1438 }
1439 }
1440 return 0;
1441 }
1442
1443 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1444 {
1445 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1446 }
1447
1448 static inline int guestwidth_to_adjustwidth(int gaw)
1449 {
1450 int agaw;
1451 int r = (gaw - 12) % 9;
1452
1453 if (r == 0)
1454 agaw = gaw;
1455 else
1456 agaw = gaw + 9 - r;
1457 if (agaw > 64)
1458 agaw = 64;
1459 return agaw;
1460 }
1461
1462 static int domain_init(struct dmar_domain *domain, int guest_width)
1463 {
1464 struct intel_iommu *iommu;
1465 int adjust_width, agaw;
1466 unsigned long sagaw;
1467
1468 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1469 spin_lock_init(&domain->iommu_lock);
1470
1471 domain_reserve_special_ranges(domain);
1472
1473 /* calculate AGAW */
1474 iommu = domain_get_iommu(domain);
1475 if (guest_width > cap_mgaw(iommu->cap))
1476 guest_width = cap_mgaw(iommu->cap);
1477 domain->gaw = guest_width;
1478 adjust_width = guestwidth_to_adjustwidth(guest_width);
1479 agaw = width_to_agaw(adjust_width);
1480 sagaw = cap_sagaw(iommu->cap);
1481 if (!test_bit(agaw, &sagaw)) {
1482 /* hardware doesn't support it, choose a bigger one */
1483 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1484 agaw = find_next_bit(&sagaw, 5, agaw);
1485 if (agaw >= 5)
1486 return -ENODEV;
1487 }
1488 domain->agaw = agaw;
1489 INIT_LIST_HEAD(&domain->devices);
1490
1491 if (ecap_coherent(iommu->ecap))
1492 domain->iommu_coherency = 1;
1493 else
1494 domain->iommu_coherency = 0;
1495
1496 if (ecap_sc_support(iommu->ecap))
1497 domain->iommu_snooping = 1;
1498 else
1499 domain->iommu_snooping = 0;
1500
1501 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1502 domain->iommu_count = 1;
1503 domain->nid = iommu->node;
1504
1505 /* always allocate the top pgd */
1506 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1507 if (!domain->pgd)
1508 return -ENOMEM;
1509 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1510 return 0;
1511 }
1512
1513 static void domain_exit(struct dmar_domain *domain)
1514 {
1515 struct dmar_drhd_unit *drhd;
1516 struct intel_iommu *iommu;
1517
1518 /* Domain 0 is reserved, so dont process it */
1519 if (!domain)
1520 return;
1521
1522 /* Flush any lazy unmaps that may reference this domain */
1523 if (!intel_iommu_strict)
1524 flush_unmaps_timeout(0);
1525
1526 domain_remove_dev_info(domain);
1527 /* destroy iovas */
1528 put_iova_domain(&domain->iovad);
1529
1530 /* clear ptes */
1531 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1532
1533 /* free page tables */
1534 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1535
1536 for_each_active_iommu(iommu, drhd)
1537 if (test_bit(iommu->seq_id, domain->iommu_bmp))
1538 iommu_detach_domain(domain, iommu);
1539
1540 free_domain_mem(domain);
1541 }
1542
1543 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1544 u8 bus, u8 devfn, int translation)
1545 {
1546 struct context_entry *context;
1547 unsigned long flags;
1548 struct intel_iommu *iommu;
1549 struct dma_pte *pgd;
1550 unsigned long num;
1551 unsigned long ndomains;
1552 int id;
1553 int agaw;
1554 struct device_domain_info *info = NULL;
1555
1556 pr_debug("Set context mapping for %02x:%02x.%d\n",
1557 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1558
1559 BUG_ON(!domain->pgd);
1560 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1561 translation != CONTEXT_TT_MULTI_LEVEL);
1562
1563 iommu = device_to_iommu(segment, bus, devfn);
1564 if (!iommu)
1565 return -ENODEV;
1566
1567 context = device_to_context_entry(iommu, bus, devfn);
1568 if (!context)
1569 return -ENOMEM;
1570 spin_lock_irqsave(&iommu->lock, flags);
1571 if (context_present(context)) {
1572 spin_unlock_irqrestore(&iommu->lock, flags);
1573 return 0;
1574 }
1575
1576 id = domain->id;
1577 pgd = domain->pgd;
1578
1579 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1580 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1581 int found = 0;
1582
1583 /* find an available domain id for this device in iommu */
1584 ndomains = cap_ndoms(iommu->cap);
1585 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1586 if (iommu->domains[num] == domain) {
1587 id = num;
1588 found = 1;
1589 break;
1590 }
1591 }
1592
1593 if (found == 0) {
1594 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1595 if (num >= ndomains) {
1596 spin_unlock_irqrestore(&iommu->lock, flags);
1597 printk(KERN_ERR "IOMMU: no free domain ids\n");
1598 return -EFAULT;
1599 }
1600
1601 set_bit(num, iommu->domain_ids);
1602 iommu->domains[num] = domain;
1603 id = num;
1604 }
1605
1606 /* Skip top levels of page tables for
1607 * iommu which has less agaw than default.
1608 * Unnecessary for PT mode.
1609 */
1610 if (translation != CONTEXT_TT_PASS_THROUGH) {
1611 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1612 pgd = phys_to_virt(dma_pte_addr(pgd));
1613 if (!dma_pte_present(pgd)) {
1614 spin_unlock_irqrestore(&iommu->lock, flags);
1615 return -ENOMEM;
1616 }
1617 }
1618 }
1619 }
1620
1621 context_set_domain_id(context, id);
1622
1623 if (translation != CONTEXT_TT_PASS_THROUGH) {
1624 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1625 translation = info ? CONTEXT_TT_DEV_IOTLB :
1626 CONTEXT_TT_MULTI_LEVEL;
1627 }
1628 /*
1629 * In pass through mode, AW must be programmed to indicate the largest
1630 * AGAW value supported by hardware. And ASR is ignored by hardware.
1631 */
1632 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1633 context_set_address_width(context, iommu->msagaw);
1634 else {
1635 context_set_address_root(context, virt_to_phys(pgd));
1636 context_set_address_width(context, iommu->agaw);
1637 }
1638
1639 context_set_translation_type(context, translation);
1640 context_set_fault_enable(context);
1641 context_set_present(context);
1642 domain_flush_cache(domain, context, sizeof(*context));
1643
1644 /*
1645 * It's a non-present to present mapping. If hardware doesn't cache
1646 * non-present entry we only need to flush the write-buffer. If the
1647 * _does_ cache non-present entries, then it does so in the special
1648 * domain #0, which we have to flush:
1649 */
1650 if (cap_caching_mode(iommu->cap)) {
1651 iommu->flush.flush_context(iommu, 0,
1652 (((u16)bus) << 8) | devfn,
1653 DMA_CCMD_MASK_NOBIT,
1654 DMA_CCMD_DEVICE_INVL);
1655 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1656 } else {
1657 iommu_flush_write_buffer(iommu);
1658 }
1659 iommu_enable_dev_iotlb(info);
1660 spin_unlock_irqrestore(&iommu->lock, flags);
1661
1662 spin_lock_irqsave(&domain->iommu_lock, flags);
1663 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1664 domain->iommu_count++;
1665 if (domain->iommu_count == 1)
1666 domain->nid = iommu->node;
1667 domain_update_iommu_cap(domain);
1668 }
1669 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1670 return 0;
1671 }
1672
1673 static int
1674 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1675 int translation)
1676 {
1677 int ret;
1678 struct pci_dev *tmp, *parent;
1679
1680 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1681 pdev->bus->number, pdev->devfn,
1682 translation);
1683 if (ret)
1684 return ret;
1685
1686 /* dependent device mapping */
1687 tmp = pci_find_upstream_pcie_bridge(pdev);
1688 if (!tmp)
1689 return 0;
1690 /* Secondary interface's bus number and devfn 0 */
1691 parent = pdev->bus->self;
1692 while (parent != tmp) {
1693 ret = domain_context_mapping_one(domain,
1694 pci_domain_nr(parent->bus),
1695 parent->bus->number,
1696 parent->devfn, translation);
1697 if (ret)
1698 return ret;
1699 parent = parent->bus->self;
1700 }
1701 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1702 return domain_context_mapping_one(domain,
1703 pci_domain_nr(tmp->subordinate),
1704 tmp->subordinate->number, 0,
1705 translation);
1706 else /* this is a legacy PCI bridge */
1707 return domain_context_mapping_one(domain,
1708 pci_domain_nr(tmp->bus),
1709 tmp->bus->number,
1710 tmp->devfn,
1711 translation);
1712 }
1713
1714 static int domain_context_mapped(struct pci_dev *pdev)
1715 {
1716 int ret;
1717 struct pci_dev *tmp, *parent;
1718 struct intel_iommu *iommu;
1719
1720 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1721 pdev->devfn);
1722 if (!iommu)
1723 return -ENODEV;
1724
1725 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1726 if (!ret)
1727 return ret;
1728 /* dependent device mapping */
1729 tmp = pci_find_upstream_pcie_bridge(pdev);
1730 if (!tmp)
1731 return ret;
1732 /* Secondary interface's bus number and devfn 0 */
1733 parent = pdev->bus->self;
1734 while (parent != tmp) {
1735 ret = device_context_mapped(iommu, parent->bus->number,
1736 parent->devfn);
1737 if (!ret)
1738 return ret;
1739 parent = parent->bus->self;
1740 }
1741 if (pci_is_pcie(tmp))
1742 return device_context_mapped(iommu, tmp->subordinate->number,
1743 0);
1744 else
1745 return device_context_mapped(iommu, tmp->bus->number,
1746 tmp->devfn);
1747 }
1748
1749 /* Returns a number of VTD pages, but aligned to MM page size */
1750 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1751 size_t size)
1752 {
1753 host_addr &= ~PAGE_MASK;
1754 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1755 }
1756
1757 /* Return largest possible superpage level for a given mapping */
1758 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1759 unsigned long iov_pfn,
1760 unsigned long phy_pfn,
1761 unsigned long pages)
1762 {
1763 int support, level = 1;
1764 unsigned long pfnmerge;
1765
1766 support = domain->iommu_superpage;
1767
1768 /* To use a large page, the virtual *and* physical addresses
1769 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1770 of them will mean we have to use smaller pages. So just
1771 merge them and check both at once. */
1772 pfnmerge = iov_pfn | phy_pfn;
1773
1774 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1775 pages >>= VTD_STRIDE_SHIFT;
1776 if (!pages)
1777 break;
1778 pfnmerge >>= VTD_STRIDE_SHIFT;
1779 level++;
1780 support--;
1781 }
1782 return level;
1783 }
1784
1785 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1786 struct scatterlist *sg, unsigned long phys_pfn,
1787 unsigned long nr_pages, int prot)
1788 {
1789 struct dma_pte *first_pte = NULL, *pte = NULL;
1790 phys_addr_t uninitialized_var(pteval);
1791 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1792 unsigned long sg_res;
1793 unsigned int largepage_lvl = 0;
1794 unsigned long lvl_pages = 0;
1795
1796 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1797
1798 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1799 return -EINVAL;
1800
1801 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1802
1803 if (sg)
1804 sg_res = 0;
1805 else {
1806 sg_res = nr_pages + 1;
1807 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1808 }
1809
1810 while (nr_pages > 0) {
1811 uint64_t tmp;
1812
1813 if (!sg_res) {
1814 sg_res = aligned_nrpages(sg->offset, sg->length);
1815 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1816 sg->dma_length = sg->length;
1817 pteval = page_to_phys(sg_page(sg)) | prot;
1818 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1819 }
1820
1821 if (!pte) {
1822 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1823
1824 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl);
1825 if (!pte)
1826 return -ENOMEM;
1827 /* It is large page*/
1828 if (largepage_lvl > 1)
1829 pteval |= DMA_PTE_LARGE_PAGE;
1830 else
1831 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1832
1833 }
1834 /* We don't need lock here, nobody else
1835 * touches the iova range
1836 */
1837 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1838 if (tmp) {
1839 static int dumps = 5;
1840 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1841 iov_pfn, tmp, (unsigned long long)pteval);
1842 if (dumps) {
1843 dumps--;
1844 debug_dma_dump_mappings(NULL);
1845 }
1846 WARN_ON(1);
1847 }
1848
1849 lvl_pages = lvl_to_nr_pages(largepage_lvl);
1850
1851 BUG_ON(nr_pages < lvl_pages);
1852 BUG_ON(sg_res < lvl_pages);
1853
1854 nr_pages -= lvl_pages;
1855 iov_pfn += lvl_pages;
1856 phys_pfn += lvl_pages;
1857 pteval += lvl_pages * VTD_PAGE_SIZE;
1858 sg_res -= lvl_pages;
1859
1860 /* If the next PTE would be the first in a new page, then we
1861 need to flush the cache on the entries we've just written.
