KVM: Remove gratuitous casts from lapic.c
[deliverable/linux.git] / drivers / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "irq.h"
21 #include "vmx.h"
22 #include "segment_descriptor.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30
31 #include <asm/io.h>
32 #include <asm/desc.h>
33
34 MODULE_AUTHOR("Qumranet");
35 MODULE_LICENSE("GPL");
36
37 static int bypass_guest_pf = 1;
38 module_param(bypass_guest_pf, bool, 0);
39
40 struct vmcs {
41 u32 revision_id;
42 u32 abort;
43 char data[0];
44 };
45
46 struct vcpu_vmx {
47 struct kvm_vcpu vcpu;
48 int launched;
49 u8 fail;
50 struct kvm_msr_entry *guest_msrs;
51 struct kvm_msr_entry *host_msrs;
52 int nmsrs;
53 int save_nmsrs;
54 int msr_offset_efer;
55 #ifdef CONFIG_X86_64
56 int msr_offset_kernel_gs_base;
57 #endif
58 struct vmcs *vmcs;
59 struct {
60 int loaded;
61 u16 fs_sel, gs_sel, ldt_sel;
62 int gs_ldt_reload_needed;
63 int fs_reload_needed;
64 int guest_efer_loaded;
65 }host_state;
66
67 };
68
69 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
70 {
71 return container_of(vcpu, struct vcpu_vmx, vcpu);
72 }
73
74 static int init_rmode_tss(struct kvm *kvm);
75
76 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
77 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
78
79 static struct page *vmx_io_bitmap_a;
80 static struct page *vmx_io_bitmap_b;
81
82 static struct vmcs_config {
83 int size;
84 int order;
85 u32 revision_id;
86 u32 pin_based_exec_ctrl;
87 u32 cpu_based_exec_ctrl;
88 u32 vmexit_ctrl;
89 u32 vmentry_ctrl;
90 } vmcs_config;
91
92 #define VMX_SEGMENT_FIELD(seg) \
93 [VCPU_SREG_##seg] = { \
94 .selector = GUEST_##seg##_SELECTOR, \
95 .base = GUEST_##seg##_BASE, \
96 .limit = GUEST_##seg##_LIMIT, \
97 .ar_bytes = GUEST_##seg##_AR_BYTES, \
98 }
99
100 static struct kvm_vmx_segment_field {
101 unsigned selector;
102 unsigned base;
103 unsigned limit;
104 unsigned ar_bytes;
105 } kvm_vmx_segment_fields[] = {
106 VMX_SEGMENT_FIELD(CS),
107 VMX_SEGMENT_FIELD(DS),
108 VMX_SEGMENT_FIELD(ES),
109 VMX_SEGMENT_FIELD(FS),
110 VMX_SEGMENT_FIELD(GS),
111 VMX_SEGMENT_FIELD(SS),
112 VMX_SEGMENT_FIELD(TR),
113 VMX_SEGMENT_FIELD(LDTR),
114 };
115
116 /*
117 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
118 * away by decrementing the array size.
119 */
120 static const u32 vmx_msr_index[] = {
121 #ifdef CONFIG_X86_64
122 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
123 #endif
124 MSR_EFER, MSR_K6_STAR,
125 };
126 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
127
128 static void load_msrs(struct kvm_msr_entry *e, int n)
129 {
130 int i;
131
132 for (i = 0; i < n; ++i)
133 wrmsrl(e[i].index, e[i].data);
134 }
135
136 static void save_msrs(struct kvm_msr_entry *e, int n)
137 {
138 int i;
139
140 for (i = 0; i < n; ++i)
141 rdmsrl(e[i].index, e[i].data);
142 }
143
144 static inline int is_page_fault(u32 intr_info)
145 {
146 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
147 INTR_INFO_VALID_MASK)) ==
148 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
149 }
150
151 static inline int is_no_device(u32 intr_info)
152 {
153 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
154 INTR_INFO_VALID_MASK)) ==
155 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
156 }
157
158 static inline int is_invalid_opcode(u32 intr_info)
159 {
160 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
161 INTR_INFO_VALID_MASK)) ==
162 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
163 }
164
165 static inline int is_external_interrupt(u32 intr_info)
166 {
167 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
168 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
169 }
170
171 static inline int cpu_has_vmx_tpr_shadow(void)
172 {
173 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
174 }
175
176 static inline int vm_need_tpr_shadow(struct kvm *kvm)
177 {
178 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
179 }
180
181 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
182 {
183 int i;
184
185 for (i = 0; i < vmx->nmsrs; ++i)
186 if (vmx->guest_msrs[i].index == msr)
187 return i;
188 return -1;
189 }
190
191 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
192 {
193 int i;
194
195 i = __find_msr_index(vmx, msr);
196 if (i >= 0)
197 return &vmx->guest_msrs[i];
198 return NULL;
199 }
200
201 static void vmcs_clear(struct vmcs *vmcs)
202 {
203 u64 phys_addr = __pa(vmcs);
204 u8 error;
205
206 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
207 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
208 : "cc", "memory");
