KVM: Move arch dependent files to new directory arch/x86/kvm/
[deliverable/linux.git] / drivers / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43
44 #include <asm/processor.h>
45 #include <asm/io.h>
46 #include <asm/uaccess.h>
47 #include <asm/pgtable.h>
48
49 MODULE_AUTHOR("Qumranet");
50 MODULE_LICENSE("GPL");
51
52 DEFINE_SPINLOCK(kvm_lock);
53 LIST_HEAD(vm_list);
54
55 static cpumask_t cpus_hardware_enabled;
56
57 struct kmem_cache *kvm_vcpu_cache;
58 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
59
60 static __read_mostly struct preempt_ops kvm_preempt_ops;
61
62 static struct dentry *debugfs_dir;
63
64 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
65 unsigned long arg);
66
67 static inline int valid_vcpu(int n)
68 {
69 return likely(n >= 0 && n < KVM_MAX_VCPUS);
70 }
71
72 /*
73 * Switches to specified vcpu, until a matching vcpu_put()
74 */
75 void vcpu_load(struct kvm_vcpu *vcpu)
76 {
77 int cpu;
78
79 mutex_lock(&vcpu->mutex);
80 cpu = get_cpu();
81 preempt_notifier_register(&vcpu->preempt_notifier);
82 kvm_arch_vcpu_load(vcpu, cpu);
83 put_cpu();
84 }
85
86 void vcpu_put(struct kvm_vcpu *vcpu)
87 {
88 preempt_disable();
89 kvm_arch_vcpu_put(vcpu);
90 preempt_notifier_unregister(&vcpu->preempt_notifier);
91 preempt_enable();
92 mutex_unlock(&vcpu->mutex);
93 }
94
95 static void ack_flush(void *_completed)
96 {
97 }
98
99 void kvm_flush_remote_tlbs(struct kvm *kvm)
100 {
101 int i, cpu;
102 cpumask_t cpus;
103 struct kvm_vcpu *vcpu;
104
105 cpus_clear(cpus);
106 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
107 vcpu = kvm->vcpus[i];
108 if (!vcpu)
109 continue;
110 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
111 continue;
112 cpu = vcpu->cpu;
113 if (cpu != -1 && cpu != raw_smp_processor_id())
114 cpu_set(cpu, cpus);
115 }
116 if (cpus_empty(cpus))
117 return;
118 ++kvm->stat.remote_tlb_flush;
119 smp_call_function_mask(cpus, ack_flush, NULL, 1);
120 }
121
122 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
123 {
124 struct page *page;
125 int r;
126
127 mutex_init(&vcpu->mutex);
128 vcpu->cpu = -1;
129 vcpu->kvm = kvm;
130 vcpu->vcpu_id = id;
131 init_waitqueue_head(&vcpu->wq);
132
133 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
134 if (!page) {
135 r = -ENOMEM;
136 goto fail;
137 }
138 vcpu->run = page_address(page);
139
140 r = kvm_arch_vcpu_init(vcpu);
141 if (r < 0)
142 goto fail_free_run;
143 return 0;
144
145 fail_free_run:
146 free_page((unsigned long)vcpu->run);
147 fail:
148 return r;
149 }
150 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
151
152 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
153 {
154 kvm_arch_vcpu_uninit(vcpu);
155 free_page((unsigned long)vcpu->run);
156 }
157 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
158
159 static struct kvm *kvm_create_vm(void)
160 {
161 struct kvm *kvm = kvm_arch_create_vm();
162
163 if (IS_ERR(kvm))
164 goto out;
165
166 kvm->mm = current->mm;
167 atomic_inc(&kvm->mm->mm_count);
168 kvm_io_bus_init(&kvm->pio_bus);
169 mutex_init(&kvm->lock);
170 kvm_io_bus_init(&kvm->mmio_bus);
171 spin_lock(&kvm_lock);
172 list_add(&kvm->vm_list, &vm_list);
173 spin_unlock(&kvm_lock);
174 out:
175 return kvm;
176 }
177
178 /*
179 * Free any memory in @free but not in @dont.
