Merge remote-tracking branch 'bcm2835/for-next'
[deliverable/linux.git] / drivers / irqchip / irq-gic-v3-its.c
1 /*
2 * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/bitmap.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/log2.h>
23 #include <linux/mm.h>
24 #include <linux/msi.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_pci.h>
29 #include <linux/of_platform.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35
36 #include <asm/cacheflush.h>
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
45
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
47
48 /*
49 * Collection structure - just an ID, and a redistributor address to
50 * ping. We use one per CPU as a bag of interrupts assigned to this
51 * CPU.
52 */
53 struct its_collection {
54 u64 target_address;
55 u16 col_id;
56 };
57
58 /*
59 * The ITS_BASER structure - contains memory information, cached
60 * value of BASER register configuration and ITS page size.
61 */
62 struct its_baser {
63 void *base;
64 u64 val;
65 u32 order;
66 u32 psz;
67 };
68
69 /*
70 * The ITS structure - contains most of the infrastructure, with the
71 * top-level MSI domain, the command queue, the collections, and the
72 * list of devices writing to it.
73 */
74 struct its_node {
75 raw_spinlock_t lock;
76 struct list_head entry;
77 void __iomem *base;
78 unsigned long phys_base;
79 struct its_cmd_block *cmd_base;
80 struct its_cmd_block *cmd_write;
81 struct its_baser tables[GITS_BASER_NR_REGS];
82 struct its_collection *collections;
83 struct list_head its_device_list;
84 u64 flags;
85 u32 ite_size;
86 u32 device_ids;
87 int numa_node;
88 };
89
90 #define ITS_ITT_ALIGN SZ_256
91
92 /* Convert page order to size in bytes */
93 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
94
95 struct event_lpi_map {
96 unsigned long *lpi_map;
97 u16 *col_map;
98 irq_hw_number_t lpi_base;
99 int nr_lpis;
100 };
101
102 /*
103 * The ITS view of a device - belongs to an ITS, a collection, owns an
104 * interrupt translation table, and a list of interrupts.
105 */
106 struct its_device {
107 struct list_head entry;
108 struct its_node *its;
109 struct event_lpi_map event_map;
110 void *itt;
111 u32 nr_ites;
112 u32 device_id;
113 };
114
115 static LIST_HEAD(its_nodes);
116 static DEFINE_SPINLOCK(its_lock);
117 static struct rdists *gic_rdists;
118
119 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
120 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
121
122 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
123 u32 event)
124 {
125 struct its_node *its = its_dev->its;
126
127 return its->collections + its_dev->event_map.col_map[event];
128 }
129
130 /*
131 * ITS command descriptors - parameters to be encoded in a command
132 * block.
133 */
134 struct its_cmd_desc {
135 union {
136 struct {
137 struct its_device *dev;
138 u32 event_id;
139 } its_inv_cmd;
140
141 struct {
142 struct its_device *dev;
143 u32 event_id;
144 } its_int_cmd;
145
146 struct {
147 struct its_device *dev;
148 int valid;
149 } its_mapd_cmd;
150
151 struct {
152 struct its_collection *col;
153 int valid;
154 } its_mapc_cmd;
155
156 struct {
157 struct its_device *dev;
158 u32 phys_id;
159 u32 event_id;
160 } its_mapvi_cmd;
161
162 struct {
163 struct its_device *dev;
164 struct its_collection *col;
165 u32 event_id;
166 } its_movi_cmd;
167
168 struct {
169 struct its_device *dev;
170 u32 event_id;
171 } its_discard_cmd;
172
173 struct {
174 struct its_collection *col;
175 } its_invall_cmd;
176 };
177 };
178
179 /*
180 * The ITS command block, which is what the ITS actually parses.
181 */
182 struct its_cmd_block {
183 u64 raw_cmd[4];
184 };
185
186 #define ITS_CMD_QUEUE_SZ SZ_64K
187 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
188
189 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
190 struct its_cmd_desc *);
191
192 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
193 {
194 cmd->raw_cmd[0] &= ~0xffUL;
195 cmd->raw_cmd[0] |= cmd_nr;
196 }
197
198 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
199 {
200 cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
201 cmd->raw_cmd[0] |= ((u64)devid) << 32;
202 }
203
204 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
205 {
206 cmd->raw_cmd[1] &= ~0xffffffffUL;
207 cmd->raw_cmd[1] |= id;
208 }
209
210 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
211 {
212 cmd->raw_cmd[1] &= 0xffffffffUL;
213 cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
214 }
215
216 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
217 {
218 cmd->raw_cmd[1] &= ~0x1fUL;
219 cmd->raw_cmd[1] |= size & 0x1f;
220 }
221
222 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
223 {
224 cmd->raw_cmd[2] &= ~0xffffffffffffUL;
225 cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL;
226 }
227
228 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
229 {
230 cmd->raw_cmd[2] &= ~(1UL << 63);
231 cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
232 }
233
234 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
235 {
236 cmd->raw_cmd[2] &= ~(0xffffffffUL << 16);
237 cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16));
238 }
239
240 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
241 {
242 cmd->raw_cmd[2] &= ~0xffffUL;
243 cmd->raw_cmd[2] |= col;
244 }
245
246 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
247 {
248 /* Let's fixup BE commands */
249 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
250 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
251 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
252 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
253 }
254
255 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
256 struct its_cmd_desc *desc)
257 {
258 unsigned long itt_addr;
259 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
260
261 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
262 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
263
264 its_encode_cmd(cmd, GITS_CMD_MAPD);
265 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
266 its_encode_size(cmd, size - 1);
267 its_encode_itt(cmd, itt_addr);
268 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
269
270 its_fixup_cmd(cmd);
271
272 return NULL;
273 }
274
275 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
276 struct its_cmd_desc *desc)
277 {
278 its_encode_cmd(cmd, GITS_CMD_MAPC);
279 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
280 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
281 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
282
283 its_fixup_cmd(cmd);
284
285 return desc->its_mapc_cmd.col;
286 }
287
288 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
289 struct its_cmd_desc *desc)
290 {
291 struct its_collection *col;
292
293 col = dev_event_to_col(desc->its_mapvi_cmd.dev,
294 desc->its_mapvi_cmd.event_id);
295
296 its_encode_cmd(cmd, GITS_CMD_MAPVI);
297 its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
298 its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
