KVM: Remove gratuitous casts from lapic.c
[deliverable/linux.git] / drivers / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
21 #include "irq.h"
22
23 #include <linux/kvm.h>
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/percpu.h>
27 #include <linux/gfp.h>
28 #include <linux/mm.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <linux/reboot.h>
32 #include <linux/debugfs.h>
33 #include <linux/highmem.h>
34 #include <linux/file.h>
35 #include <linux/sysdev.h>
36 #include <linux/cpu.h>
37 #include <linux/sched.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43
44 #include <asm/processor.h>
45 #include <asm/msr.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/desc.h>
49
50 MODULE_AUTHOR("Qumranet");
51 MODULE_LICENSE("GPL");
52
53 static DEFINE_SPINLOCK(kvm_lock);
54 static LIST_HEAD(vm_list);
55
56 static cpumask_t cpus_hardware_enabled;
57
58 struct kvm_x86_ops *kvm_x86_ops;
59 struct kmem_cache *kvm_vcpu_cache;
60 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
61
62 static __read_mostly struct preempt_ops kvm_preempt_ops;
63
64 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
65
66 static struct kvm_stats_debugfs_item {
67 const char *name;
68 int offset;
69 struct dentry *dentry;
70 } debugfs_entries[] = {
71 { "pf_fixed", STAT_OFFSET(pf_fixed) },
72 { "pf_guest", STAT_OFFSET(pf_guest) },
73 { "tlb_flush", STAT_OFFSET(tlb_flush) },
74 { "invlpg", STAT_OFFSET(invlpg) },
75 { "exits", STAT_OFFSET(exits) },
76 { "io_exits", STAT_OFFSET(io_exits) },
77 { "mmio_exits", STAT_OFFSET(mmio_exits) },
78 { "signal_exits", STAT_OFFSET(signal_exits) },
79 { "irq_window", STAT_OFFSET(irq_window_exits) },
80 { "halt_exits", STAT_OFFSET(halt_exits) },
81 { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
82 { "request_irq", STAT_OFFSET(request_irq_exits) },
83 { "irq_exits", STAT_OFFSET(irq_exits) },
84 { "light_exits", STAT_OFFSET(light_exits) },
85 { "efer_reload", STAT_OFFSET(efer_reload) },
86 { NULL }
87 };
88
89 static struct dentry *debugfs_dir;
90
91 #define MAX_IO_MSRS 256
92
93 #define CR0_RESERVED_BITS \
94 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
95 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
96 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
97 #define CR4_RESERVED_BITS \
98 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
99 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
100 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
101 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
102
103 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
104 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
105
106 #ifdef CONFIG_X86_64
107 // LDT or TSS descriptor in the GDT. 16 bytes.
108 struct segment_descriptor_64 {
109 struct segment_descriptor s;
110 u32 base_higher;
111 u32 pad_zero;
112 };
113
114 #endif
115
116 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
117 unsigned long arg);
118
119 unsigned long segment_base(u16 selector)
120 {
121 struct descriptor_table gdt;
122 struct segment_descriptor *d;
123 unsigned long table_base;
124 typedef unsigned long ul;
125 unsigned long v;
126
127 if (selector == 0)
128 return 0;
129
130 asm ("sgdt %0" : "=m"(gdt));
131 table_base = gdt.base;
132
133 if (selector & 4) { /* from ldt */
134 u16 ldt_selector;
135
136 asm ("sldt %0" : "=g"(ldt_selector));
137 table_base = segment_base(ldt_selector);
138 }
139 d = (struct segment_descriptor *)(table_base + (selector & ~7));
140 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
141 #ifdef CONFIG_X86_64
142 if (d->system == 0
143 && (d->type == 2 || d->type == 9 || d->type == 11))
144 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
145 #endif
146 return v;
147 }
148 EXPORT_SYMBOL_GPL(segment_base);
149
150 static inline int valid_vcpu(int n)
151 {
152 return likely(n >= 0 && n < KVM_MAX_VCPUS);
153 }
154
155 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
156 {
157 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
158 return;
159
160 vcpu->guest_fpu_loaded = 1;
161 fx_save(&vcpu->host_fx_image);
162 fx_restore(&vcpu->guest_fx_image);
163 }
164 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
165
166 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
167 {
168 if (!vcpu->guest_fpu_loaded)
169 return;
170
171 vcpu->guest_fpu_loaded = 0;
172 fx_save(&vcpu->guest_fx_image);
173 fx_restore(&vcpu->host_fx_image);
174 }
175 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
176
177 /*
178 * Switches to specified vcpu, until a matching vcpu_put()
179 */
180 static void vcpu_load(struct kvm_vcpu *vcpu)
181 {
182 int cpu;
183
184 mutex_lock(&vcpu->mutex);
185 cpu = get_cpu();
186 preempt_notifier_register(&vcpu->preempt_notifier);
187 kvm_x86_ops->vcpu_load(vcpu, cpu);
188 put_cpu();
189 }
190
191 static void vcpu_put(struct kvm_vcpu *vcpu)
192 {
193 preempt_disable();
194 kvm_x86_ops->vcpu_put(vcpu);
195 preempt_notifier_unregister(&vcpu->preempt_notifier);
196 preempt_enable();
197 mutex_unlock(&vcpu->mutex);
198 }
199
200 static void ack_flush(void *_completed)
201 {
202 }
203
204 void kvm_flush_remote_tlbs(struct kvm *kvm)
205 {
206 int i, cpu;
207 cpumask_t cpus;
208 struct kvm_vcpu *vcpu;
209
210 cpus_clear(cpus);
211 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
212 vcpu = kvm->vcpus[i];
213 if (!vcpu)
214 continue;
215 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
216 continue;
217 cpu = vcpu->cpu;
218 if (cpu != -1 && cpu != raw_smp_processor_id())
219 cpu_set(cpu, cpus);
220 }
221 smp_call_function_mask(cpus, ack_flush, NULL, 1);
222 }
223
224 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
225 {
226 struct page *page;
227 int r;
228
229 mutex_init(&vcpu->mutex);
230 vcpu->cpu = -1;
231 vcpu->mmu.root_hpa = INVALID_PAGE;
232 vcpu->kvm = kvm;
233 vcpu->vcpu_id = id;
234 if (!irqchip_in_kernel(kvm) || id == 0)
235 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
236 else
237 vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
238 init_waitqueue_head(&vcpu->wq);
239
240 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
241 if (!page) {
242 r = -ENOMEM;
243 goto fail;
244 }
245 vcpu->run = page_address(page);
246
247 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
248 if (!page) {
249 r = -ENOMEM;
250 goto fail_free_run;
251 }
252 vcpu->pio_data = page_address(page);
253
254 r = kvm_mmu_create(vcpu);
255 if (r < 0)
256 goto fail_free_pio_data;
257
258 if (irqchip_in_kernel(kvm)) {
259 r = kvm_create_lapic(vcpu);
260 if (r < 0)
261 goto fail_mmu_destroy;
262 }
263
264 return 0;
265
266 fail_mmu_destroy:
267 kvm_mmu_destroy(vcpu);
268 fail_free_pio_data:
269 free_page((unsigned long)vcpu->pio_data);
270 fail_free_run:
271 free_page((unsigned long)vcpu->run);
272 fail:
273 return r;
274 }
275 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
276
277 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
278 {
279 kvm_free_lapic(vcpu);
280 kvm_mmu_destroy(vcpu);
281 free_page((unsigned long)vcpu->pio_data);
282 free_page((unsigned long)vcpu->run);
283 }
284 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
285
286 static struct kvm *kvm_create_vm(void)
287 {
288 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
289
290 if (!kvm)
291 return ERR_PTR(-ENOMEM);
292
293 kvm_io_bus_init(&kvm->pio_bus);
294 mutex_init(&kvm->lock);
295 INIT_LIST_HEAD(&kvm->active_mmu_pages);
296 kvm_io_bus_init(&kvm->mmio_bus);
297 spin_lock(&kvm_lock);
298 list_add(&kvm->vm_list, &vm_list);
299 spin_unlock(&kvm_lock);
300 return kvm;
301 }
302
303 /*
304 * Free any memory in @free but not in @dont.
305 */
306 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
307 struct kvm_memory_slot *dont)
308 {
309 int i;
310
311 if (!dont || free->phys_mem != dont->phys_mem)
312 if (free->phys_mem) {
313 for (i = 0; i < free->npages; ++i)
314 if (free->phys_mem[i])
315 __free_page(free->phys_mem[i]);
316 vfree(free->phys_mem);
317 }
318 if (!dont || free->rmap != dont->rmap)
319 vfree(free->rmap);
320
321 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
322 vfree(free->dirty_bitmap);
323
324 free->phys_mem = NULL;
325 free->npages = 0;
326 free->dirty_bitmap = NULL;
327 }
328
329 static void kvm_free_physmem(struct kvm *kvm)
330 {
331 int i;
332
333 for (i = 0; i < kvm->nmemslots; ++i)
334 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
335 }
336
337 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
338 {
339 int i;
340
341 for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
342 if (vcpu->pio.guest_pages[i]) {
343 __free_page(vcpu->pio.guest_pages[i]);
344 vcpu->pio.guest_pages[i] = NULL;
345 }
346 }
347
348 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
349 {
350 vcpu_load(vcpu);
351 kvm_mmu_unload(vcpu);
352 vcpu_put(vcpu);
353 }
354
355 static void kvm_free_vcpus(struct kvm *kvm)
356 {
357 unsigned int i;
358
359 /*
360 * Unpin any mmu pages first.
361 */
362 for (i = 0; i < KVM_MAX_VCPUS; ++i)
363 if (kvm->vcpus[i])
364 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
365 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
366 if (kvm->vcpus[i]) {
367 kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
368 kvm->vcpus[i] = NULL;
369 }
370 }
371
372 }
373
374 static void kvm_destroy_vm(struct kvm *kvm)
375 {
376 spin_lock(&kvm_lock);
377 list_del(&kvm->vm_list);
378 spin_unlock(&kvm_lock);
379 kvm_io_bus_destroy(&kvm->pio_bus);
380 kvm_io_bus_destroy(&kvm->mmio_bus);
381 kfree(kvm->vpic);
382 kfree(kvm->vioapic);
383 kvm_free_vcpus(kvm);
384 kvm_free_physmem(kvm);
385 kfree(kvm);
386 }
387
388 static int kvm_vm_release(struct inode *inode, struct file *filp)
389 {
390 struct kvm *kvm = filp->private_data;
391
392 kvm_destroy_vm(kvm);
393 return 0;
394 }
395
396 static void inject_gp(struct kvm_vcpu *vcpu)
397 {
398 kvm_x86_ops->inject_gp(vcpu, 0);
399 }
400
401 /*
402 * Load the pae pdptrs. Return true is they are all valid.
403 */
404 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
405 {
406 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
407 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
408 int i;
409 int ret;
410 u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
411
412 mutex_lock(&vcpu->kvm->lock);
413 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
414 offset * sizeof(u64), sizeof(pdpte));
415 if (ret < 0) {
416 ret = 0;
417 goto out;
418 }
419 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
420 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
421 ret = 0;
422 goto out;
423 }
424 }
425 ret = 1;
426
427 memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
428 out:
429 mutex_unlock(&vcpu->kvm->lock);
430
431 return ret;
432 }
433
434 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
435 {
436 if (cr0 & CR0_RESERVED_BITS) {
437 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
438 cr0, vcpu->cr0);
439 inject_gp(vcpu);
440 return;
441 }
442
443 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
444 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
445 inject_gp(vcpu);
446 return;
447 }
448
449 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
450 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
451 "and a clear PE flag\n");
452 inject_gp(vcpu);
453 return;
454 }
455
456 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
457 #ifdef CONFIG_X86_64
458 if ((vcpu->shadow_efer & EFER_LME)) {
459 int cs_db, cs_l;
460
461 if (!is_pae(vcpu)) {
462 printk(KERN_DEBUG "set_cr0: #GP, start paging "
463 "in long mode while PAE is disabled\n");
464 inject_gp(vcpu);
465 return;
466 }
467 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
468 if (cs_l) {
469 printk(KERN_DEBUG "set_cr0: #GP, start paging "
470 "in long mode while CS.L == 1\n");
471 inject_gp(vcpu);
472 return;
473
474 }
475 } else
476 #endif
477 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
478 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
479 "reserved bits\n");
480 inject_gp(vcpu);
481 return;
482 }
483
484 }
485
486 kvm_x86_ops->set_cr0(vcpu, cr0);
487 vcpu->cr0 = cr0;
488
489 mutex_lock(&vcpu->kvm->lock);
490 kvm_mmu_reset_context(vcpu);
491 mutex_unlock(&vcpu->kvm->lock);
492 return;
493 }
494 EXPORT_SYMBOL_GPL(set_cr0);
495
496 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
497 {
498 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
499 }
500 EXPORT_SYMBOL_GPL(lmsw);
501
502 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
503 {
504 if (cr4 & CR4_RESERVED_BITS) {
505 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
506 inject_gp(vcpu);
507 return;
508 }
509
510 if (is_long_mode(vcpu)) {
511 if (!(cr4 & X86_CR4_PAE)) {
512 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
513 "in long mode\n");
514 inject_gp(vcpu);
515 return;
516 }
517 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
518 && !load_pdptrs(vcpu, vcpu->cr3)) {
519 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
520 inject_gp(vcpu);
521 return;
522 }
523
524 if (cr4 & X86_CR4_VMXE) {
525 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
526 inject_gp(vcpu);
527 return;
528 }
529 kvm_x86_ops->set_cr4(vcpu, cr4);
530 vcpu->cr4 = cr4;
531 mutex_lock(&vcpu->kvm->lock);
532 kvm_mmu_reset_context(vcpu);
533 mutex_unlock(&vcpu->kvm->lock);
534 }
535 EXPORT_SYMBOL_GPL(set_cr4);
536
537 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
538 {
539 if (is_long_mode(vcpu)) {
540 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
541 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
542 inject_gp(vcpu);
543 return;
544 }
545 } else {
546 if (is_pae(vcpu)) {
547 if (cr3 & CR3_PAE_RESERVED_BITS) {
548 printk(KERN_DEBUG
549 "set_cr3: #GP, reserved bits\n");
550 inject_gp(vcpu);
551 return;
552 }
553 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
554 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
555 "reserved bits\n");
556 inject_gp(vcpu);
557 return;
558 }
559 }
560 /*
561 * We don't check reserved bits in nonpae mode, because
562 * this isn't enforced, and VMware depends on this.