180 */
181 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
182 struct kvm_memory_slot *dont)
183 {
184 if (!dont || free->rmap != dont->rmap)
185 vfree(free->rmap);
186
187 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
188 vfree(free->dirty_bitmap);
189
190 free->npages = 0;
191 free->dirty_bitmap = NULL;
192 free->rmap = NULL;
193 }
194
195 void kvm_free_physmem(struct kvm *kvm)
196 {
197 int i;
198
199 for (i = 0; i < kvm->nmemslots; ++i)
200 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
201 }
202
203 static void kvm_destroy_vm(struct kvm *kvm)
204 {
205 struct mm_struct *mm = kvm->mm;
206
207 spin_lock(&kvm_lock);
208 list_del(&kvm->vm_list);
209 spin_unlock(&kvm_lock);
210 kvm_io_bus_destroy(&kvm->pio_bus);
211 kvm_io_bus_destroy(&kvm->mmio_bus);
212 kvm_arch_destroy_vm(kvm);
213 mmdrop(mm);
214 }
215
216 static int kvm_vm_release(struct inode *inode, struct file *filp)
217 {
218 struct kvm *kvm = filp->private_data;
219
220 kvm_destroy_vm(kvm);
221 return 0;
222 }
223
224 /*
225 * Allocate some memory and give it an address in the guest physical address
226 * space.
227 *
228 * Discontiguous memory is allowed, mostly for framebuffers.
229 *
230 * Must be called holding kvm->lock.
231 */
232 int __kvm_set_memory_region(struct kvm *kvm,
233 struct kvm_userspace_memory_region *mem,
234 int user_alloc)
235 {
236 int r;
237 gfn_t base_gfn;
238 unsigned long npages;
239 unsigned long i;
240 struct kvm_memory_slot *memslot;
241 struct kvm_memory_slot old, new;
242
243 r = -EINVAL;
244 /* General sanity checks */
245 if (mem->memory_size & (PAGE_SIZE - 1))
246 goto out;
247 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
248 goto out;
249 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
250 goto out;
251 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
252 goto out;
253
254 memslot = &kvm->memslots[mem->slot];
255 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
256 npages = mem->memory_size >> PAGE_SHIFT;
257
258 if (!npages)
259 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
260
261 new = old = *memslot;
262
263 new.base_gfn = base_gfn;
264 new.npages = npages;
265 new.flags = mem->flags;
266
267 /* Disallow changing a memory slot's size. */
268 r = -EINVAL;
269 if (npages && old.npages && npages != old.npages)
270 goto out_free;
271
272 /* Check for overlaps */
273 r = -EEXIST;
274 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
275 struct kvm_memory_slot *s = &kvm->memslots[i];
276
277 if (s == memslot)
278 continue;
279 if (!((base_gfn + npages <= s->base_gfn) ||
280 (base_gfn >= s->base_gfn + s->npages)))
281 goto out_free;
282 }
283
284 /* Free page dirty bitmap if unneeded */
285 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
286 new.dirty_bitmap = NULL;
287
288 r = -ENOMEM;
289
290 /* Allocate if a slot is being created */
291 if (npages && !new.rmap) {
292 new.rmap = vmalloc(npages * sizeof(struct page *));
293
294 if (!new.rmap)
295 goto out_free;
296
297 memset(new.rmap, 0, npages * sizeof(*new.rmap));
298
299 new.user_alloc = user_alloc;
300 new.userspace_addr = mem->userspace_addr;
301 }
302
303 /* Allocate page dirty bitmap if needed */
304 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
305 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
306
307 new.dirty_bitmap = vmalloc(dirty_bytes);
308 if (!new.dirty_bitmap)
309 goto out_free;
310 memset(new.dirty_bitmap, 0, dirty_bytes);
311 }
312
313 if (mem->slot >= kvm->nmemslots)
314 kvm->nmemslots = mem->slot + 1;
315
316 *memslot = new;
317
318 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
319 if (r) {
320 *memslot = old;
321 goto out_free;
322 }
323
324 kvm_free_physmem_slot(&old, &new);
325 return 0;
326
327 out_free:
328 kvm_free_physmem_slot(&new, &old);
329 out:
330 return r;
331
332 }
333 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
334
335 int kvm_set_memory_region(struct kvm *kvm,
336 struct kvm_userspace_memory_region *mem,
337 int user_alloc)
338 {
339 int r;
340
341 mutex_lock(&kvm->lock);
342 r = __kvm_set_memory_region(kvm, mem, user_alloc);
343 mutex_unlock(&kvm->lock);
344 return r;
345 }
346 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
347
348 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
349 struct
350 kvm_userspace_memory_region *mem,
