KVM: CodingStyle cleanup
[deliverable/linux.git] / drivers / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16
17 #include "kvm_svm.h"
18 #include "x86_emulate.h"
19 #include "irq.h"
20
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/vmalloc.h>
24 #include <linux/highmem.h>
25 #include <linux/sched.h>
26
27 #include <asm/desc.h>
28
29 MODULE_AUTHOR("Qumranet");
30 MODULE_LICENSE("GPL");
31
32 #define IOPM_ALLOC_ORDER 2
33 #define MSRPM_ALLOC_ORDER 1
34
35 #define DB_VECTOR 1
36 #define UD_VECTOR 6
37 #define GP_VECTOR 13
38
39 #define DR7_GD_MASK (1 << 13)
40 #define DR6_BD_MASK (1 << 13)
41
42 #define SEG_TYPE_LDT 2
43 #define SEG_TYPE_BUSY_TSS16 3
44
45 #define KVM_EFER_LMA (1 << 10)
46 #define KVM_EFER_LME (1 << 8)
47
48 #define SVM_FEATURE_NPT (1 << 0)
49 #define SVM_FEATURE_LBRV (1 << 1)
50 #define SVM_DEATURE_SVML (1 << 2)
51
52 static void kvm_reput_irq(struct vcpu_svm *svm);
53
54 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
55 {
56 return container_of(vcpu, struct vcpu_svm, vcpu);
57 }
58
59 unsigned long iopm_base;
60 unsigned long msrpm_base;
61
62 struct kvm_ldttss_desc {
63 u16 limit0;
64 u16 base0;
65 unsigned base1 : 8, type : 5, dpl : 2, p : 1;
66 unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
67 u32 base3;
68 u32 zero1;
69 } __attribute__((packed));
70
71 struct svm_cpu_data {
72 int cpu;
73
74 u64 asid_generation;
75 u32 max_asid;
76 u32 next_asid;
77 struct kvm_ldttss_desc *tss_desc;
78
79 struct page *save_area;
80 };
81
82 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
83 static uint32_t svm_features;
84
85 struct svm_init_data {
86 int cpu;
87 int r;
88 };
89
90 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
91
92 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
93 #define MSRS_RANGE_SIZE 2048
94 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
95
96 #define MAX_INST_SIZE 15
97
98 static inline u32 svm_has(u32 feat)
99 {
100 return svm_features & feat;
101 }
102
103 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
104 {
105 int word_index = __ffs(vcpu->irq_summary);
106 int bit_index = __ffs(vcpu->irq_pending[word_index]);
107 int irq = word_index * BITS_PER_LONG + bit_index;
108
109 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
110 if (!vcpu->irq_pending[word_index])
111 clear_bit(word_index, &vcpu->irq_summary);
112 return irq;
113 }
114
115 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
116 {
117 set_bit(irq, vcpu->irq_pending);
118 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
119 }
120
121 static inline void clgi(void)
122 {
123 asm volatile (SVM_CLGI);
124 }
125
126 static inline void stgi(void)
127 {
128 asm volatile (SVM_STGI);
129 }
130
131 static inline void invlpga(unsigned long addr, u32 asid)
132 {
133 asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
134 }
135
136 static inline unsigned long kvm_read_cr2(void)
137 {
138 unsigned long cr2;
139
140 asm volatile ("mov %%cr2, %0" : "=r" (cr2));
141 return cr2;
142 }
143
144 static inline void kvm_write_cr2(unsigned long val)
145 {
146 asm volatile ("mov %0, %%cr2" :: "r" (val));
147 }
148
149 static inline unsigned long read_dr6(void)
150 {
151 unsigned long dr6;
152
153 asm volatile ("mov %%dr6, %0" : "=r" (dr6));
154 return dr6;
155 }
156
157 static inline void write_dr6(unsigned long val)
158 {
159 asm volatile ("mov %0, %%dr6" :: "r" (val));
160 }
161
162 static inline unsigned long read_dr7(void)
163 {
164 unsigned long dr7;
165
166 asm volatile ("mov %%dr7, %0" : "=r" (dr7));
167 return dr7;
168 }
169
170 static inline void write_dr7(unsigned long val)
171 {
172 asm volatile ("mov %0, %%dr7" :: "r" (val));
173 }
174
175 static inline void force_new_asid(struct kvm_vcpu *vcpu)
176 {
177 to_svm(vcpu)->asid_generation--;
178 }
179
180 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
181 {
182 force_new_asid(vcpu);
183 }
184
185 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
186 {
187 if (!(efer & KVM_EFER_LMA))
188 efer &= ~KVM_EFER_LME;
189
190 to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
191 vcpu->shadow_efer = efer;
192 }
193
194 static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
195 {
196 struct vcpu_svm *svm = to_svm(vcpu);
197
198 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
199 SVM_EVTINJ_VALID_ERR |
200 SVM_EVTINJ_TYPE_EXEPT |
201 GP_VECTOR;
202 svm->vmcb->control.event_inj_err = error_code;
203 }
204
205 static void inject_ud(struct kvm_vcpu *vcpu)
206 {
207 to_svm(vcpu)->vmcb->control.event_inj = SVM_EVTINJ_VALID |
208 SVM_EVTINJ_TYPE_EXEPT |
209 UD_VECTOR;
210 }
211
212 static int is_page_fault(uint32_t info)
213 {
214 info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
215 return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
216 }
217
218 static int is_external_interrupt(u32 info)
219 {
220 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
221 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
222 }
223
224 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
225 {
226 struct vcpu_svm *svm = to_svm(vcpu);
227
228 if (!svm->next_rip) {
229 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
230 return;
231 }
232 if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE)
233 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
234 __FUNCTION__,
235 svm->vmcb->save.rip,
236 svm->next_rip);
237
238 vcpu->rip = svm->vmcb->save.rip = svm->next_rip;
239 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
240
241 vcpu->interrupt_window_open = 1;
242 }
243
244 static int has_svm(void)
245 {
246 uint32_t eax, ebx, ecx, edx;
247
248 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
249 printk(KERN_INFO "has_svm: not amd\n");
250 return 0;
251 }
252
253 cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
254 if (eax < SVM_CPUID_FUNC) {
255 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
256 return 0;
257 }
258
259 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
260 if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
261 printk(KERN_DEBUG "has_svm: svm not available\n");
262 return 0;
263 }
264 return 1;
265 }
266
267 static void svm_hardware_disable(void *garbage)
268 {
269 struct svm_cpu_data *svm_data
270 = per_cpu(svm_data, raw_smp_processor_id());
271
272 if (svm_data) {
273 uint64_t efer;
274
275 wrmsrl(MSR_VM_HSAVE_PA, 0);
276 rdmsrl(MSR_EFER, efer);
277 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
278 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
279 __free_page(svm_data->save_area);
280 kfree(svm_data);
281 }
282 }
283
284 static void svm_hardware_enable(void *garbage)
285 {
286
287 struct svm_cpu_data *svm_data;
288 uint64_t efer;
289 #ifdef CONFIG_X86_64
290 struct desc_ptr gdt_descr;
291 #else
292 struct desc_ptr gdt_descr;