563 */
564 }
565
566 mutex_lock(&vcpu->kvm->lock);
567 /*
568 * Does the new cr3 value map to physical memory? (Note, we
569 * catch an invalid cr3 even in real-mode, because it would
570 * cause trouble later on when we turn on paging anyway.)
571 *
572 * A real CPU would silently accept an invalid cr3 and would
573 * attempt to use it - with largely undefined (and often hard
574 * to debug) behavior on the guest side.
575 */
576 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
577 inject_gp(vcpu);
578 else {
579 vcpu->cr3 = cr3;
580 vcpu->mmu.new_cr3(vcpu);
581 }
582 mutex_unlock(&vcpu->kvm->lock);
583 }
584 EXPORT_SYMBOL_GPL(set_cr3);
585
586 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
587 {
588 if (cr8 & CR8_RESERVED_BITS) {
589 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
590 inject_gp(vcpu);
591 return;
592 }
593 if (irqchip_in_kernel(vcpu->kvm))
594 kvm_lapic_set_tpr(vcpu, cr8);
595 else
596 vcpu->cr8 = cr8;
597 }
598 EXPORT_SYMBOL_GPL(set_cr8);
599
600 unsigned long get_cr8(struct kvm_vcpu *vcpu)
601 {
602 if (irqchip_in_kernel(vcpu->kvm))
603 return kvm_lapic_get_cr8(vcpu);
604 else
605 return vcpu->cr8;
606 }
607 EXPORT_SYMBOL_GPL(get_cr8);
608
609 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
610 {
611 if (irqchip_in_kernel(vcpu->kvm))
612 return vcpu->apic_base;
613 else
614 return vcpu->apic_base;
615 }
616 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
617
618 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
619 {
620 /* TODO: reserve bits check */
621 if (irqchip_in_kernel(vcpu->kvm))
622 kvm_lapic_set_base(vcpu, data);
623 else
624 vcpu->apic_base = data;
625 }
626 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
627
628 void fx_init(struct kvm_vcpu *vcpu)
629 {
630 unsigned after_mxcsr_mask;
631
632 /* Initialize guest FPU by resetting ours and saving into guest's */
633 preempt_disable();
634 fx_save(&vcpu->host_fx_image);
635 fpu_init();
636 fx_save(&vcpu->guest_fx_image);
637 fx_restore(&vcpu->host_fx_image);
638 preempt_enable();
639
640 vcpu->cr0 |= X86_CR0_ET;
641 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
642 vcpu->guest_fx_image.mxcsr = 0x1f80;
643 memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
644 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
645 }
646 EXPORT_SYMBOL_GPL(fx_init);
647
648 /*
649 * Allocate some memory and give it an address in the guest physical address
650 * space.
651 *
652 * Discontiguous memory is allowed, mostly for framebuffers.
653 */
654 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
655 struct kvm_memory_region *mem)
656 {
657 int r;
658 gfn_t base_gfn;
659 unsigned long npages;
660 unsigned long i;
661 struct kvm_memory_slot *memslot;
662 struct kvm_memory_slot old, new;
663
664 r = -EINVAL;
665 /* General sanity checks */
666 if (mem->memory_size & (PAGE_SIZE - 1))
667 goto out;
668 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
669 goto out;
670 if (mem->slot >= KVM_MEMORY_SLOTS)
671 goto out;
672 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
673 goto out;
674
675 memslot = &kvm->memslots[mem->slot];
676 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
677 npages = mem->memory_size >> PAGE_SHIFT;
678
679 if (!npages)
680 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
681
682 mutex_lock(&kvm->lock);
683
684 new = old = *memslot;
685
686 new.base_gfn = base_gfn;
687 new.npages = npages;
688 new.flags = mem->flags;
689
690 /* Disallow changing a memory slot's size. */
691 r = -EINVAL;
692 if (npages && old.npages && npages != old.npages)
693 goto out_unlock;
694
695 /* Check for overlaps */
696 r = -EEXIST;
697 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
698 struct kvm_memory_slot *s = &kvm->memslots[i];
699
700 if (s == memslot)
701 continue;
702 if (!((base_gfn + npages <= s->base_gfn) ||
703 (base_gfn >= s->base_gfn + s->npages)))
704 goto out_unlock;
705 }
706
707 /* Deallocate if slot is being removed */
708 if (!npages)
709 new.phys_mem = NULL;
710
711 /* Free page dirty bitmap if unneeded */
712 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
713 new.dirty_bitmap = NULL;
714
715 r = -ENOMEM;
716
717 /* Allocate if a slot is being created */
718 if (npages && !new.phys_mem) {
719 new.phys_mem = vmalloc(npages * sizeof(struct page *));
720
721 if (!new.phys_mem)
722 goto out_unlock;
723
724 new.rmap = vmalloc(npages * sizeof(struct page*));
725
726 if (!new.rmap)
727 goto out_unlock;
728
729 memset(new.phys_mem, 0, npages * sizeof(struct page *));
730 memset(new.rmap, 0, npages * sizeof(*new.rmap));
731 for (i = 0; i < npages; ++i) {
732 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
733 | __GFP_ZERO);
734 if (!new.phys_mem[i])
735 goto out_unlock;
736 }
737 }
738
739 /* Allocate page dirty bitmap if needed */
740 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
741 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
742
743 new.dirty_bitmap = vmalloc(dirty_bytes);
744 if (!new.dirty_bitmap)
745 goto out_unlock;
746 memset(new.dirty_bitmap, 0, dirty_bytes);
747 }
748
749 if (mem->slot >= kvm->nmemslots)
750 kvm->nmemslots = mem->slot + 1;
751
752 if (!kvm->n_requested_mmu_pages) {
753 unsigned int n_pages;
754
755 if (npages) {
756 n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
757 kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
758 n_pages);
759 } else {
760 unsigned int nr_mmu_pages;
761
762 n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
763 nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
764 nr_mmu_pages = max(nr_mmu_pages,
765 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
766 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
767 }
768 }
769
770 *memslot = new;
771
772 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
773 kvm_flush_remote_tlbs(kvm);
774
775 mutex_unlock(&kvm->lock);
776
777 kvm_free_physmem_slot(&old, &new);
778 return 0;
779
780 out_unlock:
781 mutex_unlock(&kvm->lock);
782 kvm_free_physmem_slot(&new, &old);
783 out:
784 return r;
785 }
786
787 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
788 u32 kvm_nr_mmu_pages)
789 {
790 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
791 return -EINVAL;
792
793 mutex_lock(&kvm->lock);
794
795 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
796 kvm->n_requested_mmu_pages = kvm_nr_mmu_pages;
797
798 mutex_unlock(&kvm->lock);
799 return 0;
800 }
801
802 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
803 {
804 return kvm->n_alloc_mmu_pages;
805 }
806
807 /*
808 * Get (and clear) the dirty memory log for a memory slot.
809 */
810 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
811 struct kvm_dirty_log *log)
812 {
813 struct kvm_memory_slot *memslot;
814 int r, i;
815 int n;
816 unsigned long any = 0;
817
818 mutex_lock(&kvm->lock);
819
820 r = -EINVAL;
821 if (log->slot >= KVM_MEMORY_SLOTS)
822 goto out;
823
824 memslot = &kvm->memslots[log->slot];
825 r = -ENOENT;
826 if (!memslot->dirty_bitmap)
827 goto out;
828
829 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
830
831 for (i = 0; !any && i < n/sizeof(long); ++i)
832 any = memslot->dirty_bitmap[i];
833
834 r = -EFAULT;
835 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
836 goto out;
837
838 /* If nothing is dirty, don't bother messing with page tables. */
839 if (any) {
840 kvm_mmu_slot_remove_write_access(kvm, log->slot);
841 kvm_flush_remote_tlbs(kvm);
842 memset(memslot->dirty_bitmap, 0, n);
843 }
844
845 r = 0;
846
847 out:
848 mutex_unlock(&kvm->lock);
849 return r;
850 }
851
852 /*
853 * Set a new alias region. Aliases map a portion of physical memory into
854 * another portion. This is useful for memory windows, for example the PC
855 * VGA region.
