Merge tag 'mfd-fixes-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[deliverable/linux.git] / drivers / irqchip / irq-gic-v3-its.c
1 /*
2 * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/bitmap.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/log2.h>
23 #include <linux/mm.h>
24 #include <linux/msi.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_pci.h>
29 #include <linux/of_platform.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35
36 #include <asm/cacheflush.h>
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
45
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
47
48 /*
49 * Collection structure - just an ID, and a redistributor address to
50 * ping. We use one per CPU as a bag of interrupts assigned to this
51 * CPU.
52 */
53 struct its_collection {
54 u64 target_address;
55 u16 col_id;
56 };
57
58 /*
59 * The ITS_BASER structure - contains memory information and cached
60 * value of BASER register configuration.
61 */
62 struct its_baser {
63 void *base;
64 u64 val;
65 u32 order;
66 };
67
68 /*
69 * The ITS structure - contains most of the infrastructure, with the
70 * top-level MSI domain, the command queue, the collections, and the
71 * list of devices writing to it.
72 */
73 struct its_node {
74 raw_spinlock_t lock;
75 struct list_head entry;
76 void __iomem *base;
77 unsigned long phys_base;
78 struct its_cmd_block *cmd_base;
79 struct its_cmd_block *cmd_write;
80 struct its_baser tables[GITS_BASER_NR_REGS];
81 struct its_collection *collections;
82 struct list_head its_device_list;
83 u64 flags;
84 u32 ite_size;
85 u32 device_ids;
86 int numa_node;
87 };
88
89 #define ITS_ITT_ALIGN SZ_256
90
91 /* Convert page order to size in bytes */
92 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
93
94 struct event_lpi_map {
95 unsigned long *lpi_map;
96 u16 *col_map;
97 irq_hw_number_t lpi_base;
98 int nr_lpis;
99 };
100
101 /*
102 * The ITS view of a device - belongs to an ITS, a collection, owns an
103 * interrupt translation table, and a list of interrupts.
104 */
105 struct its_device {
106 struct list_head entry;
107 struct its_node *its;
108 struct event_lpi_map event_map;
109 void *itt;
110 u32 nr_ites;
111 u32 device_id;
112 };
113
114 static LIST_HEAD(its_nodes);
115 static DEFINE_SPINLOCK(its_lock);
116 static struct rdists *gic_rdists;
117
118 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
119 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
120
121 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
122 u32 event)
123 {
124 struct its_node *its = its_dev->its;
125
126 return its->collections + its_dev->event_map.col_map[event];
127 }
128
129 /*
130 * ITS command descriptors - parameters to be encoded in a command
131 * block.
132 */
133 struct its_cmd_desc {
134 union {
135 struct {
136 struct its_device *dev;
137 u32 event_id;
138 } its_inv_cmd;
139
140 struct {
141 struct its_device *dev;
142 u32 event_id;
143 } its_int_cmd;
144
145 struct {
146 struct its_device *dev;
147 int valid;
148 } its_mapd_cmd;
149
150 struct {
151 struct its_collection *col;
152 int valid;
153 } its_mapc_cmd;
154
155 struct {
156 struct its_device *dev;
157 u32 phys_id;
158 u32 event_id;
159 } its_mapvi_cmd;
160
161 struct {
162 struct its_device *dev;
163 struct its_collection *col;
164 u32 event_id;
165 } its_movi_cmd;
166
167 struct {
168 struct its_device *dev;
169 u32 event_id;
170 } its_discard_cmd;
171
172 struct {
173 struct its_collection *col;
174 } its_invall_cmd;
175 };
176 };
177
178 /*
179 * The ITS command block, which is what the ITS actually parses.
180 */
181 struct its_cmd_block {
182 u64 raw_cmd[4];
183 };
184
185 #define ITS_CMD_QUEUE_SZ SZ_64K
186 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
187
188 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
189 struct its_cmd_desc *);
190
191 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
192 {
193 cmd->raw_cmd[0] &= ~0xffUL;
194 cmd->raw_cmd[0] |= cmd_nr;
195 }
196
197 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
198 {
199 cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
200 cmd->raw_cmd[0] |= ((u64)devid) << 32;
201 }
202
203 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
204 {
205 cmd->raw_cmd[1] &= ~0xffffffffUL;
206 cmd->raw_cmd[1] |= id;
207 }
208
209 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
210 {
211 cmd->raw_cmd[1] &= 0xffffffffUL;
212 cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
213 }
214
215 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
216 {
217 cmd->raw_cmd[1] &= ~0x1fUL;
218 cmd->raw_cmd[1] |= size & 0x1f;
219 }
220
221 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
222 {
223 cmd->raw_cmd[2] &= ~0xffffffffffffUL;
224 cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL;
225 }
226
227 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
228 {
229 cmd->raw_cmd[2] &= ~(1UL << 63);
230 cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
231 }
232
233 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
234 {
235 cmd->raw_cmd[2] &= ~(0xffffffffUL << 16);
236 cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16));
237 }
238
239 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
240 {
241 cmd->raw_cmd[2] &= ~0xffffUL;
242 cmd->raw_cmd[2] |= col;
243 }
244
245 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
246 {
247 /* Let's fixup BE commands */
248 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
249 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
250 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
251 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
252 }
253
254 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
255 struct its_cmd_desc *desc)
256 {
257 unsigned long itt_addr;
258 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
259
260 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
261 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
262
263 its_encode_cmd(cmd, GITS_CMD_MAPD);
264 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
265 its_encode_size(cmd, size - 1);
266 its_encode_itt(cmd, itt_addr);
267 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
268
269 its_fixup_cmd(cmd);
270
271 return NULL;
272 }
273
274 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
275 struct its_cmd_desc *desc)
276 {
277 its_encode_cmd(cmd, GITS_CMD_MAPC);
278 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
279 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
280 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
281
282 its_fixup_cmd(cmd);
283
284 return desc->its_mapc_cmd.col;
285 }
286
287 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
288 struct its_cmd_desc *desc)
289 {
290 struct its_collection *col;
291
292 col = dev_event_to_col(desc->its_mapvi_cmd.dev,
293 desc->its_mapvi_cmd.event_id);
294
295 its_encode_cmd(cmd, GITS_CMD_MAPVI);
296 its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
297 its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