293 #endif
294 struct desc_struct *gdt;
295 int me = raw_smp_processor_id();
296
297 if (!has_svm()) {
298 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
299 return;
300 }
301 svm_data = per_cpu(svm_data, me);
302
303 if (!svm_data) {
304 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
305 me);
306 return;
307 }
308
309 svm_data->asid_generation = 1;
310 svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
311 svm_data->next_asid = svm_data->max_asid + 1;
312 svm_features = cpuid_edx(SVM_CPUID_FUNC);
313
314 asm volatile ("sgdt %0" : "=m"(gdt_descr));
315 gdt = (struct desc_struct *)gdt_descr.address;
316 svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
317
318 rdmsrl(MSR_EFER, efer);
319 wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
320
321 wrmsrl(MSR_VM_HSAVE_PA,
322 page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
323 }
324
325 static int svm_cpu_init(int cpu)
326 {
327 struct svm_cpu_data *svm_data;
328 int r;
329
330 svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
331 if (!svm_data)
332 return -ENOMEM;
333 svm_data->cpu = cpu;
334 svm_data->save_area = alloc_page(GFP_KERNEL);
335 r = -ENOMEM;
336 if (!svm_data->save_area)
337 goto err_1;
338
339 per_cpu(svm_data, cpu) = svm_data;
340
341 return 0;
342
343 err_1:
344 kfree(svm_data);
345 return r;
346
347 }
348
349 static void set_msr_interception(u32 *msrpm, unsigned msr,
350 int read, int write)
351 {
352 int i;
353
354 for (i = 0; i < NUM_MSR_MAPS; i++) {
355 if (msr >= msrpm_ranges[i] &&
356 msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
357 u32 msr_offset = (i * MSRS_IN_RANGE + msr -
358 msrpm_ranges[i]) * 2;
359
360 u32 *base = msrpm + (msr_offset / 32);
361 u32 msr_shift = msr_offset % 32;
362 u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
363 *base = (*base & ~(0x3 << msr_shift)) |
364 (mask << msr_shift);
365 return;
366 }
367 }
368 BUG();
369 }
370
371 static __init int svm_hardware_setup(void)
372 {
373 int cpu;
374 struct page *iopm_pages;
375 struct page *msrpm_pages;
376 void *iopm_va, *msrpm_va;
377 int r;
378
379 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
380
381 if (!iopm_pages)
382 return -ENOMEM;
383
384 iopm_va = page_address(iopm_pages);
385 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
386 clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
387 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
388
389
390 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
391
392 r = -ENOMEM;
393 if (!msrpm_pages)
394 goto err_1;
395
396 msrpm_va = page_address(msrpm_pages);
397 memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
398 msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
399
400 #ifdef CONFIG_X86_64
401 set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
402 set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
403 set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
404 set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
405 set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
406 set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
407 #endif
408 set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
409 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
410 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
411 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
412
413 for_each_online_cpu(cpu) {
414 r = svm_cpu_init(cpu);
415 if (r)
416 goto err_2;
417 }
418 return 0;
419
420 err_2:
421 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
422 msrpm_base = 0;
423 err_1:
424 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
425 iopm_base = 0;
426 return r;
427 }
428
429 static __exit void svm_hardware_unsetup(void)
430 {
431 __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
432 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
433 iopm_base = msrpm_base = 0;
434 }
435
436 static void init_seg(struct vmcb_seg *seg)
437 {
438 seg->selector = 0;
439 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
440 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
441 seg->limit = 0xffff;
442 seg->base = 0;
443 }
444
445 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
446 {
447 seg->selector = 0;
448 seg->attrib = SVM_SELECTOR_P_MASK | type;
449 seg->limit = 0xffff;
450 seg->base = 0;
451 }
452
453 static void init_vmcb(struct vmcb *vmcb)
454 {
455 struct vmcb_control_area *control = &vmcb->control;
456 struct vmcb_save_area *save = &vmcb->save;
457
458 control->intercept_cr_read = INTERCEPT_CR0_MASK |
459 INTERCEPT_CR3_MASK |
460 INTERCEPT_CR4_MASK;
461
462 control->intercept_cr_write = INTERCEPT_CR0_MASK |
463 INTERCEPT_CR3_MASK |
464 INTERCEPT_CR4_MASK;
465
466 control->intercept_dr_read = INTERCEPT_DR0_MASK |
467 INTERCEPT_DR1_MASK |
468 INTERCEPT_DR2_MASK |
469 INTERCEPT_DR3_MASK;
470
471 control->intercept_dr_write = INTERCEPT_DR0_MASK |
472 INTERCEPT_DR1_MASK |
473 INTERCEPT_DR2_MASK |
474 INTERCEPT_DR3_MASK |
475 INTERCEPT_DR5_MASK |
476 INTERCEPT_DR7_MASK;
477
478 control->intercept_exceptions = (1 << PF_VECTOR) |
479 (1 << UD_VECTOR);
480
481
482 control->intercept = (1ULL << INTERCEPT_INTR) |
483 (1ULL << INTERCEPT_NMI) |
484 (1ULL << INTERCEPT_SMI) |
485 /*
486 * selective cr0 intercept bug?
487 * 0: 0f 22 d8 mov %eax,%cr3
488 * 3: 0f 20 c0 mov %cr0,%eax
489 * 6: 0d 00 00 00 80 or $0x80000000,%eax
490 * b: 0f 22 c0 mov %eax,%cr0
491 * set cr3 ->interception
492 * get cr0 ->interception
493 * set cr0 -> no interception
494 */
495 /* (1ULL << INTERCEPT_SELECTIVE_CR0) | */
496 (1ULL << INTERCEPT_CPUID) |
497 (1ULL << INTERCEPT_INVD) |
498 (1ULL << INTERCEPT_HLT) |
499 (1ULL << INTERCEPT_INVLPGA) |
500 (1ULL << INTERCEPT_IOIO_PROT) |
501 (1ULL << INTERCEPT_MSR_PROT) |
502 (1ULL << INTERCEPT_TASK_SWITCH) |
503 (1ULL << INTERCEPT_SHUTDOWN) |
504 (1ULL << INTERCEPT_VMRUN) |
505 (1ULL << INTERCEPT_VMMCALL) |
506 (1ULL << INTERCEPT_VMLOAD) |
507 (1ULL << INTERCEPT_VMSAVE) |
508 (1ULL << INTERCEPT_STGI) |
509 (1ULL << INTERCEPT_CLGI) |
510 (1ULL << INTERCEPT_SKINIT) |
511 (1ULL << INTERCEPT_WBINVD) |
512 (1ULL << INTERCEPT_MONITOR) |
513 (1ULL << INTERCEPT_MWAIT);
514
515 control->iopm_base_pa = iopm_base;
516 control->msrpm_base_pa = msrpm_base;
517 control->tsc_offset = 0;
518 control->int_ctl = V_INTR_MASKING_MASK;
519
520 init_seg(&save->es);
521 init_seg(&save->ss);
522 init_seg(&save->ds);
523 init_seg(&save->fs);
524 init_seg(&save->gs);
525
526 save->cs.selector = 0xf000;
527 /* Executable/Readable Code Segment */
528 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
529 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
530 save->cs.limit = 0xffff;
531 /*
532 * cs.base should really be 0xffff0000, but vmx can't handle that, so
533 * be consistent with it.