299 its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
300 its_encode_collection(cmd, col->col_id);
301
302 its_fixup_cmd(cmd);
303
304 return col;
305 }
306
307 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
308 struct its_cmd_desc *desc)
309 {
310 struct its_collection *col;
311
312 col = dev_event_to_col(desc->its_movi_cmd.dev,
313 desc->its_movi_cmd.event_id);
314
315 its_encode_cmd(cmd, GITS_CMD_MOVI);
316 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
317 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
318 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
319
320 its_fixup_cmd(cmd);
321
322 return col;
323 }
324
325 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
326 struct its_cmd_desc *desc)
327 {
328 struct its_collection *col;
329
330 col = dev_event_to_col(desc->its_discard_cmd.dev,
331 desc->its_discard_cmd.event_id);
332
333 its_encode_cmd(cmd, GITS_CMD_DISCARD);
334 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
335 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
336
337 its_fixup_cmd(cmd);
338
339 return col;
340 }
341
342 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
343 struct its_cmd_desc *desc)
344 {
345 struct its_collection *col;
346
347 col = dev_event_to_col(desc->its_inv_cmd.dev,
348 desc->its_inv_cmd.event_id);
349
350 its_encode_cmd(cmd, GITS_CMD_INV);
351 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
352 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
353
354 its_fixup_cmd(cmd);
355
356 return col;
357 }
358
359 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
360 struct its_cmd_desc *desc)
361 {
362 its_encode_cmd(cmd, GITS_CMD_INVALL);
363 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
364
365 its_fixup_cmd(cmd);
366
367 return NULL;
368 }
369
370 static u64 its_cmd_ptr_to_offset(struct its_node *its,
371 struct its_cmd_block *ptr)
372 {
373 return (ptr - its->cmd_base) * sizeof(*ptr);
374 }
375
376 static int its_queue_full(struct its_node *its)
377 {
378 int widx;
379 int ridx;
380
381 widx = its->cmd_write - its->cmd_base;
382 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
383
384 /* This is incredibly unlikely to happen, unless the ITS locks up. */
385 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
386 return 1;
387
388 return 0;
389 }
390
391 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
392 {
393 struct its_cmd_block *cmd;
394 u32 count = 1000000; /* 1s! */
395
396 while (its_queue_full(its)) {
397 count--;
398 if (!count) {
399 pr_err_ratelimited("ITS queue not draining\n");
400 return NULL;
401 }
402 cpu_relax();
403 udelay(1);
404 }
405
406 cmd = its->cmd_write++;
407
408 /* Handle queue wrapping */
409 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
410 its->cmd_write = its->cmd_base;
411
412 return cmd;
413 }
414
415 static struct its_cmd_block *its_post_commands(struct its_node *its)
416 {
417 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
418
419 writel_relaxed(wr, its->base + GITS_CWRITER);
420
421 return its->cmd_write;
422 }
423
424 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
425 {
426 /*
427 * Make sure the commands written to memory are observable by
428 * the ITS.
429 */
430 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
431 __flush_dcache_area(cmd, sizeof(*cmd));
432 else
433 dsb(ishst);
434 }
435
436 static void its_wait_for_range_completion(struct its_node *its,
437 struct its_cmd_block *from,
438 struct its_cmd_block *to)
439 {
440 u64 rd_idx, from_idx, to_idx;
441 u32 count = 1000000; /* 1s! */
442
443 from_idx = its_cmd_ptr_to_offset(its, from);
444 to_idx = its_cmd_ptr_to_offset(its, to);
445
446 while (1) {
447 rd_idx = readl_relaxed(its->base + GITS_CREADR);
448 if (rd_idx >= to_idx || rd_idx < from_idx)
449 break;
450
451 count--;
452 if (!count) {
453 pr_err_ratelimited("ITS queue timeout\n");
454 return;
455 }
456 cpu_relax();
457 udelay(1);
458 }
459 }
460
461 static void its_send_single_command(struct its_node *its,
462 its_cmd_builder_t builder,
463 struct its_cmd_desc *desc)
464 {
465 struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
466 struct its_collection *sync_col;
467 unsigned long flags;
468
469 raw_spin_lock_irqsave(&its->lock, flags);
470
471 cmd = its_allocate_entry(its);
472 if (!cmd) { /* We're soooooo screewed... */
473 pr_err_ratelimited("ITS can't allocate, dropping command\n");
474 raw_spin_unlock_irqrestore(&its->lock, flags);
475 return;
476 }
477 sync_col = builder(cmd, desc);
478 its_flush_cmd(its, cmd);
479
480 if (sync_col) {
481 sync_cmd = its_allocate_entry(its);
482 if (!sync_cmd) {
483 pr_err_ratelimited("ITS can't SYNC, skipping\n");
484 goto post;
485 }
486 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
487 its_encode_target(sync_cmd, sync_col->target_address);
488 its_fixup_cmd(sync_cmd);
489 its_flush_cmd(its, sync_cmd);
490 }
491
492 post:
493 next_cmd = its_post_commands(its);
494 raw_spin_unlock_irqrestore(&its->lock, flags);
495
496 its_wait_for_range_completion(its, cmd, next_cmd);
497 }
498
499 static void its_send_inv(struct its_device *dev, u32 event_id)
500 {
501 struct its_cmd_desc desc;
502
503 desc.its_inv_cmd.dev = dev;
504 desc.its_inv_cmd.event_id = event_id;
505
506 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
507 }
508
509 static void its_send_mapd(struct its_device *dev, int valid)
510 {
511 struct its_cmd_desc desc;
512
513 desc.its_mapd_cmd.dev = dev;
514 desc.its_mapd_cmd.valid = !!valid;
515
516 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
517 }
518
519 static void its_send_mapc(struct its_node *its, struct its_collection *col,
520 int valid)
521 {
522 struct its_cmd_desc desc;
523
524 desc.its_mapc_cmd.col = col;
525 desc.its_mapc_cmd.valid = !!valid;
526
527 its_send_single_command(its, its_build_mapc_cmd, &desc);
528 }
529
530 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
531 {
532 struct its_cmd_desc desc;
533
534 desc.its_mapvi_cmd.dev = dev;
535 desc.its_mapvi_cmd.phys_id = irq_id;
536 desc.its_mapvi_cmd.event_id = id;
537
538 its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
539 }
540
541 static void its_send_movi(struct its_device *dev,
542 struct its_collection *col, u32 id)
543 {
544 struct its_cmd_desc desc;
545
546 desc.its_movi_cmd.dev = dev;
547 desc.its_movi_cmd.col = col;
548 desc.its_movi_cmd.event_id = id;
549
550 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
551 }
552
553 static void its_send_discard(struct its_device *dev, u32 id)
554 {
555 struct its_cmd_desc desc;
556
557 desc.its_discard_cmd.dev = dev;
558 desc.its_discard_cmd.event_id = id;
559
560 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
561 }
562
563 static void its_send_invall(struct its_node *its, struct its_collection *col)
564 {
565 struct its_cmd_desc desc;
566
567 desc.its_invall_cmd.col = col;
568
569 its_send_single_command(its, its_build_invall_cmd, &desc);
570 }
571
572 /*
573 * irqchip functions - assumes MSI, mostly.
