Merge branch 'iommu/next' of git://linuxtv.org/pinchartl/fbdev into arm/renesas
[deliverable/linux.git] / drivers / iommu / ipmmu-vmsa.c
1 /*
2 * IPMMU VMSA
3 *
4 * Copyright (C) 2014 Renesas Electronics Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 */
10
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iommu.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/sizes.h>
22 #include <linux/slab.h>
23
24 #include <asm/dma-iommu.h>
25 #include <asm/pgalloc.h>
26
27 struct ipmmu_vmsa_device {
28 struct device *dev;
29 void __iomem *base;
30 struct list_head list;
31
32 unsigned int num_utlbs;
33
34 struct dma_iommu_mapping *mapping;
35 };
36
37 struct ipmmu_vmsa_domain {
38 struct ipmmu_vmsa_device *mmu;
39 struct iommu_domain *io_domain;
40
41 unsigned int context_id;
42 spinlock_t lock; /* Protects mappings */
43 pgd_t *pgd;
44 };
45
46 struct ipmmu_vmsa_archdata {
47 struct ipmmu_vmsa_device *mmu;
48 unsigned int *utlbs;
49 unsigned int num_utlbs;
50 };
51
52 static DEFINE_SPINLOCK(ipmmu_devices_lock);
53 static LIST_HEAD(ipmmu_devices);
54
55 #define TLB_LOOP_TIMEOUT 100 /* 100us */
56
57 /* -----------------------------------------------------------------------------
58 * Registers Definition
59 */
60
61 #define IM_NS_ALIAS_OFFSET 0x800
62
63 #define IM_CTX_SIZE 0x40
64
65 #define IMCTR 0x0000
66 #define IMCTR_TRE (1 << 17)
67 #define IMCTR_AFE (1 << 16)
68 #define IMCTR_RTSEL_MASK (3 << 4)
69 #define IMCTR_RTSEL_SHIFT 4
70 #define IMCTR_TREN (1 << 3)
71 #define IMCTR_INTEN (1 << 2)
72 #define IMCTR_FLUSH (1 << 1)
73 #define IMCTR_MMUEN (1 << 0)
74
75 #define IMCAAR 0x0004
76
77 #define IMTTBCR 0x0008
78 #define IMTTBCR_EAE (1 << 31)
79 #define IMTTBCR_PMB (1 << 30)
80 #define IMTTBCR_SH1_NON_SHAREABLE (0 << 28)
81 #define IMTTBCR_SH1_OUTER_SHAREABLE (2 << 28)
82 #define IMTTBCR_SH1_INNER_SHAREABLE (3 << 28)
83 #define IMTTBCR_SH1_MASK (3 << 28)
84 #define IMTTBCR_ORGN1_NC (0 << 26)
85 #define IMTTBCR_ORGN1_WB_WA (1 << 26)
86 #define IMTTBCR_ORGN1_WT (2 << 26)
87 #define IMTTBCR_ORGN1_WB (3 << 26)
88 #define IMTTBCR_ORGN1_MASK (3 << 26)
89 #define IMTTBCR_IRGN1_NC (0 << 24)
90 #define IMTTBCR_IRGN1_WB_WA (1 << 24)
91 #define IMTTBCR_IRGN1_WT (2 << 24)
92 #define IMTTBCR_IRGN1_WB (3 << 24)
93 #define IMTTBCR_IRGN1_MASK (3 << 24)
94 #define IMTTBCR_TSZ1_MASK (7 << 16)
95 #define IMTTBCR_TSZ1_SHIFT 16
96 #define IMTTBCR_SH0_NON_SHAREABLE (0 << 12)
97 #define IMTTBCR_SH0_OUTER_SHAREABLE (2 << 12)
98 #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12)
99 #define IMTTBCR_SH0_MASK (3 << 12)
100 #define IMTTBCR_ORGN0_NC (0 << 10)
101 #define IMTTBCR_ORGN0_WB_WA (1 << 10)
102 #define IMTTBCR_ORGN0_WT (2 << 10)
103 #define IMTTBCR_ORGN0_WB (3 << 10)
104 #define IMTTBCR_ORGN0_MASK (3 << 10)
105 #define IMTTBCR_IRGN0_NC (0 << 8)
106 #define IMTTBCR_IRGN0_WB_WA (1 << 8)
107 #define IMTTBCR_IRGN0_WT (2 << 8)
108 #define IMTTBCR_IRGN0_WB (3 << 8)
109 #define IMTTBCR_IRGN0_MASK (3 << 8)
110 #define IMTTBCR_SL0_LVL_2 (0 << 4)
111 #define IMTTBCR_SL0_LVL_1 (1 << 4)
112 #define IMTTBCR_TSZ0_MASK (7 << 0)
113 #define IMTTBCR_TSZ0_SHIFT O
114
115 #define IMBUSCR 0x000c
116 #define IMBUSCR_DVM (1 << 2)
117 #define IMBUSCR_BUSSEL_SYS (0 << 0)
118 #define IMBUSCR_BUSSEL_CCI (1 << 0)
119 #define IMBUSCR_BUSSEL_IMCAAR (2 << 0)
120 #define IMBUSCR_BUSSEL_CCI_IMCAAR (3 << 0)
121 #define IMBUSCR_BUSSEL_MASK (3 << 0)
122
123 #define IMTTLBR0 0x0010
124 #define IMTTUBR0 0x0014
125 #define IMTTLBR1 0x0018
126 #define IMTTUBR1 0x001c
127
128 #define IMSTR 0x0020
129 #define IMSTR_ERRLVL_MASK (3 << 12)
130 #define IMSTR_ERRLVL_SHIFT 12
131 #define IMSTR_ERRCODE_TLB_FORMAT (1 << 8)
132 #define IMSTR_ERRCODE_ACCESS_PERM (4 << 8)
133 #define IMSTR_ERRCODE_SECURE_ACCESS (5 << 8)
134 #define IMSTR_ERRCODE_MASK (7 << 8)
135 #define IMSTR_MHIT (1 << 4)
136 #define IMSTR_ABORT (1 << 2)
137 #define IMSTR_PF (1 << 1)
138 #define IMSTR_TF (1 << 0)
139
140 #define IMMAIR0 0x0028
141 #define IMMAIR1 0x002c
142 #define IMMAIR_ATTR_MASK 0xff
143 #define IMMAIR_ATTR_DEVICE 0x04
144 #define IMMAIR_ATTR_NC 0x44
145 #define IMMAIR_ATTR_WBRWA 0xff
146 #define IMMAIR_ATTR_SHIFT(n) ((n) << 3)
147 #define IMMAIR_ATTR_IDX_NC 0
148 #define IMMAIR_ATTR_IDX_WBRWA 1
149 #define IMMAIR_ATTR_IDX_DEV 2
150