534 *
535 * Replace when we have real mode working for vmx.
536 */
537 save->cs.base = 0xf0000;
538
539 save->gdtr.limit = 0xffff;
540 save->idtr.limit = 0xffff;
541
542 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
543 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
544
545 save->efer = MSR_EFER_SVME_MASK;
546 save->dr6 = 0xffff0ff0;
547 save->dr7 = 0x400;
548 save->rflags = 2;
549 save->rip = 0x0000fff0;
550
551 /*
552 * cr0 val on cpu init should be 0x60000010, we enable cpu
553 * cache by default. the orderly way is to enable cache in bios.
554 */
555 save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
556 save->cr4 = X86_CR4_PAE;
557 /* rdx = ?? */
558 }
559
560 static void svm_vcpu_reset(struct kvm_vcpu *vcpu)
561 {
562 struct vcpu_svm *svm = to_svm(vcpu);
563
564 init_vmcb(svm->vmcb);
565
566 if (vcpu->vcpu_id != 0) {
567 svm->vmcb->save.rip = 0;
568 svm->vmcb->save.cs.base = svm->vcpu.sipi_vector << 12;
569 svm->vmcb->save.cs.selector = svm->vcpu.sipi_vector << 8;
570 }
571 }
572
573 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
574 {
575 struct vcpu_svm *svm;
576 struct page *page;
577 int err;
578
579 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
580 if (!svm) {
581 err = -ENOMEM;
582 goto out;
583 }
584
585 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
586 if (err)
587 goto free_svm;
588
589 page = alloc_page(GFP_KERNEL);
590 if (!page) {
591 err = -ENOMEM;
592 goto uninit;
593 }
594
595 svm->vmcb = page_address(page);
596 clear_page(svm->vmcb);
597 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
598 svm->asid_generation = 0;
599 memset(svm->db_regs, 0, sizeof(svm->db_regs));
600 init_vmcb(svm->vmcb);
601
602 fx_init(&svm->vcpu);
603 svm->vcpu.fpu_active = 1;
604 svm->vcpu.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
605 if (svm->vcpu.vcpu_id == 0)
606 svm->vcpu.apic_base |= MSR_IA32_APICBASE_BSP;
607
608 return &svm->vcpu;
609
610 uninit:
611 kvm_vcpu_uninit(&svm->vcpu);
612 free_svm:
613 kmem_cache_free(kvm_vcpu_cache, svm);
614 out:
615 return ERR_PTR(err);
616 }
617
618 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
619 {
620 struct vcpu_svm *svm = to_svm(vcpu);
621
622 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
623 kvm_vcpu_uninit(vcpu);
624 kmem_cache_free(kvm_vcpu_cache, svm);
625 }
626
627 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
628 {
629 struct vcpu_svm *svm = to_svm(vcpu);
630 int i;
631
632 if (unlikely(cpu != vcpu->cpu)) {
633 u64 tsc_this, delta;
634
635 /*
636 * Make sure that the guest sees a monotonically
637 * increasing TSC.
638 */
639 rdtscll(tsc_this);
640 delta = vcpu->host_tsc - tsc_this;
641 svm->vmcb->control.tsc_offset += delta;
642 vcpu->cpu = cpu;
643 kvm_migrate_apic_timer(vcpu);
644 }
645
646 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
647 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
648 }
649
650 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
651 {
652 struct vcpu_svm *svm = to_svm(vcpu);
653 int i;
654
655 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
656 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
657
658 rdtscll(vcpu->host_tsc);
659 kvm_put_guest_fpu(vcpu);
660 }
661
662 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
663 {
664 }
665
666 static void svm_cache_regs(struct kvm_vcpu *vcpu)
667 {
668 struct vcpu_svm *svm = to_svm(vcpu);
669
670 vcpu->regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
671 vcpu->regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
672 vcpu->rip = svm->vmcb->save.rip;
673 }
674
675 static void svm_decache_regs(struct kvm_vcpu *vcpu)
676 {
677 struct vcpu_svm *svm = to_svm(vcpu);
678 svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
679 svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
680 svm->vmcb->save.rip = vcpu->rip;
681 }
682
683 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
684 {
685 return to_svm(vcpu)->vmcb->save.rflags;
686 }
687
688 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
689 {
690 to_svm(vcpu)->vmcb->save.rflags = rflags;
691 }
692
693 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
694 {
695 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
696
697 switch (seg) {
698 case VCPU_SREG_CS: return &save->cs;
699 case VCPU_SREG_DS: return &save->ds;
700 case VCPU_SREG_ES: return &save->es;
701 case VCPU_SREG_FS: return &save->fs;
702 case VCPU_SREG_GS: return &save->gs;
703 case VCPU_SREG_SS: return &save->ss;
704 case VCPU_SREG_TR: return &save->tr;
705 case VCPU_SREG_LDTR: return &save->ldtr;
706 }
707 BUG();
708 return NULL;
709 }
710
711 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
712 {
713 struct vmcb_seg *s = svm_seg(vcpu, seg);
714
715 return s->base;
716 }
717
718 static void svm_get_segment(struct kvm_vcpu *vcpu,
719 struct kvm_segment *var, int seg)
720 {
721 struct vmcb_seg *s = svm_seg(vcpu, seg);
722
723 var->base = s->base;
724 var->limit = s->limit;
725 var->selector = s->selector;
726 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
727 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
728 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
729 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
730 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
731 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
732 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
733 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
734 var->unusable = !var->present;
735 }
736
737 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
738 {
739 struct vcpu_svm *svm = to_svm(vcpu);
740
741 dt->limit = svm->vmcb->save.idtr.limit;
742 dt->base = svm->vmcb->save.idtr.base;
743 }
744
745 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
746 {
747 struct vcpu_svm *svm = to_svm(vcpu);
748
749 svm->vmcb->save.idtr.limit = dt->limit;
750 svm->vmcb->save.idtr.base = dt->base ;
751 }
752
753 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
754 {
755 struct vcpu_svm *svm = to_svm(vcpu);
756
757 dt->limit = svm->vmcb->save.gdtr.limit;
758 dt->base = svm->vmcb->save.gdtr.base;
759 }
760
761 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
762 {