574 */
575
576 static inline u32 its_get_event_id(struct irq_data *d)
577 {
578 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
579 return d->hwirq - its_dev->event_map.lpi_base;
580 }
581
582 static void lpi_set_config(struct irq_data *d, bool enable)
583 {
584 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
585 irq_hw_number_t hwirq = d->hwirq;
586 u32 id = its_get_event_id(d);
587 u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
588
589 if (enable)
590 *cfg |= LPI_PROP_ENABLED;
591 else
592 *cfg &= ~LPI_PROP_ENABLED;
593
594 /*
595 * Make the above write visible to the redistributors.
596 * And yes, we're flushing exactly: One. Single. Byte.
597 * Humpf...
598 */
599 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
600 __flush_dcache_area(cfg, sizeof(*cfg));
601 else
602 dsb(ishst);
603 its_send_inv(its_dev, id);
604 }
605
606 static void its_mask_irq(struct irq_data *d)
607 {
608 lpi_set_config(d, false);
609 }
610
611 static void its_unmask_irq(struct irq_data *d)
612 {
613 lpi_set_config(d, true);
614 }
615
616 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
617 bool force)
618 {
619 unsigned int cpu;
620 const struct cpumask *cpu_mask = cpu_online_mask;
621 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
622 struct its_collection *target_col;
623 u32 id = its_get_event_id(d);
624
625 /* lpi cannot be routed to a redistributor that is on a foreign node */
626 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
627 if (its_dev->its->numa_node >= 0) {
628 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
629 if (!cpumask_intersects(mask_val, cpu_mask))
630 return -EINVAL;
631 }
632 }
633
634 cpu = cpumask_any_and(mask_val, cpu_mask);
635
636 if (cpu >= nr_cpu_ids)
637 return -EINVAL;
638
639 target_col = &its_dev->its->collections[cpu];
640 its_send_movi(its_dev, target_col, id);
641 its_dev->event_map.col_map[id] = cpu;
642
643 return IRQ_SET_MASK_OK_DONE;
644 }
645
646 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
647 {
648 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
649 struct its_node *its;
650 u64 addr;
651
652 its = its_dev->its;
653 addr = its->phys_base + GITS_TRANSLATER;
654
655 msg->address_lo = addr & ((1UL << 32) - 1);
656 msg->address_hi = addr >> 32;
657 msg->data = its_get_event_id(d);
658 }
659
660 static struct irq_chip its_irq_chip = {
661 .name = "ITS",
662 .irq_mask = its_mask_irq,
663 .irq_unmask = its_unmask_irq,
664 .irq_eoi = irq_chip_eoi_parent,
665 .irq_set_affinity = its_set_affinity,
666 .irq_compose_msi_msg = its_irq_compose_msi_msg,
667 };
668
669 /*
670 * How we allocate LPIs:
671 *
672 * The GIC has id_bits bits for interrupt identifiers. From there, we
673 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
674 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
675 * bits to the right.
676 *
677 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
678 */
679 #define IRQS_PER_CHUNK_SHIFT 5
680 #define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT)
681
682 static unsigned long *lpi_bitmap;
683 static u32 lpi_chunks;
684 static DEFINE_SPINLOCK(lpi_lock);
685
686 static int its_lpi_to_chunk(int lpi)
687 {
688 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
689 }
690
691 static int its_chunk_to_lpi(int chunk)
692 {
693 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
694 }
695
696 static int __init its_lpi_init(u32 id_bits)
697 {
698 lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
699
700 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
701 GFP_KERNEL);
702 if (!lpi_bitmap) {
703 lpi_chunks = 0;
704 return -ENOMEM;
705 }
706
707 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
708 return 0;
709 }
710
711 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
712 {
713 unsigned long *bitmap = NULL;
714 int chunk_id;
715 int nr_chunks;
716 int i;
717
718 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
719
720 spin_lock(&lpi_lock);
721
722 do {
723 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
724 0, nr_chunks, 0);
725 if (chunk_id < lpi_chunks)
726 break;
727
728 nr_chunks--;
729 } while (nr_chunks > 0);
730
731 if (!nr_chunks)
732 goto out;
733
734 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
735 GFP_ATOMIC);
736 if (!bitmap)
737 goto out;
738
739 for (i = 0; i < nr_chunks; i++)
740 set_bit(chunk_id + i, lpi_bitmap);
741
742 *base = its_chunk_to_lpi(chunk_id);
743 *nr_ids = nr_chunks * IRQS_PER_CHUNK;
744
745 out:
746 spin_unlock(&lpi_lock);
747
748 if (!bitmap)
749 *base = *nr_ids = 0;
750
751 return bitmap;
752 }
753
754 static void its_lpi_free(struct event_lpi_map *map)
755 {
756 int base = map->lpi_base;
757 int nr_ids = map->nr_lpis;
758 int lpi;
759
760 spin_lock(&lpi_lock);
761
762 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
763 int chunk = its_lpi_to_chunk(lpi);
764 BUG_ON(chunk > lpi_chunks);
765 if (test_bit(chunk, lpi_bitmap)) {
766 clear_bit(chunk, lpi_bitmap);
767 } else {
768 pr_err("Bad LPI chunk %d\n", chunk);
769 }
770 }
771
772 spin_unlock(&lpi_lock);
773
774 kfree(map->lpi_map);
775 kfree(map->col_map);
776 }
777
778 /*
779 * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
780 * deal with (one configuration byte per interrupt). PENDBASE has to
781 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
782 */
783 #define LPI_PROPBASE_SZ SZ_64K
784 #define LPI_PENDBASE_SZ (LPI_PROPBASE_SZ / 8 + SZ_1K)
785
786 /*
787 * This is how many bits of ID we need, including the useless ones.