209 if (error)
210 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
211 vmcs, phys_addr);
212 }
213
214 static void __vcpu_clear(void *arg)
215 {
216 struct vcpu_vmx *vmx = arg;
217 int cpu = raw_smp_processor_id();
218
219 if (vmx->vcpu.cpu == cpu)
220 vmcs_clear(vmx->vmcs);
221 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
222 per_cpu(current_vmcs, cpu) = NULL;
223 rdtscll(vmx->vcpu.host_tsc);
224 }
225
226 static void vcpu_clear(struct vcpu_vmx *vmx)
227 {
228 if (vmx->vcpu.cpu == -1)
229 return;
230 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
231 vmx->launched = 0;
232 }
233
234 static unsigned long vmcs_readl(unsigned long field)
235 {
236 unsigned long value;
237
238 asm volatile (ASM_VMX_VMREAD_RDX_RAX
239 : "=a"(value) : "d"(field) : "cc");
240 return value;
241 }
242
243 static u16 vmcs_read16(unsigned long field)
244 {
245 return vmcs_readl(field);
246 }
247
248 static u32 vmcs_read32(unsigned long field)
249 {
250 return vmcs_readl(field);
251 }
252
253 static u64 vmcs_read64(unsigned long field)
254 {
255 #ifdef CONFIG_X86_64
256 return vmcs_readl(field);
257 #else
258 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
259 #endif
260 }
261
262 static noinline void vmwrite_error(unsigned long field, unsigned long value)
263 {
264 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
265 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
266 dump_stack();
267 }
268
269 static void vmcs_writel(unsigned long field, unsigned long value)
270 {
271 u8 error;
272
273 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
274 : "=q"(error) : "a"(value), "d"(field) : "cc" );
275 if (unlikely(error))
276 vmwrite_error(field, value);
277 }
278
279 static void vmcs_write16(unsigned long field, u16 value)
280 {
281 vmcs_writel(field, value);
282 }
283
284 static void vmcs_write32(unsigned long field, u32 value)
285 {
286 vmcs_writel(field, value);
287 }
288
289 static void vmcs_write64(unsigned long field, u64 value)
290 {
291 #ifdef CONFIG_X86_64
292 vmcs_writel(field, value);
293 #else
294 vmcs_writel(field, value);
295 asm volatile ("");
296 vmcs_writel(field+1, value >> 32);
297 #endif
298 }
299
300 static void vmcs_clear_bits(unsigned long field, u32 mask)
301 {
302 vmcs_writel(field, vmcs_readl(field) & ~mask);
303 }
304
305 static void vmcs_set_bits(unsigned long field, u32 mask)
306 {
307 vmcs_writel(field, vmcs_readl(field) | mask);
308 }
309
310 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
311 {
312 u32 eb;
313
314 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
315 if (!vcpu->fpu_active)
316 eb |= 1u << NM_VECTOR;
317 if (vcpu->guest_debug.enabled)
318 eb |= 1u << 1;
319 if (vcpu->rmode.active)
320 eb = ~0;
321 vmcs_write32(EXCEPTION_BITMAP, eb);
322 }
323
324 static void reload_tss(void)
325 {
326 #ifndef CONFIG_X86_64
327
328 /*
329 * VT restores TR but not its size. Useless.
330 */
331 struct descriptor_table gdt;
332 struct segment_descriptor *descs;
333
334 get_gdt(&gdt);
335 descs = (void *)gdt.base;
336 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
337 load_TR_desc();
338 #endif
339 }
340
341 static void load_transition_efer(struct vcpu_vmx *vmx)
342 {
343 int efer_offset = vmx->msr_offset_efer;
344 u64 host_efer = vmx->host_msrs[efer_offset].data;
345 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
346 u64 ignore_bits;
347
348 if (efer_offset < 0)
349 return;
350 /*
351 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
352 * outside long mode
353 */
354 ignore_bits = EFER_NX | EFER_SCE;
355 #ifdef CONFIG_X86_64
356 ignore_bits |= EFER_LMA | EFER_LME;
357 /* SCE is meaningful only in long mode on Intel */
358 if (guest_efer & EFER_LMA)
359 ignore_bits &= ~(u64)EFER_SCE;
360 #endif
361 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
362 return;
363
364 vmx->host_state.guest_efer_loaded = 1;
365 guest_efer &= ~ignore_bits;
366 guest_efer |= host_efer & ignore_bits;
367 wrmsrl(MSR_EFER, guest_efer);
368 vmx->vcpu.stat.efer_reload++;
369 }
370
371 static void reload_host_efer(struct vcpu_vmx *vmx)
372 {
373 if (vmx->host_state.guest_efer_loaded) {
374 vmx->host_state.guest_efer_loaded = 0;
375 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
376 }
377 }
378
379 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
380 {
381 struct vcpu_vmx *vmx = to_vmx(vcpu);
382
383 if (vmx->host_state.loaded)
384 return;
385
386 vmx->host_state.loaded = 1;
387 /*
388 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
389 * allow segment selectors with cpl > 0 or ti == 1.