1862 And then we'll need to recalculate 'pte', so clear it and
1863 let it get set again in the if (!pte) block above.
1864
1865 If we're done (!nr_pages) we need to flush the cache too.
1866
1867 Also if we've been setting superpages, we may need to
1868 recalculate 'pte' and switch back to smaller pages for the
1869 end of the mapping, if the trailing size is not enough to
1870 use another superpage (i.e. sg_res < lvl_pages). */
1871 pte++;
1872 if (!nr_pages || first_pte_in_page(pte) ||
1873 (largepage_lvl > 1 && sg_res < lvl_pages)) {
1874 domain_flush_cache(domain, first_pte,
1875 (void *)pte - (void *)first_pte);
1876 pte = NULL;
1877 }
1878
1879 if (!sg_res && nr_pages)
1880 sg = sg_next(sg);
1881 }
1882 return 0;
1883 }
1884
1885 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1886 struct scatterlist *sg, unsigned long nr_pages,
1887 int prot)
1888 {
1889 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1890 }
1891
1892 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1893 unsigned long phys_pfn, unsigned long nr_pages,
1894 int prot)
1895 {
1896 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1897 }
1898
1899 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1900 {
1901 if (!iommu)
1902 return;
1903
1904 clear_context_table(iommu, bus, devfn);
1905 iommu->flush.flush_context(iommu, 0, 0, 0,
1906 DMA_CCMD_GLOBAL_INVL);
1907 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1908 }
1909
1910 static inline void unlink_domain_info(struct device_domain_info *info)
1911 {
1912 assert_spin_locked(&device_domain_lock);
1913 list_del(&info->link);
1914 list_del(&info->global);
1915 if (info->dev)
1916 info->dev->dev.archdata.iommu = NULL;
1917 }
1918
1919 static void domain_remove_dev_info(struct dmar_domain *domain)
1920 {
1921 struct device_domain_info *info;
1922 unsigned long flags;
1923 struct intel_iommu *iommu;
1924
1925 spin_lock_irqsave(&device_domain_lock, flags);
1926 while (!list_empty(&domain->devices)) {
1927 info = list_entry(domain->devices.next,
1928 struct device_domain_info, link);
1929 unlink_domain_info(info);
1930 spin_unlock_irqrestore(&device_domain_lock, flags);
1931
1932 iommu_disable_dev_iotlb(info);
1933 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1934 iommu_detach_dev(iommu, info->bus, info->devfn);
1935 free_devinfo_mem(info);
1936
1937 spin_lock_irqsave(&device_domain_lock, flags);
1938 }
1939 spin_unlock_irqrestore(&device_domain_lock, flags);
1940 }
1941
1942 /*
1943 * find_domain
1944 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1945 */
1946 static struct dmar_domain *
1947 find_domain(struct pci_dev *pdev)
1948 {
1949 struct device_domain_info *info;
1950
1951 /* No lock here, assumes no domain exit in normal case */
1952 info = pdev->dev.archdata.iommu;
1953 if (info)
1954 return info->domain;
1955 return NULL;
1956 }
1957
1958 /* domain is initialized */
1959 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1960 {
1961 struct dmar_domain *domain, *found = NULL;
1962 struct intel_iommu *iommu;
1963 struct dmar_drhd_unit *drhd;
1964 struct device_domain_info *info, *tmp;
1965 struct pci_dev *dev_tmp;
1966 unsigned long flags;
1967 int bus = 0, devfn = 0;
1968 int segment;
1969 int ret;
1970
1971 domain = find_domain(pdev);
1972 if (domain)
1973 return domain;
1974
1975 segment = pci_domain_nr(pdev->bus);
1976
1977 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1978 if (dev_tmp) {
1979 if (pci_is_pcie(dev_tmp)) {
1980 bus = dev_tmp->subordinate->number;
1981 devfn = 0;
1982 } else {
1983 bus = dev_tmp->bus->number;
1984 devfn = dev_tmp->devfn;
1985 }
1986 spin_lock_irqsave(&device_domain_lock, flags);
1987 list_for_each_entry(info, &device_domain_list, global) {
1988 if (info->segment == segment &&
1989 info->bus == bus && info->devfn == devfn) {
1990 found = info->domain;
1991 break;
1992 }
1993 }
1994 spin_unlock_irqrestore(&device_domain_lock, flags);
1995 /* pcie-pci bridge already has a domain, uses it */
1996 if (found) {
1997 domain = found;
1998 goto found_domain;
1999 }
2000 }
2001
2002 domain = alloc_domain();
2003 if (!domain)
2004 goto error;
2005
2006 /* Allocate new domain for the device */
2007 drhd = dmar_find_matched_drhd_unit(pdev);
2008 if (!drhd) {
2009 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
2010 pci_name(pdev));
2011 return NULL;
2012 }
2013 iommu = drhd->iommu;
2014
2015 ret = iommu_attach_domain(domain, iommu);
2016 if (ret) {
2017 free_domain_mem(domain);
2018 goto error;
2019 }
2020
2021 if (domain_init(domain, gaw)) {
2022 domain_exit(domain);
2023 goto error;
2024 }
2025
2026 /* register pcie-to-pci device */
2027 if (dev_tmp) {
2028 info = alloc_devinfo_mem();
2029 if (!info) {
2030 domain_exit(domain);
2031 goto error;
2032 }
2033 info->segment = segment;
2034 info->bus = bus;
2035 info->devfn = devfn;
2036 info->dev = NULL;
2037 info->domain = domain;
2038 /* This domain is shared by devices under p2p bridge */
2039 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2040
2041 /* pcie-to-pci bridge already has a domain, uses it */
2042 found = NULL;
2043 spin_lock_irqsave(&device_domain_lock, flags);
2044 list_for_each_entry(tmp, &device_domain_list, global) {
2045 if (tmp->segment == segment &&
2046 tmp->bus == bus && tmp->devfn == devfn) {
2047 found = tmp->domain;
2048 break;
2049 }
2050 }
2051 if (found) {
2052 spin_unlock_irqrestore(&device_domain_lock, flags);
2053 free_devinfo_mem(info);
2054 domain_exit(domain);
2055 domain = found;
2056 } else {
2057 list_add(&info->link, &domain->devices);
2058 list_add(&info->global, &device_domain_list);
2059 spin_unlock_irqrestore(&device_domain_lock, flags);
2060 }
2061 }
2062
2063 found_domain:
2064 info = alloc_devinfo_mem();
2065 if (!info)
2066 goto error;
2067 info->segment = segment;
2068 info->bus = pdev->bus->number;
2069 info->devfn = pdev->devfn;
2070 info->dev = pdev;
2071 info->domain = domain;
2072 spin_lock_irqsave(&device_domain_lock, flags);
2073 /* somebody is fast */
2074 found = find_domain(pdev);
2075 if (found != NULL) {
2076 spin_unlock_irqrestore(&device_domain_lock, flags);
2077 if (found != domain) {
2078 domain_exit(domain);
2079 domain = found;
2080 }
2081 free_devinfo_mem(info);
2082 return domain;
2083 }
2084 list_add(&info->link, &domain->devices);
2085 list_add(&info->global, &device_domain_list);
2086 pdev->dev.archdata.iommu = info;
2087 spin_unlock_irqrestore(&device_domain_lock, flags);
2088 return domain;
2089 error:
2090 /* recheck it here, maybe others set it */
2091 return find_domain(pdev);
2092 }
2093
2094 static int iommu_identity_mapping;
2095 #define IDENTMAP_ALL 1
2096 #define IDENTMAP_GFX 2
2097 #define IDENTMAP_AZALIA 4
2098
2099 static int iommu_domain_identity_map(struct dmar_domain *domain,
2100 unsigned long long start,
2101 unsigned long long end)
2102 {
2103 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2104 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2105
2106 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2107 dma_to_mm_pfn(last_vpfn))) {
2108 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2109 return -ENOMEM;
2110 }
2111
2112 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2113 start, end, domain->id);
2114 /*
2115 * RMRR range might have overlap with physical memory range,
2116 * clear it first
2117 */
2118 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2119
2120 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2121 last_vpfn - first_vpfn + 1,
2122 DMA_PTE_READ|DMA_PTE_WRITE);
2123 }
2124
2125 static int iommu_prepare_identity_map(struct pci_dev *pdev,
2126 unsigned long long start,
2127 unsigned long long end)
2128 {
2129 struct dmar_domain *domain;
2130 int ret;
2131
2132 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2133 if (!domain)
2134 return -ENOMEM;
2135
2136 /* For _hardware_ passthrough, don't bother. But for software
2137 passthrough, we do it anyway -- it may indicate a memory
2138 range which is reserved in E820, so which didn't get set
2139 up to start with in si_domain */
2140 if (domain == si_domain && hw_pass_through) {
2141 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2142 pci_name(pdev), start, end);
2143 return 0;
2144 }
2145
2146 printk(KERN_INFO
2147 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2148 pci_name(pdev), start, end);
2149
2150 if (end < start) {
2151 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2152 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2153 dmi_get_system_info(DMI_BIOS_VENDOR),
2154 dmi_get_system_info(DMI_BIOS_VERSION),
2155 dmi_get_system_info(DMI_PRODUCT_VERSION));
2156 ret = -EIO;
2157 goto error;
2158 }
2159
2160 if (end >> agaw_to_width(domain->agaw)) {
2161 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2162 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2163 agaw_to_width(domain->agaw),