788 */
789 #define LPI_NRBITS ilog2(LPI_PROPBASE_SZ + SZ_8K)
790
791 #define LPI_PROP_DEFAULT_PRIO 0xa0
792
793 static int __init its_alloc_lpi_tables(void)
794 {
795 phys_addr_t paddr;
796
797 gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
798 get_order(LPI_PROPBASE_SZ));
799 if (!gic_rdists->prop_page) {
800 pr_err("Failed to allocate PROPBASE\n");
801 return -ENOMEM;
802 }
803
804 paddr = page_to_phys(gic_rdists->prop_page);
805 pr_info("GIC: using LPI property table @%pa\n", &paddr);
806
807 /* Priority 0xa0, Group-1, disabled */
808 memset(page_address(gic_rdists->prop_page),
809 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
810 LPI_PROPBASE_SZ);
811
812 /* Make sure the GIC will observe the written configuration */
813 __flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
814
815 return 0;
816 }
817
818 static const char *its_base_type_string[] = {
819 [GITS_BASER_TYPE_DEVICE] = "Devices",
820 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
821 [GITS_BASER_TYPE_CPU] = "Physical CPUs",
822 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
823 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
824 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
825 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
826 };
827
828 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
829 {
830 u32 idx = baser - its->tables;
831
832 return readq_relaxed(its->base + GITS_BASER + (idx << 3));
833 }
834
835 static void its_write_baser(struct its_node *its, struct its_baser *baser,
836 u64 val)
837 {
838 u32 idx = baser - its->tables;
839
840 writeq_relaxed(val, its->base + GITS_BASER + (idx << 3));
841 baser->val = its_read_baser(its, baser);
842 }
843
844 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
845 u64 cache, u64 shr, u32 psz, u32 order,
846 bool indirect)
847 {
848 u64 val = its_read_baser(its, baser);
849 u64 esz = GITS_BASER_ENTRY_SIZE(val);
850 u64 type = GITS_BASER_TYPE(val);
851 u32 alloc_pages;
852 void *base;
853 u64 tmp;
854
855 retry_alloc_baser:
856 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
857 if (alloc_pages > GITS_BASER_PAGES_MAX) {
858 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
859 &its->phys_base, its_base_type_string[type],
860 alloc_pages, GITS_BASER_PAGES_MAX);
861 alloc_pages = GITS_BASER_PAGES_MAX;
862 order = get_order(GITS_BASER_PAGES_MAX * psz);
863 }
864
865 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
866 if (!base)
867 return -ENOMEM;
868
869 retry_baser:
870 val = (virt_to_phys(base) |
871 (type << GITS_BASER_TYPE_SHIFT) |
872 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
873 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
874 cache |
875 shr |
876 GITS_BASER_VALID);
877
878 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
879
880 switch (psz) {
881 case SZ_4K:
882 val |= GITS_BASER_PAGE_SIZE_4K;
883 break;
884 case SZ_16K:
885 val |= GITS_BASER_PAGE_SIZE_16K;
886 break;
887 case SZ_64K:
888 val |= GITS_BASER_PAGE_SIZE_64K;
889 break;
890 }
891
892 its_write_baser(its, baser, val);
893 tmp = baser->val;
894
895 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
896 /*
897 * Shareability didn't stick. Just use
898 * whatever the read reported, which is likely
899 * to be the only thing this redistributor
900 * supports. If that's zero, make it
901 * non-cacheable as well.
902 */
903 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
904 if (!shr) {
905 cache = GITS_BASER_nC;
906 __flush_dcache_area(base, PAGE_ORDER_TO_SIZE(order));
907 }
908 goto retry_baser;
909 }
910
911 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
912 /*
913 * Page size didn't stick. Let's try a smaller
914 * size and retry. If we reach 4K, then
915 * something is horribly wrong...
916 */
917 free_pages((unsigned long)base, order);
918 baser->base = NULL;
919
920 switch (psz) {
921 case SZ_16K:
922 psz = SZ_4K;
923 goto retry_alloc_baser;
924 case SZ_64K:
925 psz = SZ_16K;
926 goto retry_alloc_baser;
927 }
928 }
929
930 if (val != tmp) {
931 pr_err("ITS@%pa: %s doesn't stick: %lx %lx\n",
932 &its->phys_base, its_base_type_string[type],
933 (unsigned long) val, (unsigned long) tmp);
934 free_pages((unsigned long)base, order);
935 return -ENXIO;
936 }
937
938 baser->order = order;
939 baser->base = base;
940 baser->psz = psz;
941 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
942
943 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
944 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / tmp),
945 its_base_type_string[type],
946 (unsigned long)virt_to_phys(base),
947 indirect ? "indirect" : "flat", (int)esz,
948 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
949
950 return 0;
951 }
952
953 static bool its_parse_baser_device(struct its_node *its, struct its_baser *baser,
954 u32 psz, u32 *order)
955 {
956 u64 esz = GITS_BASER_ENTRY_SIZE(its_read_baser(its, baser));
957 u64 val = GITS_BASER_InnerShareable | GITS_BASER_WaWb;
958 u32 ids = its->device_ids;
959 u32 new_order = *order;
960 bool indirect = false;
961
962 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
963 if ((esz << ids) > (psz * 2)) {
964 /*
965 * Find out whether hw supports a single or two-level table by
966 * table by reading bit at offset '62' after writing '1' to it.
967 */
968 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
969 indirect = !!(baser->val & GITS_BASER_INDIRECT);
970
971 if (indirect) {
972 /*
973 * The size of the lvl2 table is equal to ITS page size
974 * which is 'psz'. For computing lvl1 table size,
975 * subtract ID bits that sparse lvl2 table from 'ids'
976 * which is reported by ITS hardware times lvl1 table
977 * entry size.