151 #define IMEAR 0x0030
152
153 #define IMPCTR 0x0200
154 #define IMPSTR 0x0208
155 #define IMPEAR 0x020c
156 #define IMPMBA(n) (0x0280 + ((n) * 4))
157 #define IMPMBD(n) (0x02c0 + ((n) * 4))
158
159 #define IMUCTR(n) (0x0300 + ((n) * 16))
160 #define IMUCTR_FIXADDEN (1 << 31)
161 #define IMUCTR_FIXADD_MASK (0xff << 16)
162 #define IMUCTR_FIXADD_SHIFT 16
163 #define IMUCTR_TTSEL_MMU(n) ((n) << 4)
164 #define IMUCTR_TTSEL_PMB (8 << 4)
165 #define IMUCTR_TTSEL_MASK (15 << 4)
166 #define IMUCTR_FLUSH (1 << 1)
167 #define IMUCTR_MMUEN (1 << 0)
168
169 #define IMUASID(n) (0x0308 + ((n) * 16))
170 #define IMUASID_ASID8_MASK (0xff << 8)
171 #define IMUASID_ASID8_SHIFT 8
172 #define IMUASID_ASID0_MASK (0xff << 0)
173 #define IMUASID_ASID0_SHIFT 0
174
175 /* -----------------------------------------------------------------------------
176 * Page Table Bits
177 */
178
179 /*
180 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory access,
181 * Long-descriptor format" that the NStable bit being set in a table descriptor
182 * will result in the NStable and NS bits of all child entries being ignored and
183 * considered as being set. The IPMMU seems not to comply with this, as it
184 * generates a secure access page fault if any of the NStable and NS bits isn't
185 * set when running in non-secure mode.
186 */
187 #ifndef PMD_NSTABLE
188 #define PMD_NSTABLE (_AT(pmdval_t, 1) << 63)
189 #endif
190
191 #define ARM_VMSA_PTE_XN (((pteval_t)3) << 53)
192 #define ARM_VMSA_PTE_CONT (((pteval_t)1) << 52)
193 #define ARM_VMSA_PTE_AF (((pteval_t)1) << 10)
194 #define ARM_VMSA_PTE_SH_NS (((pteval_t)0) << 8)
195 #define ARM_VMSA_PTE_SH_OS (((pteval_t)2) << 8)
196 #define ARM_VMSA_PTE_SH_IS (((pteval_t)3) << 8)
197 #define ARM_VMSA_PTE_SH_MASK (((pteval_t)3) << 8)
198 #define ARM_VMSA_PTE_NS (((pteval_t)1) << 5)
199 #define ARM_VMSA_PTE_PAGE (((pteval_t)3) << 0)
200
201 /* Stage-1 PTE */
202 #define ARM_VMSA_PTE_nG (((pteval_t)1) << 11)
203 #define ARM_VMSA_PTE_AP_UNPRIV (((pteval_t)1) << 6)
204 #define ARM_VMSA_PTE_AP_RDONLY (((pteval_t)2) << 6)
205 #define ARM_VMSA_PTE_AP_MASK (((pteval_t)3) << 6)
206 #define ARM_VMSA_PTE_ATTRINDX_MASK (((pteval_t)3) << 2)
207 #define ARM_VMSA_PTE_ATTRINDX_SHIFT 2
208
209 #define ARM_VMSA_PTE_ATTRS_MASK \
210 (ARM_VMSA_PTE_XN | ARM_VMSA_PTE_CONT | ARM_VMSA_PTE_nG | \
211 ARM_VMSA_PTE_AF | ARM_VMSA_PTE_SH_MASK | ARM_VMSA_PTE_AP_MASK | \
212 ARM_VMSA_PTE_NS | ARM_VMSA_PTE_ATTRINDX_MASK)
213
214 #define ARM_VMSA_PTE_CONT_ENTRIES 16
215 #define ARM_VMSA_PTE_CONT_SIZE (PAGE_SIZE * ARM_VMSA_PTE_CONT_ENTRIES)
216
217 #define IPMMU_PTRS_PER_PTE 512
218 #define IPMMU_PTRS_PER_PMD 512
219 #define IPMMU_PTRS_PER_PGD 4
220
221 /* -----------------------------------------------------------------------------
222 * Read/Write Access
223 */
224
225 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
226 {
227 return ioread32(mmu->base + offset);
228 }
229
230 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
231 u32 data)
232 {
233 iowrite32(data, mmu->base + offset);
234 }
235
236 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_domain *domain, unsigned int reg)
237 {
238 return ipmmu_read(domain->mmu, domain->context_id * IM_CTX_SIZE + reg);
239 }
240
241 static void ipmmu_ctx_write(struct ipmmu_vmsa_domain *domain, unsigned int reg,
242 u32 data)
243 {
244 ipmmu_write(domain->mmu, domain->context_id * IM_CTX_SIZE + reg, data);
245 }
246
247 /* -----------------------------------------------------------------------------
248 * TLB and microTLB Management
249 */
250
251 /* Wait for any pending TLB invalidations to complete */
252 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
253 {
254 unsigned int count = 0;
255
256 while (ipmmu_ctx_read(domain, IMCTR) & IMCTR_FLUSH) {
257 cpu_relax();
258 if (++count == TLB_LOOP_TIMEOUT) {
259 dev_err_ratelimited(domain->mmu->dev,
260 "TLB sync timed out -- MMU may be deadlocked\n");
261 return;
262 }
263 udelay(1);
264 }
265 }
266
267 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
268 {
269 u32 reg;
270
271 reg = ipmmu_ctx_read(domain, IMCTR);
272 reg |= IMCTR_FLUSH;
273 ipmmu_ctx_write(domain, IMCTR, reg);
274
275 ipmmu_tlb_sync(domain);
276 }
277
278 /*
279 * Enable MMU translation for the microTLB.