763 struct vcpu_svm *svm = to_svm(vcpu);
764
765 svm->vmcb->save.gdtr.limit = dt->limit;
766 svm->vmcb->save.gdtr.base = dt->base ;
767 }
768
769 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
770 {
771 }
772
773 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
774 {
775 struct vcpu_svm *svm = to_svm(vcpu);
776
777 #ifdef CONFIG_X86_64
778 if (vcpu->shadow_efer & KVM_EFER_LME) {
779 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
780 vcpu->shadow_efer |= KVM_EFER_LMA;
781 svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
782 }
783
784 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
785 vcpu->shadow_efer &= ~KVM_EFER_LMA;
786 svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
787 }
788 }
789 #endif
790 if ((vcpu->cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
791 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
792 vcpu->fpu_active = 1;
793 }
794
795 vcpu->cr0 = cr0;
796 cr0 |= X86_CR0_PG | X86_CR0_WP;
797 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
798 svm->vmcb->save.cr0 = cr0;
799 }
800
801 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
802 {
803 vcpu->cr4 = cr4;
804 to_svm(vcpu)->vmcb->save.cr4 = cr4 | X86_CR4_PAE;
805 }
806
807 static void svm_set_segment(struct kvm_vcpu *vcpu,
808 struct kvm_segment *var, int seg)
809 {
810 struct vcpu_svm *svm = to_svm(vcpu);
811 struct vmcb_seg *s = svm_seg(vcpu, seg);
812
813 s->base = var->base;
814 s->limit = var->limit;
815 s->selector = var->selector;
816 if (var->unusable)
817 s->attrib = 0;
818 else {
819 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
820 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
821 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
822 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
823 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
824 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
825 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
826 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
827 }
828 if (seg == VCPU_SREG_CS)
829 svm->vmcb->save.cpl
830 = (svm->vmcb->save.cs.attrib
831 >> SVM_SELECTOR_DPL_SHIFT) & 3;
832
833 }
834
835 /* FIXME:
836
837 svm(vcpu)->vmcb->control.int_ctl &= ~V_TPR_MASK;
838 svm(vcpu)->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
839
840 */
841
842 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
843 {
844 return -EOPNOTSUPP;
845 }
846
847 static int svm_get_irq(struct kvm_vcpu *vcpu)
848 {
849 struct vcpu_svm *svm = to_svm(vcpu);
850 u32 exit_int_info = svm->vmcb->control.exit_int_info;
851
852 if (is_external_interrupt(exit_int_info))
853 return exit_int_info & SVM_EVTINJ_VEC_MASK;
854 return -1;
855 }
856
857 static void load_host_msrs(struct kvm_vcpu *vcpu)
858 {
859 #ifdef CONFIG_X86_64
860 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
861 #endif
862 }
863
864 static void save_host_msrs(struct kvm_vcpu *vcpu)
865 {
866 #ifdef CONFIG_X86_64
867 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
868 #endif
869 }
870
871 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
872 {
873 if (svm_data->next_asid > svm_data->max_asid) {
874 ++svm_data->asid_generation;
875 svm_data->next_asid = 1;
876 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
877 }
878
879 svm->vcpu.cpu = svm_data->cpu;
880 svm->asid_generation = svm_data->asid_generation;
881 svm->vmcb->control.asid = svm_data->next_asid++;
882 }
883
884 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
885 {
886 return to_svm(vcpu)->db_regs[dr];
887 }
888
889 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
890 int *exception)
891 {
892 struct vcpu_svm *svm = to_svm(vcpu);
893
894 *exception = 0;
895
896 if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
897 svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
898 svm->vmcb->save.dr6 |= DR6_BD_MASK;
899 *exception = DB_VECTOR;
900 return;
901 }
902
903 switch (dr) {
904 case 0 ... 3:
905 svm->db_regs[dr] = value;
906 return;
907 case 4 ... 5:
908 if (vcpu->cr4 & X86_CR4_DE) {
909 *exception = UD_VECTOR;
910 return;
911 }
912 case 7: {
913 if (value & ~((1ULL << 32) - 1)) {
914 *exception = GP_VECTOR;
915 return;
916 }
917 svm->vmcb->save.dr7 = value;
918 return;
919 }
920 default:
921 printk(KERN_DEBUG "%s: unexpected dr %u\n",
922 __FUNCTION__, dr);
923 *exception = UD_VECTOR;
924 return;
925 }
926 }
927
928 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
929 {
930 u32 exit_int_info = svm->vmcb->control.exit_int_info;
931 struct kvm *kvm = svm->vcpu.kvm;
932 u64 fault_address;
933 u32 error_code;
934 enum emulation_result er;
935 int r;
936
937 if (!irqchip_in_kernel(kvm) &&
938 is_external_interrupt(exit_int_info))
939 push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
940
941 mutex_lock(&kvm->lock);
942
943 fault_address = svm->vmcb->control.exit_info_2;
944 error_code = svm->vmcb->control.exit_info_1;
945 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
946 if (r < 0) {
947 mutex_unlock(&kvm->lock);
948 return r;
949 }
950 if (!r) {
951 mutex_unlock(&kvm->lock);
952 return 1;
953 }
954 er = emulate_instruction(&svm->vcpu, kvm_run, fault_address,
955 error_code, 0);
956 mutex_unlock(&kvm->lock);
957
958 switch (er) {
959 case EMULATE_DONE:
960 return 1;
961 case EMULATE_DO_MMIO:
962 ++svm->vcpu.stat.mmio_exits;
963 return 0;
964 case EMULATE_FAIL:
965 kvm_report_emulation_failure(&svm->vcpu, "pagetable");
966 break;
967 default:
968 BUG();
969 }
970
971 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
972 return 0;
973 }
974
975 static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
976 {
977 int er;
978
979 er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0);
980 if (er != EMULATE_DONE)
981 inject_ud(&svm->vcpu);
982
983 return 1;
984 }
985
986 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
987 {
988 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
989 if (!(svm->vcpu.cr0 & X86_CR0_TS))
990 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
991 svm->vcpu.fpu_active = 1;
992
993 return 1;
994 }
995
996 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
997 {
998 /*
999 * VMCB is undefined after a SHUTDOWN intercept
1000 * so reinitialize it.