978 */
979 ids -= ilog2(psz / esz);
980 esz = GITS_LVL1_ENTRY_SIZE;
981 }
982 }
983
984 /*
985 * Allocate as many entries as required to fit the
986 * range of device IDs that the ITS can grok... The ID
987 * space being incredibly sparse, this results in a
988 * massive waste of memory if two-level device table
989 * feature is not supported by hardware.
990 */
991 new_order = max_t(u32, get_order(esz << ids), new_order);
992 if (new_order >= MAX_ORDER) {
993 new_order = MAX_ORDER - 1;
994 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / esz);
995 pr_warn("ITS@%pa: Device Table too large, reduce ids %u->%u\n",
996 &its->phys_base, its->device_ids, ids);
997 }
998
999 *order = new_order;
1000
1001 return indirect;
1002 }
1003
1004 static void its_free_tables(struct its_node *its)
1005 {
1006 int i;
1007
1008 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1009 if (its->tables[i].base) {
1010 free_pages((unsigned long)its->tables[i].base,
1011 its->tables[i].order);
1012 its->tables[i].base = NULL;
1013 }
1014 }
1015 }
1016
1017 static int its_alloc_tables(struct its_node *its)
1018 {
1019 u64 typer = readq_relaxed(its->base + GITS_TYPER);
1020 u32 ids = GITS_TYPER_DEVBITS(typer);
1021 u64 shr = GITS_BASER_InnerShareable;
1022 u64 cache = GITS_BASER_WaWb;
1023 u32 psz = SZ_64K;
1024 int err, i;
1025
1026 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
1027 /*
1028 * erratum 22375: only alloc 8MB table size
1029 * erratum 24313: ignore memory access type
1030 */
1031 cache = GITS_BASER_nCnB;
1032 ids = 0x14; /* 20 bits, 8MB */
1033 }
1034
1035 its->device_ids = ids;
1036
1037 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1038 struct its_baser *baser = its->tables + i;
1039 u64 val = its_read_baser(its, baser);
1040 u64 type = GITS_BASER_TYPE(val);
1041 u32 order = get_order(psz);
1042 bool indirect = false;
1043
1044 if (type == GITS_BASER_TYPE_NONE)
1045 continue;
1046
1047 if (type == GITS_BASER_TYPE_DEVICE)
1048 indirect = its_parse_baser_device(its, baser, psz, &order);
1049
1050 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1051 if (err < 0) {
1052 its_free_tables(its);
1053 return err;
1054 }
1055
1056 /* Update settings which will be used for next BASERn */
1057 psz = baser->psz;
1058 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1059 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1060 }
1061
1062 return 0;
1063 }
1064
1065 static int its_alloc_collections(struct its_node *its)
1066 {
1067 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
1068 GFP_KERNEL);
1069 if (!its->collections)
1070 return -ENOMEM;
1071
1072 return 0;
1073 }
1074
1075 static void its_cpu_init_lpis(void)
1076 {
1077 void __iomem *rbase = gic_data_rdist_rd_base();
1078 struct page *pend_page;
1079 u64 val, tmp;
1080
1081 /* If we didn't allocate the pending table yet, do it now */
1082 pend_page = gic_data_rdist()->pend_page;
1083 if (!pend_page) {
1084 phys_addr_t paddr;
1085 /*
1086 * The pending pages have to be at least 64kB aligned,
1087 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1088 */
1089 pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
1090 get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
1091 if (!pend_page) {
1092 pr_err("Failed to allocate PENDBASE for CPU%d\n",
1093 smp_processor_id());
1094 return;
1095 }
1096
1097 /* Make sure the GIC will observe the zero-ed page */
1098 __flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ);
1099
1100 paddr = page_to_phys(pend_page);
1101 pr_info("CPU%d: using LPI pending table @%pa\n",
1102 smp_processor_id(), &paddr);
1103 gic_data_rdist()->pend_page = pend_page;
1104 }
1105
1106 /* Disable LPIs */
1107 val = readl_relaxed(rbase + GICR_CTLR);
1108 val &= ~GICR_CTLR_ENABLE_LPIS;
1109 writel_relaxed(val, rbase + GICR_CTLR);
1110
1111 /*
1112 * Make sure any change to the table is observable by the GIC.
1113 */
1114 dsb(sy);
1115
1116 /* set PROPBASE */
1117 val = (page_to_phys(gic_rdists->prop_page) |
1118 GICR_PROPBASER_InnerShareable |
1119 GICR_PROPBASER_WaWb |
1120 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1121
1122 writeq_relaxed(val, rbase + GICR_PROPBASER);
1123 tmp = readq_relaxed(rbase + GICR_PROPBASER);
1124
1125 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1126 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1127 /*
1128 * The HW reports non-shareable, we must
1129 * remove the cacheability attributes as
1130 * well.
1131 */
1132 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1133 GICR_PROPBASER_CACHEABILITY_MASK);
1134 val |= GICR_PROPBASER_nC;
1135 writeq_relaxed(val, rbase + GICR_PROPBASER);
1136 }
1137 pr_info_once("GIC: using cache flushing for LPI property table\n");
1138 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1139 }
1140
1141 /* set PENDBASE */
1142 val = (page_to_phys(pend_page) |
1143 GICR_PENDBASER_InnerShareable |
1144 GICR_PENDBASER_WaWb);
1145
1146 writeq_relaxed(val, rbase + GICR_PENDBASER);
1147 tmp = readq_relaxed(rbase + GICR_PENDBASER);
1148
1149 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1150 /*
1151 * The HW reports non-shareable, we must remove the
1152 * cacheability attributes as well.
1153 */
1154 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1155 GICR_PENDBASER_CACHEABILITY_MASK);
1156 val |= GICR_PENDBASER_nC;
1157 writeq_relaxed(val, rbase + GICR_PENDBASER);
1158 }
1159
1160 /* Enable LPIs */
1161 val = readl_relaxed(rbase + GICR_CTLR);
1162 val |= GICR_CTLR_ENABLE_LPIS;
1163 writel_relaxed(val, rbase + GICR_CTLR);
1164
1165 /* Make sure the GIC has seen the above */
1166 dsb(sy);
1167 }
1168
1169 static void its_cpu_init_collection(void)
1170 {
1171 struct its_node *its;
1172 int cpu;
1173
1174 spin_lock(&its_lock);
1175 cpu = smp_processor_id();
1176
1177 list_for_each_entry(its, &its_nodes, entry) {
1178 u64 target;
1179
1180 /* avoid cross node collections and its mapping */
1181 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1182 struct device_node *cpu_node;
1183
1184 cpu_node = of_get_cpu_node(cpu, NULL);
1185 if (its->numa_node != NUMA_NO_NODE &&
1186 its->numa_node != of_node_to_nid(cpu_node))
1187 continue;
1188 }
1189
1190 /*
1191 * We now have to bind each collection to its target
1192 * redistributor.