280 */
281 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
282 unsigned int utlb)
283 {
284 struct ipmmu_vmsa_device *mmu = domain->mmu;
285
286 /*
287 * TODO: Reference-count the microTLB as several bus masters can be
288 * connected to the same microTLB.
289 */
290
291 /* TODO: What should we set the ASID to ? */
292 ipmmu_write(mmu, IMUASID(utlb), 0);
293 /* TODO: Do we need to flush the microTLB ? */
294 ipmmu_write(mmu, IMUCTR(utlb),
295 IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
296 IMUCTR_MMUEN);
297 }
298
299 /*
300 * Disable MMU translation for the microTLB.
301 */
302 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
303 unsigned int utlb)
304 {
305 struct ipmmu_vmsa_device *mmu = domain->mmu;
306
307 ipmmu_write(mmu, IMUCTR(utlb), 0);
308 }
309
310 static void ipmmu_flush_pgtable(struct ipmmu_vmsa_device *mmu, void *addr,
311 size_t size)
312 {
313 unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
314
315 /*
316 * TODO: Add support for coherent walk through CCI with DVM and remove
317 * cache handling.
318 */
319 dma_map_page(mmu->dev, virt_to_page(addr), offset, size, DMA_TO_DEVICE);
320 }
321
322 /* -----------------------------------------------------------------------------
323 * Domain/Context Management
324 */
325
326 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
327 {
328 phys_addr_t ttbr;
329 u32 reg;
330
331 /*
332 * TODO: When adding support for multiple contexts, find an unused
333 * context.
334 */
335 domain->context_id = 0;
336
337 /* TTBR0 */
338 ipmmu_flush_pgtable(domain->mmu, domain->pgd,
339 IPMMU_PTRS_PER_PGD * sizeof(*domain->pgd));
340 ttbr = __pa(domain->pgd);
341 ipmmu_ctx_write(domain, IMTTLBR0, ttbr);
342 ipmmu_ctx_write(domain, IMTTUBR0, ttbr >> 32);
343
344 /*
345 * TTBCR
346 * We use long descriptors with inner-shareable WBWA tables and allocate
347 * the whole 32-bit VA space to TTBR0.
348 */
349 ipmmu_ctx_write(domain, IMTTBCR, IMTTBCR_EAE |
350 IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
351 IMTTBCR_IRGN0_WB_WA | IMTTBCR_SL0_LVL_1);
352
353 /*
354 * MAIR0
355 * We need three attributes only, non-cacheable, write-back read/write
356 * allocate and device memory.
357 */
358 reg = (IMMAIR_ATTR_NC << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_NC))
359 | (IMMAIR_ATTR_WBRWA << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_WBRWA))
360 | (IMMAIR_ATTR_DEVICE << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_DEV));
361 ipmmu_ctx_write(domain, IMMAIR0, reg);
362
363 /* IMBUSCR */
364 ipmmu_ctx_write(domain, IMBUSCR,
365 ipmmu_ctx_read(domain, IMBUSCR) &
366 ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
367
368 /*
369 * IMSTR
370 * Clear all interrupt flags.
371 */
372 ipmmu_ctx_write(domain, IMSTR, ipmmu_ctx_read(domain, IMSTR));
373
374 /*
375 * IMCTR
376 * Enable the MMU and interrupt generation. The long-descriptor
377 * translation table format doesn't use TEX remapping. Don't enable AF
378 * software management as we have no use for it. Flush the TLB as
379 * required when modifying the context registers.
380 */
381 ipmmu_ctx_write(domain, IMCTR, IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
382
383 return 0;
384 }
385
386 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
387 {
388 /*
389 * Disable the context. Flush the TLB as required when modifying the
390 * context registers.
391 *
392 * TODO: Is TLB flush really needed ?
393 */
394 ipmmu_ctx_write(domain, IMCTR, IMCTR_FLUSH);
395 ipmmu_tlb_sync(domain);
396 }
397
398 /* -----------------------------------------------------------------------------
399 * Fault Handling
400 */
401
402 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
403 {
404 const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
405 struct ipmmu_vmsa_device *mmu = domain->mmu;
406 u32 status;
407 u32 iova;
408
409 status = ipmmu_ctx_read(domain, IMSTR);
410 if (!(status & err_mask))
411 return IRQ_NONE;
412
413 iova = ipmmu_ctx_read(domain, IMEAR);
414
415 /*
416 * Clear the error status flags. Unlike traditional interrupt flag
417 * registers that must be cleared by writing 1, this status register
418 * seems to require 0. The error address register must be read before,
419 * otherwise its value will be 0.
420 */
421 ipmmu_ctx_write(domain, IMSTR, 0);
422
423 /* Log fatal errors. */
424 if (status & IMSTR_MHIT)
425 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n",
426 iova);
427 if (status & IMSTR_ABORT)
428 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n",
429 iova);
430
431 if (!(status & (IMSTR_PF | IMSTR_TF)))
432 return IRQ_NONE;
433
434 /*
435 * Try to handle page faults and translation faults.