1001 */
1002 clear_page(svm->vmcb);
1003 init_vmcb(svm->vmcb);
1004
1005 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1006 return 0;
1007 }
1008
1009 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1010 {
1011 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1012 int size, down, in, string, rep;
1013 unsigned port;
1014
1015 ++svm->vcpu.stat.io_exits;
1016
1017 svm->next_rip = svm->vmcb->control.exit_info_2;
1018
1019 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1020
1021 if (string) {
1022 if (emulate_instruction(&svm->vcpu,
1023 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1024 return 0;
1025 return 1;
1026 }
1027
1028 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1029 port = io_info >> 16;
1030 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1031 rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1032 down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1033
1034 return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
1035 }
1036
1037 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1038 {
1039 return 1;
1040 }
1041
1042 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1043 {
1044 svm->next_rip = svm->vmcb->save.rip + 1;
1045 skip_emulated_instruction(&svm->vcpu);
1046 return kvm_emulate_halt(&svm->vcpu);
1047 }
1048
1049 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1050 {
1051 svm->next_rip = svm->vmcb->save.rip + 3;
1052 skip_emulated_instruction(&svm->vcpu);
1053 kvm_emulate_hypercall(&svm->vcpu);
1054 return 1;
1055 }
1056
1057 static int invalid_op_interception(struct vcpu_svm *svm,
1058 struct kvm_run *kvm_run)
1059 {
1060 inject_ud(&svm->vcpu);
1061 return 1;
1062 }
1063
1064 static int task_switch_interception(struct vcpu_svm *svm,
1065 struct kvm_run *kvm_run)
1066 {
1067 pr_unimpl(&svm->vcpu, "%s: task switch is unsupported\n", __FUNCTION__);
1068 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1069 return 0;
1070 }
1071
1072 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1073 {
1074 svm->next_rip = svm->vmcb->save.rip + 2;
1075 kvm_emulate_cpuid(&svm->vcpu);
1076 return 1;
1077 }
1078
1079 static int emulate_on_interception(struct vcpu_svm *svm,
1080 struct kvm_run *kvm_run)
1081 {
1082 if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
1083 pr_unimpl(&svm->vcpu, "%s: failed\n", __FUNCTION__);
1084 return 1;
1085 }
1086
1087 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1088 {
1089 struct vcpu_svm *svm = to_svm(vcpu);
1090
1091 switch (ecx) {
1092 case MSR_IA32_TIME_STAMP_COUNTER: {
1093 u64 tsc;
1094
1095 rdtscll(tsc);
1096 *data = svm->vmcb->control.tsc_offset + tsc;
1097 break;
1098 }
1099 case MSR_K6_STAR:
1100 *data = svm->vmcb->save.star;
1101 break;
1102 #ifdef CONFIG_X86_64
1103 case MSR_LSTAR:
1104 *data = svm->vmcb->save.lstar;
1105 break;
1106 case MSR_CSTAR:
1107 *data = svm->vmcb->save.cstar;
1108 break;
1109 case MSR_KERNEL_GS_BASE:
1110 *data = svm->vmcb->save.kernel_gs_base;
1111 break;
1112 case MSR_SYSCALL_MASK:
1113 *data = svm->vmcb->save.sfmask;
1114 break;
1115 #endif
1116 case MSR_IA32_SYSENTER_CS:
1117 *data = svm->vmcb->save.sysenter_cs;
1118 break;
1119 case MSR_IA32_SYSENTER_EIP:
1120 *data = svm->vmcb->save.sysenter_eip;
1121 break;
1122 case MSR_IA32_SYSENTER_ESP:
1123 *data = svm->vmcb->save.sysenter_esp;
1124 break;
1125 default:
1126 return kvm_get_msr_common(vcpu, ecx, data);
1127 }
1128 return 0;
1129 }
1130
1131 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1132 {
1133 u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1134 u64 data;
1135
1136 if (svm_get_msr(&svm->vcpu, ecx, &data))
1137 svm_inject_gp(&svm->vcpu, 0);
1138 else {
1139 svm->vmcb->save.rax = data & 0xffffffff;
1140 svm->vcpu.regs[VCPU_REGS_RDX] = data >> 32;
1141 svm->next_rip = svm->vmcb->save.rip + 2;
1142 skip_emulated_instruction(&svm->vcpu);
1143 }
1144 return 1;
1145 }
1146
1147 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1148 {
1149 struct vcpu_svm *svm = to_svm(vcpu);
1150
1151 switch (ecx) {
1152 case MSR_IA32_TIME_STAMP_COUNTER: {
1153 u64 tsc;
1154
1155 rdtscll(tsc);
1156 svm->vmcb->control.tsc_offset = data - tsc;
1157 break;
1158 }
1159 case MSR_K6_STAR:
1160 svm->vmcb->save.star = data;
1161 break;
1162 #ifdef CONFIG_X86_64
1163 case MSR_LSTAR:
1164 svm->vmcb->save.lstar = data;
1165 break;
1166 case MSR_CSTAR:
1167 svm->vmcb->save.cstar = data;
1168 break;
1169 case MSR_KERNEL_GS_BASE:
1170 svm->vmcb->save.kernel_gs_base = data;
1171 break;
1172 case MSR_SYSCALL_MASK:
1173 svm->vmcb->save.sfmask = data;
1174 break;
1175 #endif
1176 case MSR_IA32_SYSENTER_CS:
1177 svm->vmcb->save.sysenter_cs = data;
1178 break;
1179 case MSR_IA32_SYSENTER_EIP:
1180 svm->vmcb->save.sysenter_eip = data;
1181 break;
1182 case MSR_IA32_SYSENTER_ESP:
1183 svm->vmcb->save.sysenter_esp = data;
1184 break;
1185 default:
1186 return kvm_set_msr_common(vcpu, ecx, data);
1187 }
1188 return 0;
1189 }
1190
1191 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1192 {
1193 u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1194 u64 data = (svm->vmcb->save.rax & -1u)
1195 | ((u64)(svm->vcpu.regs[VCPU_REGS_RDX] & -1u) << 32);
1196 svm->next_rip = svm->vmcb->save.rip + 2;
1197 if (svm_set_msr(&svm->vcpu, ecx, data))
1198 svm_inject_gp(&svm->vcpu, 0);
1199 else
1200 skip_emulated_instruction(&svm->vcpu);
1201 return 1;
1202 }
1203
1204 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1205 {
1206 if (svm->vmcb->control.exit_info_1)
1207 return wrmsr_interception(svm, kvm_run);
1208 else
1209 return rdmsr_interception(svm, kvm_run);
1210 }
1211
1212 static int interrupt_window_interception(struct vcpu_svm *svm,
1213 struct kvm_run *kvm_run)
1214 {
1215 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1216 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1217 /*
1218 * If the user space waits to inject interrupts, exit as soon as
1219 * possible
1220 */
1221 if (kvm_run->request_interrupt_window &&
1222 !svm->vcpu.irq_summary) {
1223 ++svm->vcpu.stat.irq_window_exits;
1224 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1225 return 0;
1226 }
1227
1228 return 1;
1229 }
1230
1231 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
1232 struct kvm_run *kvm_run) = {
1233 [SVM_EXIT_READ_CR0] = emulate_on_interception,
1234 [SVM_EXIT_READ_CR3] = emulate_on_interception,
1235 [SVM_EXIT_READ_CR4] = emulate_on_interception,
1236 /* for now: */
1237 [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
1238 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
1239 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
1240 [SVM_EXIT_READ_DR0] = emulate_on_interception,
1241 [SVM_EXIT_READ_DR1] = emulate_on_interception,