856 */
857 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
858 struct kvm_memory_alias *alias)
859 {
860 int r, n;
861 struct kvm_mem_alias *p;
862
863 r = -EINVAL;
864 /* General sanity checks */
865 if (alias->memory_size & (PAGE_SIZE - 1))
866 goto out;
867 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
868 goto out;
869 if (alias->slot >= KVM_ALIAS_SLOTS)
870 goto out;
871 if (alias->guest_phys_addr + alias->memory_size
872 < alias->guest_phys_addr)
873 goto out;
874 if (alias->target_phys_addr + alias->memory_size
875 < alias->target_phys_addr)
876 goto out;
877
878 mutex_lock(&kvm->lock);
879
880 p = &kvm->aliases[alias->slot];
881 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
882 p->npages = alias->memory_size >> PAGE_SHIFT;
883 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
884
885 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
886 if (kvm->aliases[n - 1].npages)
887 break;
888 kvm->naliases = n;
889
890 kvm_mmu_zap_all(kvm);
891
892 mutex_unlock(&kvm->lock);
893
894 return 0;
895
896 out:
897 return r;
898 }
899
900 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
901 {
902 int r;
903
904 r = 0;
905 switch (chip->chip_id) {
906 case KVM_IRQCHIP_PIC_MASTER:
907 memcpy (&chip->chip.pic,
908 &pic_irqchip(kvm)->pics[0],
909 sizeof(struct kvm_pic_state));
910 break;
911 case KVM_IRQCHIP_PIC_SLAVE:
912 memcpy (&chip->chip.pic,
913 &pic_irqchip(kvm)->pics[1],
914 sizeof(struct kvm_pic_state));
915 break;
916 case KVM_IRQCHIP_IOAPIC:
917 memcpy (&chip->chip.ioapic,
918 ioapic_irqchip(kvm),
919 sizeof(struct kvm_ioapic_state));
920 break;
921 default:
922 r = -EINVAL;
923 break;
924 }
925 return r;
926 }
927
928 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
929 {
930 int r;
931
932 r = 0;
933 switch (chip->chip_id) {
934 case KVM_IRQCHIP_PIC_MASTER:
935 memcpy (&pic_irqchip(kvm)->pics[0],
936 &chip->chip.pic,
937 sizeof(struct kvm_pic_state));
938 break;
939 case KVM_IRQCHIP_PIC_SLAVE:
940 memcpy (&pic_irqchip(kvm)->pics[1],
941 &chip->chip.pic,
942 sizeof(struct kvm_pic_state));
943 break;
944 case KVM_IRQCHIP_IOAPIC:
945 memcpy (ioapic_irqchip(kvm),
946 &chip->chip.ioapic,
947 sizeof(struct kvm_ioapic_state));
948 break;
949 default:
950 r = -EINVAL;
951 break;
952 }
953 kvm_pic_update_irq(pic_irqchip(kvm));
954 return r;
955 }
956
957 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
958 {
959 int i;
960 struct kvm_mem_alias *alias;
961
962 for (i = 0; i < kvm->naliases; ++i) {
963 alias = &kvm->aliases[i];
964 if (gfn >= alias->base_gfn
965 && gfn < alias->base_gfn + alias->npages)
966 return alias->target_gfn + gfn - alias->base_gfn;
967 }
968 return gfn;
969 }
970
971 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
972 {
973 int i;
974
975 for (i = 0; i < kvm->nmemslots; ++i) {
976 struct kvm_memory_slot *memslot = &kvm->memslots[i];
977
978 if (gfn >= memslot->base_gfn
979 && gfn < memslot->base_gfn + memslot->npages)
980 return memslot;
981 }
982 return NULL;
983 }
984
985 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
986 {
987 gfn = unalias_gfn(kvm, gfn);
988 return __gfn_to_memslot(kvm, gfn);
989 }
990
991 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
992 {
993 struct kvm_memory_slot *slot;
994
995 gfn = unalias_gfn(kvm, gfn);
996 slot = __gfn_to_memslot(kvm, gfn);
997 if (!slot)
998 return NULL;
999 return slot->phys_mem[gfn - slot->base_gfn];
1000 }
1001 EXPORT_SYMBOL_GPL(gfn_to_page);
1002
1003 static int next_segment(unsigned long len, int offset)
1004 {
1005 if (len > PAGE_SIZE - offset)
1006 return PAGE_SIZE - offset;
1007 else
1008 return len;
1009 }
1010
1011 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1012 int len)
1013 {
1014 void *page_virt;
1015 struct page *page;
1016
1017 page = gfn_to_page(kvm, gfn);
1018 if (!page)
1019 return -EFAULT;
1020 page_virt = kmap_atomic(page, KM_USER0);
1021
1022 memcpy(data, page_virt + offset, len);
1023
1024 kunmap_atomic(page_virt, KM_USER0);
1025 return 0;
1026 }
1027 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1028
1029 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1030 {
1031 gfn_t gfn = gpa >> PAGE_SHIFT;
1032 int seg;
1033 int offset = offset_in_page(gpa);
1034 int ret;
1035
1036 while ((seg = next_segment(len, offset)) != 0) {
1037 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1038 if (ret < 0)
1039 return ret;
1040 offset = 0;
1041 len -= seg;
1042 data += seg;
1043 ++gfn;
1044 }
1045 return 0;
1046 }
1047 EXPORT_SYMBOL_GPL(kvm_read_guest);
1048
1049 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1050 int offset, int len)
1051 {
1052 void *page_virt;
1053 struct page *page;
1054
1055 page = gfn_to_page(kvm, gfn);
1056 if (!page)
1057 return -EFAULT;
1058 page_virt = kmap_atomic(page, KM_USER0);
1059
1060 memcpy(page_virt + offset, data, len);
1061
1062 kunmap_atomic(page_virt, KM_USER0);
1063 mark_page_dirty(kvm, gfn);
1064 return 0;
1065 }
1066 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1067
1068 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1069 unsigned long len)
1070 {
1071 gfn_t gfn = gpa >> PAGE_SHIFT;
1072 int seg;
1073 int offset = offset_in_page(gpa);
1074 int ret;
1075
1076 while ((seg = next_segment(len, offset)) != 0) {
1077 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1078 if (ret < 0)
1079 return ret;
1080 offset = 0;
1081 len -= seg;
1082 data += seg;
1083 ++gfn;
1084 }
1085 return 0;
1086 }
1087
1088 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1089 {
1090 void *page_virt;
1091 struct page *page;
1092
1093 page = gfn_to_page(kvm, gfn);
1094 if (!page)
1095 return -EFAULT;
1096 page_virt = kmap_atomic(page, KM_USER0);
1097
1098 memset(page_virt + offset, 0, len);
1099
1100 kunmap_atomic(page_virt, KM_USER0);
1101 return 0;
1102 }
1103 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1104
1105 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1106 {
1107 gfn_t gfn = gpa >> PAGE_SHIFT;
1108 int seg;
1109 int offset = offset_in_page(gpa);
1110 int ret;
1111
1112 while ((seg = next_segment(len, offset)) != 0) {
1113 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1114 if (ret < 0)
1115 return ret;
1116 offset = 0;
1117 len -= seg;
1118 ++gfn;
1119 }
1120 return 0;
1121 }
1122 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1123
1124 /* WARNING: Does not work on aliased pages. */
1125 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1126 {
1127 struct kvm_memory_slot *memslot;
1128
1129 memslot = __gfn_to_memslot(kvm, gfn);
1130 if (memslot && memslot->dirty_bitmap) {
1131 unsigned long rel_gfn = gfn - memslot->base_gfn;
1132
1133 /* avoid RMW */
1134 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1135 set_bit(rel_gfn, memslot->dirty_bitmap);
1136 }
1137 }
1138
1139 int emulator_read_std(unsigned long addr,
1140 void *val,
1141 unsigned int bytes,
1142 struct kvm_vcpu *vcpu)
1143 {
1144 void *data = val;
1145
1146 while (bytes) {
1147 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1148 unsigned offset = addr & (PAGE_SIZE-1);
1149 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1150 int ret;
1151
1152 if (gpa == UNMAPPED_GVA)
1153 return X86EMUL_PROPAGATE_FAULT;
1154 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1155 if (ret < 0)
1156 return X86EMUL_UNHANDLEABLE;
1157
1158 bytes -= tocopy;
1159 data += tocopy;
1160 addr += tocopy;
1161 }
1162
1163 return X86EMUL_CONTINUE;
1164 }
1165 EXPORT_SYMBOL_GPL(emulator_read_std);
1166
1167 static int emulator_write_std(unsigned long addr,
1168 const void *val,
1169 unsigned int bytes,
1170 struct kvm_vcpu *vcpu)
1171 {
1172 pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
1173 return X86EMUL_UNHANDLEABLE;
1174 }
1175
1176 /*
1177 * Only apic need an MMIO device hook, so shortcut now..
1178 */
1179 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1180 gpa_t addr)
1181 {
1182 struct kvm_io_device *dev;
1183
1184 if (vcpu->apic) {
1185 dev = &vcpu->apic->dev;
1186 if (dev->in_range(dev, addr))
1187 return dev;
1188 }
1189 return NULL;
1190 }
1191
1192 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1193 gpa_t addr)
1194 {
1195 struct kvm_io_device *dev;
1196
1197 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1198 if (dev == NULL)
1199 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1200 return dev;
1201 }
1202
1203 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1204 gpa_t addr)
1205 {
1206 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1207 }
1208
1209 static int emulator_read_emulated(unsigned long addr,
1210 void *val,
1211 unsigned int bytes,
1212 struct kvm_vcpu *vcpu)
1213 {
1214 struct kvm_io_device *mmio_dev;
1215 gpa_t gpa;
1216
1217 if (vcpu->mmio_read_completed) {
1218 memcpy(val, vcpu->mmio_data, bytes);
1219 vcpu->mmio_read_completed = 0;
1220 return X86EMUL_CONTINUE;
1221 } else if (emulator_read_std(addr, val, bytes, vcpu)
1222 == X86EMUL_CONTINUE)
1223 return X86EMUL_CONTINUE;
1224
1225 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1226 if (gpa == UNMAPPED_GVA)
1227 return X86EMUL_PROPAGATE_FAULT;
1228
1229 /*
1230 * Is this MMIO handled locally?
1231 */
1232 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1233 if (mmio_dev) {
1234 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1235 return X86EMUL_CONTINUE;
1236 }
1237
1238 vcpu->mmio_needed = 1;
1239 vcpu->mmio_phys_addr = gpa;
1240 vcpu->mmio_size = bytes;
1241 vcpu->mmio_is_write = 0;
1242
1243 return X86EMUL_UNHANDLEABLE;
1244 }
1245
1246 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1247 const void *val, int bytes)
1248 {
1249 int ret;
1250
1251 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1252 if (ret < 0)
1253 return 0;
1254 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1255 return 1;
1256 }
1257
1258 static int emulator_write_emulated_onepage(unsigned long addr,
1259 const void *val,
1260 unsigned int bytes,
1261 struct kvm_vcpu *vcpu)
1262 {
1263 struct kvm_io_device *mmio_dev;
1264 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1265
1266 if (gpa == UNMAPPED_GVA) {
1267 kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
1268 return X86EMUL_PROPAGATE_FAULT;
1269 }
1270
1271 if (emulator_write_phys(vcpu, gpa, val, bytes))
1272 return X86EMUL_CONTINUE;
1273
1274 /*
1275 * Is this MMIO handled locally?
1276 */
1277 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1278 if (mmio_dev) {
1279 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1280 return X86EMUL_CONTINUE;
1281 }
1282
1283 vcpu->mmio_needed = 1;
1284 vcpu->mmio_phys_addr = gpa;
1285 vcpu->mmio_size = bytes;
1286 vcpu->mmio_is_write = 1;
1287 memcpy(vcpu->mmio_data, val, bytes);
1288
1289 return X86EMUL_CONTINUE;
1290 }
1291
1292 int emulator_write_emulated(unsigned long addr,
1293 const void *val,
1294 unsigned int bytes,
1295 struct kvm_vcpu *vcpu)
1296 {
1297 /* Crossing a page boundary? */
1298 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1299 int rc, now;
1300
1301 now = -addr & ~PAGE_MASK;
1302 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1303 if (rc != X86EMUL_CONTINUE)
1304 return rc;
1305 addr += now;
1306 val += now;
1307 bytes -= now;
1308 }
1309 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1310 }
1311 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1312
1313 static int emulator_cmpxchg_emulated(unsigned long addr,
1314 const void *old,
1315 const void *new,
1316 unsigned int bytes,
1317 struct kvm_vcpu *vcpu)
1318 {
1319 static int reported;
1320
1321 if (!reported) {
1322 reported = 1;
1323 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1324 }
1325 return emulator_write_emulated(addr, new, bytes, vcpu);
1326 }
1327
1328 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1329 {
1330 return kvm_x86_ops->get_segment_base(vcpu, seg);
1331 }
1332
1333 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1334 {
1335 return X86EMUL_CONTINUE;
1336 }
1337
1338 int emulate_clts(struct kvm_vcpu *vcpu)
1339 {
1340 kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
1341 return X86EMUL_CONTINUE;
1342 }
1343
1344 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1345 {
1346 struct kvm_vcpu *vcpu = ctxt->vcpu;
1347
1348 switch (dr) {
1349 case 0 ... 3:
1350 *dest = kvm_x86_ops->get_dr(vcpu, dr);
1351 return X86EMUL_CONTINUE;
1352 default:
1353 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
1354 return X86EMUL_UNHANDLEABLE;
1355 }
1356 }
1357
1358 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1359 {
1360 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1361 int exception;
1362
1363 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1364 if (exception) {
1365 /* FIXME: better handling */
1366 return X86EMUL_UNHANDLEABLE;
1367 }
1368 return X86EMUL_CONTINUE;
1369 }
1370
1371 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
1372 {
1373 static int reported;
1374 u8 opcodes[4];
1375 unsigned long rip = vcpu->rip;
1376 unsigned long rip_linear;
1377
1378 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
1379
1380 if (reported)
1381 return;
1382
1383 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
1384
1385 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
1386 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1387 reported = 1;
1388 }
1389 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
1390
1391 struct x86_emulate_ops emulate_ops = {
1392 .read_std = emulator_read_std,
1393 .write_std = emulator_write_std,
1394 .read_emulated = emulator_read_emulated,
1395 .write_emulated = emulator_write_emulated,
1396 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1397 };
1398
1399 int emulate_instruction(struct kvm_vcpu *vcpu,
1400 struct kvm_run *run,
1401 unsigned long cr2,
1402 u16 error_code,
1403 int no_decode)
1404 {
1405 int r;
1406
1407 vcpu->mmio_fault_cr2 = cr2;
1408 kvm_x86_ops->cache_regs(vcpu);
1409
1410 vcpu->mmio_is_write = 0;
1411 vcpu->pio.string = 0;
1412
1413 if (!no_decode) {
1414 int cs_db, cs_l;
1415 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1416
1417 vcpu->emulate_ctxt.vcpu = vcpu;
1418 vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
1419 vcpu->emulate_ctxt.cr2 = cr2;
1420 vcpu->emulate_ctxt.mode =
1421 (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
1422 ? X86EMUL_MODE_REAL : cs_l
1423 ? X86EMUL_MODE_PROT64 : cs_db
1424 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1425
1426 if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1427 vcpu->emulate_ctxt.cs_base = 0;
1428 vcpu->emulate_ctxt.ds_base = 0;
1429 vcpu->emulate_ctxt.es_base = 0;
1430 vcpu->emulate_ctxt.ss_base = 0;
1431 } else {
1432 vcpu->emulate_ctxt.cs_base =
1433 get_segment_base(vcpu, VCPU_SREG_CS);
1434 vcpu->emulate_ctxt.ds_base =
1435 get_segment_base(vcpu, VCPU_SREG_DS);
1436 vcpu->emulate_ctxt.es_base =
1437 get_segment_base(vcpu, VCPU_SREG_ES);
1438 vcpu->emulate_ctxt.ss_base =
1439 get_segment_base(vcpu, VCPU_SREG_SS);
1440 }
1441
1442 vcpu->emulate_ctxt.gs_base =
1443 get_segment_base(vcpu, VCPU_SREG_GS);
1444 vcpu->emulate_ctxt.fs_base =
1445 get_segment_base(vcpu, VCPU_SREG_FS);
1446
1447 r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
1448 if (r) {
1449 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1450 return EMULATE_DONE;
1451 return EMULATE_FAIL;
1452 }
1453 }
1454
1455 r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
1456
1457 if (vcpu->pio.string)
1458 return EMULATE_DO_MMIO;
1459
1460 if ((r || vcpu->mmio_is_write) && run) {
1461 run->exit_reason = KVM_EXIT_MMIO;
1462 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1463 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1464 run->mmio.len = vcpu->mmio_size;
1465 run->mmio.is_write = vcpu->mmio_is_write;
1466 }
1467
1468 if (r) {
1469 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1470 return EMULATE_DONE;
1471 if (!vcpu->mmio_needed) {
1472 kvm_report_emulation_failure(vcpu, "mmio");
1473 return EMULATE_FAIL;
1474 }
1475 return EMULATE_DO_MMIO;
1476 }
1477
1478 kvm_x86_ops->decache_regs(vcpu);
1479 kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
1480
1481 if (vcpu->mmio_is_write) {
1482 vcpu->mmio_needed = 0;
1483 return EMULATE_DO_MMIO;
1484 }
1485
1486 return EMULATE_DONE;
1487 }
1488 EXPORT_SYMBOL_GPL(emulate_instruction);
1489
1490 /*
1491 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1492 */
1493 static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1494 {
1495 DECLARE_WAITQUEUE(wait, current);
1496
1497 add_wait_queue(&vcpu->wq, &wait);
1498
1499 /*
1500 * We will block until either an interrupt or a signal wakes us up
1501 */
1502 while (!kvm_cpu_has_interrupt(vcpu)
1503 && !signal_pending(current)
1504 && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
1505 && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
1506 set_current_state(TASK_INTERRUPTIBLE);
1507 vcpu_put(vcpu);
1508 schedule();
1509 vcpu_load(vcpu);
1510 }
1511
1512 __set_current_state(TASK_RUNNING);
1513 remove_wait_queue(&vcpu->wq, &wait);
1514 }
1515
1516 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1517 {
1518 ++vcpu->stat.halt_exits;
1519 if (irqchip_in_kernel(vcpu->kvm)) {
1520 vcpu->mp_state = VCPU_MP_STATE_HALTED;
1521 kvm_vcpu_block(vcpu);
1522 if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
1523 return -EINTR;
1524 return 1;
1525 } else {
1526 vcpu->run->exit_reason = KVM_EXIT_HLT;
1527 return 0;
1528 }
1529 }
1530 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1531
1532 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
1533 {
1534 unsigned long nr, a0, a1, a2, a3, ret;
1535
1536 kvm_x86_ops->cache_regs(vcpu);
1537
1538 nr = vcpu->regs[VCPU_REGS_RAX];
1539 a0 = vcpu->regs[VCPU_REGS_RBX];
1540 a1 = vcpu->regs[VCPU_REGS_RCX];
1541 a2 = vcpu->regs[VCPU_REGS_RDX];
1542 a3 = vcpu->regs[VCPU_REGS_RSI];
1543
1544 if (!is_long_mode(vcpu)) {
1545 nr &= 0xFFFFFFFF;
1546 a0 &= 0xFFFFFFFF;
1547 a1 &= 0xFFFFFFFF;
1548 a2 &= 0xFFFFFFFF;
1549 a3 &= 0xFFFFFFFF;
1550 }
1551
1552 switch (nr) {
1553 default:
1554 ret = -KVM_ENOSYS;
1555 break;
1556 }
1557 vcpu->regs[VCPU_REGS_RAX] = ret;
1558 kvm_x86_ops->decache_regs(vcpu);
1559 return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
1562
1563 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
1564 {
1565 char instruction[3];
1566 int ret = 0;
1567
1568 mutex_lock(&vcpu->kvm->lock);
1569
1570 /*
1571 * Blow out the MMU to ensure that no other VCPU has an active mapping
1572 * to ensure that the updated hypercall appears atomically across all
1573 * VCPUs.