2164 dmi_get_system_info(DMI_BIOS_VENDOR),
2165 dmi_get_system_info(DMI_BIOS_VERSION),
2166 dmi_get_system_info(DMI_PRODUCT_VERSION));
2167 ret = -EIO;
2168 goto error;
2169 }
2170
2171 ret = iommu_domain_identity_map(domain, start, end);
2172 if (ret)
2173 goto error;
2174
2175 /* context entry init */
2176 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2177 if (ret)
2178 goto error;
2179
2180 return 0;
2181
2182 error:
2183 domain_exit(domain);
2184 return ret;
2185 }
2186
2187 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2188 struct pci_dev *pdev)
2189 {
2190 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2191 return 0;
2192 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2193 rmrr->end_address);
2194 }
2195
2196 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2197 static inline void iommu_prepare_isa(void)
2198 {
2199 struct pci_dev *pdev;
2200 int ret;
2201
2202 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2203 if (!pdev)
2204 return;
2205
2206 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2207 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2208
2209 if (ret)
2210 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2211 "floppy might not work\n");
2212
2213 }
2214 #else
2215 static inline void iommu_prepare_isa(void)
2216 {
2217 return;
2218 }
2219 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2220
2221 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2222
2223 static int __init si_domain_init(int hw)
2224 {
2225 struct dmar_drhd_unit *drhd;
2226 struct intel_iommu *iommu;
2227 int nid, ret = 0;
2228
2229 si_domain = alloc_domain();
2230 if (!si_domain)
2231 return -EFAULT;
2232
2233 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2234
2235 for_each_active_iommu(iommu, drhd) {
2236 ret = iommu_attach_domain(si_domain, iommu);
2237 if (ret) {
2238 domain_exit(si_domain);
2239 return -EFAULT;
2240 }
2241 }
2242
2243 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2244 domain_exit(si_domain);
2245 return -EFAULT;
2246 }
2247
2248 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2249
2250 if (hw)
2251 return 0;
2252
2253 for_each_online_node(nid) {
2254 unsigned long start_pfn, end_pfn;
2255 int i;
2256
2257 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2258 ret = iommu_domain_identity_map(si_domain,
2259 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2260 if (ret)
2261 return ret;
2262 }
2263 }
2264
2265 return 0;
2266 }
2267
2268 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2269 struct pci_dev *pdev);
2270 static int identity_mapping(struct pci_dev *pdev)
2271 {
2272 struct device_domain_info *info;
2273
2274 if (likely(!iommu_identity_mapping))
2275 return 0;
2276
2277 info = pdev->dev.archdata.iommu;
2278 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2279 return (info->domain == si_domain);
2280
2281 return 0;
2282 }
2283
2284 static int domain_add_dev_info(struct dmar_domain *domain,
2285 struct pci_dev *pdev,
2286 int translation)
2287 {
2288 struct device_domain_info *info;
2289 unsigned long flags;
2290 int ret;
2291
2292 info = alloc_devinfo_mem();
2293 if (!info)
2294 return -ENOMEM;
2295
2296 info->segment = pci_domain_nr(pdev->bus);
2297 info->bus = pdev->bus->number;
2298 info->devfn = pdev->devfn;
2299 info->dev = pdev;
2300 info->domain = domain;
2301
2302 spin_lock_irqsave(&device_domain_lock, flags);
2303 list_add(&info->link, &domain->devices);
2304 list_add(&info->global, &device_domain_list);
2305 pdev->dev.archdata.iommu = info;
2306 spin_unlock_irqrestore(&device_domain_lock, flags);
2307
2308 ret = domain_context_mapping(domain, pdev, translation);
2309 if (ret) {
2310 spin_lock_irqsave(&device_domain_lock, flags);
2311 unlink_domain_info(info);
2312 spin_unlock_irqrestore(&device_domain_lock, flags);
2313 free_devinfo_mem(info);
2314 return ret;
2315 }
2316
2317 return 0;
2318 }
2319
2320 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2321 {
2322 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2323 return 1;
2324
2325 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2326 return 1;
2327
2328 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2329 return 0;
2330
2331 /*
2332 * We want to start off with all devices in the 1:1 domain, and
2333 * take them out later if we find they can't access all of memory.
2334 *
2335 * However, we can't do this for PCI devices behind bridges,
2336 * because all PCI devices behind the same bridge will end up
2337 * with the same source-id on their transactions.
2338 *
2339 * Practically speaking, we can't change things around for these
2340 * devices at run-time, because we can't be sure there'll be no
2341 * DMA transactions in flight for any of their siblings.
2342 *
2343 * So PCI devices (unless they're on the root bus) as well as
2344 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2345 * the 1:1 domain, just in _case_ one of their siblings turns out
2346 * not to be able to map all of memory.
2347 */
2348 if (!pci_is_pcie(pdev)) {
2349 if (!pci_is_root_bus(pdev->bus))
2350 return 0;
2351 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2352 return 0;
2353 } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2354 return 0;
2355
2356 /*
2357 * At boot time, we don't yet know if devices will be 64-bit capable.
2358 * Assume that they will -- if they turn out not to be, then we can
2359 * take them out of the 1:1 domain later.
2360 */
2361 if (!startup) {
2362 /*
2363 * If the device's dma_mask is less than the system's memory
2364 * size then this is not a candidate for identity mapping.
2365 */
2366 u64 dma_mask = pdev->dma_mask;
2367
2368 if (pdev->dev.coherent_dma_mask &&
2369 pdev->dev.coherent_dma_mask < dma_mask)
2370 dma_mask = pdev->dev.coherent_dma_mask;
2371
2372 return dma_mask >= dma_get_required_mask(&pdev->dev);
2373 }
2374
2375 return 1;
2376 }
2377
2378 static int __init iommu_prepare_static_identity_mapping(int hw)
2379 {
2380 struct pci_dev *pdev = NULL;
2381 int ret;
2382
2383 ret = si_domain_init(hw);
2384 if (ret)
2385 return -EFAULT;
2386
2387 for_each_pci_dev(pdev) {
2388 if (iommu_should_identity_map(pdev, 1)) {
2389 ret = domain_add_dev_info(si_domain, pdev,
2390 hw ? CONTEXT_TT_PASS_THROUGH :
2391 CONTEXT_TT_MULTI_LEVEL);
2392 if (ret) {
2393 /* device not associated with an iommu */
2394 if (ret == -ENODEV)
2395 continue;
2396 return ret;
2397 }
2398 pr_info("IOMMU: %s identity mapping for device %s\n",
2399 hw ? "hardware" : "software", pci_name(pdev));
2400 }
2401 }
2402
2403 return 0;
2404 }
2405
2406 static int __init init_dmars(void)
2407 {
2408 struct dmar_drhd_unit *drhd;
2409 struct dmar_rmrr_unit *rmrr;
2410 struct pci_dev *pdev;
2411 struct intel_iommu *iommu;
2412 int i, ret;
2413
2414 /*
2415 * for each drhd
2416 * allocate root
2417 * initialize and program root entry to not present
2418 * endfor
2419 */
2420 for_each_drhd_unit(drhd) {
2421 /*
2422 * lock not needed as this is only incremented in the single
2423 * threaded kernel __init code path all other access are read
2424 * only
2425 */
2426 if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) {
2427 g_num_of_iommus++;
2428 continue;
2429 }
2430 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2431 IOMMU_UNITS_SUPPORTED);
2432 }
2433
2434 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2435 GFP_KERNEL);
2436 if (!g_iommus) {
2437 printk(KERN_ERR "Allocating global iommu array failed\n");
2438 ret = -ENOMEM;
2439 goto error;
2440 }
2441
2442 deferred_flush = kzalloc(g_num_of_iommus *
2443 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2444 if (!deferred_flush) {
2445 ret = -ENOMEM;
2446 goto error;
2447 }
2448
2449 for_each_drhd_unit(drhd) {
2450 if (drhd->ignored)
2451 continue;
2452
2453 iommu = drhd->iommu;
2454 g_iommus[iommu->seq_id] = iommu;
2455
2456 ret = iommu_init_domains(iommu);
2457 if (ret)
2458 goto error;
2459
2460 /*
2461 * TBD:
2462 * we could share the same root & context tables
2463 * among all IOMMU's. Need to Split it later.
2464 */
2465 ret = iommu_alloc_root_entry(iommu);
2466 if (ret) {
2467 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2468 goto error;
2469 }
2470 if (!ecap_pass_through(iommu->ecap))
2471 hw_pass_through = 0;
2472 }
2473
2474 /*
2475 * Start from the sane iommu hardware state.
2476 */
2477 for_each_drhd_unit(drhd) {
2478 if (drhd->ignored)
2479 continue;
2480
2481 iommu = drhd->iommu;
2482
2483 /*
2484 * If the queued invalidation is already initialized by us
2485 * (for example, while enabling interrupt-remapping) then
2486 * we got the things already rolling from a sane state.
2487 */
2488 if (iommu->qi)
2489 continue;
2490
2491 /*
2492 * Clear any previous faults.
2493 */
2494 dmar_fault(-1, iommu);
2495 /*
2496 * Disable queued invalidation if supported and already enabled
2497 * before OS handover.