1242 [SVM_EXIT_READ_DR2] = emulate_on_interception,
1243 [SVM_EXIT_READ_DR3] = emulate_on_interception,
1244 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
1245 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
1246 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
1247 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
1248 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
1249 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
1250 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
1251 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
1252 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
1253 [SVM_EXIT_INTR] = nop_on_interception,
1254 [SVM_EXIT_NMI] = nop_on_interception,
1255 [SVM_EXIT_SMI] = nop_on_interception,
1256 [SVM_EXIT_INIT] = nop_on_interception,
1257 [SVM_EXIT_VINTR] = interrupt_window_interception,
1258 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
1259 [SVM_EXIT_CPUID] = cpuid_interception,
1260 [SVM_EXIT_INVD] = emulate_on_interception,
1261 [SVM_EXIT_HLT] = halt_interception,
1262 [SVM_EXIT_INVLPG] = emulate_on_interception,
1263 [SVM_EXIT_INVLPGA] = invalid_op_interception,
1264 [SVM_EXIT_IOIO] = io_interception,
1265 [SVM_EXIT_MSR] = msr_interception,
1266 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
1267 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
1268 [SVM_EXIT_VMRUN] = invalid_op_interception,
1269 [SVM_EXIT_VMMCALL] = vmmcall_interception,
1270 [SVM_EXIT_VMLOAD] = invalid_op_interception,
1271 [SVM_EXIT_VMSAVE] = invalid_op_interception,
1272 [SVM_EXIT_STGI] = invalid_op_interception,
1273 [SVM_EXIT_CLGI] = invalid_op_interception,
1274 [SVM_EXIT_SKINIT] = invalid_op_interception,
1275 [SVM_EXIT_WBINVD] = emulate_on_interception,
1276 [SVM_EXIT_MONITOR] = invalid_op_interception,
1277 [SVM_EXIT_MWAIT] = invalid_op_interception,
1278 };
1279
1280
1281 static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1282 {
1283 struct vcpu_svm *svm = to_svm(vcpu);
1284 u32 exit_code = svm->vmcb->control.exit_code;
1285
1286 kvm_reput_irq(svm);
1287
1288 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1289 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1290 kvm_run->fail_entry.hardware_entry_failure_reason
1291 = svm->vmcb->control.exit_code;
1292 return 0;
1293 }
1294
1295 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
1296 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1297 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1298 "exit_code 0x%x\n",
1299 __FUNCTION__, svm->vmcb->control.exit_int_info,
1300 exit_code);
1301
1302 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1303 || svm_exit_handlers[exit_code] == 0) {
1304 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1305 kvm_run->hw.hardware_exit_reason = exit_code;
1306 return 0;
1307 }
1308
1309 return svm_exit_handlers[exit_code](svm, kvm_run);
1310 }
1311
1312 static void reload_tss(struct kvm_vcpu *vcpu)
1313 {
1314 int cpu = raw_smp_processor_id();
1315
1316 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1317 svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
1318 load_TR_desc();
1319 }
1320
1321 static void pre_svm_run(struct vcpu_svm *svm)
1322 {
1323 int cpu = raw_smp_processor_id();
1324
1325 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1326
1327 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1328 if (svm->vcpu.cpu != cpu ||
1329 svm->asid_generation != svm_data->asid_generation)
1330 new_asid(svm, svm_data);
1331 }
1332
1333
1334 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
1335 {
1336 struct vmcb_control_area *control;
1337
1338 control = &svm->vmcb->control;
1339 control->int_vector = irq;
1340 control->int_ctl &= ~V_INTR_PRIO_MASK;
1341 control->int_ctl |= V_IRQ_MASK |
1342 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1343 }
1344
1345 static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
1346 {
1347 struct vcpu_svm *svm = to_svm(vcpu);
1348
1349 svm_inject_irq(svm, irq);
1350 }
1351
1352 static void svm_intr_assist(struct kvm_vcpu *vcpu)
1353 {
1354 struct vcpu_svm *svm = to_svm(vcpu);
1355 struct vmcb *vmcb = svm->vmcb;
1356 int intr_vector = -1;
1357
1358 kvm_inject_pending_timer_irqs(vcpu);
1359 if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
1360 ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
1361 intr_vector = vmcb->control.exit_int_info &
1362 SVM_EVTINJ_VEC_MASK;
1363 vmcb->control.exit_int_info = 0;
1364 svm_inject_irq(svm, intr_vector);
1365 return;
1366 }
1367
1368 if (vmcb->control.int_ctl & V_IRQ_MASK)
1369 return;
1370
1371 if (!kvm_cpu_has_interrupt(vcpu))
1372 return;
1373
1374 if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
1375 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
1376 (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
1377 /* unable to deliver irq, set pending irq */
1378 vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
1379 svm_inject_irq(svm, 0x0);
1380 return;
1381 }
1382 /* Okay, we can deliver the interrupt: grab it and update PIC state. */
1383 intr_vector = kvm_cpu_get_interrupt(vcpu);
1384 svm_inject_irq(svm, intr_vector);
1385 kvm_timer_intr_post(vcpu, intr_vector);
1386 }
1387
1388 static void kvm_reput_irq(struct vcpu_svm *svm)
1389 {
1390 struct vmcb_control_area *control = &svm->vmcb->control;
1391
1392 if ((control->int_ctl & V_IRQ_MASK)
1393 && !irqchip_in_kernel(svm->vcpu.kvm)) {
1394 control->int_ctl &= ~V_IRQ_MASK;
1395 push_irq(&svm->vcpu, control->int_vector);
1396 }
1397
1398 svm->vcpu.interrupt_window_open =
1399 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1400 }
1401
1402 static void svm_do_inject_vector(struct vcpu_svm *svm)
1403 {
1404 struct kvm_vcpu *vcpu = &svm->vcpu;
1405 int word_index = __ffs(vcpu->irq_summary);
1406 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1407 int irq = word_index * BITS_PER_LONG + bit_index;
1408
1409 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1410 if (!vcpu->irq_pending[word_index])
1411 clear_bit(word_index, &vcpu->irq_summary);
1412 svm_inject_irq(svm, irq);
1413 }
1414
1415 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1416 struct kvm_run *kvm_run)
1417 {
1418 struct vcpu_svm *svm = to_svm(vcpu);
1419 struct vmcb_control_area *control = &svm->vmcb->control;
1420
1421 svm->vcpu.interrupt_window_open =
1422 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1423 (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1424
1425 if (svm->vcpu.interrupt_window_open && svm->vcpu.irq_summary)
1426 /*
1427 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1428 */
1429 svm_do_inject_vector(svm);
1430
1431 /*
1432 * Interrupts blocked. Wait for unblock.