1193 */
1194 if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1195 /*
1196 * This ITS wants the physical address of the
1197 * redistributor.
1198 */
1199 target = gic_data_rdist()->phys_base;
1200 } else {
1201 /*
1202 * This ITS wants a linear CPU number.
1203 */
1204 target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER);
1205 target = GICR_TYPER_CPU_NUMBER(target) << 16;
1206 }
1207
1208 /* Perform collection mapping */
1209 its->collections[cpu].target_address = target;
1210 its->collections[cpu].col_id = cpu;
1211
1212 its_send_mapc(its, &its->collections[cpu], 1);
1213 its_send_invall(its, &its->collections[cpu]);
1214 }
1215
1216 spin_unlock(&its_lock);
1217 }
1218
1219 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1220 {
1221 struct its_device *its_dev = NULL, *tmp;
1222 unsigned long flags;
1223
1224 raw_spin_lock_irqsave(&its->lock, flags);
1225
1226 list_for_each_entry(tmp, &its->its_device_list, entry) {
1227 if (tmp->device_id == dev_id) {
1228 its_dev = tmp;
1229 break;
1230 }
1231 }
1232
1233 raw_spin_unlock_irqrestore(&its->lock, flags);
1234
1235 return its_dev;
1236 }
1237
1238 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
1239 {
1240 int i;
1241
1242 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1243 if (GITS_BASER_TYPE(its->tables[i].val) == type)
1244 return &its->tables[i];
1245 }
1246
1247 return NULL;
1248 }
1249
1250 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
1251 {
1252 struct its_baser *baser;
1253 struct page *page;
1254 u32 esz, idx;
1255 __le64 *table;
1256
1257 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
1258
1259 /* Don't allow device id that exceeds ITS hardware limit */
1260 if (!baser)
1261 return (ilog2(dev_id) < its->device_ids);
1262
1263 /* Don't allow device id that exceeds single, flat table limit */
1264 esz = GITS_BASER_ENTRY_SIZE(baser->val);
1265 if (!(baser->val & GITS_BASER_INDIRECT))
1266 return (dev_id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
1267
1268 /* Compute 1st level table index & check if that exceeds table limit */
1269 idx = dev_id >> ilog2(baser->psz / esz);
1270 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
1271 return false;
1272
1273 table = baser->base;
1274
1275 /* Allocate memory for 2nd level table */
1276 if (!table[idx]) {
1277 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
1278 if (!page)
1279 return false;
1280
1281 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
1282 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1283 __flush_dcache_area(page_address(page), baser->psz);
1284
1285 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
1286
1287 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
1288 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1289 __flush_dcache_area(table + idx, GITS_LVL1_ENTRY_SIZE);
1290
1291 /* Ensure updated table contents are visible to ITS hardware */
1292 dsb(sy);
1293 }
1294
1295 return true;
1296 }
1297
1298 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1299 int nvecs)
1300 {
1301 struct its_device *dev;
1302 unsigned long *lpi_map;
1303 unsigned long flags;
1304 u16 *col_map = NULL;
1305 void *itt;
1306 int lpi_base;
1307 int nr_lpis;
1308 int nr_ites;
1309 int sz;
1310
1311 if (!its_alloc_device_table(its, dev_id))
1312 return NULL;
1313
1314 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1315 /*
1316 * At least one bit of EventID is being used, hence a minimum
1317 * of two entries. No, the architecture doesn't let you
1318 * express an ITT with a single entry.
1319 */
1320 nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1321 sz = nr_ites * its->ite_size;
1322 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1323 itt = kzalloc(sz, GFP_KERNEL);
1324 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1325 if (lpi_map)
1326 col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1327
1328 if (!dev || !itt || !lpi_map || !col_map) {
1329 kfree(dev);
1330 kfree(itt);
1331 kfree(lpi_map);
1332 kfree(col_map);
1333 return NULL;
1334 }
1335
1336 __flush_dcache_area(itt, sz);
1337
1338 dev->its = its;
1339 dev->itt = itt;
1340 dev->nr_ites = nr_ites;
1341 dev->event_map.lpi_map = lpi_map;
1342 dev->event_map.col_map = col_map;
1343 dev->event_map.lpi_base = lpi_base;
1344 dev->event_map.nr_lpis = nr_lpis;
1345 dev->device_id = dev_id;
1346 INIT_LIST_HEAD(&dev->entry);
1347
1348 raw_spin_lock_irqsave(&its->lock, flags);
1349 list_add(&dev->entry, &its->its_device_list);
1350 raw_spin_unlock_irqrestore(&its->lock, flags);
1351
1352 /* Map device to its ITT */
1353 its_send_mapd(dev, 1);
1354
1355 return dev;
1356 }
1357
1358 static void its_free_device(struct its_device *its_dev)
1359 {
1360 unsigned long flags;
1361
1362 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1363 list_del(&its_dev->entry);
1364 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1365 kfree(its_dev->itt);
1366 kfree(its_dev);
1367 }
1368
1369 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1370 {
1371 int idx;
1372
1373 idx = find_first_zero_bit(dev->event_map.lpi_map,
1374 dev->event_map.nr_lpis);
1375 if (idx == dev->event_map.nr_lpis)
1376 return -ENOSPC;
1377
1378 *hwirq = dev->event_map.lpi_base + idx;
1379 set_bit(idx, dev->event_map.lpi_map);
1380
1381 return 0;
1382 }
1383
1384 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1385 int nvec, msi_alloc_info_t *info)
1386 {
1387 struct its_node *its;
1388 struct its_device *its_dev;
1389 struct msi_domain_info *msi_info;
1390 u32 dev_id;
1391
1392 /*
1393 * We ignore "dev" entierely, and rely on the dev_id that has
1394 * been passed via the scratchpad. This limits this domain's
1395 * usefulness to upper layers that definitely know that they
1396 * are built on top of the ITS.