390 */
391 vmx->host_state.ldt_sel = read_ldt();
392 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
393 vmx->host_state.fs_sel = read_fs();
394 if (!(vmx->host_state.fs_sel & 7)) {
395 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
396 vmx->host_state.fs_reload_needed = 0;
397 } else {
398 vmcs_write16(HOST_FS_SELECTOR, 0);
399 vmx->host_state.fs_reload_needed = 1;
400 }
401 vmx->host_state.gs_sel = read_gs();
402 if (!(vmx->host_state.gs_sel & 7))
403 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
404 else {
405 vmcs_write16(HOST_GS_SELECTOR, 0);
406 vmx->host_state.gs_ldt_reload_needed = 1;
407 }
408
409 #ifdef CONFIG_X86_64
410 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
411 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
412 #else
413 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
414 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
415 #endif
416
417 #ifdef CONFIG_X86_64
418 if (is_long_mode(&vmx->vcpu)) {
419 save_msrs(vmx->host_msrs +
420 vmx->msr_offset_kernel_gs_base, 1);
421 }
422 #endif
423 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
424 load_transition_efer(vmx);
425 }
426
427 static void vmx_load_host_state(struct vcpu_vmx *vmx)
428 {
429 unsigned long flags;
430
431 if (!vmx->host_state.loaded)
432 return;
433
434 vmx->host_state.loaded = 0;
435 if (vmx->host_state.fs_reload_needed)
436 load_fs(vmx->host_state.fs_sel);
437 if (vmx->host_state.gs_ldt_reload_needed) {
438 load_ldt(vmx->host_state.ldt_sel);
439 /*
440 * If we have to reload gs, we must take care to
441 * preserve our gs base.
442 */
443 local_irq_save(flags);
444 load_gs(vmx->host_state.gs_sel);
445 #ifdef CONFIG_X86_64
446 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
447 #endif
448 local_irq_restore(flags);
449 }
450 reload_tss();
451 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
452 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
453 reload_host_efer(vmx);
454 }
455
456 /*
457 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
458 * vcpu mutex is already taken.
459 */
460 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
461 {
462 struct vcpu_vmx *vmx = to_vmx(vcpu);
463 u64 phys_addr = __pa(vmx->vmcs);
464 u64 tsc_this, delta;
465
466 if (vcpu->cpu != cpu) {
467 vcpu_clear(vmx);
468 kvm_migrate_apic_timer(vcpu);
469 }
470
471 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
472 u8 error;
473
474 per_cpu(current_vmcs, cpu) = vmx->vmcs;
475 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
476 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
477 : "cc");
478 if (error)
479 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
480 vmx->vmcs, phys_addr);
481 }
482
483 if (vcpu->cpu != cpu) {
484 struct descriptor_table dt;
485 unsigned long sysenter_esp;
486
487 vcpu->cpu = cpu;
488 /*
489 * Linux uses per-cpu TSS and GDT, so set these when switching
490 * processors.
491 */
492 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
493 get_gdt(&dt);
494 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
495
496 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
497 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
498
499 /*
500 * Make sure the time stamp counter is monotonous.
501 */
502 rdtscll(tsc_this);
503 delta = vcpu->host_tsc - tsc_this;
504 vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
505 }
506 }
507
508 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
509 {
510 vmx_load_host_state(to_vmx(vcpu));
511 kvm_put_guest_fpu(vcpu);
512 }
513
514 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
515 {
516 if (vcpu->fpu_active)
517 return;
518 vcpu->fpu_active = 1;
519 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
520 if (vcpu->cr0 & X86_CR0_TS)
521 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
522 update_exception_bitmap(vcpu);
523 }
524
525 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
526 {
527 if (!vcpu->fpu_active)
528 return;
529 vcpu->fpu_active = 0;
530 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
531 update_exception_bitmap(vcpu);
532 }
533
534 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
535 {
536 vcpu_clear(to_vmx(vcpu));
537 }
538
539 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
540 {
541 return vmcs_readl(GUEST_RFLAGS);
542 }
543
544 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
545 {
546 if (vcpu->rmode.active)
547 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
548 vmcs_writel(GUEST_RFLAGS, rflags);
549 }
550
551 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
552 {
553 unsigned long rip;
554 u32 interruptibility;
555
556 rip = vmcs_readl(GUEST_RIP);
557 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
558 vmcs_writel(GUEST_RIP, rip);
559
560 /*
561 * We emulated an instruction, so temporary interrupt blocking
562 * should be removed, if set.