436 *
437 * TODO: We need to look up the faulty device based on the I/O VA. Use
438 * the IOMMU device for now.
439 */
440 if (!report_iommu_fault(domain->io_domain, mmu->dev, iova, 0))
441 return IRQ_HANDLED;
442
443 dev_err_ratelimited(mmu->dev,
444 "Unhandled fault: status 0x%08x iova 0x%08x\n",
445 status, iova);
446
447 return IRQ_HANDLED;
448 }
449
450 static irqreturn_t ipmmu_irq(int irq, void *dev)
451 {
452 struct ipmmu_vmsa_device *mmu = dev;
453 struct iommu_domain *io_domain;
454 struct ipmmu_vmsa_domain *domain;
455
456 if (!mmu->mapping)
457 return IRQ_NONE;
458
459 io_domain = mmu->mapping->domain;
460 domain = io_domain->priv;
461
462 return ipmmu_domain_irq(domain);
463 }
464
465 /* -----------------------------------------------------------------------------
466 * Page Table Management
467 */
468
469 #define pud_pgtable(pud) pfn_to_page(__phys_to_pfn(pud_val(pud) & PHYS_MASK))
470
471 static void ipmmu_free_ptes(pmd_t *pmd)
472 {
473 pgtable_t table = pmd_pgtable(*pmd);
474 __free_page(table);
475 }
476
477 static void ipmmu_free_pmds(pud_t *pud)
478 {
479 pmd_t *pmd = pmd_offset(pud, 0);
480 pgtable_t table;
481 unsigned int i;
482
483 for (i = 0; i < IPMMU_PTRS_PER_PMD; ++i) {
484 if (!pmd_table(*pmd))
485 continue;
486
487 ipmmu_free_ptes(pmd);
488 pmd++;
489 }
490
491 table = pud_pgtable(*pud);
492 __free_page(table);
493 }
494
495 static void ipmmu_free_pgtables(struct ipmmu_vmsa_domain *domain)
496 {
497 pgd_t *pgd, *pgd_base = domain->pgd;
498 unsigned int i;
499
500 /*
501 * Recursively free the page tables for this domain. We don't care about
502 * speculative TLB filling, because the TLB will be nuked next time this
503 * context bank is re-allocated and no devices currently map to these
504 * tables.
505 */
506 pgd = pgd_base;
507 for (i = 0; i < IPMMU_PTRS_PER_PGD; ++i) {
508 if (pgd_none(*pgd))
509 continue;
510 ipmmu_free_pmds((pud_t *)pgd);
511 pgd++;
512 }
513
514 kfree(pgd_base);
515 }
516
517 /*
518 * We can't use the (pgd|pud|pmd|pte)_populate or the set_(pgd|pud|pmd|pte)
519 * functions as they would flush the CPU TLB.
520 */
521
522 static pte_t *ipmmu_alloc_pte(struct ipmmu_vmsa_device *mmu, pmd_t *pmd,
523 unsigned long iova)
524 {
525 pte_t *pte;
526
527 if (!pmd_none(*pmd))
528 return pte_offset_kernel(pmd, iova);
529
530 pte = (pte_t *)get_zeroed_page(GFP_ATOMIC);
531 if (!pte)
532 return NULL;
533
534 ipmmu_flush_pgtable(mmu, pte, PAGE_SIZE);
535 *pmd = __pmd(__pa(pte) | PMD_NSTABLE | PMD_TYPE_TABLE);
536 ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
537
538 return pte + pte_index(iova);
539 }
540
541 static pmd_t *ipmmu_alloc_pmd(struct ipmmu_vmsa_device *mmu, pgd_t *pgd,
542 unsigned long iova)
543 {
544 pud_t *pud = (pud_t *)pgd;
545 pmd_t *pmd;
546
547 if (!pud_none(*pud))
548 return pmd_offset(pud, iova);
549
550 pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
551 if (!pmd)
552 return NULL;
553
554 ipmmu_flush_pgtable(mmu, pmd, PAGE_SIZE);
555 *pud = __pud(__pa(pmd) | PMD_NSTABLE | PMD_TYPE_TABLE);
556 ipmmu_flush_pgtable(mmu, pud, sizeof(*pud));
557
558 return pmd + pmd_index(iova);
559 }
560
561 static u64 ipmmu_page_prot(unsigned int prot, u64 type)
562 {
563 u64 pgprot = ARM_VMSA_PTE_nG | ARM_VMSA_PTE_AF
564 | ARM_VMSA_PTE_SH_IS | ARM_VMSA_PTE_AP_UNPRIV
565 | ARM_VMSA_PTE_NS | type;
566
567 if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
568 pgprot |= ARM_VMSA_PTE_AP_RDONLY;
569
570 if (prot & IOMMU_CACHE)
571 pgprot |= IMMAIR_ATTR_IDX_WBRWA << ARM_VMSA_PTE_ATTRINDX_SHIFT;
572
573 if (prot & IOMMU_NOEXEC)
574 pgprot |= ARM_VMSA_PTE_XN;
575 else if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
576 /* If no access create a faulting entry to avoid TLB fills. */
577 pgprot &= ~ARM_VMSA_PTE_PAGE;
578
579 return pgprot;
580 }
581
582 static int ipmmu_alloc_init_pte(struct ipmmu_vmsa_device *mmu, pmd_t *pmd,
583 unsigned long iova, unsigned long pfn,
584 size_t size, int prot)
585 {
586 pteval_t pteval = ipmmu_page_prot(prot, ARM_VMSA_PTE_PAGE);
587 unsigned int num_ptes = 1;
588 pte_t *pte, *start;
589 unsigned int i;
590
591 pte = ipmmu_alloc_pte(mmu, pmd, iova);
592 if (!pte)
593 return -ENOMEM;
594
595 start = pte;
596
597 /*
598 * Install the page table entries. We can be called both for a single
599 * page or for a block of 16 physically contiguous pages. In the latter
600 * case set the PTE contiguous hint.