298 its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
299 its_encode_collection(cmd, col->col_id);
300
301 its_fixup_cmd(cmd);
302
303 return col;
304 }
305
306 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
307 struct its_cmd_desc *desc)
308 {
309 struct its_collection *col;
310
311 col = dev_event_to_col(desc->its_movi_cmd.dev,
312 desc->its_movi_cmd.event_id);
313
314 its_encode_cmd(cmd, GITS_CMD_MOVI);
315 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
316 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
317 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
318
319 its_fixup_cmd(cmd);
320
321 return col;
322 }
323
324 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
325 struct its_cmd_desc *desc)
326 {
327 struct its_collection *col;
328
329 col = dev_event_to_col(desc->its_discard_cmd.dev,
330 desc->its_discard_cmd.event_id);
331
332 its_encode_cmd(cmd, GITS_CMD_DISCARD);
333 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
334 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
335
336 its_fixup_cmd(cmd);
337
338 return col;
339 }
340
341 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
342 struct its_cmd_desc *desc)
343 {
344 struct its_collection *col;
345
346 col = dev_event_to_col(desc->its_inv_cmd.dev,
347 desc->its_inv_cmd.event_id);
348
349 its_encode_cmd(cmd, GITS_CMD_INV);
350 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
351 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
352
353 its_fixup_cmd(cmd);
354
355 return col;
356 }
357
358 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
359 struct its_cmd_desc *desc)
360 {
361 its_encode_cmd(cmd, GITS_CMD_INVALL);
362 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
363
364 its_fixup_cmd(cmd);
365
366 return NULL;
367 }
368
369 static u64 its_cmd_ptr_to_offset(struct its_node *its,
370 struct its_cmd_block *ptr)
371 {
372 return (ptr - its->cmd_base) * sizeof(*ptr);
373 }
374
375 static int its_queue_full(struct its_node *its)
376 {
377 int widx;
378 int ridx;
379
380 widx = its->cmd_write - its->cmd_base;
381 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
382
383 /* This is incredibly unlikely to happen, unless the ITS locks up. */
384 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
385 return 1;
386
387 return 0;
388 }
389
390 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
391 {
392 struct its_cmd_block *cmd;
393 u32 count = 1000000; /* 1s! */
394
395 while (its_queue_full(its)) {
396 count--;
397 if (!count) {
398 pr_err_ratelimited("ITS queue not draining\n");
399 return NULL;
400 }
401 cpu_relax();
402 udelay(1);
403 }
404
405 cmd = its->cmd_write++;
406
407 /* Handle queue wrapping */
408 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
409 its->cmd_write = its->cmd_base;
410
411 return cmd;
412 }
413
414 static struct its_cmd_block *its_post_commands(struct its_node *its)
415 {
416 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
417
418 writel_relaxed(wr, its->base + GITS_CWRITER);
419
420 return its->cmd_write;
421 }
422
423 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
424 {
425 /*
426 * Make sure the commands written to memory are observable by
427 * the ITS.
428 */
429 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
430 __flush_dcache_area(cmd, sizeof(*cmd));
431 else
432 dsb(ishst);
433 }
434
435 static void its_wait_for_range_completion(struct its_node *its,
436 struct its_cmd_block *from,
437 struct its_cmd_block *to)
438 {
439 u64 rd_idx, from_idx, to_idx;
440 u32 count = 1000000; /* 1s! */
441
442 from_idx = its_cmd_ptr_to_offset(its, from);
443 to_idx = its_cmd_ptr_to_offset(its, to);
444
445 while (1) {
446 rd_idx = readl_relaxed(its->base + GITS_CREADR);
447 if (rd_idx >= to_idx || rd_idx < from_idx)
448 break;
449
450 count--;
451 if (!count) {
452 pr_err_ratelimited("ITS queue timeout\n");
453 return;
454 }
455 cpu_relax();
456 udelay(1);
457 }
458 }
459
460 static void its_send_single_command(struct its_node *its,
461 its_cmd_builder_t builder,
462 struct its_cmd_desc *desc)
463 {
464 struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
465 struct its_collection *sync_col;
466 unsigned long flags;
467
468 raw_spin_lock_irqsave(&its->lock, flags);
469
470 cmd = its_allocate_entry(its);
471 if (!cmd) { /* We're soooooo screewed... */
472 pr_err_ratelimited("ITS can't allocate, dropping command\n");
473 raw_spin_unlock_irqrestore(&its->lock, flags);
474 return;
475 }
476 sync_col = builder(cmd, desc);
477 its_flush_cmd(its, cmd);
478
479 if (sync_col) {
480 sync_cmd = its_allocate_entry(its);
481 if (!sync_cmd) {
482 pr_err_ratelimited("ITS can't SYNC, skipping\n");
483 goto post;
484 }
485 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
486 its_encode_target(sync_cmd, sync_col->target_address);
487 its_fixup_cmd(sync_cmd);
488 its_flush_cmd(its, sync_cmd);
489 }
490
491 post:
492 next_cmd = its_post_commands(its);
493 raw_spin_unlock_irqrestore(&its->lock, flags);
494
495 its_wait_for_range_completion(its, cmd, next_cmd);
496 }
497
498 static void its_send_inv(struct its_device *dev, u32 event_id)
499 {
500 struct its_cmd_desc desc;
501
502 desc.its_inv_cmd.dev = dev;
503 desc.its_inv_cmd.event_id = event_id;
504
505 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
506 }
507
508 static void its_send_mapd(struct its_device *dev, int valid)
509 {
510 struct its_cmd_desc desc;
511
512 desc.its_mapd_cmd.dev = dev;
513 desc.its_mapd_cmd.valid = !!valid;
514
515 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
516 }
517
518 static void its_send_mapc(struct its_node *its, struct its_collection *col,
519 int valid)
520 {
521 struct its_cmd_desc desc;
522
523 desc.its_mapc_cmd.col = col;
524 desc.its_mapc_cmd.valid = !!valid;
525
526 its_send_single_command(its, its_build_mapc_cmd, &desc);
527 }
528
529 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
530 {
531 struct its_cmd_desc desc;
532
533 desc.its_mapvi_cmd.dev = dev;
534 desc.its_mapvi_cmd.phys_id = irq_id;
535 desc.its_mapvi_cmd.event_id = id;
536
537 its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
538 }
539
540 static void its_send_movi(struct its_device *dev,
541 struct its_collection *col, u32 id)
542 {
543 struct its_cmd_desc desc;
544
545 desc.its_movi_cmd.dev = dev;
546 desc.its_movi_cmd.col = col;
547 desc.its_movi_cmd.event_id = id;
548
549 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
550 }
551
552 static void its_send_discard(struct its_device *dev, u32 id)
553 {
554 struct its_cmd_desc desc;
555
556 desc.its_discard_cmd.dev = dev;
557 desc.its_discard_cmd.event_id = id;
558
559 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
560 }
561
562 static void its_send_invall(struct its_node *its, struct its_collection *col)
563 {
564 struct its_cmd_desc desc;
565
566 desc.its_invall_cmd.col = col;
567
568 its_send_single_command(its, its_build_invall_cmd, &desc);
569 }
570
571 /*
572 * irqchip functions - assumes MSI, mostly.