1433 */
1434 if (!svm->vcpu.interrupt_window_open &&
1435 (svm->vcpu.irq_summary || kvm_run->request_interrupt_window))
1436 control->intercept |= 1ULL << INTERCEPT_VINTR;
1437 else
1438 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1439 }
1440
1441 static void save_db_regs(unsigned long *db_regs)
1442 {
1443 asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1444 asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1445 asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1446 asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1447 }
1448
1449 static void load_db_regs(unsigned long *db_regs)
1450 {
1451 asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1452 asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1453 asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1454 asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1455 }
1456
1457 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1458 {
1459 force_new_asid(vcpu);
1460 }
1461
1462 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1463 {
1464 }
1465
1466 static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1467 {
1468 struct vcpu_svm *svm = to_svm(vcpu);
1469 u16 fs_selector;
1470 u16 gs_selector;
1471 u16 ldt_selector;
1472
1473 pre_svm_run(svm);
1474
1475 save_host_msrs(vcpu);
1476 fs_selector = read_fs();
1477 gs_selector = read_gs();
1478 ldt_selector = read_ldt();
1479 svm->host_cr2 = kvm_read_cr2();
1480 svm->host_dr6 = read_dr6();
1481 svm->host_dr7 = read_dr7();
1482 svm->vmcb->save.cr2 = vcpu->cr2;
1483
1484 if (svm->vmcb->save.dr7 & 0xff) {
1485 write_dr7(0);
1486 save_db_regs(svm->host_db_regs);
1487 load_db_regs(svm->db_regs);
1488 }
1489
1490 clgi();
1491
1492 local_irq_enable();
1493
1494 asm volatile (
1495 #ifdef CONFIG_X86_64
1496 "push %%rbx; push %%rcx; push %%rdx;"
1497 "push %%rsi; push %%rdi; push %%rbp;"
1498 "push %%r8; push %%r9; push %%r10; push %%r11;"
1499 "push %%r12; push %%r13; push %%r14; push %%r15;"
1500 #else
1501 "push %%ebx; push %%ecx; push %%edx;"
1502 "push %%esi; push %%edi; push %%ebp;"
1503 #endif
1504
1505 #ifdef CONFIG_X86_64
1506 "mov %c[rbx](%[svm]), %%rbx \n\t"
1507 "mov %c[rcx](%[svm]), %%rcx \n\t"
1508 "mov %c[rdx](%[svm]), %%rdx \n\t"
1509 "mov %c[rsi](%[svm]), %%rsi \n\t"
1510 "mov %c[rdi](%[svm]), %%rdi \n\t"
1511 "mov %c[rbp](%[svm]), %%rbp \n\t"
1512 "mov %c[r8](%[svm]), %%r8 \n\t"
1513 "mov %c[r9](%[svm]), %%r9 \n\t"
1514 "mov %c[r10](%[svm]), %%r10 \n\t"
1515 "mov %c[r11](%[svm]), %%r11 \n\t"
1516 "mov %c[r12](%[svm]), %%r12 \n\t"
1517 "mov %c[r13](%[svm]), %%r13 \n\t"
1518 "mov %c[r14](%[svm]), %%r14 \n\t"
1519 "mov %c[r15](%[svm]), %%r15 \n\t"
1520 #else
1521 "mov %c[rbx](%[svm]), %%ebx \n\t"
1522 "mov %c[rcx](%[svm]), %%ecx \n\t"
1523 "mov %c[rdx](%[svm]), %%edx \n\t"
1524 "mov %c[rsi](%[svm]), %%esi \n\t"
1525 "mov %c[rdi](%[svm]), %%edi \n\t"
1526 "mov %c[rbp](%[svm]), %%ebp \n\t"
1527 #endif
1528
1529 #ifdef CONFIG_X86_64
1530 /* Enter guest mode */
1531 "push %%rax \n\t"
1532 "mov %c[vmcb](%[svm]), %%rax \n\t"
1533 SVM_VMLOAD "\n\t"
1534 SVM_VMRUN "\n\t"
1535 SVM_VMSAVE "\n\t"
1536 "pop %%rax \n\t"
1537 #else
1538 /* Enter guest mode */
1539 "push %%eax \n\t"
1540 "mov %c[vmcb](%[svm]), %%eax \n\t"
1541 SVM_VMLOAD "\n\t"
1542 SVM_VMRUN "\n\t"
1543 SVM_VMSAVE "\n\t"
1544 "pop %%eax \n\t"
1545 #endif
1546
1547 /* Save guest registers, load host registers */
1548 #ifdef CONFIG_X86_64
1549 "mov %%rbx, %c[rbx](%[svm]) \n\t"
1550 "mov %%rcx, %c[rcx](%[svm]) \n\t"
1551 "mov %%rdx, %c[rdx](%[svm]) \n\t"
1552 "mov %%rsi, %c[rsi](%[svm]) \n\t"
1553 "mov %%rdi, %c[rdi](%[svm]) \n\t"
1554 "mov %%rbp, %c[rbp](%[svm]) \n\t"
1555 "mov %%r8, %c[r8](%[svm]) \n\t"
1556 "mov %%r9, %c[r9](%[svm]) \n\t"
1557 "mov %%r10, %c[r10](%[svm]) \n\t"
1558 "mov %%r11, %c[r11](%[svm]) \n\t"
1559 "mov %%r12, %c[r12](%[svm]) \n\t"
1560 "mov %%r13, %c[r13](%[svm]) \n\t"
1561 "mov %%r14, %c[r14](%[svm]) \n\t"
1562 "mov %%r15, %c[r15](%[svm]) \n\t"
1563
1564 "pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
1565 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
1566 "pop %%rbp; pop %%rdi; pop %%rsi;"
1567 "pop %%rdx; pop %%rcx; pop %%rbx; \n\t"
1568 #else
1569 "mov %%ebx, %c[rbx](%[svm]) \n\t"
1570 "mov %%ecx, %c[rcx](%[svm]) \n\t"
1571 "mov %%edx, %c[rdx](%[svm]) \n\t"
1572 "mov %%esi, %c[rsi](%[svm]) \n\t"
1573 "mov %%edi, %c[rdi](%[svm]) \n\t"
1574 "mov %%ebp, %c[rbp](%[svm]) \n\t"
1575
1576 "pop %%ebp; pop %%edi; pop %%esi;"
1577 "pop %%edx; pop %%ecx; pop %%ebx; \n\t"
1578 #endif
1579 :
1580 : [svm]"a"(svm),
1581 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1582 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RBX])),
1583 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RCX])),
1584 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RDX])),
1585 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RSI])),
1586 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RDI])),
1587 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RBP]))