601 */
602 if (size == SZ_64K) {
603 pteval |= ARM_VMSA_PTE_CONT;
604 num_ptes = ARM_VMSA_PTE_CONT_ENTRIES;
605 }
606
607 for (i = num_ptes; i; --i)
608 *pte++ = pfn_pte(pfn++, __pgprot(pteval));
609
610 ipmmu_flush_pgtable(mmu, start, sizeof(*pte) * num_ptes);
611
612 return 0;
613 }
614
615 static int ipmmu_alloc_init_pmd(struct ipmmu_vmsa_device *mmu, pmd_t *pmd,
616 unsigned long iova, unsigned long pfn,
617 int prot)
618 {
619 pmdval_t pmdval = ipmmu_page_prot(prot, PMD_TYPE_SECT);
620
621 *pmd = pfn_pmd(pfn, __pgprot(pmdval));
622 ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
623
624 return 0;
625 }
626
627 static int ipmmu_create_mapping(struct ipmmu_vmsa_domain *domain,
628 unsigned long iova, phys_addr_t paddr,
629 size_t size, int prot)
630 {
631 struct ipmmu_vmsa_device *mmu = domain->mmu;
632 pgd_t *pgd = domain->pgd;
633 unsigned long flags;
634 unsigned long pfn;
635 pmd_t *pmd;
636 int ret;
637
638 if (!pgd)
639 return -EINVAL;
640
641 if (size & ~PAGE_MASK)
642 return -EINVAL;
643
644 if (paddr & ~((1ULL << 40) - 1))
645 return -ERANGE;
646
647 pfn = __phys_to_pfn(paddr);
648 pgd += pgd_index(iova);
649
650 /* Update the page tables. */
651 spin_lock_irqsave(&domain->lock, flags);
652
653 pmd = ipmmu_alloc_pmd(mmu, pgd, iova);
654 if (!pmd) {
655 ret = -ENOMEM;
656 goto done;
657 }
658
659 switch (size) {
660 case SZ_2M:
661 ret = ipmmu_alloc_init_pmd(mmu, pmd, iova, pfn, prot);
662 break;
663 case SZ_64K:
664 case SZ_4K:
665 ret = ipmmu_alloc_init_pte(mmu, pmd, iova, pfn, size, prot);
666 break;
667 default:
668 ret = -EINVAL;
669 break;
670 }
671
672 done:
673 spin_unlock_irqrestore(&domain->lock, flags);
674
675 if (!ret)
676 ipmmu_tlb_invalidate(domain);
677
678 return ret;
679 }
680
681 static void ipmmu_clear_pud(struct ipmmu_vmsa_device *mmu, pud_t *pud)
682 {
683 pgtable_t table = pud_pgtable(*pud);
684
685 /* Clear the PUD. */
686 *pud = __pud(0);
687 ipmmu_flush_pgtable(mmu, pud, sizeof(*pud));
688
689 /* Free the page table. */
690 __free_page(table);
691 }
692
693 static void ipmmu_clear_pmd(struct ipmmu_vmsa_device *mmu, pud_t *pud,
694 pmd_t *pmd)
695 {
696 pmd_t pmdval = *pmd;
697 unsigned int i;
698
699 /* Clear the PMD. */
700 *pmd = __pmd(0);
701 ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
702
703 /* Free the page table. */
704 if (pmd_table(pmdval)) {
705 pgtable_t table = pmd_pgtable(pmdval);
706
707 __free_page(table);
708 }
709
710 /* Check whether the PUD is still needed. */
711 pmd = pmd_offset(pud, 0);
712 for (i = 0; i < IPMMU_PTRS_PER_PMD; ++i) {
713 if (!pmd_none(pmd[i]))
714 return;
715 }
716
717 /* Clear the parent PUD. */
718 ipmmu_clear_pud(mmu, pud);
719 }
720
721 static void ipmmu_clear_pte(struct ipmmu_vmsa_device *mmu, pud_t *pud,
722 pmd_t *pmd, pte_t *pte, unsigned int num_ptes)
723 {
724 unsigned int i;
725
726 /* Clear the PTE. */
727 for (i = num_ptes; i; --i)
728 pte[i-1] = __pte(0);
729
730 ipmmu_flush_pgtable(mmu, pte, sizeof(*pte) * num_ptes);
731
732 /* Check whether the PMD is still needed. */
733 pte = pte_offset_kernel(pmd, 0);
734 for (i = 0; i < IPMMU_PTRS_PER_PTE; ++i) {
735 if (!pte_none(pte[i]))
736 return;
737 }
738
739 /* Clear the parent PMD. */
740 ipmmu_clear_pmd(mmu, pud, pmd);
741 }
742
743 static int ipmmu_split_pmd(struct ipmmu_vmsa_device *mmu, pmd_t *pmd)
744 {
745 pte_t *pte, *start;
746 pteval_t pteval;
747 unsigned long pfn;
748 unsigned int i;
749
750 pte = (pte_t *)get_zeroed_page(GFP_ATOMIC);
751 if (!pte)
752 return -ENOMEM;
753
754 /* Copy the PMD attributes. */
755 pteval = (pmd_val(*pmd) & ARM_VMSA_PTE_ATTRS_MASK)
756 | ARM_VMSA_PTE_CONT | ARM_VMSA_PTE_PAGE;
757
758 pfn = pmd_pfn(*pmd);
759 start = pte;
760
761 for (i = IPMMU_PTRS_PER_PTE; i; --i)
762 *pte++ = pfn_pte(pfn++, __pgprot(pteval));
763
764 ipmmu_flush_pgtable(mmu, start, PAGE_SIZE);
765 *pmd = __pmd(__pa(start) | PMD_NSTABLE | PMD_TYPE_TABLE);
766 ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
767
768 return 0;
769 }
770
771 static void ipmmu_split_pte(struct ipmmu_vmsa_device *mmu, pte_t *pte)
772 {
773 unsigned int i;
774
775 for (i = ARM_VMSA_PTE_CONT_ENTRIES; i; --i)
776 pte[i-1] = __pte(pte_val(*pte) & ~ARM_VMSA_PTE_CONT);
777
778 ipmmu_flush_pgtable(mmu, pte, sizeof(*pte) * ARM_VMSA_PTE_CONT_ENTRIES);
779 }
780
781 static int ipmmu_clear_mapping(struct ipmmu_vmsa_domain *domain,
782 unsigned long iova, size_t size)
783 {
784 struct ipmmu_vmsa_device *mmu = domain->mmu;
785 unsigned long flags;
786 pgd_t *pgd = domain->pgd;
787 pud_t *pud;
788 pmd_t *pmd;
789 pte_t *pte;
790
791 if (!pgd)
792 return -EINVAL;
793
794 if (size & ~PAGE_MASK)
795 return -EINVAL;
796
797 pgd += pgd_index(iova);
798 pud = (pud_t *)pgd;
799
800 spin_lock_irqsave(&domain->lock, flags);
801
802 /* If there's no PUD or PMD we're done. */
803 if (pud_none(*pud))
804 goto done;
805
806 pmd = pmd_offset(pud, iova);
807 if (pmd_none(*pmd))
808 goto done;
809
810 /*
811 * When freeing a 2MB block just clear the PMD. In the unlikely case the
812 * block is mapped as individual pages this will free the corresponding
813 * PTE page table.