1397 */
1398 dev_id = info->scratchpad[0].ul;
1399
1400 msi_info = msi_get_domain_info(domain);
1401 its = msi_info->data;
1402
1403 its_dev = its_find_device(its, dev_id);
1404 if (its_dev) {
1405 /*
1406 * We already have seen this ID, probably through
1407 * another alias (PCI bridge of some sort). No need to
1408 * create the device.
1409 */
1410 pr_debug("Reusing ITT for devID %x\n", dev_id);
1411 goto out;
1412 }
1413
1414 its_dev = its_create_device(its, dev_id, nvec);
1415 if (!its_dev)
1416 return -ENOMEM;
1417
1418 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1419 out:
1420 info->scratchpad[0].ptr = its_dev;
1421 return 0;
1422 }
1423
1424 static struct msi_domain_ops its_msi_domain_ops = {
1425 .msi_prepare = its_msi_prepare,
1426 };
1427
1428 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1429 unsigned int virq,
1430 irq_hw_number_t hwirq)
1431 {
1432 struct irq_fwspec fwspec;
1433
1434 if (irq_domain_get_of_node(domain->parent)) {
1435 fwspec.fwnode = domain->parent->fwnode;
1436 fwspec.param_count = 3;
1437 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1438 fwspec.param[1] = hwirq;
1439 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
1440 } else {
1441 return -EINVAL;
1442 }
1443
1444 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1445 }
1446
1447 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1448 unsigned int nr_irqs, void *args)
1449 {
1450 msi_alloc_info_t *info = args;
1451 struct its_device *its_dev = info->scratchpad[0].ptr;
1452 irq_hw_number_t hwirq;
1453 int err;
1454 int i;
1455
1456 for (i = 0; i < nr_irqs; i++) {
1457 err = its_alloc_device_irq(its_dev, &hwirq);
1458 if (err)
1459 return err;
1460
1461 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1462 if (err)
1463 return err;
1464
1465 irq_domain_set_hwirq_and_chip(domain, virq + i,
1466 hwirq, &its_irq_chip, its_dev);
1467 pr_debug("ID:%d pID:%d vID:%d\n",
1468 (int)(hwirq - its_dev->event_map.lpi_base),
1469 (int) hwirq, virq + i);
1470 }
1471
1472 return 0;
1473 }
1474
1475 static void its_irq_domain_activate(struct irq_domain *domain,
1476 struct irq_data *d)
1477 {
1478 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1479 u32 event = its_get_event_id(d);
1480 const struct cpumask *cpu_mask = cpu_online_mask;
1481
1482 /* get the cpu_mask of local node */
1483 if (its_dev->its->numa_node >= 0)
1484 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1485
1486 /* Bind the LPI to the first possible CPU */
1487 its_dev->event_map.col_map[event] = cpumask_first(cpu_mask);
1488
1489 /* Map the GIC IRQ and event to the device */
1490 its_send_mapvi(its_dev, d->hwirq, event);
1491 }
1492
1493 static void its_irq_domain_deactivate(struct irq_domain *domain,
1494 struct irq_data *d)
1495 {
1496 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1497 u32 event = its_get_event_id(d);
1498
1499 /* Stop the delivery of interrupts */
1500 its_send_discard(its_dev, event);
1501 }
1502
1503 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1504 unsigned int nr_irqs)
1505 {
1506 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1507 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1508 int i;
1509
1510 for (i = 0; i < nr_irqs; i++) {
1511 struct irq_data *data = irq_domain_get_irq_data(domain,
1512 virq + i);
1513 u32 event = its_get_event_id(data);
1514
1515 /* Mark interrupt index as unused */
1516 clear_bit(event, its_dev->event_map.lpi_map);
1517
1518 /* Nuke the entry in the domain */
1519 irq_domain_reset_irq_data(data);
1520 }
1521
1522 /* If all interrupts have been freed, start mopping the floor */
1523 if (bitmap_empty(its_dev->event_map.lpi_map,
1524 its_dev->event_map.nr_lpis)) {
1525 its_lpi_free(&its_dev->event_map);
1526
1527 /* Unmap device/itt */
1528 its_send_mapd(its_dev, 0);
1529 its_free_device(its_dev);
1530 }
1531
1532 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1533 }
1534
1535 static const struct irq_domain_ops its_domain_ops = {
1536 .alloc = its_irq_domain_alloc,
1537 .free = its_irq_domain_free,
1538 .activate = its_irq_domain_activate,
1539 .deactivate = its_irq_domain_deactivate,
1540 };
1541
1542 static int its_force_quiescent(void __iomem *base)
1543 {
1544 u32 count = 1000000; /* 1s */
1545 u32 val;
1546
1547 val = readl_relaxed(base + GITS_CTLR);
1548 /*
1549 * GIC architecture specification requires the ITS to be both
1550 * disabled and quiescent for writes to GITS_BASER<n> or
1551 * GITS_CBASER to not have UNPREDICTABLE results.