2498 */
2499 dmar_disable_qi(iommu);
2500 }
2501
2502 for_each_drhd_unit(drhd) {
2503 if (drhd->ignored)
2504 continue;
2505
2506 iommu = drhd->iommu;
2507
2508 if (dmar_enable_qi(iommu)) {
2509 /*
2510 * Queued Invalidate not enabled, use Register Based
2511 * Invalidate
2512 */
2513 iommu->flush.flush_context = __iommu_flush_context;
2514 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2515 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2516 "invalidation\n",
2517 iommu->seq_id,
2518 (unsigned long long)drhd->reg_base_addr);
2519 } else {
2520 iommu->flush.flush_context = qi_flush_context;
2521 iommu->flush.flush_iotlb = qi_flush_iotlb;
2522 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2523 "invalidation\n",
2524 iommu->seq_id,
2525 (unsigned long long)drhd->reg_base_addr);
2526 }
2527 }
2528
2529 if (iommu_pass_through)
2530 iommu_identity_mapping |= IDENTMAP_ALL;
2531
2532 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2533 iommu_identity_mapping |= IDENTMAP_GFX;
2534 #endif
2535
2536 check_tylersburg_isoch();
2537
2538 /*
2539 * If pass through is not set or not enabled, setup context entries for
2540 * identity mappings for rmrr, gfx, and isa and may fall back to static
2541 * identity mapping if iommu_identity_mapping is set.
2542 */
2543 if (iommu_identity_mapping) {
2544 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2545 if (ret) {
2546 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2547 goto error;
2548 }
2549 }
2550 /*
2551 * For each rmrr
2552 * for each dev attached to rmrr
2553 * do
2554 * locate drhd for dev, alloc domain for dev
2555 * allocate free domain
2556 * allocate page table entries for rmrr
2557 * if context not allocated for bus
2558 * allocate and init context
2559 * set present in root table for this bus
2560 * init context with domain, translation etc
2561 * endfor
2562 * endfor
2563 */
2564 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2565 for_each_rmrr_units(rmrr) {
2566 for (i = 0; i < rmrr->devices_cnt; i++) {
2567 pdev = rmrr->devices[i];
2568 /*
2569 * some BIOS lists non-exist devices in DMAR
2570 * table.
2571 */
2572 if (!pdev)
2573 continue;
2574 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2575 if (ret)
2576 printk(KERN_ERR
2577 "IOMMU: mapping reserved region failed\n");
2578 }
2579 }
2580
2581 iommu_prepare_isa();
2582
2583 /*
2584 * for each drhd
2585 * enable fault log
2586 * global invalidate context cache
2587 * global invalidate iotlb
2588 * enable translation
2589 */
2590 for_each_drhd_unit(drhd) {
2591 if (drhd->ignored) {
2592 /*
2593 * we always have to disable PMRs or DMA may fail on
2594 * this device
2595 */
2596 if (force_on)
2597 iommu_disable_protect_mem_regions(drhd->iommu);
2598 continue;
2599 }
2600 iommu = drhd->iommu;
2601
2602 iommu_flush_write_buffer(iommu);
2603
2604 ret = dmar_set_interrupt(iommu);
2605 if (ret)
2606 goto error;
2607
2608 iommu_set_root_entry(iommu);
2609
2610 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2611 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2612
2613 ret = iommu_enable_translation(iommu);
2614 if (ret)
2615 goto error;
2616
2617 iommu_disable_protect_mem_regions(iommu);
2618 }
2619
2620 return 0;
2621 error:
2622 for_each_drhd_unit(drhd) {
2623 if (drhd->ignored)
2624 continue;
2625 iommu = drhd->iommu;
2626 free_iommu(iommu);
2627 }
2628 kfree(g_iommus);
2629 return ret;
2630 }
2631
2632 /* This takes a number of _MM_ pages, not VTD pages */
2633 static struct iova *intel_alloc_iova(struct device *dev,
2634 struct dmar_domain *domain,
2635 unsigned long nrpages, uint64_t dma_mask)
2636 {
2637 struct pci_dev *pdev = to_pci_dev(dev);
2638 struct iova *iova = NULL;
2639
2640 /* Restrict dma_mask to the width that the iommu can handle */
2641 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2642
2643 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2644 /*
2645 * First try to allocate an io virtual address in
2646 * DMA_BIT_MASK(32) and if that fails then try allocating
2647 * from higher range
2648 */
2649 iova = alloc_iova(&domain->iovad, nrpages,
2650 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2651 if (iova)
2652 return iova;
2653 }
2654 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2655 if (unlikely(!iova)) {
2656 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2657 nrpages, pci_name(pdev));
2658 return NULL;
2659 }
2660
2661 return iova;
2662 }
2663
2664 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2665 {
2666 struct dmar_domain *domain;
2667 int ret;
2668
2669 domain = get_domain_for_dev(pdev,
2670 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2671 if (!domain) {
2672 printk(KERN_ERR
2673 "Allocating domain for %s failed", pci_name(pdev));
2674 return NULL;
2675 }
2676
2677 /* make sure context mapping is ok */
2678 if (unlikely(!domain_context_mapped(pdev))) {
2679 ret = domain_context_mapping(domain, pdev,
2680 CONTEXT_TT_MULTI_LEVEL);
2681 if (ret) {
2682 printk(KERN_ERR
2683 "Domain context map for %s failed",
2684 pci_name(pdev));
2685 return NULL;
2686 }
2687 }
2688
2689 return domain;
2690 }
2691
2692 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2693 {
2694 struct device_domain_info *info;
2695
2696 /* No lock here, assumes no domain exit in normal case */
2697 info = dev->dev.archdata.iommu;
2698 if (likely(info))
2699 return info->domain;
2700
2701 return __get_valid_domain_for_dev(dev);
2702 }
2703
2704 static int iommu_dummy(struct pci_dev *pdev)
2705 {
2706 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2707 }
2708
2709 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2710 static int iommu_no_mapping(struct device *dev)
2711 {
2712 struct pci_dev *pdev;
2713 int found;
2714
2715 if (unlikely(dev->bus != &pci_bus_type))
2716 return 1;
2717
2718 pdev = to_pci_dev(dev);
2719 if (iommu_dummy(pdev))
2720 return 1;
2721
2722 if (!iommu_identity_mapping)
2723 return 0;
2724
2725 found = identity_mapping(pdev);
2726 if (found) {
2727 if (iommu_should_identity_map(pdev, 0))
2728 return 1;
2729 else {
2730 /*
2731 * 32 bit DMA is removed from si_domain and fall back
2732 * to non-identity mapping.
2733 */
2734 domain_remove_one_dev_info(si_domain, pdev);
2735 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2736 pci_name(pdev));
2737 return 0;
2738 }
2739 } else {
2740 /*
2741 * In case of a detached 64 bit DMA device from vm, the device
2742 * is put into si_domain for identity mapping.
2743 */
2744 if (iommu_should_identity_map(pdev, 0)) {
2745 int ret;
2746 ret = domain_add_dev_info(si_domain, pdev,
2747 hw_pass_through ?
2748 CONTEXT_TT_PASS_THROUGH :
2749 CONTEXT_TT_MULTI_LEVEL);
2750 if (!ret) {
2751 printk(KERN_INFO "64bit %s uses identity mapping\n",
2752 pci_name(pdev));
2753 return 1;
2754 }
2755 }
2756 }
2757
2758 return 0;
2759 }
2760
2761 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2762 size_t size, int dir, u64 dma_mask)
2763 {
2764 struct pci_dev *pdev = to_pci_dev(hwdev);
2765 struct dmar_domain *domain;
2766 phys_addr_t start_paddr;
2767 struct iova *iova;
2768 int prot = 0;
2769 int ret;
2770 struct intel_iommu *iommu;
2771 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2772
2773 BUG_ON(dir == DMA_NONE);
2774
2775 if (iommu_no_mapping(hwdev))
2776 return paddr;
2777
2778 domain = get_valid_domain_for_dev(pdev);
2779 if (!domain)
2780 return 0;
2781
2782 iommu = domain_get_iommu(domain);
2783 size = aligned_nrpages(paddr, size);
2784
2785 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2786 if (!iova)
2787 goto error;
2788
2789 /*
2790 * Check if DMAR supports zero-length reads on write only
2791 * mappings..