563 */
564 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
565 if (interruptibility & 3)
566 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
567 interruptibility & ~3);
568 vcpu->interrupt_window_open = 1;
569 }
570
571 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
572 {
573 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
574 vmcs_readl(GUEST_RIP));
575 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
576 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
577 GP_VECTOR |
578 INTR_TYPE_EXCEPTION |
579 INTR_INFO_DELIEVER_CODE_MASK |
580 INTR_INFO_VALID_MASK);
581 }
582
583 static void vmx_inject_ud(struct kvm_vcpu *vcpu)
584 {
585 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
586 UD_VECTOR |
587 INTR_TYPE_EXCEPTION |
588 INTR_INFO_VALID_MASK);
589 }
590
591 /*
592 * Swap MSR entry in host/guest MSR entry array.
593 */
594 #ifdef CONFIG_X86_64
595 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
596 {
597 struct kvm_msr_entry tmp;
598
599 tmp = vmx->guest_msrs[to];
600 vmx->guest_msrs[to] = vmx->guest_msrs[from];
601 vmx->guest_msrs[from] = tmp;
602 tmp = vmx->host_msrs[to];
603 vmx->host_msrs[to] = vmx->host_msrs[from];
604 vmx->host_msrs[from] = tmp;
605 }
606 #endif
607
608 /*
609 * Set up the vmcs to automatically save and restore system
610 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
611 * mode, as fiddling with msrs is very expensive.
612 */
613 static void setup_msrs(struct vcpu_vmx *vmx)
614 {
615 int save_nmsrs;
616
617 save_nmsrs = 0;
618 #ifdef CONFIG_X86_64
619 if (is_long_mode(&vmx->vcpu)) {
620 int index;
621
622 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
623 if (index >= 0)
624 move_msr_up(vmx, index, save_nmsrs++);
625 index = __find_msr_index(vmx, MSR_LSTAR);
626 if (index >= 0)
627 move_msr_up(vmx, index, save_nmsrs++);
628 index = __find_msr_index(vmx, MSR_CSTAR);
629 if (index >= 0)
630 move_msr_up(vmx, index, save_nmsrs++);
631 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
632 if (index >= 0)
633 move_msr_up(vmx, index, save_nmsrs++);
634 /*
635 * MSR_K6_STAR is only needed on long mode guests, and only
636 * if efer.sce is enabled.
637 */
638 index = __find_msr_index(vmx, MSR_K6_STAR);
639 if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
640 move_msr_up(vmx, index, save_nmsrs++);
641 }
642 #endif
643 vmx->save_nmsrs = save_nmsrs;
644
645 #ifdef CONFIG_X86_64
646 vmx->msr_offset_kernel_gs_base =
647 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
648 #endif
649 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
650 }
651
652 /*
653 * reads and returns guest's timestamp counter "register"
654 * guest_tsc = host_tsc + tsc_offset -- 21.3
655 */
656 static u64 guest_read_tsc(void)
657 {
658 u64 host_tsc, tsc_offset;
659
660 rdtscll(host_tsc);
661 tsc_offset = vmcs_read64(TSC_OFFSET);
662 return host_tsc + tsc_offset;
663 }
664
665 /*
666 * writes 'guest_tsc' into guest's timestamp counter "register"
667 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
668 */
669 static void guest_write_tsc(u64 guest_tsc)
670 {
671 u64 host_tsc;
672
673 rdtscll(host_tsc);
674 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
675 }
676
677 /*
678 * Reads an msr value (of 'msr_index') into 'pdata'.
679 * Returns 0 on success, non-0 otherwise.
680 * Assumes vcpu_load() was already called.
681 */
682 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
683 {
684 u64 data;
685 struct kvm_msr_entry *msr;
686
687 if (!pdata) {
688 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
689 return -EINVAL;
690 }
691
692 switch (msr_index) {
693 #ifdef CONFIG_X86_64
694 case MSR_FS_BASE:
695 data = vmcs_readl(GUEST_FS_BASE);
696 break;
697 case MSR_GS_BASE:
698 data = vmcs_readl(GUEST_GS_BASE);
699 break;
700 case MSR_EFER:
701 return kvm_get_msr_common(vcpu, msr_index, pdata);
702 #endif
703 case MSR_IA32_TIME_STAMP_COUNTER:
704 data = guest_read_tsc();
705 break;
706 case MSR_IA32_SYSENTER_CS:
707 data = vmcs_read32(GUEST_SYSENTER_CS);
708 break;
709 case MSR_IA32_SYSENTER_EIP:
710 data = vmcs_readl(GUEST_SYSENTER_EIP);
711 break;
712 case MSR_IA32_SYSENTER_ESP:
713 data = vmcs_readl(GUEST_SYSENTER_ESP);
714 break;
715 default:
716 msr = find_msr_entry(to_vmx(vcpu), msr_index);
717 if (msr) {
718 data = msr->data;
719 break;
720 }
721 return kvm_get_msr_common(vcpu, msr_index, pdata);
722 }
723
724 *pdata = data;
725 return 0;
726 }
727
728 /*
729 * Writes msr value into into the appropriate "register".