1574 */
1575 kvm_mmu_zap_all(vcpu->kvm);
1576
1577 kvm_x86_ops->cache_regs(vcpu);
1578 kvm_x86_ops->patch_hypercall(vcpu, instruction);
1579 if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
1580 != X86EMUL_CONTINUE)
1581 ret = -EFAULT;
1582
1583 mutex_unlock(&vcpu->kvm->lock);
1584
1585 return ret;
1586 }
1587
1588 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1589 {
1590 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1591 }
1592
1593 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1594 {
1595 struct descriptor_table dt = { limit, base };
1596
1597 kvm_x86_ops->set_gdt(vcpu, &dt);
1598 }
1599
1600 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1601 {
1602 struct descriptor_table dt = { limit, base };
1603
1604 kvm_x86_ops->set_idt(vcpu, &dt);
1605 }
1606
1607 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1608 unsigned long *rflags)
1609 {
1610 lmsw(vcpu, msw);
1611 *rflags = kvm_x86_ops->get_rflags(vcpu);
1612 }
1613
1614 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1615 {
1616 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
1617 switch (cr) {
1618 case 0:
1619 return vcpu->cr0;
1620 case 2:
1621 return vcpu->cr2;
1622 case 3:
1623 return vcpu->cr3;
1624 case 4:
1625 return vcpu->cr4;
1626 default:
1627 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1628 return 0;
1629 }
1630 }
1631
1632 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1633 unsigned long *rflags)
1634 {
1635 switch (cr) {
1636 case 0:
1637 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1638 *rflags = kvm_x86_ops->get_rflags(vcpu);
1639 break;
1640 case 2:
1641 vcpu->cr2 = val;
1642 break;
1643 case 3:
1644 set_cr3(vcpu, val);
1645 break;
1646 case 4:
1647 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1648 break;
1649 default:
1650 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1651 }
1652 }
1653
1654 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1655 {
1656 u64 data;
1657
1658 switch (msr) {
1659 case 0xc0010010: /* SYSCFG */
1660 case 0xc0010015: /* HWCR */
1661 case MSR_IA32_PLATFORM_ID:
1662 case MSR_IA32_P5_MC_ADDR:
1663 case MSR_IA32_P5_MC_TYPE:
1664 case MSR_IA32_MC0_CTL:
1665 case MSR_IA32_MCG_STATUS:
1666 case MSR_IA32_MCG_CAP:
1667 case MSR_IA32_MC0_MISC:
1668 case MSR_IA32_MC0_MISC+4:
1669 case MSR_IA32_MC0_MISC+8:
1670 case MSR_IA32_MC0_MISC+12:
1671 case MSR_IA32_MC0_MISC+16:
1672 case MSR_IA32_UCODE_REV:
1673 case MSR_IA32_PERF_STATUS:
1674 case MSR_IA32_EBL_CR_POWERON:
1675 /* MTRR registers */
1676 case 0xfe:
1677 case 0x200 ... 0x2ff:
1678 data = 0;
1679 break;
1680 case 0xcd: /* fsb frequency */
1681 data = 3;
1682 break;
1683 case MSR_IA32_APICBASE:
1684 data = kvm_get_apic_base(vcpu);
1685 break;
1686 case MSR_IA32_MISC_ENABLE:
1687 data = vcpu->ia32_misc_enable_msr;
1688 break;
1689 #ifdef CONFIG_X86_64
1690 case MSR_EFER:
1691 data = vcpu->shadow_efer;
1692 break;
1693 #endif
1694 default:
1695 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1696 return 1;
1697 }
1698 *pdata = data;
1699 return 0;
1700 }
1701 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1702
1703 /*
1704 * Reads an msr value (of 'msr_index') into 'pdata'.
1705 * Returns 0 on success, non-0 otherwise.
1706 * Assumes vcpu_load() was already called.
1707 */
1708 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1709 {
1710 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1711 }
1712
1713 #ifdef CONFIG_X86_64
1714
1715 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1716 {
1717 if (efer & EFER_RESERVED_BITS) {
1718 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1719 efer);
1720 inject_gp(vcpu);
1721 return;
1722 }
1723
1724 if (is_paging(vcpu)
1725 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1726 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1727 inject_gp(vcpu);
1728 return;
1729 }
1730
1731 kvm_x86_ops->set_efer(vcpu, efer);
1732
1733 efer &= ~EFER_LMA;
1734 efer |= vcpu->shadow_efer & EFER_LMA;
1735
1736 vcpu->shadow_efer = efer;
1737 }
1738
1739 #endif
1740
1741 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1742 {
1743 switch (msr) {
1744 #ifdef CONFIG_X86_64
1745 case MSR_EFER:
1746 set_efer(vcpu, data);
1747 break;
1748 #endif
1749 case MSR_IA32_MC0_STATUS:
1750 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1751 __FUNCTION__, data);
1752 break;
1753 case MSR_IA32_MCG_STATUS:
1754 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1755 __FUNCTION__, data);
1756 break;
1757 case MSR_IA32_UCODE_REV:
1758 case MSR_IA32_UCODE_WRITE:
1759 case 0x200 ... 0x2ff: /* MTRRs */
1760 break;
1761 case MSR_IA32_APICBASE:
1762 kvm_set_apic_base(vcpu, data);
1763 break;
1764 case MSR_IA32_MISC_ENABLE:
1765 vcpu->ia32_misc_enable_msr = data;
1766 break;
1767 default:
1768 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
1769 return 1;
1770 }
1771 return 0;
1772 }
1773 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1774
1775 /*
1776 * Writes msr value into into the appropriate "register".
1777 * Returns 0 on success, non-0 otherwise.
1778 * Assumes vcpu_load() was already called.
1779 */
1780 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1781 {
1782 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
1783 }
1784
1785 void kvm_resched(struct kvm_vcpu *vcpu)
1786 {
1787 if (!need_resched())
1788 return;
1789 cond_resched();
1790 }
1791 EXPORT_SYMBOL_GPL(kvm_resched);
1792
1793 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1794 {
1795 int i;
1796 u32 function;
1797 struct kvm_cpuid_entry *e, *best;
1798
1799 kvm_x86_ops->cache_regs(vcpu);
1800 function = vcpu->regs[VCPU_REGS_RAX];
1801 vcpu->regs[VCPU_REGS_RAX] = 0;
1802 vcpu->regs[VCPU_REGS_RBX] = 0;
1803 vcpu->regs[VCPU_REGS_RCX] = 0;
1804 vcpu->regs[VCPU_REGS_RDX] = 0;
1805 best = NULL;
1806 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1807 e = &vcpu->cpuid_entries[i];
1808 if (e->function == function) {
1809 best = e;
1810 break;
1811 }
1812 /*
1813 * Both basic or both extended?
1814 */
1815 if (((e->function ^ function) & 0x80000000) == 0)
1816 if (!best || e->function > best->function)
1817 best = e;
1818 }
1819 if (best) {
1820 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1821 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1822 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1823 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1824 }
1825 kvm_x86_ops->decache_regs(vcpu);
1826 kvm_x86_ops->skip_emulated_instruction(vcpu);
1827 }
1828 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1829
1830 static int pio_copy_data(struct kvm_vcpu *vcpu)
1831 {
1832 void *p = vcpu->pio_data;
1833 void *q;
1834 unsigned bytes;
1835 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1836
1837 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1838 PAGE_KERNEL);
1839 if (!q) {
1840 free_pio_guest_pages(vcpu);
1841 return -ENOMEM;
1842 }
1843 q += vcpu->pio.guest_page_offset;
1844 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1845 if (vcpu->pio.in)
1846 memcpy(q, p, bytes);
1847 else
1848 memcpy(p, q, bytes);
1849 q -= vcpu->pio.guest_page_offset;
1850 vunmap(q);
1851 free_pio_guest_pages(vcpu);
1852 return 0;
1853 }
1854
1855 static int complete_pio(struct kvm_vcpu *vcpu)
1856 {
1857 struct kvm_pio_request *io = &vcpu->pio;
1858 long delta;
1859 int r;
1860
1861 kvm_x86_ops->cache_regs(vcpu);
1862
1863 if (!io->string) {
1864 if (io->in)
1865 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1866 io->size);
1867 } else {
1868 if (io->in) {
1869 r = pio_copy_data(vcpu);
1870 if (r) {
1871 kvm_x86_ops->cache_regs(vcpu);
1872 return r;
1873 }
1874 }
1875
1876 delta = 1;
1877 if (io->rep) {
1878 delta *= io->cur_count;
1879 /*
1880 * The size of the register should really depend on
1881 * current address size.