814 */
815 if (size == SZ_2M) {
816 ipmmu_clear_pmd(mmu, pud, pmd);
817 goto done;
818 }
819
820 /*
821 * If the PMD has been mapped as a section remap it as pages to allow
822 * freeing individual pages.
823 */
824 if (pmd_sect(*pmd))
825 ipmmu_split_pmd(mmu, pmd);
826
827 pte = pte_offset_kernel(pmd, iova);
828
829 /*
830 * When freeing a 64kB block just clear the PTE entries. We don't have
831 * to care about the contiguous hint of the surrounding entries.
832 */
833 if (size == SZ_64K) {
834 ipmmu_clear_pte(mmu, pud, pmd, pte, ARM_VMSA_PTE_CONT_ENTRIES);
835 goto done;
836 }
837
838 /*
839 * If the PTE has been mapped with the contiguous hint set remap it and
840 * its surrounding PTEs to allow unmapping a single page.
841 */
842 if (pte_val(*pte) & ARM_VMSA_PTE_CONT)
843 ipmmu_split_pte(mmu, pte);
844
845 /* Clear the PTE. */
846 ipmmu_clear_pte(mmu, pud, pmd, pte, 1);
847
848 done:
849 spin_unlock_irqrestore(&domain->lock, flags);
850
851 ipmmu_tlb_invalidate(domain);
852
853 return 0;
854 }
855
856 /* -----------------------------------------------------------------------------
857 * IOMMU Operations
858 */
859
860 static int ipmmu_domain_init(struct iommu_domain *io_domain)
861 {
862 struct ipmmu_vmsa_domain *domain;
863
864 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
865 if (!domain)
866 return -ENOMEM;
867
868 spin_lock_init(&domain->lock);
869
870 domain->pgd = kzalloc(IPMMU_PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
871 if (!domain->pgd) {
872 kfree(domain);
873 return -ENOMEM;
874 }
875
876 io_domain->priv = domain;
877 domain->io_domain = io_domain;
878
879 return 0;
880 }
881
882 static void ipmmu_domain_destroy(struct iommu_domain *io_domain)
883 {
884 struct ipmmu_vmsa_domain *domain = io_domain->priv;
885
886 /*
887 * Free the domain resources. We assume that all devices have already
888 * been detached.
889 */
890 ipmmu_domain_destroy_context(domain);
891 ipmmu_free_pgtables(domain);
892 kfree(domain);
893 }
894
895 static int ipmmu_attach_device(struct iommu_domain *io_domain,
896 struct device *dev)
897 {
898 struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
899 struct ipmmu_vmsa_device *mmu = archdata->mmu;
900 struct ipmmu_vmsa_domain *domain = io_domain->priv;
901 unsigned long flags;
902 unsigned int i;
903 int ret = 0;
904
905 if (!mmu) {
906 dev_err(dev, "Cannot attach to IPMMU\n");
907 return -ENXIO;
908 }
909
910 spin_lock_irqsave(&domain->lock, flags);
911
912 if (!domain->mmu) {
913 /* The domain hasn't been used yet, initialize it. */
914 domain->mmu = mmu;
915 ret = ipmmu_domain_init_context(domain);
916 } else if (domain->mmu != mmu) {
917 /*
918 * Something is wrong, we can't attach two devices using
919 * different IOMMUs to the same domain.
920 */
921 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
922 dev_name(mmu->dev), dev_name(domain->mmu->dev));
923 ret = -EINVAL;
924 }
925
926 spin_unlock_irqrestore(&domain->lock, flags);
927
928 if (ret < 0)
929 return ret;
930
931 for (i = 0; i < archdata->num_utlbs; ++i)
932 ipmmu_utlb_enable(domain, archdata->utlbs[i]);
933
934 return 0;
935 }
936
937 static void ipmmu_detach_device(struct iommu_domain *io_domain,
938 struct device *dev)
939 {
940 struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
941 struct ipmmu_vmsa_domain *domain = io_domain->priv;
942 unsigned int i;
943
944 for (i = 0; i < archdata->num_utlbs; ++i)
945 ipmmu_utlb_disable(domain, archdata->utlbs[i]);
946
947 /*
948 * TODO: Optimize by disabling the context when no device is attached.