573 */
574
575 static inline u32 its_get_event_id(struct irq_data *d)
576 {
577 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
578 return d->hwirq - its_dev->event_map.lpi_base;
579 }
580
581 static void lpi_set_config(struct irq_data *d, bool enable)
582 {
583 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
584 irq_hw_number_t hwirq = d->hwirq;
585 u32 id = its_get_event_id(d);
586 u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
587
588 if (enable)
589 *cfg |= LPI_PROP_ENABLED;
590 else
591 *cfg &= ~LPI_PROP_ENABLED;
592
593 /*
594 * Make the above write visible to the redistributors.
595 * And yes, we're flushing exactly: One. Single. Byte.
596 * Humpf...
597 */
598 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
599 __flush_dcache_area(cfg, sizeof(*cfg));
600 else
601 dsb(ishst);
602 its_send_inv(its_dev, id);
603 }
604
605 static void its_mask_irq(struct irq_data *d)
606 {
607 lpi_set_config(d, false);
608 }
609
610 static void its_unmask_irq(struct irq_data *d)
611 {
612 lpi_set_config(d, true);
613 }
614
615 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
616 bool force)
617 {
618 unsigned int cpu;
619 const struct cpumask *cpu_mask = cpu_online_mask;
620 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
621 struct its_collection *target_col;
622 u32 id = its_get_event_id(d);
623
624 /* lpi cannot be routed to a redistributor that is on a foreign node */
625 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
626 if (its_dev->its->numa_node >= 0) {
627 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
628 if (!cpumask_intersects(mask_val, cpu_mask))
629 return -EINVAL;
630 }
631 }
632
633 cpu = cpumask_any_and(mask_val, cpu_mask);
634
635 if (cpu >= nr_cpu_ids)
636 return -EINVAL;
637
638 target_col = &its_dev->its->collections[cpu];
639 its_send_movi(its_dev, target_col, id);
640 its_dev->event_map.col_map[id] = cpu;
641
642 return IRQ_SET_MASK_OK_DONE;
643 }
644
645 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
646 {
647 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
648 struct its_node *its;
649 u64 addr;
650
651 its = its_dev->its;
652 addr = its->phys_base + GITS_TRANSLATER;
653
654 msg->address_lo = addr & ((1UL << 32) - 1);
655 msg->address_hi = addr >> 32;
656 msg->data = its_get_event_id(d);
657 }
658
659 static struct irq_chip its_irq_chip = {
660 .name = "ITS",
661 .irq_mask = its_mask_irq,
662 .irq_unmask = its_unmask_irq,
663 .irq_eoi = irq_chip_eoi_parent,
664 .irq_set_affinity = its_set_affinity,
665 .irq_compose_msi_msg = its_irq_compose_msi_msg,
666 };
667
668 /*
669 * How we allocate LPIs:
670 *
671 * The GIC has id_bits bits for interrupt identifiers. From there, we
672 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
673 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
674 * bits to the right.