2792 */
2793 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2794 !cap_zlr(iommu->cap))
2795 prot |= DMA_PTE_READ;
2796 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2797 prot |= DMA_PTE_WRITE;
2798 /*
2799 * paddr - (paddr + size) might be partial page, we should map the whole
2800 * page. Note: if two part of one page are separately mapped, we
2801 * might have two guest_addr mapping to the same host paddr, but this
2802 * is not a big problem
2803 */
2804 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2805 mm_to_dma_pfn(paddr_pfn), size, prot);
2806 if (ret)
2807 goto error;
2808
2809 /* it's a non-present to present mapping. Only flush if caching mode */
2810 if (cap_caching_mode(iommu->cap))
2811 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2812 else
2813 iommu_flush_write_buffer(iommu);
2814
2815 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2816 start_paddr += paddr & ~PAGE_MASK;
2817 return start_paddr;
2818
2819 error:
2820 if (iova)
2821 __free_iova(&domain->iovad, iova);
2822 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2823 pci_name(pdev), size, (unsigned long long)paddr, dir);
2824 return 0;
2825 }
2826
2827 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2828 unsigned long offset, size_t size,
2829 enum dma_data_direction dir,
2830 struct dma_attrs *attrs)
2831 {
2832 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2833 dir, to_pci_dev(dev)->dma_mask);
2834 }
2835
2836 static void flush_unmaps(void)
2837 {
2838 int i, j;
2839
2840 timer_on = 0;
2841
2842 /* just flush them all */
2843 for (i = 0; i < g_num_of_iommus; i++) {
2844 struct intel_iommu *iommu = g_iommus[i];
2845 if (!iommu)
2846 continue;
2847
2848 if (!deferred_flush[i].next)
2849 continue;
2850
2851 /* In caching mode, global flushes turn emulation expensive */
2852 if (!cap_caching_mode(iommu->cap))
2853 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2854 DMA_TLB_GLOBAL_FLUSH);
2855 for (j = 0; j < deferred_flush[i].next; j++) {
2856 unsigned long mask;
2857 struct iova *iova = deferred_flush[i].iova[j];
2858 struct dmar_domain *domain = deferred_flush[i].domain[j];
2859
2860 /* On real hardware multiple invalidations are expensive */
2861 if (cap_caching_mode(iommu->cap))
2862 iommu_flush_iotlb_psi(iommu, domain->id,
2863 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2864 else {
2865 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2866 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2867 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2868 }
2869 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2870 }
2871 deferred_flush[i].next = 0;
2872 }
2873
2874 list_size = 0;
2875 }
2876
2877 static void flush_unmaps_timeout(unsigned long data)
2878 {
2879 unsigned long flags;
2880
2881 spin_lock_irqsave(&async_umap_flush_lock, flags);
2882 flush_unmaps();
2883 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2884 }
2885
2886 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2887 {
2888 unsigned long flags;
2889 int next, iommu_id;
2890 struct intel_iommu *iommu;
2891
2892 spin_lock_irqsave(&async_umap_flush_lock, flags);
2893 if (list_size == HIGH_WATER_MARK)
2894 flush_unmaps();
2895
2896 iommu = domain_get_iommu(dom);
2897 iommu_id = iommu->seq_id;
2898
2899 next = deferred_flush[iommu_id].next;
2900 deferred_flush[iommu_id].domain[next] = dom;
2901 deferred_flush[iommu_id].iova[next] = iova;
2902 deferred_flush[iommu_id].next++;
2903
2904 if (!timer_on) {
2905 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2906 timer_on = 1;
2907 }
2908 list_size++;
2909 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2910 }
2911
2912 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2913 size_t size, enum dma_data_direction dir,
2914 struct dma_attrs *attrs)
2915 {
2916 struct pci_dev *pdev = to_pci_dev(dev);
2917 struct dmar_domain *domain;
2918 unsigned long start_pfn, last_pfn;
2919 struct iova *iova;
2920 struct intel_iommu *iommu;
2921
2922 if (iommu_no_mapping(dev))
2923 return;
2924
2925 domain = find_domain(pdev);
2926 BUG_ON(!domain);
2927
2928 iommu = domain_get_iommu(domain);
2929
2930 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2931 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2932 (unsigned long long)dev_addr))
2933 return;
2934
2935 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2936 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2937
2938 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2939 pci_name(pdev), start_pfn, last_pfn);
2940
2941 /* clear the whole page */
2942 dma_pte_clear_range(domain, start_pfn, last_pfn);
2943
2944 /* free page tables */
2945 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2946
2947 if (intel_iommu_strict) {
2948 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2949 last_pfn - start_pfn + 1, 0);
2950 /* free iova */
2951 __free_iova(&domain->iovad, iova);
2952 } else {
2953 add_unmap(domain, iova);
2954 /*
2955 * queue up the release of the unmap to save the 1/6th of the
2956 * cpu used up by the iotlb flush operation...
2957 */
2958 }
2959 }
2960
2961 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2962 dma_addr_t *dma_handle, gfp_t flags,
2963 struct dma_attrs *attrs)
2964 {
2965 void *vaddr;
2966 int order;
2967
2968 size = PAGE_ALIGN(size);
2969 order = get_order(size);
2970
2971 if (!iommu_no_mapping(hwdev))
2972 flags &= ~(GFP_DMA | GFP_DMA32);
2973 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
2974 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
2975 flags |= GFP_DMA;
2976 else
2977 flags |= GFP_DMA32;
2978 }
2979
2980 vaddr = (void *)__get_free_pages(flags, order);
2981 if (!vaddr)
2982 return NULL;
2983 memset(vaddr, 0, size);
2984
2985 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2986 DMA_BIDIRECTIONAL,
2987 hwdev->coherent_dma_mask);
2988 if (*dma_handle)
2989 return vaddr;
2990 free_pages((unsigned long)vaddr, order);
2991 return NULL;
2992 }
2993
2994 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2995 dma_addr_t dma_handle, struct dma_attrs *attrs)
2996 {
2997 int order;
2998
2999 size = PAGE_ALIGN(size);
3000 order = get_order(size);
3001
3002 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
3003 free_pages((unsigned long)vaddr, order);
3004 }
3005
3006 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
3007 int nelems, enum dma_data_direction dir,
3008 struct dma_attrs *attrs)
3009 {
3010 struct pci_dev *pdev = to_pci_dev(hwdev);
3011 struct dmar_domain *domain;
3012 unsigned long start_pfn, last_pfn;
3013 struct iova *iova;
3014 struct intel_iommu *iommu;
3015
3016 if (iommu_no_mapping(hwdev))
3017 return;
3018
3019 domain = find_domain(pdev);
3020 BUG_ON(!domain);
3021
3022 iommu = domain_get_iommu(domain);
3023
3024 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
3025 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
3026 (unsigned long long)sglist[0].dma_address))
3027 return;
3028
3029 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3030 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3031
3032 /* clear the whole page */
3033 dma_pte_clear_range(domain, start_pfn, last_pfn);
3034
3035 /* free page tables */
3036 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
3037
3038 if (intel_iommu_strict) {
3039 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3040 last_pfn - start_pfn + 1, 0);
3041 /* free iova */
3042 __free_iova(&domain->iovad, iova);
3043 } else {
3044 add_unmap(domain, iova);
3045 /*
3046 * queue up the release of the unmap to save the 1/6th of the
3047 * cpu used up by the iotlb flush operation...
3048 */
3049 }
3050 }
3051
3052 static int intel_nontranslate_map_sg(struct device *hddev,
3053 struct scatterlist *sglist, int nelems, int dir)
3054 {
3055 int i;
3056 struct scatterlist *sg;
3057
3058 for_each_sg(sglist, sg, nelems, i) {
3059 BUG_ON(!sg_page(sg));
3060 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3061 sg->dma_length = sg->length;
3062 }
3063 return nelems;
3064 }
3065
3066 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3067 enum dma_data_direction dir, struct dma_attrs *attrs)
3068 {
3069 int i;
3070 struct pci_dev *pdev = to_pci_dev(hwdev);
3071 struct dmar_domain *domain;
3072 size_t size = 0;
3073 int prot = 0;
3074 struct iova *iova = NULL;
3075 int ret;
3076 struct scatterlist *sg;
3077 unsigned long start_vpfn;
3078 struct intel_iommu *iommu;
3079
3080 BUG_ON(dir == DMA_NONE);
3081 if (iommu_no_mapping(hwdev))
3082 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3083
3084 domain = get_valid_domain_for_dev(pdev);
3085 if (!domain)
3086 return 0;
3087
3088 iommu = domain_get_iommu(domain);
3089
3090 for_each_sg(sglist, sg, nelems, i)
3091 size += aligned_nrpages(sg->offset, sg->length);
3092
3093 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3094 pdev->dma_mask);
3095 if (!iova) {
3096 sglist->dma_length = 0;
3097 return 0;
3098 }
3099
3100 /*
3101 * Check if DMAR supports zero-length reads on write only
3102 * mappings..
3103 */
3104 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3105 !cap_zlr(iommu->cap))
3106 prot |= DMA_PTE_READ;
3107 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3108 prot |= DMA_PTE_WRITE;
3109
3110 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3111
3112 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3113 if (unlikely(ret)) {
3114 /* clear the page */
3115 dma_pte_clear_range(domain, start_vpfn,
3116 start_vpfn + size - 1);
3117 /* free page tables */
3118 dma_pte_free_pagetable(domain, start_vpfn,
3119 start_vpfn + size - 1);
3120 /* free iova */
3121 __free_iova(&domain->iovad, iova);
3122 return 0;
3123 }
3124
3125 /* it's a non-present to present mapping. Only flush if caching mode */
3126 if (cap_caching_mode(iommu->cap))
3127 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
3128 else
3129 iommu_flush_write_buffer(iommu);
3130
3131 return nelems;
3132 }
3133
3134 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3135 {
3136 return !dma_addr;
3137 }
3138
3139 struct dma_map_ops intel_dma_ops = {
3140 .alloc = intel_alloc_coherent,
3141 .free = intel_free_coherent,
3142 .map_sg = intel_map_sg,
3143 .unmap_sg = intel_unmap_sg,
3144 .map_page = intel_map_page,
3145 .unmap_page = intel_unmap_page,
3146 .mapping_error = intel_mapping_error,
3147 };
3148
3149 static inline int iommu_domain_cache_init(void)
3150 {
3151 int ret = 0;
3152
3153 iommu_domain_cache = kmem_cache_create("iommu_domain",
3154 sizeof(struct dmar_domain),
3155 0,
3156 SLAB_HWCACHE_ALIGN,
3157
3158 NULL);
3159 if (!iommu_domain_cache) {
3160 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3161 ret = -ENOMEM;
3162 }
3163
3164 return ret;
3165 }
3166
3167 static inline int iommu_devinfo_cache_init(void)
3168 {
3169 int ret = 0;
3170
3171 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3172 sizeof(struct device_domain_info),
3173 0,
3174 SLAB_HWCACHE_ALIGN,
3175 NULL);
3176 if (!iommu_devinfo_cache) {
3177 printk(KERN_ERR "Couldn't create devinfo cache\n");
3178 ret = -ENOMEM;
3179 }
3180
3181 return ret;
3182 }
3183
3184 static inline int iommu_iova_cache_init(void)
3185 {
3186 int ret = 0;
3187
3188 iommu_iova_cache = kmem_cache_create("iommu_iova",
3189 sizeof(struct iova),
3190 0,
3191 SLAB_HWCACHE_ALIGN,
3192 NULL);
3193 if (!iommu_iova_cache) {
3194 printk(KERN_ERR "Couldn't create iova cache\n");
3195 ret = -ENOMEM;
3196 }
3197
3198 return ret;
3199 }
3200
3201 static int __init iommu_init_mempool(void)
3202 {
3203 int ret;
3204 ret = iommu_iova_cache_init();
3205 if (ret)
3206 return ret;
3207
3208 ret = iommu_domain_cache_init();
3209 if (ret)
3210 goto domain_error;
3211
3212 ret = iommu_devinfo_cache_init();
3213 if (!ret)
3214 return ret;
3215
3216 kmem_cache_destroy(iommu_domain_cache);
3217 domain_error:
3218 kmem_cache_destroy(iommu_iova_cache);
3219
3220 return -ENOMEM;
3221 }
3222
3223 static void __init iommu_exit_mempool(void)
3224 {
3225 kmem_cache_destroy(iommu_devinfo_cache);
3226 kmem_cache_destroy(iommu_domain_cache);
3227 kmem_cache_destroy(iommu_iova_cache);
3228
3229 }
3230
3231 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3232 {
3233 struct dmar_drhd_unit *drhd;
3234 u32 vtbar;
3235 int rc;
3236
3237 /* We know that this device on this chipset has its own IOMMU.