730 * Returns 0 on success, non-0 otherwise.
731 * Assumes vcpu_load() was already called.
732 */
733 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
734 {
735 struct vcpu_vmx *vmx = to_vmx(vcpu);
736 struct kvm_msr_entry *msr;
737 int ret = 0;
738
739 switch (msr_index) {
740 #ifdef CONFIG_X86_64
741 case MSR_EFER:
742 ret = kvm_set_msr_common(vcpu, msr_index, data);
743 if (vmx->host_state.loaded) {
744 reload_host_efer(vmx);
745 load_transition_efer(vmx);
746 }
747 break;
748 case MSR_FS_BASE:
749 vmcs_writel(GUEST_FS_BASE, data);
750 break;
751 case MSR_GS_BASE:
752 vmcs_writel(GUEST_GS_BASE, data);
753 break;
754 #endif
755 case MSR_IA32_SYSENTER_CS:
756 vmcs_write32(GUEST_SYSENTER_CS, data);
757 break;
758 case MSR_IA32_SYSENTER_EIP:
759 vmcs_writel(GUEST_SYSENTER_EIP, data);
760 break;
761 case MSR_IA32_SYSENTER_ESP:
762 vmcs_writel(GUEST_SYSENTER_ESP, data);
763 break;
764 case MSR_IA32_TIME_STAMP_COUNTER:
765 guest_write_tsc(data);
766 break;
767 default:
768 msr = find_msr_entry(vmx, msr_index);
769 if (msr) {
770 msr->data = data;
771 if (vmx->host_state.loaded)
772 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
773 break;
774 }
775 ret = kvm_set_msr_common(vcpu, msr_index, data);
776 }
777
778 return ret;
779 }
780
781 /*
782 * Sync the rsp and rip registers into the vcpu structure. This allows
783 * registers to be accessed by indexing vcpu->regs.
784 */
785 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
786 {
787 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
788 vcpu->rip = vmcs_readl(GUEST_RIP);
789 }
790
791 /*
792 * Syncs rsp and rip back into the vmcs. Should be called after possible
793 * modification.
794 */
795 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
796 {
797 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
798 vmcs_writel(GUEST_RIP, vcpu->rip);
799 }
800
801 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
802 {
803 unsigned long dr7 = 0x400;
804 int old_singlestep;
805
806 old_singlestep = vcpu->guest_debug.singlestep;
807
808 vcpu->guest_debug.enabled = dbg->enabled;
809 if (vcpu->guest_debug.enabled) {
810 int i;
811
812 dr7 |= 0x200; /* exact */
813 for (i = 0; i < 4; ++i) {
814 if (!dbg->breakpoints[i].enabled)
815 continue;
816 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
817 dr7 |= 2 << (i*2); /* global enable */
818 dr7 |= 0 << (i*4+16); /* execution breakpoint */
819 }
820
821 vcpu->guest_debug.singlestep = dbg->singlestep;
822 } else
823 vcpu->guest_debug.singlestep = 0;
824
825 if (old_singlestep && !vcpu->guest_debug.singlestep) {
826 unsigned long flags;
827
828 flags = vmcs_readl(GUEST_RFLAGS);
829 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
830 vmcs_writel(GUEST_RFLAGS, flags);
831 }
832
833 update_exception_bitmap(vcpu);
834 vmcs_writel(GUEST_DR7, dr7);
835
836 return 0;
837 }
838
839 static int vmx_get_irq(struct kvm_vcpu *vcpu)
840 {
841 u32 idtv_info_field;
842
843 idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
844 if (idtv_info_field & INTR_INFO_VALID_MASK) {
845 if (is_external_interrupt(idtv_info_field))
846 return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
847 else
848 printk("pending exception: not handled yet\n");
849 }
850 return -1;
851 }
852
853 static __init int cpu_has_kvm_support(void)
854 {
855 unsigned long ecx = cpuid_ecx(1);
856 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
857 }
858
859 static __init int vmx_disabled_by_bios(void)
860 {
861 u64 msr;
862
863 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
864 return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
865 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
866 == MSR_IA32_FEATURE_CONTROL_LOCKED;
867 /* locked but not enabled */
868 }
869
870 static void hardware_enable(void *garbage)
871 {
872 int cpu = raw_smp_processor_id();
873 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
874 u64 old;
875
876 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
877 if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
878 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
879 != (MSR_IA32_FEATURE_CONTROL_LOCKED |
880 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
881 /* enable and lock */
882 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
883 MSR_IA32_FEATURE_CONTROL_LOCKED |
884 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
885 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
886 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
887 : "memory", "cc");
888 }
889
890 static void hardware_disable(void *garbage)
891 {
892 asm volatile (ASM_VMX_VMXOFF : : : "cc");
893 }
894
895 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
896 u32 msr, u32* result)
897 {
898 u32 vmx_msr_low, vmx_msr_high;
899 u32 ctl = ctl_min | ctl_opt;