675 *
676 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
677 */
678 #define IRQS_PER_CHUNK_SHIFT 5
679 #define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT)
680
681 static unsigned long *lpi_bitmap;
682 static u32 lpi_chunks;
683 static DEFINE_SPINLOCK(lpi_lock);
684
685 static int its_lpi_to_chunk(int lpi)
686 {
687 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
688 }
689
690 static int its_chunk_to_lpi(int chunk)
691 {
692 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
693 }
694
695 static int __init its_lpi_init(u32 id_bits)
696 {
697 lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
698
699 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
700 GFP_KERNEL);
701 if (!lpi_bitmap) {
702 lpi_chunks = 0;
703 return -ENOMEM;
704 }
705
706 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
707 return 0;
708 }
709
710 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
711 {
712 unsigned long *bitmap = NULL;
713 int chunk_id;
714 int nr_chunks;
715 int i;
716
717 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
718
719 spin_lock(&lpi_lock);
720
721 do {
722 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
723 0, nr_chunks, 0);
724 if (chunk_id < lpi_chunks)
725 break;
726
727 nr_chunks--;
728 } while (nr_chunks > 0);
729
730 if (!nr_chunks)
731 goto out;
732
733 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
734 GFP_ATOMIC);
735 if (!bitmap)
736 goto out;
737
738 for (i = 0; i < nr_chunks; i++)
739 set_bit(chunk_id + i, lpi_bitmap);
740
741 *base = its_chunk_to_lpi(chunk_id);
742 *nr_ids = nr_chunks * IRQS_PER_CHUNK;
743
744 out:
745 spin_unlock(&lpi_lock);
746
747 if (!bitmap)
748 *base = *nr_ids = 0;
749
750 return bitmap;
751 }
752
753 static void its_lpi_free(struct event_lpi_map *map)
754 {
755 int base = map->lpi_base;
756 int nr_ids = map->nr_lpis;
757 int lpi;
758
759 spin_lock(&lpi_lock);
760
761 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
762 int chunk = its_lpi_to_chunk(lpi);
763 BUG_ON(chunk > lpi_chunks);
764 if (test_bit(chunk, lpi_bitmap)) {
765 clear_bit(chunk, lpi_bitmap);
766 } else {
767 pr_err("Bad LPI chunk %d\n", chunk);
768 }
769 }
770
771 spin_unlock(&lpi_lock);
772
773 kfree(map->lpi_map);
774 kfree(map->col_map);
775 }
776
777 /*
778 * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
779 * deal with (one configuration byte per interrupt). PENDBASE has to
780 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
781 */
782 #define LPI_PROPBASE_SZ SZ_64K
783 #define LPI_PENDBASE_SZ (LPI_PROPBASE_SZ / 8 + SZ_1K)
784
785 /*
786 * This is how many bits of ID we need, including the useless ones.
787 */
788 #define LPI_NRBITS ilog2(LPI_PROPBASE_SZ + SZ_8K)
789
790 #define LPI_PROP_DEFAULT_PRIO 0xa0
791
792 static int __init its_alloc_lpi_tables(void)
793 {
794 phys_addr_t paddr;
795
796 gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
797 get_order(LPI_PROPBASE_SZ));
798 if (!gic_rdists->prop_page) {
799 pr_err("Failed to allocate PROPBASE\n");
800 return -ENOMEM;
801 }
802
803 paddr = page_to_phys(gic_rdists->prop_page);
804 pr_info("GIC: using LPI property table @%pa\n", &paddr);
805
806 /* Priority 0xa0, Group-1, disabled */
807 memset(page_address(gic_rdists->prop_page),
808 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
809 LPI_PROPBASE_SZ);
810
811 /* Make sure the GIC will observe the written configuration */
812 __flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
813
814 return 0;
815 }
816
817 static const char *its_base_type_string[] = {
818 [GITS_BASER_TYPE_DEVICE] = "Devices",
819 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
820 [GITS_BASER_TYPE_CPU] = "Physical CPUs",
821 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
822 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
823 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
824 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
825 };
826
827 static void its_free_tables(struct its_node *its)
828 {
829 int i;
830
831 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
832 if (its->tables[i].base) {
833 free_pages((unsigned long)its->tables[i].base,
834 its->tables[i].order);
835 its->tables[i].base = NULL;
836 }
837 }
838 }
839
840 static int its_alloc_tables(const char *node_name, struct its_node *its)
841 {
842 int err;
843 int i;
844 int psz = SZ_64K;
845 u64 shr = GITS_BASER_InnerShareable;
846 u64 cache;
847 u64 typer;
848 u32 ids;
849
850 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
851 /*
852 * erratum 22375: only alloc 8MB table size
853 * erratum 24313: ignore memory access type
854 */
855 cache = 0;
856 ids = 0x14; /* 20 bits, 8MB */
857 } else {
858 cache = GITS_BASER_WaWb;
859 typer = readq_relaxed(its->base + GITS_TYPER);
860 ids = GITS_TYPER_DEVBITS(typer);
861 }
862
863 its->device_ids = ids;
864
865 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
866 u64 val = readq_relaxed(its->base + GITS_BASER + i * 8);
867 u64 type = GITS_BASER_TYPE(val);
868 u64 entry_size = GITS_BASER_ENTRY_SIZE(val);
869 int order = get_order(psz);
870 int alloc_pages;
871 u64 tmp;
872 void *base;
873
874 if (type == GITS_BASER_TYPE_NONE)
875 continue;
876
877 /*
878 * Allocate as many entries as required to fit the
879 * range of device IDs that the ITS can grok... The ID
880 * space being incredibly sparse, this results in a
881 * massive waste of memory.
882 *
883 * For other tables, only allocate a single page.
884 */
885 if (type == GITS_BASER_TYPE_DEVICE) {
886 /*
887 * 'order' was initialized earlier to the default page
888 * granule of the the ITS. We can't have an allocation
889 * smaller than that. If the requested allocation
890 * is smaller, round up to the default page granule.
891 */
892 order = max(get_order((1UL << ids) * entry_size),
893 order);
894 if (order >= MAX_ORDER) {
895 order = MAX_ORDER - 1;
896 pr_warn("%s: Device Table too large, reduce its page order to %u\n",
897 node_name, order);
898 }
899 }
900
901 retry_alloc_baser:
902 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
903 if (alloc_pages > GITS_BASER_PAGES_MAX) {
904 alloc_pages = GITS_BASER_PAGES_MAX;
905 order = get_order(GITS_BASER_PAGES_MAX * psz);
906 pr_warn("%s: Device Table too large, reduce its page order to %u (%u pages)\n",
907 node_name, order, alloc_pages);
908 }
909
910 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
911 if (!base) {
912 err = -ENOMEM;
913 goto out_free;
914 }
915
916 its->tables[i].base = base;
917 its->tables[i].order = order;
918
919 retry_baser:
920 val = (virt_to_phys(base) |
921 (type << GITS_BASER_TYPE_SHIFT) |
922 ((entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
923 cache |
924 shr |
925 GITS_BASER_VALID);
926
927 switch (psz) {
928 case SZ_4K:
929 val |= GITS_BASER_PAGE_SIZE_4K;
930 break;
931 case SZ_16K:
932 val |= GITS_BASER_PAGE_SIZE_16K;
933 break;
934 case SZ_64K:
935 val |= GITS_BASER_PAGE_SIZE_64K;
936 break;
937 }
938
939 val |= alloc_pages - 1;
940 its->tables[i].val = val;
941
942 writeq_relaxed(val, its->base + GITS_BASER + i * 8);
943 tmp = readq_relaxed(its->base + GITS_BASER + i * 8);
944
945 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
946 /*
947 * Shareability didn't stick. Just use
948 * whatever the read reported, which is likely
949 * to be the only thing this redistributor
950 * supports. If that's zero, make it
951 * non-cacheable as well.