1882 */
1883 vcpu->regs[VCPU_REGS_RCX] -= delta;
1884 }
1885 if (io->down)
1886 delta = -delta;
1887 delta *= io->size;
1888 if (io->in)
1889 vcpu->regs[VCPU_REGS_RDI] += delta;
1890 else
1891 vcpu->regs[VCPU_REGS_RSI] += delta;
1892 }
1893
1894 kvm_x86_ops->decache_regs(vcpu);
1895
1896 io->count -= io->cur_count;
1897 io->cur_count = 0;
1898
1899 return 0;
1900 }
1901
1902 static void kernel_pio(struct kvm_io_device *pio_dev,
1903 struct kvm_vcpu *vcpu,
1904 void *pd)
1905 {
1906 /* TODO: String I/O for in kernel device */
1907
1908 mutex_lock(&vcpu->kvm->lock);
1909 if (vcpu->pio.in)
1910 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1911 vcpu->pio.size,
1912 pd);
1913 else
1914 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1915 vcpu->pio.size,
1916 pd);
1917 mutex_unlock(&vcpu->kvm->lock);
1918 }
1919
1920 static void pio_string_write(struct kvm_io_device *pio_dev,
1921 struct kvm_vcpu *vcpu)
1922 {
1923 struct kvm_pio_request *io = &vcpu->pio;
1924 void *pd = vcpu->pio_data;
1925 int i;
1926
1927 mutex_lock(&vcpu->kvm->lock);
1928 for (i = 0; i < io->cur_count; i++) {
1929 kvm_iodevice_write(pio_dev, io->port,
1930 io->size,
1931 pd);
1932 pd += io->size;
1933 }
1934 mutex_unlock(&vcpu->kvm->lock);
1935 }
1936
1937 int kvm_emulate_pio (struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1938 int size, unsigned port)
1939 {
1940 struct kvm_io_device *pio_dev;
1941
1942 vcpu->run->exit_reason = KVM_EXIT_IO;
1943 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1944 vcpu->run->io.size = vcpu->pio.size = size;
1945 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1946 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
1947 vcpu->run->io.port = vcpu->pio.port = port;
1948 vcpu->pio.in = in;
1949 vcpu->pio.string = 0;
1950 vcpu->pio.down = 0;
1951 vcpu->pio.guest_page_offset = 0;
1952 vcpu->pio.rep = 0;
1953
1954 kvm_x86_ops->cache_regs(vcpu);
1955 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1956 kvm_x86_ops->decache_regs(vcpu);
1957
1958 kvm_x86_ops->skip_emulated_instruction(vcpu);
1959
1960 pio_dev = vcpu_find_pio_dev(vcpu, port);
1961 if (pio_dev) {
1962 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1963 complete_pio(vcpu);
1964 return 1;
1965 }
1966 return 0;
1967 }
1968 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
1969
1970 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1971 int size, unsigned long count, int down,
1972 gva_t address, int rep, unsigned port)
1973 {
1974 unsigned now, in_page;
1975 int i, ret = 0;
1976 int nr_pages = 1;
1977 struct page *page;
1978 struct kvm_io_device *pio_dev;
1979
1980 vcpu->run->exit_reason = KVM_EXIT_IO;
1981 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1982 vcpu->run->io.size = vcpu->pio.size = size;
1983 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1984 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
1985 vcpu->run->io.port = vcpu->pio.port = port;
1986 vcpu->pio.in = in;
1987 vcpu->pio.string = 1;
1988 vcpu->pio.down = down;
1989 vcpu->pio.guest_page_offset = offset_in_page(address);
1990 vcpu->pio.rep = rep;
1991
1992 if (!count) {
1993 kvm_x86_ops->skip_emulated_instruction(vcpu);
1994 return 1;
1995 }
1996
1997 if (!down)
1998 in_page = PAGE_SIZE - offset_in_page(address);
1999 else
2000 in_page = offset_in_page(address) + size;
2001 now = min(count, (unsigned long)in_page / size);
2002 if (!now) {
2003 /*
2004 * String I/O straddles page boundary. Pin two guest pages
2005 * so that we satisfy atomicity constraints. Do just one
2006 * transaction to avoid complexity.
2007 */
2008 nr_pages = 2;
2009 now = 1;
2010 }
2011 if (down) {
2012 /*
2013 * String I/O in reverse. Yuck. Kill the guest, fix later.
2014 */
2015 pr_unimpl(vcpu, "guest string pio down\n");
2016 inject_gp(vcpu);
2017 return 1;
2018 }
2019 vcpu->run->io.count = now;
2020 vcpu->pio.cur_count = now;
2021
2022 if (vcpu->pio.cur_count == vcpu->pio.count)
2023 kvm_x86_ops->skip_emulated_instruction(vcpu);
2024
2025 for (i = 0; i < nr_pages; ++i) {
2026 mutex_lock(&vcpu->kvm->lock);
2027 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2028 if (page)
2029 get_page(page);
2030 vcpu->pio.guest_pages[i] = page;
2031 mutex_unlock(&vcpu->kvm->lock);
2032 if (!page) {
2033 inject_gp(vcpu);
2034 free_pio_guest_pages(vcpu);
2035 return 1;
2036 }
2037 }
2038
2039 pio_dev = vcpu_find_pio_dev(vcpu, port);
2040 if (!vcpu->pio.in) {
2041 /* string PIO write */
2042 ret = pio_copy_data(vcpu);
2043 if (ret >= 0 && pio_dev) {
2044 pio_string_write(pio_dev, vcpu);
2045 complete_pio(vcpu);
2046 if (vcpu->pio.count == 0)
2047 ret = 1;
2048 }
2049 } else if (pio_dev)
2050 pr_unimpl(vcpu, "no string pio read support yet, "
2051 "port %x size %d count %ld\n",
2052 port, size, count);
2053
2054 return ret;
2055 }
2056 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2057
2058 /*
2059 * Check if userspace requested an interrupt window, and that the
2060 * interrupt window is open.
2061 *
2062 * No need to exit to userspace if we already have an interrupt queued.
2063 */
2064 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2065 struct kvm_run *kvm_run)
2066 {
2067 return (!vcpu->irq_summary &&
2068 kvm_run->request_interrupt_window &&
2069 vcpu->interrupt_window_open &&
2070 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2071 }
2072
2073 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2074 struct kvm_run *kvm_run)
2075 {
2076 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2077 kvm_run->cr8 = get_cr8(vcpu);
2078 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2079 if (irqchip_in_kernel(vcpu->kvm))
2080 kvm_run->ready_for_interrupt_injection = 1;
2081 else
2082 kvm_run->ready_for_interrupt_injection =
2083 (vcpu->interrupt_window_open &&
2084 vcpu->irq_summary == 0);
2085 }
2086
2087 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2088 {
2089 int r;
2090
2091 if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
2092 printk("vcpu %d received sipi with vector # %x\n",
2093 vcpu->vcpu_id, vcpu->sipi_vector);
2094 kvm_lapic_reset(vcpu);
2095 kvm_x86_ops->vcpu_reset(vcpu);
2096 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
2097 }
2098
2099 preempted:
2100 if (vcpu->guest_debug.enabled)
2101 kvm_x86_ops->guest_debug_pre(vcpu);
2102
2103 again:
2104 r = kvm_mmu_reload(vcpu);
2105 if (unlikely(r))
2106 goto out;
2107
2108 preempt_disable();
2109
2110 kvm_x86_ops->prepare_guest_switch(vcpu);
2111 kvm_load_guest_fpu(vcpu);
2112
2113 local_irq_disable();
2114
2115 if (signal_pending(current)) {
2116 local_irq_enable();
2117 preempt_enable();
2118 r = -EINTR;
2119 kvm_run->exit_reason = KVM_EXIT_INTR;
2120 ++vcpu->stat.signal_exits;
2121 goto out;
2122 }
2123
2124 if (irqchip_in_kernel(vcpu->kvm))
2125 kvm_x86_ops->inject_pending_irq(vcpu);
2126 else if (!vcpu->mmio_read_completed)
2127 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2128
2129 vcpu->guest_mode = 1;
2130 kvm_guest_enter();
2131
2132 if (vcpu->requests)
2133 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
2134 kvm_x86_ops->tlb_flush(vcpu);
2135
2136 kvm_x86_ops->run(vcpu, kvm_run);
2137
2138 vcpu->guest_mode = 0;
2139 local_irq_enable();
2140
2141 ++vcpu->stat.exits;
2142
2143 /*
2144 * We must have an instruction between local_irq_enable() and
2145 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2146 * the interrupt shadow. The stat.exits increment will do nicely.
2147 * But we need to prevent reordering, hence this barrier():
2148 */
2149 barrier();
2150
2151 kvm_guest_exit();
2152
2153 preempt_enable();
2154
2155 /*
2156 * Profile KVM exit RIPs:
2157 */
2158 if (unlikely(prof_on == KVM_PROFILING)) {
2159 kvm_x86_ops->cache_regs(vcpu);
2160 profile_hit(KVM_PROFILING, (void *)vcpu->rip);
2161 }
2162
2163 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2164
2165 if (r > 0) {
2166 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2167 r = -EINTR;
2168 kvm_run->exit_reason = KVM_EXIT_INTR;
2169 ++vcpu->stat.request_irq_exits;
2170 goto out;
2171 }
2172 if (!need_resched()) {
2173 ++vcpu->stat.light_exits;
2174 goto again;
2175 }
2176 }
2177
2178 out:
2179 if (r > 0) {
2180 kvm_resched(vcpu);
2181 goto preempted;
2182 }
2183
2184 post_kvm_run_save(vcpu, kvm_run);
2185
2186 return r;
2187 }
2188
2189
2190 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2191 {
2192 int r;
2193 sigset_t sigsaved;
2194
2195 vcpu_load(vcpu);
2196
2197 if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2198 kvm_vcpu_block(vcpu);
2199 vcpu_put(vcpu);
2200 return -EAGAIN;
2201 }
2202
2203 if (vcpu->sigset_active)
2204 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2205
2206 /* re-sync apic's tpr */
2207 if (!irqchip_in_kernel(vcpu->kvm))
2208 set_cr8(vcpu, kvm_run->cr8);
2209
2210 if (vcpu->pio.cur_count) {
2211 r = complete_pio(vcpu);
2212 if (r)
2213 goto out;
2214 }
2215
2216 if (vcpu->mmio_needed) {
2217 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2218 vcpu->mmio_read_completed = 1;
2219 vcpu->mmio_needed = 0;
2220 r = emulate_instruction(vcpu, kvm_run,
2221 vcpu->mmio_fault_cr2, 0, 1);
2222 if (r == EMULATE_DO_MMIO) {
2223 /*
2224 * Read-modify-write. Back to userspace.