900
901 rdmsr(msr, vmx_msr_low, vmx_msr_high);
902
903 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
904 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
905
906 /* Ensure minimum (required) set of control bits are supported. */
907 if (ctl_min & ~ctl)
908 return -EIO;
909
910 *result = ctl;
911 return 0;
912 }
913
914 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
915 {
916 u32 vmx_msr_low, vmx_msr_high;
917 u32 min, opt;
918 u32 _pin_based_exec_control = 0;
919 u32 _cpu_based_exec_control = 0;
920 u32 _vmexit_control = 0;
921 u32 _vmentry_control = 0;
922
923 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
924 opt = 0;
925 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
926 &_pin_based_exec_control) < 0)
927 return -EIO;
928
929 min = CPU_BASED_HLT_EXITING |
930 #ifdef CONFIG_X86_64
931 CPU_BASED_CR8_LOAD_EXITING |
932 CPU_BASED_CR8_STORE_EXITING |
933 #endif
934 CPU_BASED_USE_IO_BITMAPS |
935 CPU_BASED_MOV_DR_EXITING |
936 CPU_BASED_USE_TSC_OFFSETING;
937 #ifdef CONFIG_X86_64
938 opt = CPU_BASED_TPR_SHADOW;
939 #else
940 opt = 0;
941 #endif
942 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
943 &_cpu_based_exec_control) < 0)
944 return -EIO;
945 #ifdef CONFIG_X86_64
946 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
947 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
948 ~CPU_BASED_CR8_STORE_EXITING;
949 #endif
950
951 min = 0;
952 #ifdef CONFIG_X86_64
953 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
954 #endif
955 opt = 0;
956 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
957 &_vmexit_control) < 0)
958 return -EIO;
959
960 min = opt = 0;
961 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
962 &_vmentry_control) < 0)
963 return -EIO;
964
965 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
966
967 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
968 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
969 return -EIO;
970
971 #ifdef CONFIG_X86_64
972 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
973 if (vmx_msr_high & (1u<<16))
974 return -EIO;
975 #endif
976
977 /* Require Write-Back (WB) memory type for VMCS accesses. */
978 if (((vmx_msr_high >> 18) & 15) != 6)
979 return -EIO;
980
981 vmcs_conf->size = vmx_msr_high & 0x1fff;
982 vmcs_conf->order = get_order(vmcs_config.size);
983 vmcs_conf->revision_id = vmx_msr_low;
984
985 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
986 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
987 vmcs_conf->vmexit_ctrl = _vmexit_control;
988 vmcs_conf->vmentry_ctrl = _vmentry_control;
989
990 return 0;
991 }
992
993 static struct vmcs *alloc_vmcs_cpu(int cpu)
994 {
995 int node = cpu_to_node(cpu);
996 struct page *pages;
997 struct vmcs *vmcs;
998
999 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1000 if (!pages)
1001 return NULL;
1002 vmcs = page_address(pages);
1003 memset(vmcs, 0, vmcs_config.size);
1004 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1005 return vmcs;
1006 }
1007
1008 static struct vmcs *alloc_vmcs(void)
1009 {
1010 return alloc_vmcs_cpu(raw_smp_processor_id());
1011 }
1012
1013 static void free_vmcs(struct vmcs *vmcs)
1014 {
1015 free_pages((unsigned long)vmcs, vmcs_config.order);
1016 }
1017
1018 static void free_kvm_area(void)
1019 {
1020 int cpu;
1021
1022 for_each_online_cpu(cpu)
1023 free_vmcs(per_cpu(vmxarea, cpu));
1024 }
1025
1026 static __init int alloc_kvm_area(void)
1027 {
1028 int cpu;
1029
1030 for_each_online_cpu(cpu) {
1031 struct vmcs *vmcs;
1032
1033 vmcs = alloc_vmcs_cpu(cpu);
1034 if (!vmcs) {
1035 free_kvm_area();
1036 return -ENOMEM;
1037 }
1038
1039 per_cpu(vmxarea, cpu) = vmcs;
1040 }
1041 return 0;
1042 }
1043
1044 static __init int hardware_setup(void)
1045 {
1046 if (setup_vmcs_config(&vmcs_config) < 0)
1047 return -EIO;
1048 return alloc_kvm_area();
1049 }
1050
1051 static __exit void hardware_unsetup(void)
1052 {
1053 free_kvm_area();
1054 }
1055
1056 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1057 {
1058 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1059
1060 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1061 vmcs_write16(sf->selector, save->selector);
1062 vmcs_writel(sf->base, save->base);
1063 vmcs_write32(sf->limit, save->limit);
1064 vmcs_write32(sf->ar_bytes, save->ar);
1065 } else {
1066 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1067 << AR_DPL_SHIFT;
1068 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1069 }
1070 }
1071
1072 static void enter_pmode(struct kvm_vcpu *vcpu)
1073 {
1074 unsigned long flags;
1075
1076 vcpu->rmode.active = 0;
1077
1078 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
1079 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
1080 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
1081