351 int user_alloc)
352 {
353 if (mem->slot >= KVM_MEMORY_SLOTS)
354 return -EINVAL;
355 return kvm_set_memory_region(kvm, mem, user_alloc);
356 }
357
358 int kvm_get_dirty_log(struct kvm *kvm,
359 struct kvm_dirty_log *log, int *is_dirty)
360 {
361 struct kvm_memory_slot *memslot;
362 int r, i;
363 int n;
364 unsigned long any = 0;
365
366 r = -EINVAL;
367 if (log->slot >= KVM_MEMORY_SLOTS)
368 goto out;
369
370 memslot = &kvm->memslots[log->slot];
371 r = -ENOENT;
372 if (!memslot->dirty_bitmap)
373 goto out;
374
375 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
376
377 for (i = 0; !any && i < n/sizeof(long); ++i)
378 any = memslot->dirty_bitmap[i];
379
380 r = -EFAULT;
381 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
382 goto out;
383
384 if (any)
385 *is_dirty = 1;
386
387 r = 0;
388 out:
389 return r;
390 }
391
392 int is_error_page(struct page *page)
393 {
394 return page == bad_page;
395 }
396 EXPORT_SYMBOL_GPL(is_error_page);
397
398 static inline unsigned long bad_hva(void)
399 {
400 return PAGE_OFFSET;
401 }
402
403 int kvm_is_error_hva(unsigned long addr)
404 {
405 return addr == bad_hva();
406 }
407 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
408
409 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
410 {
411 int i;
412
413 for (i = 0; i < kvm->nmemslots; ++i) {
414 struct kvm_memory_slot *memslot = &kvm->memslots[i];
415
416 if (gfn >= memslot->base_gfn
417 && gfn < memslot->base_gfn + memslot->npages)
418 return memslot;
419 }
420 return NULL;
421 }
422
423 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
424 {
425 gfn = unalias_gfn(kvm, gfn);
426 return __gfn_to_memslot(kvm, gfn);
427 }
428
429 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
430 {
431 int i;
432
433 gfn = unalias_gfn(kvm, gfn);
434 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
435 struct kvm_memory_slot *memslot = &kvm->memslots[i];
436
437 if (gfn >= memslot->base_gfn
438 && gfn < memslot->base_gfn + memslot->npages)
439 return 1;
440 }
441 return 0;
442 }
443 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
444
445 static unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
446 {
447 struct kvm_memory_slot *slot;
448
449 gfn = unalias_gfn(kvm, gfn);
450 slot = __gfn_to_memslot(kvm, gfn);
451 if (!slot)
452 return bad_hva();
453 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
454 }
455
456 /*
457 * Requires current->mm->mmap_sem to be held
458 */
459 static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
460 {
461 struct page *page[1];
462 unsigned long addr;
463 int npages;
464
465 might_sleep();
466
467 addr = gfn_to_hva(kvm, gfn);
468 if (kvm_is_error_hva(addr)) {
469 get_page(bad_page);
470 return bad_page;
471 }
472
473 npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
474 NULL);
475
476 if (npages != 1) {
477 get_page(bad_page);
478 return bad_page;
479 }
480
481 return page[0];
482 }
483
484 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
485 {
486 struct page *page;
487
488 down_read(&current->mm->mmap_sem);
489 page = __gfn_to_page(kvm, gfn);
490 up_read(&current->mm->mmap_sem);
491
492 return page;
493 }
494
495 EXPORT_SYMBOL_GPL(gfn_to_page);
496
497 void kvm_release_page_clean(struct page *page)
498 {
499 put_page(page);
500 }
501 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
502
503 void kvm_release_page_dirty(struct page *page)
504 {
505 if (!PageReserved(page))
506 SetPageDirty(page);
507 put_page(page);
508 }
509 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
510
511 static int next_segment(unsigned long len, int offset)
512 {
513 if (len > PAGE_SIZE - offset)
514 return PAGE_SIZE - offset;
515 else
516 return len;
517 }
518
519 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
520 int len)
521 {
522 int r;
523 unsigned long addr;
524
525 addr = gfn_to_hva(kvm, gfn);
526 if (kvm_is_error_hva(addr))
527 return -EFAULT;
528 r = copy_from_user(data, (void __user *)addr + offset, len);
529 if (r)
530 return -EFAULT;
531 return 0;
532 }
533 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
534
535 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
536 {
537 gfn_t gfn = gpa >> PAGE_SHIFT;
538 int seg;
539 int offset = offset_in_page(gpa);
540 int ret;
541
542 while ((seg = next_segment(len, offset)) != 0) {