952 */
953 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
954 if (!shr) {
955 cache = GITS_BASER_nC;
956 __flush_dcache_area(base, PAGE_ORDER_TO_SIZE(order));
957 }
958 goto retry_baser;
959 }
960
961 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
962 /*
963 * Page size didn't stick. Let's try a smaller
964 * size and retry. If we reach 4K, then
965 * something is horribly wrong...
966 */
967 free_pages((unsigned long)base, order);
968 its->tables[i].base = NULL;
969
970 switch (psz) {
971 case SZ_16K:
972 psz = SZ_4K;
973 goto retry_alloc_baser;
974 case SZ_64K:
975 psz = SZ_16K;
976 goto retry_alloc_baser;
977 }
978 }
979
980 if (val != tmp) {
981 pr_err("ITS: %s: GITS_BASER%d doesn't stick: %lx %lx\n",
982 node_name, i,
983 (unsigned long) val, (unsigned long) tmp);
984 err = -ENXIO;
985 goto out_free;
986 }
987
988 pr_info("ITS: allocated %d %s @%lx (psz %dK, shr %d)\n",
989 (int)(PAGE_ORDER_TO_SIZE(order) / entry_size),
990 its_base_type_string[type],
991 (unsigned long)virt_to_phys(base),
992 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
993 }
994
995 return 0;
996
997 out_free:
998 its_free_tables(its);
999
1000 return err;
1001 }
1002
1003 static int its_alloc_collections(struct its_node *its)
1004 {
1005 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
1006 GFP_KERNEL);
1007 if (!its->collections)
1008 return -ENOMEM;
1009
1010 return 0;
1011 }
1012
1013 static void its_cpu_init_lpis(void)
1014 {
1015 void __iomem *rbase = gic_data_rdist_rd_base();
1016 struct page *pend_page;
1017 u64 val, tmp;
1018
1019 /* If we didn't allocate the pending table yet, do it now */
1020 pend_page = gic_data_rdist()->pend_page;
1021 if (!pend_page) {
1022 phys_addr_t paddr;
1023 /*
1024 * The pending pages have to be at least 64kB aligned,
1025 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1026 */
1027 pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
1028 get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
1029 if (!pend_page) {
1030 pr_err("Failed to allocate PENDBASE for CPU%d\n",
1031 smp_processor_id());
1032 return;
1033 }
1034
1035 /* Make sure the GIC will observe the zero-ed page */
1036 __flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ);
1037
1038 paddr = page_to_phys(pend_page);
1039 pr_info("CPU%d: using LPI pending table @%pa\n",
1040 smp_processor_id(), &paddr);
1041 gic_data_rdist()->pend_page = pend_page;
1042 }
1043
1044 /* Disable LPIs */
1045 val = readl_relaxed(rbase + GICR_CTLR);
1046 val &= ~GICR_CTLR_ENABLE_LPIS;
1047 writel_relaxed(val, rbase + GICR_CTLR);
1048
1049 /*
1050 * Make sure any change to the table is observable by the GIC.
1051 */
1052 dsb(sy);
1053
1054 /* set PROPBASE */
1055 val = (page_to_phys(gic_rdists->prop_page) |
1056 GICR_PROPBASER_InnerShareable |
1057 GICR_PROPBASER_WaWb |
1058 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1059
1060 writeq_relaxed(val, rbase + GICR_PROPBASER);
1061 tmp = readq_relaxed(rbase + GICR_PROPBASER);
1062
1063 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1064 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1065 /*
1066 * The HW reports non-shareable, we must
1067 * remove the cacheability attributes as
1068 * well.
1069 */
1070 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1071 GICR_PROPBASER_CACHEABILITY_MASK);
1072 val |= GICR_PROPBASER_nC;
1073 writeq_relaxed(val, rbase + GICR_PROPBASER);
1074 }
1075 pr_info_once("GIC: using cache flushing for LPI property table\n");
1076 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1077 }
1078
1079 /* set PENDBASE */
1080 val = (page_to_phys(pend_page) |
1081 GICR_PENDBASER_InnerShareable |
1082 GICR_PENDBASER_WaWb);
1083
1084 writeq_relaxed(val, rbase + GICR_PENDBASER);
1085 tmp = readq_relaxed(rbase + GICR_PENDBASER);
1086
1087 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1088 /*
1089 * The HW reports non-shareable, we must remove the
1090 * cacheability attributes as well.
1091 */
1092 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1093 GICR_PENDBASER_CACHEABILITY_MASK);
1094 val |= GICR_PENDBASER_nC;
1095 writeq_relaxed(val, rbase + GICR_PENDBASER);
1096 }
1097
1098 /* Enable LPIs */
1099 val = readl_relaxed(rbase + GICR_CTLR);
1100 val |= GICR_CTLR_ENABLE_LPIS;
1101 writel_relaxed(val, rbase + GICR_CTLR);
1102
1103 /* Make sure the GIC has seen the above */
1104 dsb(sy);
1105 }
1106
1107 static void its_cpu_init_collection(void)
1108 {
1109 struct its_node *its;
1110 int cpu;
1111
1112 spin_lock(&its_lock);
1113 cpu = smp_processor_id();
1114
1115 list_for_each_entry(its, &its_nodes, entry) {
1116 u64 target;
1117
1118 /* avoid cross node collections and its mapping */
1119 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1120 struct device_node *cpu_node;
1121
1122 cpu_node = of_get_cpu_node(cpu, NULL);
1123 if (its->numa_node != NUMA_NO_NODE &&
1124 its->numa_node != of_node_to_nid(cpu_node))
1125 continue;
1126 }
1127
1128 /*
1129 * We now have to bind each collection to its target
1130 * redistributor.