949 */
950 }
951
952 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
953 phys_addr_t paddr, size_t size, int prot)
954 {
955 struct ipmmu_vmsa_domain *domain = io_domain->priv;
956
957 if (!domain)
958 return -ENODEV;
959
960 return ipmmu_create_mapping(domain, iova, paddr, size, prot);
961 }
962
963 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
964 size_t size)
965 {
966 struct ipmmu_vmsa_domain *domain = io_domain->priv;
967 int ret;
968
969 ret = ipmmu_clear_mapping(domain, iova, size);
970 return ret ? 0 : size;
971 }
972
973 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
974 dma_addr_t iova)
975 {
976 struct ipmmu_vmsa_domain *domain = io_domain->priv;
977 pgd_t pgd;
978 pud_t pud;
979 pmd_t pmd;
980 pte_t pte;
981
982 /* TODO: Is locking needed ? */
983
984 if (!domain->pgd)
985 return 0;
986
987 pgd = *(domain->pgd + pgd_index(iova));
988 if (pgd_none(pgd))
989 return 0;
990
991 pud = *pud_offset(&pgd, iova);
992 if (pud_none(pud))
993 return 0;
994
995 pmd = *pmd_offset(&pud, iova);
996 if (pmd_none(pmd))
997 return 0;
998
999 if (pmd_sect(pmd))
1000 return __pfn_to_phys(pmd_pfn(pmd)) | (iova & ~PMD_MASK);
1001
1002 pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
1003 if (pte_none(pte))
1004 return 0;
1005
1006 return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
1007 }
1008
1009 static int ipmmu_find_utlbs(struct ipmmu_vmsa_device *mmu, struct device *dev,
1010 unsigned int **_utlbs)
1011 {
1012 unsigned int *utlbs;
1013 unsigned int i;
1014 int count;
1015
1016 count = of_count_phandle_with_args(dev->of_node, "iommus",
1017 "#iommu-cells");
1018 if (count < 0)
1019 return -EINVAL;
1020
1021 utlbs = kcalloc(count, sizeof(*utlbs), GFP_KERNEL);
1022 if (!utlbs)
1023 return -ENOMEM;
1024
1025 for (i = 0; i < count; ++i) {
1026 struct of_phandle_args args;
1027 int ret;
1028
1029 ret = of_parse_phandle_with_args(dev->of_node, "iommus",
1030 "#iommu-cells", i, &args);
1031 if (ret < 0)
1032 goto error;
1033
1034 of_node_put(args.np);
1035
1036 if (args.np != mmu->dev->of_node || args.args_count != 1)
1037 goto error;
1038
1039 utlbs[i] = args.args[0];
1040 }
1041
1042 *_utlbs = utlbs;
1043
1044 return count;
1045
1046 error:
1047 kfree(utlbs);
1048 return -EINVAL;
1049 }
1050
1051 static int ipmmu_add_device(struct device *dev)
1052 {
1053 struct ipmmu_vmsa_archdata *archdata;
1054 struct ipmmu_vmsa_device *mmu;
1055 struct iommu_group *group = NULL;
1056 unsigned int *utlbs = NULL;
1057 unsigned int i;
1058 int num_utlbs = 0;
1059 int ret;
1060
1061 if (dev->archdata.iommu) {
1062 dev_warn(dev, "IOMMU driver already assigned to device %s\n",
1063 dev_name(dev));
1064 return -EINVAL;
1065 }
1066
1067 /* Find the master corresponding to the device. */
1068 spin_lock(&ipmmu_devices_lock);
1069
1070 list_for_each_entry(mmu, &ipmmu_devices, list) {
1071 num_utlbs = ipmmu_find_utlbs(mmu, dev, &utlbs);
1072 if (num_utlbs) {
1073 /*
1074 * TODO Take a reference to the MMU to protect
1075 * against device removal.
1076 */
1077 break;
1078 }
1079 }
1080
1081 spin_unlock(&ipmmu_devices_lock);
1082
1083 if (num_utlbs <= 0)
1084 return -ENODEV;
1085
1086 for (i = 0; i < num_utlbs; ++i) {
1087 if (utlbs[i] >= mmu->num_utlbs) {
1088 ret = -EINVAL;
1089 goto error;
1090 }
1091 }
1092
1093 /* Create a device group and add the device to it. */
1094 group = iommu_group_alloc();
1095 if (IS_ERR(group)) {
1096 dev_err(dev, "Failed to allocate IOMMU group\n");
1097 ret = PTR_ERR(group);
1098 goto error;
1099 }
1100
1101 ret = iommu_group_add_device(group, dev);
1102 iommu_group_put(group);
1103
1104 if (ret < 0) {
1105 dev_err(dev, "Failed to add device to IPMMU group\n");
1106 group = NULL;
1107 goto error;
1108 }
1109
1110 archdata = kzalloc(sizeof(*archdata), GFP_KERNEL);
1111 if (!archdata) {
1112 ret = -ENOMEM;
1113 goto error;
1114 }
1115
1116 archdata->mmu = mmu;
1117 archdata->utlbs = utlbs;
1118 archdata->num_utlbs = num_utlbs;
1119 dev->archdata.iommu = archdata;
1120
1121 /*
1122 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
1123 * VAs. This will allocate a corresponding IOMMU domain.
1124 *
1125 * TODO:
1126 * - Create one mapping per context (TLB).
1127 * - Make the mapping size configurable ? We currently use a 2GB mapping
1128 * at a 1GB offset to ensure that NULL VAs will fault.