543 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
544 if (ret < 0)
545 return ret;
546 offset = 0;
547 len -= seg;
548 data += seg;
549 ++gfn;
550 }
551 return 0;
552 }
553 EXPORT_SYMBOL_GPL(kvm_read_guest);
554
555 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
556 int offset, int len)
557 {
558 int r;
559 unsigned long addr;
560
561 addr = gfn_to_hva(kvm, gfn);
562 if (kvm_is_error_hva(addr))
563 return -EFAULT;
564 r = copy_to_user((void __user *)addr + offset, data, len);
565 if (r)
566 return -EFAULT;
567 mark_page_dirty(kvm, gfn);
568 return 0;
569 }
570 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
571
572 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
573 unsigned long len)
574 {
575 gfn_t gfn = gpa >> PAGE_SHIFT;
576 int seg;
577 int offset = offset_in_page(gpa);
578 int ret;
579
580 while ((seg = next_segment(len, offset)) != 0) {
581 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
582 if (ret < 0)
583 return ret;
584 offset = 0;
585 len -= seg;
586 data += seg;
587 ++gfn;
588 }
589 return 0;
590 }
591
592 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
593 {
594 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
595 }
596 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
597
598 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
599 {
600 gfn_t gfn = gpa >> PAGE_SHIFT;
601 int seg;
602 int offset = offset_in_page(gpa);
603 int ret;
604
605 while ((seg = next_segment(len, offset)) != 0) {
606 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
607 if (ret < 0)
608 return ret;
609 offset = 0;
610 len -= seg;
611 ++gfn;
612 }
613 return 0;
614 }
615 EXPORT_SYMBOL_GPL(kvm_clear_guest);
616
617 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
618 {
619 struct kvm_memory_slot *memslot;
620
621 gfn = unalias_gfn(kvm, gfn);
622 memslot = __gfn_to_memslot(kvm, gfn);
623 if (memslot && memslot->dirty_bitmap) {
624 unsigned long rel_gfn = gfn - memslot->base_gfn;
625
626 /* avoid RMW */
627 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
628 set_bit(rel_gfn, memslot->dirty_bitmap);
629 }
630 }
631
632 /*
633 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
634 */
635 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
636 {
637 DECLARE_WAITQUEUE(wait, current);
638
639 add_wait_queue(&vcpu->wq, &wait);
640
641 /*
642 * We will block until either an interrupt or a signal wakes us up
643 */
644 while (!kvm_cpu_has_interrupt(vcpu)
645 && !signal_pending(current)
646 && !kvm_arch_vcpu_runnable(vcpu)) {
647 set_current_state(TASK_INTERRUPTIBLE);
648 vcpu_put(vcpu);
649 schedule();
650 vcpu_load(vcpu);
651 }
652
653 __set_current_state(TASK_RUNNING);
654 remove_wait_queue(&vcpu->wq, &wait);
655 }
656
657 void kvm_resched(struct kvm_vcpu *vcpu)
658 {
659 if (!need_resched())
660 return;
661 cond_resched();
662 }
663 EXPORT_SYMBOL_GPL(kvm_resched);
664
665 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
666 {
667 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
668 struct page *page;
669
670 if (vmf->pgoff == 0)
671 page = virt_to_page(vcpu->run);
672 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
673 page = virt_to_page(vcpu->arch.pio_data);
674 else
675 return VM_FAULT_SIGBUS;
676 get_page(page);
677 vmf->page = page;
678 return 0;
679 }
680
681 static struct vm_operations_struct kvm_vcpu_vm_ops = {
682 .fault = kvm_vcpu_fault,
683 };
684
685 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
686 {
687 vma->vm_ops = &kvm_vcpu_vm_ops;
688 return 0;
689 }
690
691 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
692 {
693 struct kvm_vcpu *vcpu = filp->private_data;
694
695 fput(vcpu->kvm->filp);
696 return 0;
697 }
698
699 static struct file_operations kvm_vcpu_fops = {
700 .release = kvm_vcpu_release,
701 .unlocked_ioctl = kvm_vcpu_ioctl,
702 .compat_ioctl = kvm_vcpu_ioctl,
703 .mmap = kvm_vcpu_mmap,
704 };
705
706 /*
707 * Allocates an inode for the vcpu.
708 */
709 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
710 {
711 int fd, r;
712 struct inode *inode;
713 struct file *file;
714
715 r = anon_inode_getfd(&fd, &inode, &file,
716 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
717 if (r)
718 return r;
719 atomic_inc(&vcpu->kvm->filp->f_count);
720 return fd;
721 }
722
723 /*
724 * Creates some virtual cpus. Good luck creating more than one.