1131 */
1132 if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1133 /*
1134 * This ITS wants the physical address of the
1135 * redistributor.
1136 */
1137 target = gic_data_rdist()->phys_base;
1138 } else {
1139 /*
1140 * This ITS wants a linear CPU number.
1141 */
1142 target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER);
1143 target = GICR_TYPER_CPU_NUMBER(target) << 16;
1144 }
1145
1146 /* Perform collection mapping */
1147 its->collections[cpu].target_address = target;
1148 its->collections[cpu].col_id = cpu;
1149
1150 its_send_mapc(its, &its->collections[cpu], 1);
1151 its_send_invall(its, &its->collections[cpu]);
1152 }
1153
1154 spin_unlock(&its_lock);
1155 }
1156
1157 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1158 {
1159 struct its_device *its_dev = NULL, *tmp;
1160 unsigned long flags;
1161
1162 raw_spin_lock_irqsave(&its->lock, flags);
1163
1164 list_for_each_entry(tmp, &its->its_device_list, entry) {
1165 if (tmp->device_id == dev_id) {
1166 its_dev = tmp;
1167 break;
1168 }
1169 }
1170
1171 raw_spin_unlock_irqrestore(&its->lock, flags);
1172
1173 return its_dev;
1174 }
1175
1176 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
1177 {
1178 int i;
1179
1180 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1181 if (GITS_BASER_TYPE(its->tables[i].val) == type)
1182 return &its->tables[i];
1183 }
1184
1185 return NULL;
1186 }
1187
1188 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1189 int nvecs)
1190 {
1191 struct its_baser *baser;
1192 struct its_device *dev;
1193 unsigned long *lpi_map;
1194 unsigned long flags;
1195 u16 *col_map = NULL;
1196 void *itt;
1197 int lpi_base;
1198 int nr_lpis;
1199 int nr_ites;
1200 int sz;
1201
1202 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
1203
1204 /* Don't allow 'dev_id' that exceeds single, flat table limit */
1205 if (baser) {
1206 if (dev_id >= (PAGE_ORDER_TO_SIZE(baser->order) /
1207 GITS_BASER_ENTRY_SIZE(baser->val)))
1208 return NULL;
1209 } else if (ilog2(dev_id) >= its->device_ids)
1210 return NULL;
1211
1212 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1213 /*
1214 * At least one bit of EventID is being used, hence a minimum
1215 * of two entries. No, the architecture doesn't let you
1216 * express an ITT with a single entry.
1217 */
1218 nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1219 sz = nr_ites * its->ite_size;
1220 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1221 itt = kzalloc(sz, GFP_KERNEL);
1222 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1223 if (lpi_map)
1224 col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1225
1226 if (!dev || !itt || !lpi_map || !col_map) {
1227 kfree(dev);
1228 kfree(itt);
1229 kfree(lpi_map);
1230 kfree(col_map);
1231 return NULL;
1232 }
1233
1234 __flush_dcache_area(itt, sz);
1235
1236 dev->its = its;
1237 dev->itt = itt;
1238 dev->nr_ites = nr_ites;
1239 dev->event_map.lpi_map = lpi_map;
1240 dev->event_map.col_map = col_map;
1241 dev->event_map.lpi_base = lpi_base;
1242 dev->event_map.nr_lpis = nr_lpis;
1243 dev->device_id = dev_id;
1244 INIT_LIST_HEAD(&dev->entry);
1245
1246 raw_spin_lock_irqsave(&its->lock, flags);
1247 list_add(&dev->entry, &its->its_device_list);
1248 raw_spin_unlock_irqrestore(&its->lock, flags);
1249
1250 /* Map device to its ITT */
1251 its_send_mapd(dev, 1);
1252
1253 return dev;
1254 }
1255
1256 static void its_free_device(struct its_device *its_dev)
1257 {
1258 unsigned long flags;
1259
1260 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1261 list_del(&its_dev->entry);
1262 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1263 kfree(its_dev->itt);
1264 kfree(its_dev);
1265 }
1266
1267 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1268 {
1269 int idx;
1270
1271 idx = find_first_zero_bit(dev->event_map.lpi_map,
1272 dev->event_map.nr_lpis);
1273 if (idx == dev->event_map.nr_lpis)
1274 return -ENOSPC;
1275
1276 *hwirq = dev->event_map.lpi_base + idx;
1277 set_bit(idx, dev->event_map.lpi_map);
1278
1279 return 0;
1280 }
1281
1282 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1283 int nvec, msi_alloc_info_t *info)
1284 {
1285 struct its_node *its;
1286 struct its_device *its_dev;
1287 struct msi_domain_info *msi_info;
1288 u32 dev_id;
1289
1290 /*
1291 * We ignore "dev" entierely, and rely on the dev_id that has
1292 * been passed via the scratchpad. This limits this domain's
1293 * usefulness to upper layers that definitely know that they
1294 * are built on top of the ITS.
1295 */
1296 dev_id = info->scratchpad[0].ul;
1297
1298 msi_info = msi_get_domain_info(domain);
1299 its = msi_info->data;
1300
1301 its_dev = its_find_device(its, dev_id);
1302 if (its_dev) {
1303 /*
1304 * We already have seen this ID, probably through
1305 * another alias (PCI bridge of some sort). No need to
1306 * create the device.