1129 */
1130 if (!mmu->mapping) {
1131 struct dma_iommu_mapping *mapping;
1132
1133 mapping = arm_iommu_create_mapping(&platform_bus_type,
1134 SZ_1G, SZ_2G);
1135 if (IS_ERR(mapping)) {
1136 dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
1137 ret = PTR_ERR(mapping);
1138 goto error;
1139 }
1140
1141 mmu->mapping = mapping;
1142 }
1143
1144 /* Attach the ARM VA mapping to the device. */
1145 ret = arm_iommu_attach_device(dev, mmu->mapping);
1146 if (ret < 0) {
1147 dev_err(dev, "Failed to attach device to VA mapping\n");
1148 goto error;
1149 }
1150
1151 return 0;
1152
1153 error:
1154 arm_iommu_release_mapping(mmu->mapping);
1155
1156 kfree(dev->archdata.iommu);
1157 kfree(utlbs);
1158
1159 dev->archdata.iommu = NULL;
1160
1161 if (!IS_ERR_OR_NULL(group))
1162 iommu_group_remove_device(dev);
1163
1164 return ret;
1165 }
1166
1167 static void ipmmu_remove_device(struct device *dev)
1168 {
1169 struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
1170
1171 arm_iommu_detach_device(dev);
1172 iommu_group_remove_device(dev);
1173
1174 kfree(archdata->utlbs);
1175 kfree(archdata);
1176
1177 dev->archdata.iommu = NULL;
1178 }
1179
1180 static const struct iommu_ops ipmmu_ops = {
1181 .domain_init = ipmmu_domain_init,
1182 .domain_destroy = ipmmu_domain_destroy,
1183 .attach_dev = ipmmu_attach_device,
1184 .detach_dev = ipmmu_detach_device,
1185 .map = ipmmu_map,
1186 .unmap = ipmmu_unmap,
1187 .map_sg = default_iommu_map_sg,
1188 .iova_to_phys = ipmmu_iova_to_phys,
1189 .add_device = ipmmu_add_device,
1190 .remove_device = ipmmu_remove_device,
1191 .pgsize_bitmap = SZ_2M | SZ_64K | SZ_4K,
1192 };
1193
1194 /* -----------------------------------------------------------------------------
1195 * Probe/remove and init
1196 */
1197
1198 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
1199 {
1200 unsigned int i;
1201
1202 /* Disable all contexts. */
1203 for (i = 0; i < 4; ++i)
1204 ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
1205 }
1206
1207 static int ipmmu_probe(struct platform_device *pdev)
1208 {
1209 struct ipmmu_vmsa_device *mmu;
1210 struct resource *res;
1211 int irq;
1212 int ret;
1213
1214 if (!IS_ENABLED(CONFIG_OF) && !pdev->dev.platform_data) {
1215 dev_err(&pdev->dev, "missing platform data\n");
1216 return -EINVAL;
1217 }
1218
1219 mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1220 if (!mmu) {
1221 dev_err(&pdev->dev, "cannot allocate device data\n");
1222 return -ENOMEM;
1223 }
1224
1225 mmu->dev = &pdev->dev;
1226 mmu->num_utlbs = 32;
1227
1228 /* Map I/O memory and request IRQ. */
1229 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1230 mmu->base = devm_ioremap_resource(&pdev->dev, res);
1231 if (IS_ERR(mmu->base))
1232 return PTR_ERR(mmu->base);
1233
1234 /*
1235 * The IPMMU has two register banks, for secure and non-secure modes.
1236 * The bank mapped at the beginning of the IPMMU address space
1237 * corresponds to the running mode of the CPU. When running in secure
1238 * mode the non-secure register bank is also available at an offset.
1239 *
1240 * Secure mode operation isn't clearly documented and is thus currently
1241 * not implemented in the driver. Furthermore, preliminary tests of
1242 * non-secure operation with the main register bank were not successful.
1243 * Offset the registers base unconditionally to point to the non-secure
1244 * alias space for now.
1245 */
1246 mmu->base += IM_NS_ALIAS_OFFSET;
1247
1248 irq = platform_get_irq(pdev, 0);
1249 if (irq < 0) {
1250 dev_err(&pdev->dev, "no IRQ found\n");
1251 return irq;
1252 }
1253
1254 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1255 dev_name(&pdev->dev), mmu);
1256 if (ret < 0) {
1257 dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1258 return ret;
1259 }
1260
1261 ipmmu_device_reset(mmu);
1262
1263 /*
1264 * We can't create the ARM mapping here as it requires the bus to have
1265 * an IOMMU, which only happens when bus_set_iommu() is called in
1266 * ipmmu_init() after the probe function returns.
1267 */
1268
1269 spin_lock(&ipmmu_devices_lock);
1270 list_add(&mmu->list, &ipmmu_devices);
1271 spin_unlock(&ipmmu_devices_lock);
1272
1273 platform_set_drvdata(pdev, mmu);
1274
1275 return 0;
1276 }
1277
1278 static int ipmmu_remove(struct platform_device *pdev)
1279 {
1280 struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1281
1282 spin_lock(&ipmmu_devices_lock);
1283 list_del(&mmu->list);
1284 spin_unlock(&ipmmu_devices_lock);
1285
1286 arm_iommu_release_mapping(mmu->mapping);
1287
1288 ipmmu_device_reset(mmu);
1289
1290 return 0;
1291 }
1292
1293 static const struct of_device_id ipmmu_of_ids[] = {
1294 { .compatible = "renesas,ipmmu-vmsa", },
1295 };
1296
1297 static struct platform_driver ipmmu_driver = {
1298 .driver = {
1299 .name = "ipmmu-vmsa",
1300 .of_match_table = of_match_ptr(ipmmu_of_ids),
1301 },
1302 .probe = ipmmu_probe,
1303 .remove = ipmmu_remove,
1304 };
1305
1306 static int __init ipmmu_init(void)
1307 {
1308 int ret;
1309
1310 ret = platform_driver_register(&ipmmu_driver);
1311 if (ret < 0)
1312 return ret;
1313
1314 if (!iommu_present(&platform_bus_type))
1315 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1316
1317 return 0;
1318 }
1319
1320 static void __exit ipmmu_exit(void)
1321 {
1322 return platform_driver_unregister(&ipmmu_driver);
1323 }
1324
1325 subsys_initcall(ipmmu_init);
1326 module_exit(ipmmu_exit);
1327
1328 MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU");
1329 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1330 MODULE_LICENSE("GPL v2");
This page took 0.070706 seconds and 5 git commands to generate.