2225 */
2226 r = 0;
2227 goto out;
2228 }
2229 }
2230
2231 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2232 kvm_x86_ops->cache_regs(vcpu);
2233 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2234 kvm_x86_ops->decache_regs(vcpu);
2235 }
2236
2237 r = __vcpu_run(vcpu, kvm_run);
2238
2239 out:
2240 if (vcpu->sigset_active)
2241 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2242
2243 vcpu_put(vcpu);
2244 return r;
2245 }
2246
2247 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
2248 struct kvm_regs *regs)
2249 {
2250 vcpu_load(vcpu);
2251
2252 kvm_x86_ops->cache_regs(vcpu);
2253
2254 regs->rax = vcpu->regs[VCPU_REGS_RAX];
2255 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
2256 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
2257 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
2258 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
2259 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
2260 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
2261 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
2262 #ifdef CONFIG_X86_64
2263 regs->r8 = vcpu->regs[VCPU_REGS_R8];
2264 regs->r9 = vcpu->regs[VCPU_REGS_R9];
2265 regs->r10 = vcpu->regs[VCPU_REGS_R10];
2266 regs->r11 = vcpu->regs[VCPU_REGS_R11];
2267 regs->r12 = vcpu->regs[VCPU_REGS_R12];
2268 regs->r13 = vcpu->regs[VCPU_REGS_R13];
2269 regs->r14 = vcpu->regs[VCPU_REGS_R14];
2270 regs->r15 = vcpu->regs[VCPU_REGS_R15];
2271 #endif
2272
2273 regs->rip = vcpu->rip;
2274 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2275
2276 /*
2277 * Don't leak debug flags in case they were set for guest debugging
2278 */
2279 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2280 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2281
2282 vcpu_put(vcpu);
2283
2284 return 0;
2285 }
2286
2287 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
2288 struct kvm_regs *regs)
2289 {
2290 vcpu_load(vcpu);
2291
2292 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
2293 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
2294 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
2295 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
2296 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
2297 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
2298 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
2299 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
2300 #ifdef CONFIG_X86_64
2301 vcpu->regs[VCPU_REGS_R8] = regs->r8;
2302 vcpu->regs[VCPU_REGS_R9] = regs->r9;
2303 vcpu->regs[VCPU_REGS_R10] = regs->r10;
2304 vcpu->regs[VCPU_REGS_R11] = regs->r11;
2305 vcpu->regs[VCPU_REGS_R12] = regs->r12;
2306 vcpu->regs[VCPU_REGS_R13] = regs->r13;
2307 vcpu->regs[VCPU_REGS_R14] = regs->r14;
2308 vcpu->regs[VCPU_REGS_R15] = regs->r15;
2309 #endif
2310
2311 vcpu->rip = regs->rip;
2312 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
2313
2314 kvm_x86_ops->decache_regs(vcpu);
2315
2316 vcpu_put(vcpu);
2317
2318 return 0;
2319 }
2320
2321 static void get_segment(struct kvm_vcpu *vcpu,
2322 struct kvm_segment *var, int seg)
2323 {
2324 return kvm_x86_ops->get_segment(vcpu, var, seg);
2325 }
2326
2327 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2328 struct kvm_sregs *sregs)
2329 {
2330 struct descriptor_table dt;
2331 int pending_vec;
2332
2333 vcpu_load(vcpu);
2334
2335 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2336 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2337 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2338 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2339 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2340 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2341
2342 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2343 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2344
2345 kvm_x86_ops->get_idt(vcpu, &dt);
2346 sregs->idt.limit = dt.limit;
2347 sregs->idt.base = dt.base;
2348 kvm_x86_ops->get_gdt(vcpu, &dt);
2349 sregs->gdt.limit = dt.limit;
2350 sregs->gdt.base = dt.base;
2351
2352 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2353 sregs->cr0 = vcpu->cr0;
2354 sregs->cr2 = vcpu->cr2;
2355 sregs->cr3 = vcpu->cr3;
2356 sregs->cr4 = vcpu->cr4;
2357 sregs->cr8 = get_cr8(vcpu);
2358 sregs->efer = vcpu->shadow_efer;
2359 sregs->apic_base = kvm_get_apic_base(vcpu);
2360
2361 if (irqchip_in_kernel(vcpu->kvm)) {
2362 memset(sregs->interrupt_bitmap, 0,
2363 sizeof sregs->interrupt_bitmap);
2364 pending_vec = kvm_x86_ops->get_irq(vcpu);
2365 if (pending_vec >= 0)
2366 set_bit(pending_vec, (unsigned long *)sregs->interrupt_bitmap);
2367 } else
2368 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2369 sizeof sregs->interrupt_bitmap);
2370
2371 vcpu_put(vcpu);
2372
2373 return 0;
2374 }
2375
2376 static void set_segment(struct kvm_vcpu *vcpu,
2377 struct kvm_segment *var, int seg)
2378 {
2379 return kvm_x86_ops->set_segment(vcpu, var, seg);
2380 }
2381
2382 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2383 struct kvm_sregs *sregs)
2384 {
2385 int mmu_reset_needed = 0;
2386 int i, pending_vec, max_bits;
2387 struct descriptor_table dt;
2388
2389 vcpu_load(vcpu);
2390
2391 dt.limit = sregs->idt.limit;
2392 dt.base = sregs->idt.base;
2393 kvm_x86_ops->set_idt(vcpu, &dt);
2394 dt.limit = sregs->gdt.limit;
2395 dt.base = sregs->gdt.base;
2396 kvm_x86_ops->set_gdt(vcpu, &dt);
2397
2398 vcpu->cr2 = sregs->cr2;
2399 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2400 vcpu->cr3 = sregs->cr3;
2401
2402 set_cr8(vcpu, sregs->cr8);
2403
2404 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2405 #ifdef CONFIG_X86_64
2406 kvm_x86_ops->set_efer(vcpu, sregs->efer);
2407 #endif
2408 kvm_set_apic_base(vcpu, sregs->apic_base);
2409
2410 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2411
2412 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2413 vcpu->cr0 = sregs->cr0;
2414 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
2415
2416 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2417 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
2418 if (!is_long_mode(vcpu) && is_pae(vcpu))
2419 load_pdptrs(vcpu, vcpu->cr3);
2420
2421 if (mmu_reset_needed)
2422 kvm_mmu_reset_context(vcpu);
2423
2424 if (!irqchip_in_kernel(vcpu->kvm)) {
2425 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2426 sizeof vcpu->irq_pending);
2427 vcpu->irq_summary = 0;
2428 for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2429 if (vcpu->irq_pending[i])
2430 __set_bit(i, &vcpu->irq_summary);
2431 } else {
2432 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
2433 pending_vec = find_first_bit(
2434 (const unsigned long *)sregs->interrupt_bitmap,
2435 max_bits);
2436 /* Only pending external irq is handled here */
2437 if (pending_vec < max_bits) {
2438 kvm_x86_ops->set_irq(vcpu, pending_vec);
2439 printk("Set back pending irq %d\n", pending_vec);
2440 }
2441 }
2442
2443 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2444 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2445 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2446 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2447 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2448 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2449
2450 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2451 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2452
2453 vcpu_put(vcpu);
2454
2455 return 0;
2456 }
2457
2458 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2459 {
2460 struct kvm_segment cs;
2461
2462 get_segment(vcpu, &cs, VCPU_SREG_CS);
2463 *db = cs.db;
2464 *l = cs.l;
2465 }
2466 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
2467
2468 /*
2469 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2470 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2471 *
2472 * This list is modified at module load time to reflect the
2473 * capabilities of the host cpu.
2474 */
2475 static u32 msrs_to_save[] = {
2476 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2477 MSR_K6_STAR,
2478 #ifdef CONFIG_X86_64
2479 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2480 #endif
2481 MSR_IA32_TIME_STAMP_COUNTER,
2482 };
2483
2484 static unsigned num_msrs_to_save;
2485
2486 static u32 emulated_msrs[] = {
2487 MSR_IA32_MISC_ENABLE,
2488 };
2489
2490 static __init void kvm_init_msr_list(void)
2491 {
2492 u32 dummy[2];
2493 unsigned i, j;
2494
2495 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2496 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2497 continue;
2498 if (j < i)
2499 msrs_to_save[j] = msrs_to_save[i];
2500 j++;
2501 }
2502 num_msrs_to_save = j;
2503 }
2504
2505 /*
2506 * Adapt set_msr() to msr_io()'s calling convention
2507 */
2508 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2509 {
2510 return kvm_set_msr(vcpu, index, *data);
2511 }
2512
2513 /*
2514 * Read or write a bunch of msrs. All parameters are kernel addresses.
2515 *
2516 * @return number of msrs set successfully.
2517 */
2518 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2519 struct kvm_msr_entry *entries,
2520 int (*do_msr)(struct kvm_vcpu *vcpu,
2521 unsigned index, u64 *data))
2522 {
2523 int i;
2524
2525 vcpu_load(vcpu);
2526
2527 for (i = 0; i < msrs->nmsrs; ++i)
2528 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2529 break;
2530
2531 vcpu_put(vcpu);
2532
2533 return i;
2534 }
2535
2536 /*
2537 * Read or write a bunch of msrs. Parameters are user addresses.
2538 *
2539 * @return number of msrs set successfully.
2540 */
2541 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2542 int (*do_msr)(struct kvm_vcpu *vcpu,
2543 unsigned index, u64 *data),
2544 int writeback)
2545 {
2546 struct kvm_msrs msrs;
2547 struct kvm_msr_entry *entries;
2548 int r, n;
2549 unsigned size;
2550
2551 r = -EFAULT;
2552 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2553 goto out;
2554
2555 r = -E2BIG;
2556 if (msrs.nmsrs >= MAX_IO_MSRS)
2557 goto out;
2558
2559 r = -ENOMEM;
2560 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2561 entries = vmalloc(size);
2562 if (!entries)
2563 goto out;
2564
2565 r = -EFAULT;
2566 if (copy_from_user(entries, user_msrs->entries, size))
2567 goto out_free;
2568
2569 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2570 if (r < 0)
2571 goto out_free;
2572
2573 r = -EFAULT;
2574 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2575 goto out_free;
2576
2577 r = n;
2578
2579 out_free:
2580 vfree(entries);
2581 out:
2582 return r;
2583 }
2584
2585 /*
2586 * Translate a guest virtual address to a guest physical address.
2587 */
2588 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2589 struct kvm_translation *tr)
2590 {
2591 unsigned long vaddr = tr->linear_address;
2592 gpa_t gpa;
2593
2594 vcpu_load(vcpu);
2595 mutex_lock(&vcpu->kvm->lock);
2596 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2597 tr->physical_address = gpa;
2598 tr->valid = gpa != UNMAPPED_GVA;
2599 tr->writeable = 1;
2600 tr->usermode = 0;
2601 mutex_unlock(&vcpu->kvm->lock);
2602 vcpu_put(vcpu);
2603
2604 return 0;
2605 }
2606
2607 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2608 struct kvm_interrupt *irq)
2609 {
2610 if (irq->irq < 0 || irq->irq >= 256)
2611 return -EINVAL;
2612 if (irqchip_in_kernel(vcpu->kvm))
2613 return -ENXIO;
2614 vcpu_load(vcpu);
2615
2616 set_bit(irq->irq, vcpu->irq_pending);
2617 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2618
2619 vcpu_put(vcpu);
2620
2621 return 0;
2622 }
2623
2624 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2625 struct kvm_debug_guest *dbg)
2626 {
2627 int r;
2628
2629 vcpu_load(vcpu);
2630
2631 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
2632
2633 vcpu_put(vcpu);
2634
2635 return r;
2636 }
2637
2638 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2639 unsigned long address,
2640 int *type)
2641 {
2642 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2643 unsigned long pgoff;
2644 struct page *page;
2645
2646 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2647 if (pgoff == 0)
2648 page = virt_to_page(vcpu->run);
2649 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2650 page = virt_to_page(vcpu->pio_data);
2651 else
2652 return NOPAGE_SIGBUS;
2653 get_page(page);
2654 if (type != NULL)
2655 *type = VM_FAULT_MINOR;
2656
2657 return page;
2658 }
2659
2660 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2661 .nopage = kvm_vcpu_nopage,
2662 };
2663
2664 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2665 {
2666 vma->vm_ops = &kvm_vcpu_vm_ops;
2667 return 0;
2668 }
2669
2670 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2671 {
2672 struct kvm_vcpu *vcpu = filp->private_data;
2673
2674 fput(vcpu->kvm->filp);
2675 return 0;
2676 }
2677
2678 static struct file_operations kvm_vcpu_fops = {
2679 .release = kvm_vcpu_release,
2680 .unlocked_ioctl = kvm_vcpu_ioctl,
2681 .compat_ioctl = kvm_vcpu_ioctl,
2682 .mmap = kvm_vcpu_mmap,
2683 };
2684
2685 /*
2686 * Allocates an inode for the vcpu.
2687 */
2688 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2689 {
2690 int fd, r;
2691 struct inode *inode;
2692 struct file *file;
2693
2694 r = anon_inode_getfd(&fd, &inode, &file,
2695 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2696 if (r)
2697 return r;
2698 atomic_inc(&vcpu->kvm->filp->f_count);
2699 return fd;
2700 }
2701
2702 /*
2703 * Creates some virtual cpus. Good luck creating more than one.