725 */
726 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
727 {
728 int r;
729 struct kvm_vcpu *vcpu;
730
731 if (!valid_vcpu(n))
732 return -EINVAL;
733
734 vcpu = kvm_arch_vcpu_create(kvm, n);
735 if (IS_ERR(vcpu))
736 return PTR_ERR(vcpu);
737
738 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
739
740 r = kvm_arch_vcpu_setup(vcpu);
741 if (r)
742 goto vcpu_destroy;
743
744 mutex_lock(&kvm->lock);
745 if (kvm->vcpus[n]) {
746 r = -EEXIST;
747 mutex_unlock(&kvm->lock);
748 goto vcpu_destroy;
749 }
750 kvm->vcpus[n] = vcpu;
751 mutex_unlock(&kvm->lock);
752
753 /* Now it's all set up, let userspace reach it */
754 r = create_vcpu_fd(vcpu);
755 if (r < 0)
756 goto unlink;
757 return r;
758
759 unlink:
760 mutex_lock(&kvm->lock);
761 kvm->vcpus[n] = NULL;
762 mutex_unlock(&kvm->lock);
763 vcpu_destroy:
764 kvm_arch_vcpu_destroy(vcpu);
765 return r;
766 }
767
768 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
769 {
770 if (sigset) {
771 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
772 vcpu->sigset_active = 1;
773 vcpu->sigset = *sigset;
774 } else
775 vcpu->sigset_active = 0;
776 return 0;
777 }
778
779 static long kvm_vcpu_ioctl(struct file *filp,
780 unsigned int ioctl, unsigned long arg)
781 {
782 struct kvm_vcpu *vcpu = filp->private_data;
783 void __user *argp = (void __user *)arg;
784 int r;
785
786 if (vcpu->kvm->mm != current->mm)
787 return -EIO;
788 switch (ioctl) {
789 case KVM_RUN:
790 r = -EINVAL;
791 if (arg)
792 goto out;
793 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
794 break;
795 case KVM_GET_REGS: {
796 struct kvm_regs kvm_regs;
797
798 memset(&kvm_regs, 0, sizeof kvm_regs);
799 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
800 if (r)
801 goto out;
802 r = -EFAULT;
803 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
804 goto out;
805 r = 0;
806 break;
807 }
808 case KVM_SET_REGS: {
809 struct kvm_regs kvm_regs;
810
811 r = -EFAULT;
812 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
813 goto out;
814 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
815 if (r)
816 goto out;
817 r = 0;
818 break;
819 }
820 case KVM_GET_SREGS: {
821 struct kvm_sregs kvm_sregs;
822
823 memset(&kvm_sregs, 0, sizeof kvm_sregs);
824 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
825 if (r)
826 goto out;
827 r = -EFAULT;
828 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
829 goto out;
830 r = 0;
831 break;
832 }
833 case KVM_SET_SREGS: {
834 struct kvm_sregs kvm_sregs;
835
836 r = -EFAULT;
837 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
838 goto out;
839 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
840 if (r)
841 goto out;
842 r = 0;
843 break;
844 }
845 case KVM_TRANSLATE: {
846 struct kvm_translation tr;
847
848 r = -EFAULT;
849 if (copy_from_user(&tr, argp, sizeof tr))
850 goto out;
851 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
852 if (r)
853 goto out;
854 r = -EFAULT;
855 if (copy_to_user(argp, &tr, sizeof tr))
856 goto out;
857 r = 0;
858 break;
859 }
860 case KVM_DEBUG_GUEST: {
861 struct kvm_debug_guest dbg;
862
863 r = -EFAULT;
864 if (copy_from_user(&dbg, argp, sizeof dbg))
865 goto out;
866 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
867 if (r)
868 goto out;
869 r = 0;
870 break;
871 }
872 case KVM_SET_SIGNAL_MASK: {
873 struct kvm_signal_mask __user *sigmask_arg = argp;
874 struct kvm_signal_mask kvm_sigmask;
875 sigset_t sigset, *p;
876
877 p = NULL;
878 if (argp) {
879 r = -EFAULT;
880 if (copy_from_user(&kvm_sigmask, argp,
881 sizeof kvm_sigmask))
882 goto out;
883 r = -EINVAL;
884 if (kvm_sigmask.len != sizeof sigset)
885 goto out;
886 r = -EFAULT;
887 if (copy_from_user(&sigset, sigmask_arg->sigset,
888 sizeof sigset))
889 goto out;
890 p = &sigset;
891 }
892 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
893 break;
894 }
895 case KVM_GET_FPU: {
896 struct kvm_fpu fpu;
897
898 memset(&fpu, 0, sizeof fpu);
899 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
900 if (r)
901 goto out;
902 r = -EFAULT;
903 if (copy_to_user(argp, &fpu, sizeof fpu))
904 goto out;
905 r = 0;
906 break;
907 }
908 case KVM_SET_FPU: {
909 struct kvm_fpu fpu;
910
911 r = -EFAULT;
912 if (copy_from_user(&fpu, argp, sizeof fpu))
913 goto out;
914 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
915 if (r)
916 goto out;
917 r = 0;
918 break;
919 }
920 default:
921 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
922 }
923 out:
924 return r;
925 }
926
927 static long kvm_vm_ioctl(struct file *filp,
928 unsigned int ioctl, unsigned long arg)
929 {
930 struct kvm *kvm = filp->private_data;