1307 */
1308 pr_debug("Reusing ITT for devID %x\n", dev_id);
1309 goto out;
1310 }
1311
1312 its_dev = its_create_device(its, dev_id, nvec);
1313 if (!its_dev)
1314 return -ENOMEM;
1315
1316 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1317 out:
1318 info->scratchpad[0].ptr = its_dev;
1319 return 0;
1320 }
1321
1322 static struct msi_domain_ops its_msi_domain_ops = {
1323 .msi_prepare = its_msi_prepare,
1324 };
1325
1326 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1327 unsigned int virq,
1328 irq_hw_number_t hwirq)
1329 {
1330 struct irq_fwspec fwspec;
1331
1332 if (irq_domain_get_of_node(domain->parent)) {
1333 fwspec.fwnode = domain->parent->fwnode;
1334 fwspec.param_count = 3;
1335 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1336 fwspec.param[1] = hwirq;
1337 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
1338 } else {
1339 return -EINVAL;
1340 }
1341
1342 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1343 }
1344
1345 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1346 unsigned int nr_irqs, void *args)
1347 {
1348 msi_alloc_info_t *info = args;
1349 struct its_device *its_dev = info->scratchpad[0].ptr;
1350 irq_hw_number_t hwirq;
1351 int err;
1352 int i;
1353
1354 for (i = 0; i < nr_irqs; i++) {
1355 err = its_alloc_device_irq(its_dev, &hwirq);
1356 if (err)
1357 return err;
1358
1359 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1360 if (err)
1361 return err;
1362
1363 irq_domain_set_hwirq_and_chip(domain, virq + i,
1364 hwirq, &its_irq_chip, its_dev);
1365 pr_debug("ID:%d pID:%d vID:%d\n",
1366 (int)(hwirq - its_dev->event_map.lpi_base),
1367 (int) hwirq, virq + i);
1368 }
1369
1370 return 0;
1371 }
1372
1373 static void its_irq_domain_activate(struct irq_domain *domain,
1374 struct irq_data *d)
1375 {
1376 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1377 u32 event = its_get_event_id(d);
1378 const struct cpumask *cpu_mask = cpu_online_mask;
1379
1380 /* get the cpu_mask of local node */
1381 if (its_dev->its->numa_node >= 0)
1382 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1383
1384 /* Bind the LPI to the first possible CPU */
1385 its_dev->event_map.col_map[event] = cpumask_first(cpu_mask);
1386
1387 /* Map the GIC IRQ and event to the device */
1388 its_send_mapvi(its_dev, d->hwirq, event);
1389 }
1390
1391 static void its_irq_domain_deactivate(struct irq_domain *domain,
1392 struct irq_data *d)
1393 {
1394 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1395 u32 event = its_get_event_id(d);
1396
1397 /* Stop the delivery of interrupts */
1398 its_send_discard(its_dev, event);
1399 }
1400
1401 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1402 unsigned int nr_irqs)
1403 {
1404 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1405 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1406 int i;
1407
1408 for (i = 0; i < nr_irqs; i++) {
1409 struct irq_data *data = irq_domain_get_irq_data(domain,
1410 virq + i);
1411 u32 event = its_get_event_id(data);
1412
1413 /* Mark interrupt index as unused */
1414 clear_bit(event, its_dev->event_map.lpi_map);
1415
1416 /* Nuke the entry in the domain */
1417 irq_domain_reset_irq_data(data);
1418 }
1419
1420 /* If all interrupts have been freed, start mopping the floor */
1421 if (bitmap_empty(its_dev->event_map.lpi_map,
1422 its_dev->event_map.nr_lpis)) {
1423 its_lpi_free(&its_dev->event_map);
1424
1425 /* Unmap device/itt */
1426 its_send_mapd(its_dev, 0);
1427 its_free_device(its_dev);
1428 }
1429
1430 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1431 }
1432
1433 static const struct irq_domain_ops its_domain_ops = {
1434 .alloc = its_irq_domain_alloc,
1435 .free = its_irq_domain_free,
1436 .activate = its_irq_domain_activate,
1437 .deactivate = its_irq_domain_deactivate,
1438 };
1439
1440 static int its_force_quiescent(void __iomem *base)
1441 {
1442 u32 count = 1000000; /* 1s */
1443 u32 val;
1444
1445 val = readl_relaxed(base + GITS_CTLR);
1446 if (val & GITS_CTLR_QUIESCENT)
1447 return 0;
1448
1449 /* Disable the generation of all interrupts to this ITS */
1450 val &= ~GITS_CTLR_ENABLE;
1451 writel_relaxed(val, base + GITS_CTLR);
1452
1453 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
1454 while (1) {
1455 val = readl_relaxed(base + GITS_CTLR);
1456 if (val & GITS_CTLR_QUIESCENT)
1457 return 0;
1458
1459 count--;
1460 if (!count)
1461 return -EBUSY;
1462
1463 cpu_relax();
1464 udelay(1);
1465 }
1466 }
1467
1468 static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1469 {
1470 struct its_node *its = data;
1471
1472 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
1473 }
1474
1475 static void __maybe_unused its_enable_quirk_cavium_23144(void *data)
1476 {
1477 struct its_node *its = data;
1478
1479 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
1480 }
1481
1482 static const struct gic_quirk its_quirks[] = {
1483 #ifdef CONFIG_CAVIUM_ERRATUM_22375
1484 {
1485 .desc = "ITS: Cavium errata 22375, 24313",
1486 .iidr = 0xa100034c, /* ThunderX pass 1.x */
1487 .mask = 0xffff0fff,
1488 .init = its_enable_quirk_cavium_22375,
1489 },
1490 #endif
1491 #ifdef CONFIG_CAVIUM_ERRATUM_23144
1492 {
1493 .desc = "ITS: Cavium erratum 23144",
1494 .iidr = 0xa100034c, /* ThunderX pass 1.x */