2704 */
2705 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2706 {
2707 int r;
2708 struct kvm_vcpu *vcpu;
2709
2710 if (!valid_vcpu(n))
2711 return -EINVAL;
2712
2713 vcpu = kvm_x86_ops->vcpu_create(kvm, n);
2714 if (IS_ERR(vcpu))
2715 return PTR_ERR(vcpu);
2716
2717 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2718
2719 /* We do fxsave: this must be aligned. */
2720 BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
2721
2722 vcpu_load(vcpu);
2723 r = kvm_mmu_setup(vcpu);
2724 vcpu_put(vcpu);
2725 if (r < 0)
2726 goto free_vcpu;
2727
2728 mutex_lock(&kvm->lock);
2729 if (kvm->vcpus[n]) {
2730 r = -EEXIST;
2731 mutex_unlock(&kvm->lock);
2732 goto mmu_unload;
2733 }
2734 kvm->vcpus[n] = vcpu;
2735 mutex_unlock(&kvm->lock);
2736
2737 /* Now it's all set up, let userspace reach it */
2738 r = create_vcpu_fd(vcpu);
2739 if (r < 0)
2740 goto unlink;
2741 return r;
2742
2743 unlink:
2744 mutex_lock(&kvm->lock);
2745 kvm->vcpus[n] = NULL;
2746 mutex_unlock(&kvm->lock);
2747
2748 mmu_unload:
2749 vcpu_load(vcpu);
2750 kvm_mmu_unload(vcpu);
2751 vcpu_put(vcpu);
2752
2753 free_vcpu:
2754 kvm_x86_ops->vcpu_free(vcpu);
2755 return r;
2756 }
2757
2758 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2759 {
2760 u64 efer;
2761 int i;
2762 struct kvm_cpuid_entry *e, *entry;
2763
2764 rdmsrl(MSR_EFER, efer);
2765 entry = NULL;
2766 for (i = 0; i < vcpu->cpuid_nent; ++i) {
2767 e = &vcpu->cpuid_entries[i];
2768 if (e->function == 0x80000001) {
2769 entry = e;
2770 break;
2771 }
2772 }
2773 if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2774 entry->edx &= ~(1 << 20);
2775 printk(KERN_INFO "kvm: guest NX capability removed\n");
2776 }
2777 }
2778
2779 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2780 struct kvm_cpuid *cpuid,
2781 struct kvm_cpuid_entry __user *entries)
2782 {
2783 int r;
2784
2785 r = -E2BIG;
2786 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2787 goto out;
2788 r = -EFAULT;
2789 if (copy_from_user(&vcpu->cpuid_entries, entries,
2790 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2791 goto out;
2792 vcpu->cpuid_nent = cpuid->nent;
2793 cpuid_fix_nx_cap(vcpu);
2794 return 0;
2795
2796 out:
2797 return r;
2798 }
2799
2800 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2801 {
2802 if (sigset) {
2803 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2804 vcpu->sigset_active = 1;
2805 vcpu->sigset = *sigset;
2806 } else
2807 vcpu->sigset_active = 0;
2808 return 0;
2809 }
2810
2811 /*
2812 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2813 * we have asm/x86/processor.h
2814 */
2815 struct fxsave {
2816 u16 cwd;
2817 u16 swd;
2818 u16 twd;
2819 u16 fop;
2820 u64 rip;
2821 u64 rdp;
2822 u32 mxcsr;
2823 u32 mxcsr_mask;
2824 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2825 #ifdef CONFIG_X86_64
2826 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2827 #else
2828 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2829 #endif
2830 };
2831
2832 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2833 {
2834 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2835
2836 vcpu_load(vcpu);
2837
2838 memcpy(fpu->fpr, fxsave->st_space, 128);
2839 fpu->fcw = fxsave->cwd;
2840 fpu->fsw = fxsave->swd;
2841 fpu->ftwx = fxsave->twd;
2842 fpu->last_opcode = fxsave->fop;
2843 fpu->last_ip = fxsave->rip;
2844 fpu->last_dp = fxsave->rdp;
2845 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2846
2847 vcpu_put(vcpu);
2848
2849 return 0;
2850 }
2851
2852 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2853 {
2854 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2855
2856 vcpu_load(vcpu);
2857
2858 memcpy(fxsave->st_space, fpu->fpr, 128);
2859 fxsave->cwd = fpu->fcw;
2860 fxsave->swd = fpu->fsw;
2861 fxsave->twd = fpu->ftwx;
2862 fxsave->fop = fpu->last_opcode;
2863 fxsave->rip = fpu->last_ip;
2864 fxsave->rdp = fpu->last_dp;
2865 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2866
2867 vcpu_put(vcpu);
2868
2869 return 0;
2870 }
2871
2872 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2873 struct kvm_lapic_state *s)
2874 {
2875 vcpu_load(vcpu);
2876 memcpy(s->regs, vcpu->apic->regs, sizeof *s);
2877 vcpu_put(vcpu);
2878
2879 return 0;
2880 }
2881
2882 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2883 struct kvm_lapic_state *s)
2884 {
2885 vcpu_load(vcpu);
2886 memcpy(vcpu->apic->regs, s->regs, sizeof *s);
2887 kvm_apic_post_state_restore(vcpu);
2888 vcpu_put(vcpu);
2889
2890 return 0;
2891 }
2892
2893 static long kvm_vcpu_ioctl(struct file *filp,
2894 unsigned int ioctl, unsigned long arg)
2895 {
2896 struct kvm_vcpu *vcpu = filp->private_data;
2897 void __user *argp = (void __user *)arg;
2898 int r = -EINVAL;
2899
2900 switch (ioctl) {
2901 case KVM_RUN:
2902 r = -EINVAL;
2903 if (arg)
2904 goto out;
2905 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2906 break;
2907 case KVM_GET_REGS: {
2908 struct kvm_regs kvm_regs;
2909
2910 memset(&kvm_regs, 0, sizeof kvm_regs);
2911 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2912 if (r)
2913 goto out;
2914 r = -EFAULT;
2915 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2916 goto out;
2917 r = 0;
2918 break;
2919 }
2920 case KVM_SET_REGS: {
2921 struct kvm_regs kvm_regs;
2922
2923 r = -EFAULT;
2924 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2925 goto out;
2926 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2927 if (r)
2928 goto out;
2929 r = 0;
2930 break;
2931 }
2932 case KVM_GET_SREGS: {
2933 struct kvm_sregs kvm_sregs;
2934
2935 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2936 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2937 if (r)
2938 goto out;
2939 r = -EFAULT;
2940 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2941 goto out;
2942 r = 0;
2943 break;
2944 }
2945 case KVM_SET_SREGS: {
2946 struct kvm_sregs kvm_sregs;
2947
2948 r = -EFAULT;
2949 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2950 goto out;
2951 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2952 if (r)
2953 goto out;
2954 r = 0;
2955 break;
2956 }
2957 case KVM_TRANSLATE: {
2958 struct kvm_translation tr;
2959
2960 r = -EFAULT;
2961 if (copy_from_user(&tr, argp, sizeof tr))
2962 goto out;
2963 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2964 if (r)
2965 goto out;
2966 r = -EFAULT;
2967 if (copy_to_user(argp, &tr, sizeof tr))
2968 goto out;
2969 r = 0;
2970 break;
2971 }
2972 case KVM_INTERRUPT: {
2973 struct kvm_interrupt irq;
2974
2975 r = -EFAULT;
2976 if (copy_from_user(&irq, argp, sizeof irq))
2977 goto out;
2978 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2979 if (r)
2980 goto out;
2981 r = 0;
2982 break;
2983 }
2984 case KVM_DEBUG_GUEST: {
2985 struct kvm_debug_guest dbg;
2986
2987 r = -EFAULT;
2988 if (copy_from_user(&dbg, argp, sizeof dbg))
2989 goto out;
2990 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2991 if (r)
2992 goto out;
2993 r = 0;
2994 break;
2995 }
2996 case KVM_GET_MSRS:
2997 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2998 break;
2999 case KVM_SET_MSRS:
3000 r = msr_io(vcpu, argp, do_set_msr, 0);
3001 break;
3002 case KVM_SET_CPUID: {
3003 struct kvm_cpuid __user *cpuid_arg = argp;
3004 struct kvm_cpuid cpuid;
3005
3006 r = -EFAULT;
3007 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3008 goto out;
3009 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3010 if (r)
3011 goto out;
3012 break;
3013 }
3014 case KVM_SET_SIGNAL_MASK: {
3015 struct kvm_signal_mask __user *sigmask_arg = argp;
3016 struct kvm_signal_mask kvm_sigmask;
3017 sigset_t sigset, *p;
3018
3019 p = NULL;
3020 if (argp) {
3021 r = -EFAULT;
3022 if (copy_from_user(&kvm_sigmask, argp,
3023 sizeof kvm_sigmask))
3024 goto out;
3025 r = -EINVAL;
3026 if (kvm_sigmask.len != sizeof sigset)
3027 goto out;
3028 r = -EFAULT;
3029 if (copy_from_user(&sigset, sigmask_arg->sigset,
3030 sizeof sigset))
3031 goto out;
3032 p = &sigset;
3033 }
3034 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3035 break;
3036 }
3037 case KVM_GET_FPU: {
3038 struct kvm_fpu fpu;
3039
3040 memset(&fpu, 0, sizeof fpu);
3041 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
3042 if (r)
3043 goto out;
3044 r = -EFAULT;
3045 if (copy_to_user(argp, &fpu, sizeof fpu))
3046 goto out;
3047 r = 0;
3048 break;
3049 }
3050 case KVM_SET_FPU: {
3051 struct kvm_fpu fpu;
3052
3053 r = -EFAULT;
3054 if (copy_from_user(&fpu, argp, sizeof fpu))
3055 goto out;
3056 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
3057 if (r)
3058 goto out;
3059 r = 0;
3060 break;
3061 }
3062 case KVM_GET_LAPIC: {
3063 struct kvm_lapic_state lapic;
3064
3065 memset(&lapic, 0, sizeof lapic);
3066 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
3067 if (r)
3068 goto out;
3069 r = -EFAULT;
3070 if (copy_to_user(argp, &lapic, sizeof lapic))
3071 goto out;
3072 r = 0;
3073 break;
3074 }
3075 case KVM_SET_LAPIC: {
3076 struct kvm_lapic_state lapic;
3077
3078 r = -EFAULT;
3079 if (copy_from_user(&lapic, argp, sizeof lapic))
3080 goto out;
3081 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
3082 if (r)
3083 goto out;
3084 r = 0;
3085 break;
3086 }
3087 default:
3088 ;
3089 }
3090 out:
3091 return r;
3092 }
3093
3094 static long kvm_vm_ioctl(struct file *filp,
3095 unsigned int ioctl, unsigned long arg)
3096 {
3097 struct kvm *kvm = filp->private_data;
3098 void __user *argp = (void __user *)arg;
3099 int r = -EINVAL;
3100
3101 switch (ioctl) {
3102 case KVM_CREATE_VCPU:
3103 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3104 if (r < 0)
3105 goto out;
3106 break;
3107 case KVM_SET_MEMORY_REGION: {
3108 struct kvm_memory_region kvm_mem;
3109
3110 r = -EFAULT;
3111 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
3112 goto out;
3113 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
3114 if (r)
3115 goto out;
3116 break;
3117 }
3118 case KVM_SET_NR_MMU_PAGES:
3119 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3120 if (r)
3121 goto out;
3122 break;
3123 case KVM_GET_NR_MMU_PAGES:
3124 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3125 break;
3126 case KVM_GET_DIRTY_LOG: {
3127 struct kvm_dirty_log log;
3128
3129 r = -EFAULT;
3130 if (copy_from_user(&log, argp, sizeof log))
3131 goto out;
3132 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3133 if (r)
3134 goto out;
3135 break;
3136 }
3137 case KVM_SET_MEMORY_ALIAS: {
3138 struct kvm_memory_alias alias;
3139
3140 r = -EFAULT;
3141 if (copy_from_user(&alias, argp, sizeof alias))
3142 goto out;
3143 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
3144 if (r)
3145 goto out;
3146 break;
3147 }
3148 case KVM_CREATE_IRQCHIP:
3149 r = -ENOMEM;
3150 kvm->vpic = kvm_create_pic(kvm);
3151 if (kvm->vpic) {
3152 r = kvm_ioapic_init(kvm);
3153 if (r) {
3154 kfree(kvm->vpic);
3155 kvm->vpic = NULL;
3156 goto out;
3157 }
3158 }
3159 else
3160 goto out;
3161 break;
3162 case KVM_IRQ_LINE: {
3163 struct kvm_irq_level irq_event;
3164
3165 r = -EFAULT;
3166 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3167 goto out;
3168 if (irqchip_in_kernel(kvm)) {
3169 mutex_lock(&kvm->lock);
3170 if (irq_event.irq < 16)
3171 kvm_pic_set_irq(pic_irqchip(kvm),
3172 irq_event.irq,
3173 irq_event.level);
3174 kvm_ioapic_set_irq(kvm->vioapic,
3175 irq_event.irq,
3176 irq_event.level);
3177 mutex_unlock(&kvm->lock);
3178 r = 0;
3179 }
3180 break;
3181 }
3182 case KVM_GET_IRQCHIP: {
3183 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3184 struct kvm_irqchip chip;
3185
3186 r = -EFAULT;
3187 if (copy_from_user(&chip, argp, sizeof chip))
3188 goto out;
3189 r = -ENXIO;
3190 if (!irqchip_in_kernel(kvm))
3191 goto out;
3192 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
3193 if (r)
3194 goto out;
3195 r = -EFAULT;
3196 if (copy_to_user(argp, &chip, sizeof chip))
3197 goto out;
3198 r = 0;
3199 break;
3200 }
3201 case KVM_SET_IRQCHIP: {
3202 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3203 struct kvm_irqchip chip;
3204
3205 r = -EFAULT;
3206 if (copy_from_user(&chip, argp, sizeof chip))
3207 goto out;
3208 r = -ENXIO;
3209 if (!irqchip_in_kernel(kvm))
3210 goto out;
3211 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
3212 if (r)
3213 goto out;
3214 r = 0;
3215 break;
3216 }
3217 default:
3218 ;
3219 }
3220 out:
3221 return r;
3222 }
3223
3224 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
3225 unsigned long address,
3226 int *type)
3227 {
3228 struct kvm *kvm = vma->vm_file->private_data;
3229 unsigned long pgoff;
3230 struct page *page;
3231
3232 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3233 page = gfn_to_page(kvm, pgoff);
3234 if (!page)
3235 return NOPAGE_SIGBUS;
3236 get_page(page);
3237 if (type != NULL)
3238 *type = VM_FAULT_MINOR;
3239
3240 return page;
3241 }
3242
3243 static struct vm_operations_struct kvm_vm_vm_ops = {
3244 .nopage = kvm_vm_nopage,
3245 };
3246
3247 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
3248 {
3249 vma->vm_ops = &kvm_vm_vm_ops;
3250 return 0;
3251 }
3252
3253 static struct file_operations kvm_vm_fops = {
3254 .release = kvm_vm_release,
3255 .unlocked_ioctl = kvm_vm_ioctl,
3256 .compat_ioctl = kvm_vm_ioctl,
3257 .mmap = kvm_vm_mmap,
3258 };
3259
3260 static int kvm_dev_ioctl_create_vm(void)
3261 {
3262 int fd, r;
3263 struct inode *inode;
3264 struct file *file;
3265 struct kvm *kvm;
3266
3267 kvm = kvm_create_vm();
3268 if (IS_ERR(kvm))
3269 return PTR_ERR(kvm);
3270 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
3271 if (r) {
3272 kvm_destroy_vm(kvm);
3273 return r;
3274 }
3275
3276 kvm->filp = file;
3277
3278 return fd;
3279 }
3280
3281 static long kvm_dev_ioctl(struct file *filp,
3282 unsigned int ioctl, unsigned long arg)
3283 {
3284 void __user *argp = (void __user *)arg;
3285 long r = -EINVAL;
3286
3287 switch (ioctl) {
3288 case KVM_GET_API_VERSION:
3289 r = -EINVAL;
3290 if (arg)
3291 goto out;
3292 r = KVM_API_VERSION;
3293 break;
3294 case KVM_CREATE_VM:
3295 r = -EINVAL;
3296 if (arg)
3297 goto out;
3298 r = kvm_dev_ioctl_create_vm();
3299 break;
3300 case KVM_GET_MSR_INDEX_LIST: {
3301 struct kvm_msr_list __user *user_msr_list = argp;
3302 struct kvm_msr_list msr_list;
3303 unsigned n;
3304
3305 r = -EFAULT;
3306 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
3307 goto out;
3308 n = msr_list.nmsrs;
3309 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
3310 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
3311 goto out;
3312 r = -E2BIG;
3313 if (n < num_msrs_to_save)
3314 goto out;
3315 r = -EFAULT;
3316 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3317 num_msrs_to_save * sizeof(u32)))
3318 goto out;
3319 if (copy_to_user(user_msr_list->indices
3320 + num_msrs_to_save * sizeof(u32),
3321 &emulated_msrs,
3322 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
3323 goto out;
3324 r = 0;
3325 break;
3326 }
3327 case KVM_CHECK_EXTENSION: {
3328 int ext = (long)argp;
3329
3330 switch (ext) {
3331 case KVM_CAP_IRQCHIP:
3332 case KVM_CAP_HLT:
3333 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3334 r = 1;
3335 break;
3336 default:
3337 r = 0;
3338 break;
3339 }
3340 break;
3341 }
3342 case KVM_GET_VCPU_MMAP_SIZE:
3343 r = -EINVAL;
3344 if (arg)
3345 goto out;
3346 r = 2 * PAGE_SIZE;
3347 break;
3348 default:
3349 ;
3350 }
3351 out:
3352 return r;
3353 }
3354
3355 static struct file_operations kvm_chardev_ops = {
3356 .unlocked_ioctl = kvm_dev_ioctl,
3357 .compat_ioctl = kvm_dev_ioctl,
3358 };
3359
3360 static struct miscdevice kvm_dev = {
3361 KVM_MINOR,
3362 "kvm",
3363 &kvm_chardev_ops,
3364 };
3365
3366 /*
3367 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
3368 * cached on it.