931 void __user *argp = (void __user *)arg;
932 int r;
933
934 if (kvm->mm != current->mm)
935 return -EIO;
936 switch (ioctl) {
937 case KVM_CREATE_VCPU:
938 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
939 if (r < 0)
940 goto out;
941 break;
942 case KVM_SET_USER_MEMORY_REGION: {
943 struct kvm_userspace_memory_region kvm_userspace_mem;
944
945 r = -EFAULT;
946 if (copy_from_user(&kvm_userspace_mem, argp,
947 sizeof kvm_userspace_mem))
948 goto out;
949
950 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
951 if (r)
952 goto out;
953 break;
954 }
955 case KVM_GET_DIRTY_LOG: {
956 struct kvm_dirty_log log;
957
958 r = -EFAULT;
959 if (copy_from_user(&log, argp, sizeof log))
960 goto out;
961 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
962 if (r)
963 goto out;
964 break;
965 }
966 default:
967 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
968 }
969 out:
970 return r;
971 }
972
973 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
974 {
975 struct kvm *kvm = vma->vm_file->private_data;
976 struct page *page;
977
978 if (!kvm_is_visible_gfn(kvm, vmf->pgoff))
979 return VM_FAULT_SIGBUS;
980 /* current->mm->mmap_sem is already held so call lockless version */
981 page = __gfn_to_page(kvm, vmf->pgoff);
982 if (is_error_page(page)) {
983 kvm_release_page_clean(page);
984 return VM_FAULT_SIGBUS;
985 }
986 vmf->page = page;
987 return 0;
988 }
989
990 static struct vm_operations_struct kvm_vm_vm_ops = {
991 .fault = kvm_vm_fault,
992 };
993
994 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
995 {
996 vma->vm_ops = &kvm_vm_vm_ops;
997 return 0;
998 }
999
1000 static struct file_operations kvm_vm_fops = {
1001 .release = kvm_vm_release,
1002 .unlocked_ioctl = kvm_vm_ioctl,
1003 .compat_ioctl = kvm_vm_ioctl,
1004 .mmap = kvm_vm_mmap,
1005 };
1006
1007 static int kvm_dev_ioctl_create_vm(void)
1008 {
1009 int fd, r;
1010 struct inode *inode;
1011 struct file *file;
1012 struct kvm *kvm;
1013
1014 kvm = kvm_create_vm();
1015 if (IS_ERR(kvm))
1016 return PTR_ERR(kvm);
1017 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
1018 if (r) {
1019 kvm_destroy_vm(kvm);
1020 return r;
1021 }
1022
1023 kvm->filp = file;
1024
1025 return fd;
1026 }
1027
1028 static long kvm_dev_ioctl(struct file *filp,
1029 unsigned int ioctl, unsigned long arg)
1030 {
1031 void __user *argp = (void __user *)arg;
1032 long r = -EINVAL;
1033
1034 switch (ioctl) {
1035 case KVM_GET_API_VERSION:
1036 r = -EINVAL;
1037 if (arg)
1038 goto out;
1039 r = KVM_API_VERSION;
1040 break;
1041 case KVM_CREATE_VM:
1042 r = -EINVAL;
1043 if (arg)
1044 goto out;
1045 r = kvm_dev_ioctl_create_vm();
1046 break;
1047 case KVM_CHECK_EXTENSION:
1048 r = kvm_dev_ioctl_check_extension((long)argp);
1049 break;
1050 case KVM_GET_VCPU_MMAP_SIZE:
1051 r = -EINVAL;
1052 if (arg)
1053 goto out;
1054 r = 2 * PAGE_SIZE;
1055 break;
1056 default:
1057 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1058 }
1059 out:
1060 return r;
1061 }
1062
1063 static struct file_operations kvm_chardev_ops = {
1064 .unlocked_ioctl = kvm_dev_ioctl,
1065 .compat_ioctl = kvm_dev_ioctl,
1066 };
1067
1068 static struct miscdevice kvm_dev = {
1069 KVM_MINOR,
1070 "kvm",
1071 &kvm_chardev_ops,
1072 };
1073
1074 static void hardware_enable(void *junk)
1075 {
1076 int cpu = raw_smp_processor_id();
1077
1078 if (cpu_isset(cpu, cpus_hardware_enabled))
1079 return;
1080 cpu_set(cpu, cpus_hardware_enabled);
1081 kvm_arch_hardware_enable(NULL);
1082 }
1083
1084 static void hardware_disable(void *junk)
1085 {
1086 int cpu = raw_smp_processor_id();
1087
1088 if (!cpu_isset(cpu, cpus_hardware_enabled))
1089 return;
1090 cpu_clear(cpu, cpus_hardware_enabled);
1091 decache_vcpus_on_cpu(cpu);
1092 kvm_arch_hardware_disable(NULL);
1093 }
1094
1095 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1096 void *v)
1097 {
1098 int cpu = (long)v;
1099
1100 val &= ~CPU_TASKS_FROZEN;
1101 switch (val) {
1102 case CPU_DYING:
1103 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1104 cpu);
1105 hardware_disable(NULL);
1106 break;
1107 case CPU_UP_CANCELED:
1108 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1109 cpu);
1110 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
1111 break;
1112 case CPU_ONLINE:
1113 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1114 cpu);
1115 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
1116 break;
1117 }
1118 return NOTIFY_OK;
1119 }
1120
1121 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1122 void *v)
1123 {
1124 if (val == SYS_RESTART) {
1125 /*
1126 * Some (well, at least mine) BIOSes hang on reboot if
1127 * in vmx root mode.