1495 .mask = 0xffff0fff,
1496 .init = its_enable_quirk_cavium_23144,
1497 },
1498 #endif
1499 {
1500 }
1501 };
1502
1503 static void its_enable_quirks(struct its_node *its)
1504 {
1505 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1506
1507 gic_enable_quirks(iidr, its_quirks, its);
1508 }
1509
1510 static int __init its_probe(struct device_node *node,
1511 struct irq_domain *parent)
1512 {
1513 struct resource res;
1514 struct its_node *its;
1515 void __iomem *its_base;
1516 struct irq_domain *inner_domain;
1517 u32 val;
1518 u64 baser, tmp;
1519 int err;
1520
1521 err = of_address_to_resource(node, 0, &res);
1522 if (err) {
1523 pr_warn("%s: no regs?\n", node->full_name);
1524 return -ENXIO;
1525 }
1526
1527 its_base = ioremap(res.start, resource_size(&res));
1528 if (!its_base) {
1529 pr_warn("%s: unable to map registers\n", node->full_name);
1530 return -ENOMEM;
1531 }
1532
1533 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1534 if (val != 0x30 && val != 0x40) {
1535 pr_warn("%s: no ITS detected, giving up\n", node->full_name);
1536 err = -ENODEV;
1537 goto out_unmap;
1538 }
1539
1540 err = its_force_quiescent(its_base);
1541 if (err) {
1542 pr_warn("%s: failed to quiesce, giving up\n",
1543 node->full_name);
1544 goto out_unmap;
1545 }
1546
1547 pr_info("ITS: %s\n", node->full_name);
1548
1549 its = kzalloc(sizeof(*its), GFP_KERNEL);
1550 if (!its) {
1551 err = -ENOMEM;
1552 goto out_unmap;
1553 }
1554
1555 raw_spin_lock_init(&its->lock);
1556 INIT_LIST_HEAD(&its->entry);
1557 INIT_LIST_HEAD(&its->its_device_list);
1558 its->base = its_base;
1559 its->phys_base = res.start;
1560 its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1561 its->numa_node = of_node_to_nid(node);
1562
1563 its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1564 if (!its->cmd_base) {
1565 err = -ENOMEM;
1566 goto out_free_its;
1567 }
1568 its->cmd_write = its->cmd_base;
1569
1570 its_enable_quirks(its);
1571
1572 err = its_alloc_tables(node->full_name, its);
1573 if (err)
1574 goto out_free_cmd;
1575
1576 err = its_alloc_collections(its);
1577 if (err)
1578 goto out_free_tables;
1579
1580 baser = (virt_to_phys(its->cmd_base) |
1581 GITS_CBASER_WaWb |
1582 GITS_CBASER_InnerShareable |
1583 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
1584 GITS_CBASER_VALID);
1585
1586 writeq_relaxed(baser, its->base + GITS_CBASER);
1587 tmp = readq_relaxed(its->base + GITS_CBASER);
1588
1589 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1590 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1591 /*
1592 * The HW reports non-shareable, we must
1593 * remove the cacheability attributes as
1594 * well.
1595 */
1596 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1597 GITS_CBASER_CACHEABILITY_MASK);
1598 baser |= GITS_CBASER_nC;
1599 writeq_relaxed(baser, its->base + GITS_CBASER);
1600 }
1601 pr_info("ITS: using cache flushing for cmd queue\n");
1602 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1603 }
1604
1605 writeq_relaxed(0, its->base + GITS_CWRITER);
1606 writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1607
1608 if (of_property_read_bool(node, "msi-controller")) {
1609 struct msi_domain_info *info;
1610
1611 info = kzalloc(sizeof(*info), GFP_KERNEL);
1612 if (!info) {
1613 err = -ENOMEM;
1614 goto out_free_tables;
1615 }
1616
1617 inner_domain = irq_domain_add_tree(node, &its_domain_ops, its);
1618 if (!inner_domain) {
1619 err = -ENOMEM;
1620 kfree(info);
1621 goto out_free_tables;
1622 }
1623
1624 inner_domain->parent = parent;
1625 inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1626 info->ops = &its_msi_domain_ops;
1627 info->data = its;
1628 inner_domain->host_data = info;
1629 }
1630
1631 spin_lock(&its_lock);
1632 list_add(&its->entry, &its_nodes);
1633 spin_unlock(&its_lock);
1634
1635 return 0;
1636
1637 out_free_tables:
1638 its_free_tables(its);
1639 out_free_cmd:
1640 kfree(its->cmd_base);
1641 out_free_its:
1642 kfree(its);
1643 out_unmap:
1644 iounmap(its_base);
1645 pr_err("ITS: failed probing %s (%d)\n", node->full_name, err);
1646 return err;
1647 }
1648
1649 static bool gic_rdists_supports_plpis(void)
1650 {
1651 return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1652 }
1653
1654 int its_cpu_init(void)
1655 {
1656 if (!list_empty(&its_nodes)) {
1657 if (!gic_rdists_supports_plpis()) {
1658 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1659 return -ENXIO;
1660 }
1661 its_cpu_init_lpis();
1662 its_cpu_init_collection();
1663 }
1664
1665 return 0;
1666 }
1667
1668 static struct of_device_id its_device_id[] = {
1669 { .compatible = "arm,gic-v3-its", },
1670 {},
1671 };
1672
1673 int __init its_init(struct device_node *node, struct rdists *rdists,
1674 struct irq_domain *parent_domain)
1675 {
1676 struct device_node *np;
1677
1678 for (np = of_find_matching_node(node, its_device_id); np;
1679 np = of_find_matching_node(np, its_device_id)) {
1680 its_probe(np, parent_domain);
1681 }
1682
1683 if (list_empty(&its_nodes)) {
1684 pr_warn("ITS: No ITS available, not enabling LPIs\n");
1685 return -ENXIO;
1686 }
1687
1688 gic_rdists = rdists;
1689 its_alloc_lpi_tables();
1690 its_lpi_init(rdists->id_bits);
1691
1692 return 0;
1693 }
This page took 0.066946 seconds and 6 git commands to generate.