3238 * If we find it under a different IOMMU, then the BIOS is lying
3239 * to us. Hope that the IOMMU for this device is actually
3240 * disabled, and it needs no translation...
3241 */
3242 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3243 if (rc) {
3244 /* "can't" happen */
3245 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3246 return;
3247 }
3248 vtbar &= 0xffff0000;
3249
3250 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3251 drhd = dmar_find_matched_drhd_unit(pdev);
3252 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3253 TAINT_FIRMWARE_WORKAROUND,
3254 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3255 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3256 }
3257 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3258
3259 static void __init init_no_remapping_devices(void)
3260 {
3261 struct dmar_drhd_unit *drhd;
3262
3263 for_each_drhd_unit(drhd) {
3264 if (!drhd->include_all) {
3265 int i;
3266 for (i = 0; i < drhd->devices_cnt; i++)
3267 if (drhd->devices[i] != NULL)
3268 break;
3269 /* ignore DMAR unit if no pci devices exist */
3270 if (i == drhd->devices_cnt)
3271 drhd->ignored = 1;
3272 }
3273 }
3274
3275 for_each_drhd_unit(drhd) {
3276 int i;
3277 if (drhd->ignored || drhd->include_all)
3278 continue;
3279
3280 for (i = 0; i < drhd->devices_cnt; i++)
3281 if (drhd->devices[i] &&
3282 !IS_GFX_DEVICE(drhd->devices[i]))
3283 break;
3284
3285 if (i < drhd->devices_cnt)
3286 continue;
3287
3288 /* This IOMMU has *only* gfx devices. Either bypass it or
3289 set the gfx_mapped flag, as appropriate */
3290 if (dmar_map_gfx) {
3291 intel_iommu_gfx_mapped = 1;
3292 } else {
3293 drhd->ignored = 1;
3294 for (i = 0; i < drhd->devices_cnt; i++) {
3295 if (!drhd->devices[i])
3296 continue;
3297 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3298 }
3299 }
3300 }
3301 }
3302
3303 #ifdef CONFIG_SUSPEND
3304 static int init_iommu_hw(void)
3305 {
3306 struct dmar_drhd_unit *drhd;
3307 struct intel_iommu *iommu = NULL;
3308
3309 for_each_active_iommu(iommu, drhd)
3310 if (iommu->qi)
3311 dmar_reenable_qi(iommu);
3312
3313 for_each_iommu(iommu, drhd) {
3314 if (drhd->ignored) {
3315 /*
3316 * we always have to disable PMRs or DMA may fail on
3317 * this device
3318 */
3319 if (force_on)
3320 iommu_disable_protect_mem_regions(iommu);
3321 continue;
3322 }
3323
3324 iommu_flush_write_buffer(iommu);
3325
3326 iommu_set_root_entry(iommu);
3327
3328 iommu->flush.flush_context(iommu, 0, 0, 0,
3329 DMA_CCMD_GLOBAL_INVL);
3330 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3331 DMA_TLB_GLOBAL_FLUSH);
3332 if (iommu_enable_translation(iommu))
3333 return 1;
3334 iommu_disable_protect_mem_regions(iommu);
3335 }
3336
3337 return 0;
3338 }
3339
3340 static void iommu_flush_all(void)
3341 {
3342 struct dmar_drhd_unit *drhd;
3343 struct intel_iommu *iommu;
3344
3345 for_each_active_iommu(iommu, drhd) {
3346 iommu->flush.flush_context(iommu, 0, 0, 0,
3347 DMA_CCMD_GLOBAL_INVL);
3348 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3349 DMA_TLB_GLOBAL_FLUSH);
3350 }
3351 }
3352
3353 static int iommu_suspend(void)
3354 {
3355 struct dmar_drhd_unit *drhd;
3356 struct intel_iommu *iommu = NULL;
3357 unsigned long flag;
3358
3359 for_each_active_iommu(iommu, drhd) {
3360 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3361 GFP_ATOMIC);
3362 if (!iommu->iommu_state)
3363 goto nomem;
3364 }
3365
3366 iommu_flush_all();
3367
3368 for_each_active_iommu(iommu, drhd) {
3369 iommu_disable_translation(iommu);
3370
3371 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3372
3373 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3374 readl(iommu->reg + DMAR_FECTL_REG);
3375 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3376 readl(iommu->reg + DMAR_FEDATA_REG);
3377 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3378 readl(iommu->reg + DMAR_FEADDR_REG);
3379 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3380 readl(iommu->reg + DMAR_FEUADDR_REG);
3381
3382 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3383 }
3384 return 0;
3385
3386 nomem:
3387 for_each_active_iommu(iommu, drhd)
3388 kfree(iommu->iommu_state);
3389
3390 return -ENOMEM;
3391 }
3392
3393 static void iommu_resume(void)
3394 {
3395 struct dmar_drhd_unit *drhd;
3396 struct intel_iommu *iommu = NULL;
3397 unsigned long flag;
3398
3399 if (init_iommu_hw()) {
3400 if (force_on)
3401 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3402 else
3403 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3404 return;
3405 }
3406
3407 for_each_active_iommu(iommu, drhd) {
3408
3409 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3410
3411 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3412 iommu->reg + DMAR_FECTL_REG);
3413 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3414 iommu->reg + DMAR_FEDATA_REG);
3415 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3416 iommu->reg + DMAR_FEADDR_REG);
3417 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3418 iommu->reg + DMAR_FEUADDR_REG);
3419
3420 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3421 }
3422
3423 for_each_active_iommu(iommu, drhd)
3424 kfree(iommu->iommu_state);
3425 }
3426
3427 static struct syscore_ops iommu_syscore_ops = {
3428 .resume = iommu_resume,
3429 .suspend = iommu_suspend,
3430 };
3431
3432 static void __init init_iommu_pm_ops(void)
3433 {
3434 register_syscore_ops(&iommu_syscore_ops);
3435 }
3436
3437 #else
3438 static inline void init_iommu_pm_ops(void) {}
3439 #endif /* CONFIG_PM */
3440
3441 LIST_HEAD(dmar_rmrr_units);
3442
3443 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
3444 {
3445 list_add(&rmrr->list, &dmar_rmrr_units);
3446 }
3447
3448
3449 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3450 {
3451 struct acpi_dmar_reserved_memory *rmrr;
3452 struct dmar_rmrr_unit *rmrru;
3453
3454 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3455 if (!rmrru)
3456 return -ENOMEM;
3457
3458 rmrru->hdr = header;
3459 rmrr = (struct acpi_dmar_reserved_memory *)header;
3460 rmrru->base_address = rmrr->base_address;
3461 rmrru->end_address = rmrr->end_address;
3462
3463 dmar_register_rmrr_unit(rmrru);
3464 return 0;
3465 }
3466
3467 static int __init
3468 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
3469 {
3470 struct acpi_dmar_reserved_memory *rmrr;
3471 int ret;
3472
3473 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
3474 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
3475 ((void *)rmrr) + rmrr->header.length,
3476 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
3477
3478 if (ret || (rmrru->devices_cnt == 0)) {
3479 list_del(&rmrru->list);
3480 kfree(rmrru);
3481 }
3482 return ret;
3483 }
3484
3485 static LIST_HEAD(dmar_atsr_units);
3486
3487 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3488 {
3489 struct acpi_dmar_atsr *atsr;
3490 struct dmar_atsr_unit *atsru;
3491
3492 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3493 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3494 if (!atsru)
3495 return -ENOMEM;
3496
3497 atsru->hdr = hdr;
3498 atsru->include_all = atsr->flags & 0x1;
3499
3500 list_add(&atsru->list, &dmar_atsr_units);
3501
3502 return 0;
3503 }
3504
3505 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
3506 {
3507 int rc;
3508 struct acpi_dmar_atsr *atsr;
3509
3510 if (atsru->include_all)
3511 return 0;
3512
3513 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3514 rc = dmar_parse_dev_scope((void *)(atsr + 1),
3515 (void *)atsr + atsr->header.length,
3516 &atsru->devices_cnt, &atsru->devices,
3517 atsr->segment);
3518 if (rc || !atsru->devices_cnt) {
3519 list_del(&atsru->list);
3520 kfree(atsru);
3521 }
3522
3523 return rc;
3524 }
3525
3526 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3527 {
3528 int i;
3529 struct pci_bus *bus;
3530 struct acpi_dmar_atsr *atsr;
3531 struct dmar_atsr_unit *atsru;
3532
3533 dev = pci_physfn(dev);
3534
3535 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3536 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3537 if (atsr->segment == pci_domain_nr(dev->bus))
3538 goto found;
3539 }
3540
3541 return 0;
3542
3543 found:
3544 for (bus = dev->bus; bus; bus = bus->parent) {
3545 struct pci_dev *bridge = bus->self;
3546
3547 if (!bridge || !pci_is_pcie(bridge) ||
3548 bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
3549 return 0;
3550
3551 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
3552 for (i = 0; i < atsru->devices_cnt; i++)
3553 if (atsru->devices[i] == bridge)
3554 return 1;
3555 break;
3556 }
3557 }
3558
3559 if (atsru->include_all)
3560 return 1;
3561
3562 return 0;
3563 }
3564
3565 int __init dmar_parse_rmrr_atsr_dev(void)
3566 {
3567 struct dmar_rmrr_unit *rmrr, *rmrr_n;
3568 struct dmar_atsr_unit *atsr, *atsr_n;
3569 int ret = 0;
3570
3571 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
3572 ret = rmrr_parse_dev(rmrr);
3573 if (ret)
3574 return ret;
3575 }
3576
3577 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
3578 ret = atsr_parse_dev(atsr);
3579 if (ret)
3580 return ret;
3581 }
3582
3583 return ret;
3584 }
3585
3586 /*
3587 * Here we only respond to action of unbound device from driver.
3588 *
3589 * Added device is not attached to its DMAR domain here yet. That will happen
3590 * when mapping the device to iova.