1128 */
1129 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1130 on_each_cpu(hardware_disable, NULL, 0, 1);
1131 }
1132 return NOTIFY_OK;
1133 }
1134
1135 static struct notifier_block kvm_reboot_notifier = {
1136 .notifier_call = kvm_reboot,
1137 .priority = 0,
1138 };
1139
1140 void kvm_io_bus_init(struct kvm_io_bus *bus)
1141 {
1142 memset(bus, 0, sizeof(*bus));
1143 }
1144
1145 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1146 {
1147 int i;
1148
1149 for (i = 0; i < bus->dev_count; i++) {
1150 struct kvm_io_device *pos = bus->devs[i];
1151
1152 kvm_iodevice_destructor(pos);
1153 }
1154 }
1155
1156 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
1157 {
1158 int i;
1159
1160 for (i = 0; i < bus->dev_count; i++) {
1161 struct kvm_io_device *pos = bus->devs[i];
1162
1163 if (pos->in_range(pos, addr))
1164 return pos;
1165 }
1166
1167 return NULL;
1168 }
1169
1170 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
1171 {
1172 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
1173
1174 bus->devs[bus->dev_count++] = dev;
1175 }
1176
1177 static struct notifier_block kvm_cpu_notifier = {
1178 .notifier_call = kvm_cpu_hotplug,
1179 .priority = 20, /* must be > scheduler priority */
1180 };
1181
1182 static u64 vm_stat_get(void *_offset)
1183 {
1184 unsigned offset = (long)_offset;
1185 u64 total = 0;
1186 struct kvm *kvm;
1187
1188 spin_lock(&kvm_lock);
1189 list_for_each_entry(kvm, &vm_list, vm_list)
1190 total += *(u32 *)((void *)kvm + offset);
1191 spin_unlock(&kvm_lock);
1192 return total;
1193 }
1194
1195 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1196
1197 static u64 vcpu_stat_get(void *_offset)
1198 {
1199 unsigned offset = (long)_offset;
1200 u64 total = 0;
1201 struct kvm *kvm;
1202 struct kvm_vcpu *vcpu;
1203 int i;
1204
1205 spin_lock(&kvm_lock);
1206 list_for_each_entry(kvm, &vm_list, vm_list)
1207 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1208 vcpu = kvm->vcpus[i];
1209 if (vcpu)
1210 total += *(u32 *)((void *)vcpu + offset);
1211 }
1212 spin_unlock(&kvm_lock);
1213 return total;
1214 }
1215
1216 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1217
1218 static struct file_operations *stat_fops[] = {
1219 [KVM_STAT_VCPU] = &vcpu_stat_fops,
1220 [KVM_STAT_VM] = &vm_stat_fops,
1221 };
1222
1223 static void kvm_init_debug(void)
1224 {
1225 struct kvm_stats_debugfs_item *p;
1226
1227 debugfs_dir = debugfs_create_dir("kvm", NULL);
1228 for (p = debugfs_entries; p->name; ++p)
1229 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
1230 (void *)(long)p->offset,
1231 stat_fops[p->kind]);
1232 }
1233
1234 static void kvm_exit_debug(void)
1235 {
1236 struct kvm_stats_debugfs_item *p;
1237
1238 for (p = debugfs_entries; p->name; ++p)
1239 debugfs_remove(p->dentry);
1240 debugfs_remove(debugfs_dir);
1241 }
1242
1243 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
1244 {
1245 hardware_disable(NULL);
1246 return 0;
1247 }
1248
1249 static int kvm_resume(struct sys_device *dev)
1250 {
1251 hardware_enable(NULL);
1252 return 0;
1253 }
1254
1255 static struct sysdev_class kvm_sysdev_class = {
1256 .name = "kvm",
1257 .suspend = kvm_suspend,
1258 .resume = kvm_resume,
1259 };
1260
1261 static struct sys_device kvm_sysdev = {
1262 .id = 0,
1263 .cls = &kvm_sysdev_class,