1588 #ifdef CONFIG_X86_64
1589 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R8])),
1590 [r9]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R9])),
1591 [r10]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R10])),
1592 [r11]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R11])),
1593 [r12]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R12])),
1594 [r13]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R13])),
1595 [r14]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R14])),
1596 [r15]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R15]))
1597 #endif
1598 : "cc", "memory");
1599
1600 if ((svm->vmcb->save.dr7 & 0xff))
1601 load_db_regs(svm->host_db_regs);
1602
1603 vcpu->cr2 = svm->vmcb->save.cr2;
1604
1605 write_dr6(svm->host_dr6);
1606 write_dr7(svm->host_dr7);
1607 kvm_write_cr2(svm->host_cr2);
1608
1609 load_fs(fs_selector);
1610 load_gs(gs_selector);
1611 load_ldt(ldt_selector);
1612 load_host_msrs(vcpu);
1613
1614 reload_tss(vcpu);
1615
1616 local_irq_disable();
1617
1618 stgi();
1619
1620 svm->next_rip = 0;
1621 }
1622
1623 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1624 {
1625 struct vcpu_svm *svm = to_svm(vcpu);
1626
1627 svm->vmcb->save.cr3 = root;
1628 force_new_asid(vcpu);
1629
1630 if (vcpu->fpu_active) {
1631 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1632 svm->vmcb->save.cr0 |= X86_CR0_TS;
1633 vcpu->fpu_active = 0;
1634 }
1635 }
1636
1637 static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
1638 unsigned long addr,
1639 uint32_t err_code)
1640 {
1641 struct vcpu_svm *svm = to_svm(vcpu);
1642 uint32_t exit_int_info = svm->vmcb->control.exit_int_info;
1643
1644 ++vcpu->stat.pf_guest;
1645
1646 if (is_page_fault(exit_int_info)) {
1647
1648 svm->vmcb->control.event_inj_err = 0;
1649 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
1650 SVM_EVTINJ_VALID_ERR |
1651 SVM_EVTINJ_TYPE_EXEPT |
1652 DF_VECTOR;
1653 return;
1654 }
1655 vcpu->cr2 = addr;
1656 svm->vmcb->save.cr2 = addr;
1657 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
1658 SVM_EVTINJ_VALID_ERR |
1659 SVM_EVTINJ_TYPE_EXEPT |
1660 PF_VECTOR;
1661 svm->vmcb->control.event_inj_err = err_code;
1662 }
1663
1664
1665 static int is_disabled(void)
1666 {
1667 u64 vm_cr;
1668
1669 rdmsrl(MSR_VM_CR, vm_cr);
1670 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1671 return 1;
1672
1673 return 0;
1674 }
1675
1676 static void
1677 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1678 {
1679 /*
1680 * Patch in the VMMCALL instruction:
1681 */
1682 hypercall[0] = 0x0f;
1683 hypercall[1] = 0x01;
1684 hypercall[2] = 0xd9;
1685 }
1686
1687 static void svm_check_processor_compat(void *rtn)
1688 {
1689 *(int *)rtn = 0;
1690 }
1691
1692 static struct kvm_x86_ops svm_x86_ops = {
1693 .cpu_has_kvm_support = has_svm,
1694 .disabled_by_bios = is_disabled,
1695 .hardware_setup = svm_hardware_setup,
1696 .hardware_unsetup = svm_hardware_unsetup,
1697 .check_processor_compatibility = svm_check_processor_compat,
1698 .hardware_enable = svm_hardware_enable,
1699 .hardware_disable = svm_hardware_disable,
1700
1701 .vcpu_create = svm_create_vcpu,
1702 .vcpu_free = svm_free_vcpu,
1703 .vcpu_reset = svm_vcpu_reset,
1704
1705 .prepare_guest_switch = svm_prepare_guest_switch,
1706 .vcpu_load = svm_vcpu_load,
1707 .vcpu_put = svm_vcpu_put,
1708 .vcpu_decache = svm_vcpu_decache,
1709
1710 .set_guest_debug = svm_guest_debug,
1711 .get_msr = svm_get_msr,
1712 .set_msr = svm_set_msr,
1713 .get_segment_base = svm_get_segment_base,
1714 .get_segment = svm_get_segment,
1715 .set_segment = svm_set_segment,
1716 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
1717 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1718 .set_cr0 = svm_set_cr0,
1719 .set_cr3 = svm_set_cr3,
1720 .set_cr4 = svm_set_cr4,
1721 .set_efer = svm_set_efer,
1722 .get_idt = svm_get_idt,
1723 .set_idt = svm_set_idt,
1724 .get_gdt = svm_get_gdt,
1725 .set_gdt = svm_set_gdt,
1726 .get_dr = svm_get_dr,
1727 .set_dr = svm_set_dr,
1728 .cache_regs = svm_cache_regs,
1729 .decache_regs = svm_decache_regs,
1730 .get_rflags = svm_get_rflags,
1731 .set_rflags = svm_set_rflags,
1732
1733 .tlb_flush = svm_flush_tlb,
1734 .inject_page_fault = svm_inject_page_fault,
1735
1736 .inject_gp = svm_inject_gp,
1737
1738 .run = svm_vcpu_run,
1739 .handle_exit = handle_exit,
1740 .skip_emulated_instruction = skip_emulated_instruction,
1741 .patch_hypercall = svm_patch_hypercall,
1742 .get_irq = svm_get_irq,
1743 .set_irq = svm_set_irq,
1744 .inject_pending_irq = svm_intr_assist,
1745 .inject_pending_vectors = do_interrupt_requests,
1746 };
1747
1748 static int __init svm_init(void)
1749 {
1750 return kvm_init_x86(&svm_x86_ops, sizeof(struct vcpu_svm),
1751 THIS_MODULE);
1752 }
1753
1754 static void __exit svm_exit(void)
1755 {
1756 kvm_exit_x86();
1757 }
1758
1759 module_init(svm_init)
1760 module_exit(svm_exit)
This page took 0.068744 seconds and 5 git commands to generate.