1082 flags = vmcs_readl(GUEST_RFLAGS);
1083 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1084 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
1085 vmcs_writel(GUEST_RFLAGS, flags);
1086
1087 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1088 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1089
1090 update_exception_bitmap(vcpu);
1091
1092 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
1093 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
1094 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
1095 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
1096
1097 vmcs_write16(GUEST_SS_SELECTOR, 0);
1098 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1099
1100 vmcs_write16(GUEST_CS_SELECTOR,
1101 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1102 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1103 }
1104
1105 static gva_t rmode_tss_base(struct kvm* kvm)
1106 {
1107 gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
1108 return base_gfn << PAGE_SHIFT;
1109 }
1110
1111 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1112 {
1113 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1114
1115 save->selector = vmcs_read16(sf->selector);
1116 save->base = vmcs_readl(sf->base);
1117 save->limit = vmcs_read32(sf->limit);
1118 save->ar = vmcs_read32(sf->ar_bytes);
1119 vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
1120 vmcs_write32(sf->limit, 0xffff);
1121 vmcs_write32(sf->ar_bytes, 0xf3);
1122 }
1123
1124 static void enter_rmode(struct kvm_vcpu *vcpu)
1125 {
1126 unsigned long flags;
1127
1128 vcpu->rmode.active = 1;
1129
1130 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1131 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1132
1133 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1134 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1135
1136 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1137 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1138
1139 flags = vmcs_readl(GUEST_RFLAGS);
1140 vcpu->rmode.save_iopl = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1141
1142 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1143
1144 vmcs_writel(GUEST_RFLAGS, flags);
1145 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1146 update_exception_bitmap(vcpu);
1147
1148 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1149 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1150 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1151
1152 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1153 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1154 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1155 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1156 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1157
1158 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
1159 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
1160 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
1161 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
1162
1163 kvm_mmu_reset_context(vcpu);
1164 init_rmode_tss(vcpu->kvm);
1165 }
1166
1167 #ifdef CONFIG_X86_64
1168
1169 static void enter_lmode(struct kvm_vcpu *vcpu)
1170 {
1171 u32 guest_tr_ar;
1172
1173 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1174 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1175 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1176 __FUNCTION__);
1177 vmcs_write32(GUEST_TR_AR_BYTES,
1178 (guest_tr_ar & ~AR_TYPE_MASK)
1179 | AR_TYPE_BUSY_64_TSS);
1180 }
1181
1182 vcpu->shadow_efer |= EFER_LMA;
1183
1184 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1185 vmcs_write32(VM_ENTRY_CONTROLS,
1186 vmcs_read32(VM_ENTRY_CONTROLS)
1187 | VM_ENTRY_IA32E_MODE);
1188 }
1189
1190 static void exit_lmode(struct kvm_vcpu *vcpu)
1191 {
1192 vcpu->shadow_efer &= ~EFER_LMA;
1193
1194 vmcs_write32(VM_ENTRY_CONTROLS,
1195 vmcs_read32(VM_ENTRY_CONTROLS)
1196 & ~VM_ENTRY_IA32E_MODE);
1197 }
1198
1199 #endif
1200
1201 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1202 {
1203 vcpu->cr4 &= KVM_GUEST_CR4_MASK;
1204 vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1205 }
1206
1207 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1208 {
1209 vmx_fpu_deactivate(vcpu);
1210
1211 if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
1212 enter_pmode(vcpu);
1213
1214 if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
1215 enter_rmode(vcpu);
1216
1217 #ifdef CONFIG_X86_64
1218 if (vcpu->shadow_efer & EFER_LME) {
1219 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1220 enter_lmode(vcpu);
1221 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1222 exit_lmode(vcpu);
1223 }
1224 #endif
1225
1226 vmcs_writel(CR0_READ_SHADOW, cr0);
1227 vmcs_writel(GUEST_CR0,