1552 */
1553 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
1554 return 0;
1555
1556 /* Disable the generation of all interrupts to this ITS */
1557 val &= ~GITS_CTLR_ENABLE;
1558 writel_relaxed(val, base + GITS_CTLR);
1559
1560 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
1561 while (1) {
1562 val = readl_relaxed(base + GITS_CTLR);
1563 if (val & GITS_CTLR_QUIESCENT)
1564 return 0;
1565
1566 count--;
1567 if (!count)
1568 return -EBUSY;
1569
1570 cpu_relax();
1571 udelay(1);
1572 }
1573 }
1574
1575 static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1576 {
1577 struct its_node *its = data;
1578
1579 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
1580 }
1581
1582 static void __maybe_unused its_enable_quirk_cavium_23144(void *data)
1583 {
1584 struct its_node *its = data;
1585
1586 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
1587 }
1588
1589 static const struct gic_quirk its_quirks[] = {
1590 #ifdef CONFIG_CAVIUM_ERRATUM_22375
1591 {
1592 .desc = "ITS: Cavium errata 22375, 24313",
1593 .iidr = 0xa100034c, /* ThunderX pass 1.x */
1594 .mask = 0xffff0fff,
1595 .init = its_enable_quirk_cavium_22375,
1596 },
1597 #endif
1598 #ifdef CONFIG_CAVIUM_ERRATUM_23144
1599 {
1600 .desc = "ITS: Cavium erratum 23144",
1601 .iidr = 0xa100034c, /* ThunderX pass 1.x */
1602 .mask = 0xffff0fff,
1603 .init = its_enable_quirk_cavium_23144,
1604 },
1605 #endif
1606 {
1607 }
1608 };
1609
1610 static void its_enable_quirks(struct its_node *its)
1611 {
1612 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1613
1614 gic_enable_quirks(iidr, its_quirks, its);
1615 }
1616
1617 static int __init its_probe(struct device_node *node,
1618 struct irq_domain *parent)
1619 {
1620 struct resource res;
1621 struct its_node *its;
1622 void __iomem *its_base;
1623 struct irq_domain *inner_domain;
1624 u32 val;
1625 u64 baser, tmp;
1626 int err;
1627
1628 err = of_address_to_resource(node, 0, &res);
1629 if (err) {
1630 pr_warn("%s: no regs?\n", node->full_name);
1631 return -ENXIO;
1632 }
1633
1634 its_base = ioremap(res.start, resource_size(&res));
1635 if (!its_base) {
1636 pr_warn("%s: unable to map registers\n", node->full_name);
1637 return -ENOMEM;
1638 }
1639
1640 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1641 if (val != 0x30 && val != 0x40) {
1642 pr_warn("%s: no ITS detected, giving up\n", node->full_name);
1643 err = -ENODEV;
1644 goto out_unmap;
1645 }
1646
1647 err = its_force_quiescent(its_base);
1648 if (err) {
1649 pr_warn("%s: failed to quiesce, giving up\n",
1650 node->full_name);
1651 goto out_unmap;
1652 }
1653
1654 pr_info("ITS: %s\n", node->full_name);
1655
1656 its = kzalloc(sizeof(*its), GFP_KERNEL);
1657 if (!its) {
1658 err = -ENOMEM;
1659 goto out_unmap;
1660 }
1661
1662 raw_spin_lock_init(&its->lock);
1663 INIT_LIST_HEAD(&its->entry);
1664 INIT_LIST_HEAD(&its->its_device_list);
1665 its->base = its_base;
1666 its->phys_base = res.start;
1667 its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1668 its->numa_node = of_node_to_nid(node);
1669
1670 its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1671 if (!its->cmd_base) {
1672 err = -ENOMEM;
1673 goto out_free_its;
1674 }
1675 its->cmd_write = its->cmd_base;
1676
1677 its_enable_quirks(its);
1678
1679 err = its_alloc_tables(its);
1680 if (err)
1681 goto out_free_cmd;
1682
1683 err = its_alloc_collections(its);
1684 if (err)
1685 goto out_free_tables;
1686
1687 baser = (virt_to_phys(its->cmd_base) |
1688 GITS_CBASER_WaWb |
1689 GITS_CBASER_InnerShareable |
1690 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
1691 GITS_CBASER_VALID);
1692
1693 writeq_relaxed(baser, its->base + GITS_CBASER);
1694 tmp = readq_relaxed(its->base + GITS_CBASER);
1695
1696 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1697 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1698 /*
1699 * The HW reports non-shareable, we must
1700 * remove the cacheability attributes as
1701 * well.
1702 */
1703 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1704 GITS_CBASER_CACHEABILITY_MASK);
1705 baser |= GITS_CBASER_nC;
1706 writeq_relaxed(baser, its->base + GITS_CBASER);
1707 }
1708 pr_info("ITS: using cache flushing for cmd queue\n");
1709 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1710 }
1711
1712 writeq_relaxed(0, its->base + GITS_CWRITER);
1713 writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1714
1715 if (of_property_read_bool(node, "msi-controller")) {
1716 struct msi_domain_info *info;
1717
1718 info = kzalloc(sizeof(*info), GFP_KERNEL);
1719 if (!info) {
1720 err = -ENOMEM;
1721 goto out_free_tables;
1722 }
1723
1724 inner_domain = irq_domain_add_tree(node, &its_domain_ops, its);
1725 if (!inner_domain) {
1726 err = -ENOMEM;
1727 kfree(info);
1728 goto out_free_tables;
1729 }
1730
1731 inner_domain->parent = parent;
1732 inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1733 info->ops = &its_msi_domain_ops;
1734 info->data = its;
1735 inner_domain->host_data = info;
1736 }
1737
1738 spin_lock(&its_lock);
1739 list_add(&its->entry, &its_nodes);
1740 spin_unlock(&its_lock);
1741
1742 return 0;
1743
1744 out_free_tables:
1745 its_free_tables(its);
1746 out_free_cmd:
1747 kfree(its->cmd_base);
1748 out_free_its:
1749 kfree(its);
1750 out_unmap:
1751 iounmap(its_base);
1752 pr_err("ITS: failed probing %s (%d)\n", node->full_name, err);
1753 return err;
1754 }
1755
1756 static bool gic_rdists_supports_plpis(void)
1757 {
1758 return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1759 }
1760
1761 int its_cpu_init(void)
1762 {
1763 if (!list_empty(&its_nodes)) {
1764 if (!gic_rdists_supports_plpis()) {
1765 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1766 return -ENXIO;
1767 }
1768 its_cpu_init_lpis();
1769 its_cpu_init_collection();
1770 }
1771
1772 return 0;
1773 }
1774
1775 static struct of_device_id its_device_id[] = {
1776 { .compatible = "arm,gic-v3-its", },
1777 {},
1778 };
1779
1780 int __init its_init(struct device_node *node, struct rdists *rdists,
1781 struct irq_domain *parent_domain)
1782 {
1783 struct device_node *np;
1784
1785 for (np = of_find_matching_node(node, its_device_id); np;
1786 np = of_find_matching_node(np, its_device_id)) {
1787 its_probe(np, parent_domain);
1788 }
1789
1790 if (list_empty(&its_nodes)) {
1791 pr_warn("ITS: No ITS available, not enabling LPIs\n");
1792 return -ENXIO;
1793 }
1794
1795 gic_rdists = rdists;
1796 its_alloc_lpi_tables();
1797 its_lpi_init(rdists->id_bits);
1798
1799 return 0;
1800 }
This page took 0.066382 seconds and 6 git commands to generate.