3369 */
3370 static void decache_vcpus_on_cpu(int cpu)
3371 {
3372 struct kvm *vm;
3373 struct kvm_vcpu *vcpu;
3374 int i;
3375
3376 spin_lock(&kvm_lock);
3377 list_for_each_entry(vm, &vm_list, vm_list)
3378 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3379 vcpu = vm->vcpus[i];
3380 if (!vcpu)
3381 continue;
3382 /*
3383 * If the vcpu is locked, then it is running on some
3384 * other cpu and therefore it is not cached on the
3385 * cpu in question.
3386 *
3387 * If it's not locked, check the last cpu it executed
3388 * on.
3389 */
3390 if (mutex_trylock(&vcpu->mutex)) {
3391 if (vcpu->cpu == cpu) {
3392 kvm_x86_ops->vcpu_decache(vcpu);
3393 vcpu->cpu = -1;
3394 }
3395 mutex_unlock(&vcpu->mutex);
3396 }
3397 }
3398 spin_unlock(&kvm_lock);
3399 }
3400
3401 static void hardware_enable(void *junk)
3402 {
3403 int cpu = raw_smp_processor_id();
3404
3405 if (cpu_isset(cpu, cpus_hardware_enabled))
3406 return;
3407 cpu_set(cpu, cpus_hardware_enabled);
3408 kvm_x86_ops->hardware_enable(NULL);
3409 }
3410
3411 static void hardware_disable(void *junk)
3412 {
3413 int cpu = raw_smp_processor_id();
3414
3415 if (!cpu_isset(cpu, cpus_hardware_enabled))
3416 return;
3417 cpu_clear(cpu, cpus_hardware_enabled);
3418 decache_vcpus_on_cpu(cpu);
3419 kvm_x86_ops->hardware_disable(NULL);
3420 }
3421
3422 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3423 void *v)
3424 {
3425 int cpu = (long)v;
3426
3427 switch (val) {
3428 case CPU_DYING:
3429 case CPU_DYING_FROZEN:
3430 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3431 cpu);
3432 hardware_disable(NULL);
3433 break;
3434 case CPU_UP_CANCELED:
3435 case CPU_UP_CANCELED_FROZEN:
3436 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3437 cpu);
3438 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
3439 break;
3440 case CPU_ONLINE:
3441 case CPU_ONLINE_FROZEN:
3442 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
3443 cpu);
3444 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
3445 break;
3446 }
3447 return NOTIFY_OK;
3448 }
3449
3450 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3451 void *v)
3452 {
3453 if (val == SYS_RESTART) {
3454 /*
3455 * Some (well, at least mine) BIOSes hang on reboot if
3456 * in vmx root mode.
3457 */
3458 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
3459 on_each_cpu(hardware_disable, NULL, 0, 1);
3460 }
3461 return NOTIFY_OK;
3462 }
3463
3464 static struct notifier_block kvm_reboot_notifier = {
3465 .notifier_call = kvm_reboot,
3466 .priority = 0,
3467 };
3468
3469 void kvm_io_bus_init(struct kvm_io_bus *bus)
3470 {
3471 memset(bus, 0, sizeof(*bus));
3472 }
3473
3474 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3475 {
3476 int i;
3477
3478 for (i = 0; i < bus->dev_count; i++) {
3479 struct kvm_io_device *pos = bus->devs[i];
3480
3481 kvm_iodevice_destructor(pos);
3482 }
3483 }
3484
3485 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3486 {
3487 int i;
3488
3489 for (i = 0; i < bus->dev_count; i++) {
3490 struct kvm_io_device *pos = bus->devs[i];
3491
3492 if (pos->in_range(pos, addr))
3493 return pos;
3494 }
3495
3496 return NULL;
3497 }
3498
3499 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3500 {
3501 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3502
3503 bus->devs[bus->dev_count++] = dev;
3504 }
3505
3506 static struct notifier_block kvm_cpu_notifier = {
3507 .notifier_call = kvm_cpu_hotplug,
3508 .priority = 20, /* must be > scheduler priority */
3509 };
3510
3511 static u64 stat_get(void *_offset)
3512 {
3513 unsigned offset = (long)_offset;
3514 u64 total = 0;
3515 struct kvm *kvm;
3516 struct kvm_vcpu *vcpu;
3517 int i;
3518
3519 spin_lock(&kvm_lock);
3520 list_for_each_entry(kvm, &vm_list, vm_list)
3521 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3522 vcpu = kvm->vcpus[i];
3523 if (vcpu)
3524 total += *(u32 *)((void *)vcpu + offset);
3525 }
3526 spin_unlock(&kvm_lock);
3527 return total;
3528 }
3529
3530 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
3531
3532 static __init void kvm_init_debug(void)
3533 {
3534 struct kvm_stats_debugfs_item *p;
3535
3536 debugfs_dir = debugfs_create_dir("kvm", NULL);
3537 for (p = debugfs_entries; p->name; ++p)
3538 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3539 (void *)(long)p->offset,
3540 &stat_fops);
3541 }
3542
3543 static void kvm_exit_debug(void)
3544 {
3545 struct kvm_stats_debugfs_item *p;
3546
3547 for (p = debugfs_entries; p->name; ++p)
3548 debugfs_remove(p->dentry);
3549 debugfs_remove(debugfs_dir);
3550 }
3551
3552 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3553 {
3554 hardware_disable(NULL);
3555 return 0;
3556 }
3557
3558 static int kvm_resume(struct sys_device *dev)
3559 {
3560 hardware_enable(NULL);
3561 return 0;
3562 }
3563
3564 static struct sysdev_class kvm_sysdev_class = {
3565 .name = "kvm",
3566 .suspend = kvm_suspend,
3567 .resume = kvm_resume,
3568 };
3569
3570 static struct sys_device kvm_sysdev = {
3571 .id = 0,
3572 .cls = &kvm_sysdev_class,
3573 };
3574
3575 hpa_t bad_page_address;
3576
3577 static inline
3578 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3579 {
3580 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3581 }
3582
3583 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3584 {
3585 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3586
3587 kvm_x86_ops->vcpu_load(vcpu, cpu);
3588 }
3589
3590 static void kvm_sched_out(struct preempt_notifier *pn,
3591 struct task_struct *next)
3592 {
3593 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3594
3595 kvm_x86_ops->vcpu_put(vcpu);
3596 }
3597
3598 int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
3599 struct module *module)
3600 {
3601 int r;
3602 int cpu;
3603
3604 if (kvm_x86_ops) {
3605 printk(KERN_ERR "kvm: already loaded the other module\n");
3606 return -EEXIST;
3607 }
3608
3609 if (!ops->cpu_has_kvm_support()) {
3610 printk(KERN_ERR "kvm: no hardware support\n");
3611 return -EOPNOTSUPP;
3612 }
3613 if (ops->disabled_by_bios()) {
3614 printk(KERN_ERR "kvm: disabled by bios\n");
3615 return -EOPNOTSUPP;
3616 }
3617
3618 kvm_x86_ops = ops;
3619
3620 r = kvm_x86_ops->hardware_setup();
3621 if (r < 0)
3622 goto out;
3623
3624 for_each_online_cpu(cpu) {
3625 smp_call_function_single(cpu,
3626 kvm_x86_ops->check_processor_compatibility,
3627 &r, 0, 1);
3628 if (r < 0)
3629 goto out_free_0;
3630 }
3631
3632 on_each_cpu(hardware_enable, NULL, 0, 1);
3633 r = register_cpu_notifier(&kvm_cpu_notifier);
3634 if (r)
3635 goto out_free_1;
3636 register_reboot_notifier(&kvm_reboot_notifier);
3637
3638 r = sysdev_class_register(&kvm_sysdev_class);
3639 if (r)
3640 goto out_free_2;
3641
3642 r = sysdev_register(&kvm_sysdev);
3643 if (r)
3644 goto out_free_3;
3645
3646 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3647 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
3648 __alignof__(struct kvm_vcpu), 0, 0);
3649 if (!kvm_vcpu_cache) {
3650 r = -ENOMEM;
3651 goto out_free_4;
3652 }
3653
3654 kvm_chardev_ops.owner = module;
3655
3656 r = misc_register(&kvm_dev);
3657 if (r) {
3658 printk (KERN_ERR "kvm: misc device register failed\n");
3659 goto out_free;
3660 }
3661
3662 kvm_preempt_ops.sched_in = kvm_sched_in;
3663 kvm_preempt_ops.sched_out = kvm_sched_out;
3664
3665 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3666
3667 return 0;
3668
3669 out_free:
3670 kmem_cache_destroy(kvm_vcpu_cache);
3671 out_free_4:
3672 sysdev_unregister(&kvm_sysdev);
3673 out_free_3:
3674 sysdev_class_unregister(&kvm_sysdev_class);
3675 out_free_2:
3676 unregister_reboot_notifier(&kvm_reboot_notifier);
3677 unregister_cpu_notifier(&kvm_cpu_notifier);
3678 out_free_1:
3679 on_each_cpu(hardware_disable, NULL, 0, 1);
3680 out_free_0:
3681 kvm_x86_ops->hardware_unsetup();
3682 out:
3683 kvm_x86_ops = NULL;
3684 return r;
3685 }
3686
3687 void kvm_exit_x86(void)
3688 {
3689 misc_deregister(&kvm_dev);
3690 kmem_cache_destroy(kvm_vcpu_cache);
3691 sysdev_unregister(&kvm_sysdev);
3692 sysdev_class_unregister(&kvm_sysdev_class);
3693 unregister_reboot_notifier(&kvm_reboot_notifier);
3694 unregister_cpu_notifier(&kvm_cpu_notifier);
3695 on_each_cpu(hardware_disable, NULL, 0, 1);
3696 kvm_x86_ops->hardware_unsetup();
3697 kvm_x86_ops = NULL;
3698 }
3699
3700 static __init int kvm_init(void)
3701 {
3702 static struct page *bad_page;
3703 int r;
3704
3705 r = kvm_mmu_module_init();
3706 if (r)
3707 goto out4;
3708
3709 kvm_init_debug();
3710
3711 kvm_init_msr_list();
3712
3713 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3714 r = -ENOMEM;
3715 goto out;
3716 }
3717
3718 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3719 memset(__va(bad_page_address), 0, PAGE_SIZE);
3720
3721 return 0;
3722
3723 out:
3724 kvm_exit_debug();
3725 kvm_mmu_module_exit();
3726 out4:
3727 return r;
3728 }
3729
3730 static __exit void kvm_exit(void)
3731 {
3732 kvm_exit_debug();
3733 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3734 kvm_mmu_module_exit();
3735 }
3736
3737 module_init(kvm_init)
3738 module_exit(kvm_exit)
3739
3740 EXPORT_SYMBOL_GPL(kvm_init_x86);
3741 EXPORT_SYMBOL_GPL(kvm_exit_x86);
This page took 0.125481 seconds and 5 git commands to generate.