3591 */
3592 static int device_notifier(struct notifier_block *nb,
3593 unsigned long action, void *data)
3594 {
3595 struct device *dev = data;
3596 struct pci_dev *pdev = to_pci_dev(dev);
3597 struct dmar_domain *domain;
3598
3599 if (iommu_no_mapping(dev))
3600 return 0;
3601
3602 domain = find_domain(pdev);
3603 if (!domain)
3604 return 0;
3605
3606 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3607 domain_remove_one_dev_info(domain, pdev);
3608
3609 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3610 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3611 list_empty(&domain->devices))
3612 domain_exit(domain);
3613 }
3614
3615 return 0;
3616 }
3617
3618 static struct notifier_block device_nb = {
3619 .notifier_call = device_notifier,
3620 };
3621
3622 int __init intel_iommu_init(void)
3623 {
3624 int ret = 0;
3625
3626 /* VT-d is required for a TXT/tboot launch, so enforce that */
3627 force_on = tboot_force_iommu();
3628
3629 if (dmar_table_init()) {
3630 if (force_on)
3631 panic("tboot: Failed to initialize DMAR table\n");
3632 return -ENODEV;
3633 }
3634
3635 if (dmar_dev_scope_init() < 0) {
3636 if (force_on)
3637 panic("tboot: Failed to initialize DMAR device scope\n");
3638 return -ENODEV;
3639 }
3640
3641 if (no_iommu || dmar_disabled)
3642 return -ENODEV;
3643
3644 if (iommu_init_mempool()) {
3645 if (force_on)
3646 panic("tboot: Failed to initialize iommu memory\n");
3647 return -ENODEV;
3648 }
3649
3650 if (list_empty(&dmar_rmrr_units))
3651 printk(KERN_INFO "DMAR: No RMRR found\n");
3652
3653 if (list_empty(&dmar_atsr_units))
3654 printk(KERN_INFO "DMAR: No ATSR found\n");
3655
3656 if (dmar_init_reserved_ranges()) {
3657 if (force_on)
3658 panic("tboot: Failed to reserve iommu ranges\n");
3659 return -ENODEV;
3660 }
3661
3662 init_no_remapping_devices();
3663
3664 ret = init_dmars();
3665 if (ret) {
3666 if (force_on)
3667 panic("tboot: Failed to initialize DMARs\n");
3668 printk(KERN_ERR "IOMMU: dmar init failed\n");
3669 put_iova_domain(&reserved_iova_list);
3670 iommu_exit_mempool();
3671 return ret;
3672 }
3673 printk(KERN_INFO
3674 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3675
3676 init_timer(&unmap_timer);
3677 #ifdef CONFIG_SWIOTLB
3678 swiotlb = 0;
3679 #endif
3680 dma_ops = &intel_dma_ops;
3681
3682 init_iommu_pm_ops();
3683
3684 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3685
3686 bus_register_notifier(&pci_bus_type, &device_nb);
3687
3688 intel_iommu_enabled = 1;
3689
3690 return 0;
3691 }
3692
3693 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3694 struct pci_dev *pdev)
3695 {
3696 struct pci_dev *tmp, *parent;
3697
3698 if (!iommu || !pdev)
3699 return;
3700
3701 /* dependent device detach */
3702 tmp = pci_find_upstream_pcie_bridge(pdev);
3703 /* Secondary interface's bus number and devfn 0 */
3704 if (tmp) {
3705 parent = pdev->bus->self;
3706 while (parent != tmp) {
3707 iommu_detach_dev(iommu, parent->bus->number,
3708 parent->devfn);
3709 parent = parent->bus->self;
3710 }
3711 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3712 iommu_detach_dev(iommu,
3713 tmp->subordinate->number, 0);
3714 else /* this is a legacy PCI bridge */
3715 iommu_detach_dev(iommu, tmp->bus->number,
3716 tmp->devfn);
3717 }
3718 }
3719
3720 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3721 struct pci_dev *pdev)
3722 {
3723 struct device_domain_info *info;
3724 struct intel_iommu *iommu;
3725 unsigned long flags;
3726 int found = 0;
3727 struct list_head *entry, *tmp;
3728
3729 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3730 pdev->devfn);
3731 if (!iommu)
3732 return;
3733
3734 spin_lock_irqsave(&device_domain_lock, flags);
3735 list_for_each_safe(entry, tmp, &domain->devices) {
3736 info = list_entry(entry, struct device_domain_info, link);
3737 if (info->segment == pci_domain_nr(pdev->bus) &&
3738 info->bus == pdev->bus->number &&
3739 info->devfn == pdev->devfn) {
3740 unlink_domain_info(info);
3741 spin_unlock_irqrestore(&device_domain_lock, flags);
3742
3743 iommu_disable_dev_iotlb(info);
3744 iommu_detach_dev(iommu, info->bus, info->devfn);
3745 iommu_detach_dependent_devices(iommu, pdev);
3746 free_devinfo_mem(info);
3747
3748 spin_lock_irqsave(&device_domain_lock, flags);
3749
3750 if (found)
3751 break;
3752 else
3753 continue;
3754 }
3755
3756 /* if there is no other devices under the same iommu
3757 * owned by this domain, clear this iommu in iommu_bmp
3758 * update iommu count and coherency
3759 */
3760 if (iommu == device_to_iommu(info->segment, info->bus,
3761 info->devfn))
3762 found = 1;
3763 }
3764
3765 spin_unlock_irqrestore(&device_domain_lock, flags);
3766
3767 if (found == 0) {
3768 unsigned long tmp_flags;
3769 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3770 clear_bit(iommu->seq_id, domain->iommu_bmp);
3771 domain->iommu_count--;
3772 domain_update_iommu_cap(domain);
3773 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3774
3775 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3776 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
3777 spin_lock_irqsave(&iommu->lock, tmp_flags);
3778 clear_bit(domain->id, iommu->domain_ids);
3779 iommu->domains[domain->id] = NULL;
3780 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3781 }
3782 }
3783 }
3784
3785 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3786 {
3787 struct device_domain_info *info;
3788 struct intel_iommu *iommu;
3789 unsigned long flags1, flags2;
3790
3791 spin_lock_irqsave(&device_domain_lock, flags1);
3792 while (!list_empty(&domain->devices)) {
3793 info = list_entry(domain->devices.next,
3794 struct device_domain_info, link);
3795 unlink_domain_info(info);
3796 spin_unlock_irqrestore(&device_domain_lock, flags1);
3797
3798 iommu_disable_dev_iotlb(info);
3799 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3800 iommu_detach_dev(iommu, info->bus, info->devfn);
3801 iommu_detach_dependent_devices(iommu, info->dev);
3802
3803 /* clear this iommu in iommu_bmp, update iommu count
3804 * and capabilities
3805 */
3806 spin_lock_irqsave(&domain->iommu_lock, flags2);
3807 if (test_and_clear_bit(iommu->seq_id,
3808 domain->iommu_bmp)) {
3809 domain->iommu_count--;
3810 domain_update_iommu_cap(domain);
3811 }
3812 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3813
3814 free_devinfo_mem(info);
3815 spin_lock_irqsave(&device_domain_lock, flags1);
3816 }
3817 spin_unlock_irqrestore(&device_domain_lock, flags1);
3818 }
3819
3820 /* domain id for virtual machine, it won't be set in context */
3821 static unsigned long vm_domid;
3822
3823 static struct dmar_domain *iommu_alloc_vm_domain(void)
3824 {
3825 struct dmar_domain *domain;
3826
3827 domain = alloc_domain_mem();
3828 if (!domain)
3829 return NULL;
3830
3831 domain->id = vm_domid++;
3832 domain->nid = -1;
3833 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
3834 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3835
3836 return domain;
3837 }
3838
3839 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3840 {
3841 int adjust_width;
3842
3843 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3844 spin_lock_init(&domain->iommu_lock);
3845
3846 domain_reserve_special_ranges(domain);
3847
3848 /* calculate AGAW */
3849 domain->gaw = guest_width;
3850 adjust_width = guestwidth_to_adjustwidth(guest_width);
3851 domain->agaw = width_to_agaw(adjust_width);
3852
3853 INIT_LIST_HEAD(&domain->devices);
3854
3855 domain->iommu_count = 0;
3856 domain->iommu_coherency = 0;
3857 domain->iommu_snooping = 0;
3858 domain->iommu_superpage = 0;
3859 domain->max_addr = 0;
3860 domain->nid = -1;
3861
3862 /* always allocate the top pgd */
3863 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3864 if (!domain->pgd)
3865 return -ENOMEM;
3866 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3867 return 0;
3868 }
3869
3870 static void iommu_free_vm_domain(struct dmar_domain *domain)
3871 {
3872 unsigned long flags;
3873 struct dmar_drhd_unit *drhd;
3874 struct intel_iommu *iommu;
3875 unsigned long i;
3876 unsigned long ndomains;
3877
3878 for_each_drhd_unit(drhd) {
3879 if (drhd->ignored)
3880 continue;
3881 iommu = drhd->iommu;
3882
3883 ndomains = cap_ndoms(iommu->cap);
3884 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3885 if (iommu->domains[i] == domain) {
3886 spin_lock_irqsave(&iommu->lock, flags);
3887 clear_bit(i, iommu->domain_ids);
3888 iommu->domains[i] = NULL;
3889 spin_unlock_irqrestore(&iommu->lock, flags);
3890 break;
3891 }
3892 }
3893 }
3894 }
3895
3896 static void vm_domain_exit(struct dmar_domain *domain)
3897 {
3898 /* Domain 0 is reserved, so dont process it */
3899 if (!domain)
3900 return;
3901
3902 vm_domain_remove_all_dev_info(domain);
3903 /* destroy iovas */
3904 put_iova_domain(&domain->iovad);
3905
3906 /* clear ptes */
3907 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3908
3909 /* free page tables */
3910 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3911
3912 iommu_free_vm_domain(domain);
3913 free_domain_mem(domain);
3914 }
3915
3916 static int intel_iommu_domain_init(struct iommu_domain *domain)
3917 {
3918 struct dmar_domain *dmar_domain;
3919
3920 dmar_domain = iommu_alloc_vm_domain();
3921 if (!dmar_domain) {
3922 printk(KERN_ERR
3923 "intel_iommu_domain_init: dmar_domain == NULL\n");
3924 return -ENOMEM;
3925 }
3926 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3927 printk(KERN_ERR
3928 "intel_iommu_domain_init() failed\n");
3929 vm_domain_exit(dmar_domain);
3930 return -ENOMEM;
3931 }
3932 domain_update_iommu_cap(dmar_domain);
3933 domain->priv = dmar_domain;
3934
3935 domain->geometry.aperture_start = 0;
3936 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
3937 domain->geometry.force_aperture = true;
3938
3939 return 0;
3940 }
3941
3942 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3943 {
3944 struct dmar_domain *dmar_domain = domain->priv;
3945
3946 domain->priv = NULL;
3947 vm_domain_exit(dmar_domain);
3948 }
3949
3950 static int intel_iommu_attach_device(struct iommu_domain *domain,
3951 struct device *dev)
3952 {
3953 struct dmar_domain *dmar_domain = domain->priv;
3954 struct pci_dev *pdev = to_pci_dev(dev);
3955 struct intel_iommu *iommu;