1264 };
1265
1266 struct page *bad_page;
1267
1268 static inline
1269 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
1270 {
1271 return container_of(pn, struct kvm_vcpu, preempt_notifier);
1272 }
1273
1274 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
1275 {
1276 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1277
1278 kvm_arch_vcpu_load(vcpu, cpu);
1279 }
1280
1281 static void kvm_sched_out(struct preempt_notifier *pn,
1282 struct task_struct *next)
1283 {
1284 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1285
1286 kvm_arch_vcpu_put(vcpu);
1287 }
1288
1289 int kvm_init(void *opaque, unsigned int vcpu_size,
1290 struct module *module)
1291 {
1292 int r;
1293 int cpu;
1294
1295 kvm_init_debug();
1296
1297 r = kvm_arch_init(opaque);
1298 if (r)
1299 goto out_fail;
1300
1301 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1302
1303 if (bad_page == NULL) {
1304 r = -ENOMEM;
1305 goto out;
1306 }
1307
1308 r = kvm_arch_hardware_setup();
1309 if (r < 0)
1310 goto out_free_0;
1311
1312 for_each_online_cpu(cpu) {
1313 smp_call_function_single(cpu,
1314 kvm_arch_check_processor_compat,
1315 &r, 0, 1);
1316 if (r < 0)
1317 goto out_free_1;
1318 }
1319
1320 on_each_cpu(hardware_enable, NULL, 0, 1);
1321 r = register_cpu_notifier(&kvm_cpu_notifier);
1322 if (r)
1323 goto out_free_2;
1324 register_reboot_notifier(&kvm_reboot_notifier);
1325
1326 r = sysdev_class_register(&kvm_sysdev_class);
1327 if (r)
1328 goto out_free_3;
1329
1330 r = sysdev_register(&kvm_sysdev);
1331 if (r)
1332 goto out_free_4;
1333
1334 /* A kmem cache lets us meet the alignment requirements of fx_save. */
1335 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
1336 __alignof__(struct kvm_vcpu),
1337 0, NULL);
1338 if (!kvm_vcpu_cache) {
1339 r = -ENOMEM;
1340 goto out_free_5;
1341 }
1342
1343 kvm_chardev_ops.owner = module;
1344
1345 r = misc_register(&kvm_dev);
1346 if (r) {
1347 printk(KERN_ERR "kvm: misc device register failed\n");
1348 goto out_free;
1349 }
1350
1351 kvm_preempt_ops.sched_in = kvm_sched_in;
1352 kvm_preempt_ops.sched_out = kvm_sched_out;
1353
1354 return 0;
1355
1356 out_free:
1357 kmem_cache_destroy(kvm_vcpu_cache);
1358 out_free_5:
1359 sysdev_unregister(&kvm_sysdev);
1360 out_free_4:
1361 sysdev_class_unregister(&kvm_sysdev_class);
1362 out_free_3:
1363 unregister_reboot_notifier(&kvm_reboot_notifier);
1364 unregister_cpu_notifier(&kvm_cpu_notifier);
1365 out_free_2:
1366 on_each_cpu(hardware_disable, NULL, 0, 1);
1367 out_free_1:
1368 kvm_arch_hardware_unsetup();
1369 out_free_0:
1370 __free_page(bad_page);
1371 out:
1372 kvm_arch_exit();
1373 kvm_exit_debug();
1374 out_fail:
1375 return r;
1376 }
1377 EXPORT_SYMBOL_GPL(kvm_init);
1378
1379 void kvm_exit(void)
1380 {
1381 misc_deregister(&kvm_dev);
1382 kmem_cache_destroy(kvm_vcpu_cache);
1383 sysdev_unregister(&kvm_sysdev);
1384 sysdev_class_unregister(&kvm_sysdev_class);
1385 unregister_reboot_notifier(&kvm_reboot_notifier);
1386 unregister_cpu_notifier(&kvm_cpu_notifier);
1387 on_each_cpu(hardware_disable, NULL, 0, 1);
1388 kvm_arch_hardware_unsetup();
1389 kvm_arch_exit();
1390 kvm_exit_debug();
1391 __free_page(bad_page);
1392 }
1393 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.080024 seconds and 5 git commands to generate.