3956 int addr_width;
3957
3958 /* normally pdev is not mapped */
3959 if (unlikely(domain_context_mapped(pdev))) {
3960 struct dmar_domain *old_domain;
3961
3962 old_domain = find_domain(pdev);
3963 if (old_domain) {
3964 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3965 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3966 domain_remove_one_dev_info(old_domain, pdev);
3967 else
3968 domain_remove_dev_info(old_domain);
3969 }
3970 }
3971
3972 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3973 pdev->devfn);
3974 if (!iommu)
3975 return -ENODEV;
3976
3977 /* check if this iommu agaw is sufficient for max mapped address */
3978 addr_width = agaw_to_width(iommu->agaw);
3979 if (addr_width > cap_mgaw(iommu->cap))
3980 addr_width = cap_mgaw(iommu->cap);
3981
3982 if (dmar_domain->max_addr > (1LL << addr_width)) {
3983 printk(KERN_ERR "%s: iommu width (%d) is not "
3984 "sufficient for the mapped address (%llx)\n",
3985 __func__, addr_width, dmar_domain->max_addr);
3986 return -EFAULT;
3987 }
3988 dmar_domain->gaw = addr_width;
3989
3990 /*
3991 * Knock out extra levels of page tables if necessary
3992 */
3993 while (iommu->agaw < dmar_domain->agaw) {
3994 struct dma_pte *pte;
3995
3996 pte = dmar_domain->pgd;
3997 if (dma_pte_present(pte)) {
3998 dmar_domain->pgd = (struct dma_pte *)
3999 phys_to_virt(dma_pte_addr(pte));
4000 free_pgtable_page(pte);
4001 }
4002 dmar_domain->agaw--;
4003 }
4004
4005 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
4006 }
4007
4008 static void intel_iommu_detach_device(struct iommu_domain *domain,
4009 struct device *dev)
4010 {
4011 struct dmar_domain *dmar_domain = domain->priv;
4012 struct pci_dev *pdev = to_pci_dev(dev);
4013
4014 domain_remove_one_dev_info(dmar_domain, pdev);
4015 }
4016
4017 static int intel_iommu_map(struct iommu_domain *domain,
4018 unsigned long iova, phys_addr_t hpa,
4019 size_t size, int iommu_prot)
4020 {
4021 struct dmar_domain *dmar_domain = domain->priv;
4022 u64 max_addr;
4023 int prot = 0;
4024 int ret;
4025
4026 if (iommu_prot & IOMMU_READ)
4027 prot |= DMA_PTE_READ;
4028 if (iommu_prot & IOMMU_WRITE)
4029 prot |= DMA_PTE_WRITE;
4030 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4031 prot |= DMA_PTE_SNP;
4032
4033 max_addr = iova + size;
4034 if (dmar_domain->max_addr < max_addr) {
4035 u64 end;
4036
4037 /* check if minimum agaw is sufficient for mapped address */
4038 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4039 if (end < max_addr) {
4040 printk(KERN_ERR "%s: iommu width (%d) is not "
4041 "sufficient for the mapped address (%llx)\n",
4042 __func__, dmar_domain->gaw, max_addr);
4043 return -EFAULT;
4044 }
4045 dmar_domain->max_addr = max_addr;
4046 }
4047 /* Round up size to next multiple of PAGE_SIZE, if it and
4048 the low bits of hpa would take us onto the next page */
4049 size = aligned_nrpages(hpa, size);
4050 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4051 hpa >> VTD_PAGE_SHIFT, size, prot);
4052 return ret;
4053 }
4054
4055 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4056 unsigned long iova, size_t size)
4057 {
4058 struct dmar_domain *dmar_domain = domain->priv;
4059 int order;
4060
4061 order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
4062 (iova + size - 1) >> VTD_PAGE_SHIFT);
4063
4064 if (dmar_domain->max_addr == iova + size)
4065 dmar_domain->max_addr = iova;
4066
4067 return PAGE_SIZE << order;
4068 }
4069
4070 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4071 unsigned long iova)
4072 {
4073 struct dmar_domain *dmar_domain = domain->priv;
4074 struct dma_pte *pte;
4075 u64 phys = 0;
4076
4077 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0);
4078 if (pte)
4079 phys = dma_pte_addr(pte);
4080
4081 return phys;
4082 }
4083
4084 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4085 unsigned long cap)
4086 {
4087 struct dmar_domain *dmar_domain = domain->priv;
4088
4089 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4090 return dmar_domain->iommu_snooping;
4091 if (cap == IOMMU_CAP_INTR_REMAP)
4092 return irq_remapping_enabled;
4093
4094 return 0;
4095 }
4096
4097 static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
4098 {
4099 pci_dev_put(*from);
4100 *from = to;
4101 }
4102
4103 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
4104
4105 static int intel_iommu_add_device(struct device *dev)
4106 {
4107 struct pci_dev *pdev = to_pci_dev(dev);
4108 struct pci_dev *bridge, *dma_pdev;
4109 struct iommu_group *group;
4110 int ret;
4111
4112 if (!device_to_iommu(pci_domain_nr(pdev->bus),
4113 pdev->bus->number, pdev->devfn))
4114 return -ENODEV;
4115
4116 bridge = pci_find_upstream_pcie_bridge(pdev);
4117 if (bridge) {
4118 if (pci_is_pcie(bridge))
4119 dma_pdev = pci_get_domain_bus_and_slot(
4120 pci_domain_nr(pdev->bus),
4121 bridge->subordinate->number, 0);
4122 else
4123 dma_pdev = pci_dev_get(bridge);
4124 } else
4125 dma_pdev = pci_dev_get(pdev);
4126
4127 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
4128
4129 if (dma_pdev->multifunction &&
4130 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
4131 swap_pci_ref(&dma_pdev,
4132 pci_get_slot(dma_pdev->bus,
4133 PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
4134 0)));
4135
4136 while (!pci_is_root_bus(dma_pdev->bus)) {
4137 if (pci_acs_path_enabled(dma_pdev->bus->self,
4138 NULL, REQ_ACS_FLAGS))
4139 break;
4140
4141 swap_pci_ref(&dma_pdev, pci_dev_get(dma_pdev->bus->self));
4142 }
4143
4144 group = iommu_group_get(&dma_pdev->dev);
4145 pci_dev_put(dma_pdev);
4146 if (!group) {
4147 group = iommu_group_alloc();
4148 if (IS_ERR(group))
4149 return PTR_ERR(group);
4150 }
4151
4152 ret = iommu_group_add_device(group, dev);
4153
4154 iommu_group_put(group);
4155 return ret;
4156 }
4157
4158 static void intel_iommu_remove_device(struct device *dev)
4159 {
4160 iommu_group_remove_device(dev);
4161 }
4162
4163 static struct iommu_ops intel_iommu_ops = {
4164 .domain_init = intel_iommu_domain_init,
4165 .domain_destroy = intel_iommu_domain_destroy,
4166 .attach_dev = intel_iommu_attach_device,
4167 .detach_dev = intel_iommu_detach_device,
4168 .map = intel_iommu_map,
4169 .unmap = intel_iommu_unmap,
4170 .iova_to_phys = intel_iommu_iova_to_phys,
4171 .domain_has_cap = intel_iommu_domain_has_cap,
4172 .add_device = intel_iommu_add_device,
4173 .remove_device = intel_iommu_remove_device,
4174 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4175 };
4176
4177 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
4178 {
4179 /*
4180 * Mobile 4 Series Chipset neglects to set RWBF capability,
4181 * but needs it:
4182 */
4183 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4184 rwbf_quirk = 1;
4185
4186 /* https://bugzilla.redhat.com/show_bug.cgi?id=538163 */
4187 if (dev->revision == 0x07) {
4188 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4189 dmar_map_gfx = 0;
4190 }
4191 }
4192
4193 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4194
4195 #define GGC 0x52
4196 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4197 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4198 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4199 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4200 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4201 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4202 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4203 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4204
4205 static void __devinit quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4206 {
4207 unsigned short ggc;
4208
4209 if (pci_read_config_word(dev, GGC, &ggc))
4210 return;
4211
4212 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4213 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4214 dmar_map_gfx = 0;
4215 } else if (dmar_map_gfx) {
4216 /* we have to ensure the gfx device is idle before we flush */
4217 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4218 intel_iommu_strict = 1;
4219 }
4220 }
4221 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4222 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4223 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4224 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4225
4226 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4227 ISOCH DMAR unit for the Azalia sound device, but not give it any
4228 TLB entries, which causes it to deadlock. Check for that. We do
4229 this in a function called from init_dmars(), instead of in a PCI
4230 quirk, because we don't want to print the obnoxious "BIOS broken"
4231 message if VT-d is actually disabled.
4232 */
4233 static void __init check_tylersburg_isoch(void)
4234 {
4235 struct pci_dev *pdev;
4236 uint32_t vtisochctrl;
4237
4238 /* If there's no Azalia in the system anyway, forget it. */
4239 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4240 if (!pdev)
4241 return;
4242 pci_dev_put(pdev);
4243
4244 /* System Management Registers. Might be hidden, in which case
4245 we can't do the sanity check. But that's OK, because the
4246 known-broken BIOSes _don't_ actually hide it, so far. */
4247 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4248 if (!pdev)
4249 return;
4250
4251 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4252 pci_dev_put(pdev);
4253 return;
4254 }
4255
4256 pci_dev_put(pdev);
4257
4258 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4259 if (vtisochctrl & 1)
4260 return;
4261
4262 /* Drop all bits other than the number of TLB entries */
4263 vtisochctrl &= 0x1c;
4264
4265 /* If we have the recommended number of TLB entries (16), fine. */
4266 if (vtisochctrl == 0x10)
4267 return;
4268
4269 /* Zero TLB entries? You get to ride the short bus to school. */
4270 if (!vtisochctrl) {
4271 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4272 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4273 dmi_get_system_info(DMI_BIOS_VENDOR),
4274 dmi_get_system_info(DMI_BIOS_VERSION),
4275 dmi_get_system_info(DMI_PRODUCT_VERSION));
4276 iommu_identity_mapping |= IDENTMAP_AZALIA;
4277 return;
4278 }
4279
4280 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4281 vtisochctrl);
4282 }
This page took 0.123628 seconds and 5 git commands to generate.