1228 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1229 vcpu->cr0 = cr0;
1230
1231 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1232 vmx_fpu_activate(vcpu);
1233 }
1234
1235 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1236 {
1237 vmcs_writel(GUEST_CR3, cr3);
1238 if (vcpu->cr0 & X86_CR0_PE)
1239 vmx_fpu_deactivate(vcpu);
1240 }
1241
1242 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1243 {
1244 vmcs_writel(CR4_READ_SHADOW, cr4);
1245 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
1246 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1247 vcpu->cr4 = cr4;
1248 }
1249
1250 #ifdef CONFIG_X86_64
1251
1252 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1253 {
1254 struct vcpu_vmx *vmx = to_vmx(vcpu);
1255 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1256
1257 vcpu->shadow_efer = efer;
1258 if (efer & EFER_LMA) {
1259 vmcs_write32(VM_ENTRY_CONTROLS,
1260 vmcs_read32(VM_ENTRY_CONTROLS) |
1261 VM_ENTRY_IA32E_MODE);
1262 msr->data = efer;
1263
1264 } else {
1265 vmcs_write32(VM_ENTRY_CONTROLS,
1266 vmcs_read32(VM_ENTRY_CONTROLS) &
1267 ~VM_ENTRY_IA32E_MODE);
1268
1269 msr->data = efer & ~EFER_LME;
1270 }
1271 setup_msrs(vmx);
1272 }
1273
1274 #endif
1275
1276 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1277 {
1278 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1279
1280 return vmcs_readl(sf->base);
1281 }
1282
1283 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1284 struct kvm_segment *var, int seg)
1285 {
1286 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1287 u32 ar;
1288
1289 var->base = vmcs_readl(sf->base);
1290 var->limit = vmcs_read32(sf->limit);
1291 var->selector = vmcs_read16(sf->selector);
1292 ar = vmcs_read32(sf->ar_bytes);
1293 if (ar & AR_UNUSABLE_MASK)
1294 ar = 0;
1295 var->type = ar & 15;
1296 var->s = (ar >> 4) & 1;
1297 var->dpl = (ar >> 5) & 3;
1298 var->present = (ar >> 7) & 1;
1299 var->avl = (ar >> 12) & 1;
1300 var->l = (ar >> 13) & 1;
1301 var->db = (ar >> 14) & 1;
1302 var->g = (ar >> 15) & 1;
1303 var->unusable = (ar >> 16) & 1;
1304 }
1305
1306 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1307 {
1308 u32 ar;
1309
1310 if (var->unusable)
1311 ar = 1 << 16;
1312 else {
1313 ar = var->type & 15;
1314 ar |= (var->s & 1) << 4;
1315 ar |= (var->dpl & 3) << 5;
1316 ar |= (var->present & 1) << 7;
1317 ar |= (var->avl & 1) << 12;
1318 ar |= (var->l & 1) << 13;
1319 ar |= (var->db & 1) << 14;
1320 ar |= (var->g & 1) << 15;
1321 }
1322 if (ar == 0) /* a 0 value means unusable */
1323 ar = AR_UNUSABLE_MASK;
1324
1325 return ar;
1326 }
1327
1328 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1329 struct kvm_segment *var, int seg)
1330 {
1331 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1332 u32 ar;
1333
1334 if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
1335 vcpu->rmode.tr.selector = var->selector;
1336 vcpu->rmode.tr.base = var->base;
1337 vcpu->rmode.tr.limit = var->limit;
1338 vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
1339 return;
1340 }
1341 vmcs_writel(sf->base, var->base);
1342 vmcs_write32(sf->limit, var->limit);
1343 vmcs_write16(sf->selector, var->selector);
1344 if (vcpu->rmode.active && var->s) {
1345 /*
1346 * Hack real-mode segments into vm86 compatibility.
1347 */
1348 if (var->base == 0xffff0000 && var->selector == 0xf000)
1349 vmcs_writel(sf->base, 0xf0000);
1350 ar = 0xf3;
1351 } else
1352 ar = vmx_segment_access_rights(var);
1353 vmcs_write32(sf->ar_bytes, ar);
1354 }
1355
1356 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1357 {
1358 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1359
1360 *db = (ar >> 14) & 1;
1361 *l = (ar >> 13) & 1;
1362 }
1363
1364 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1365 {
1366 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1367 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1368 }
1369
1370 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1371 {
1372 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1373 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1374 }
1375
1376 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1377 {
1378 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1379 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1380 }
1381
1382 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1383 {
1384 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1385 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1386 }
1387
1388 static int init_rmode_tss(struct kvm* kvm)
1389 {
1390 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1391 u16 data = 0;
1392 int r;
1393
1394 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1395 if (r < 0)
1396 return 0;
1397 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1398 r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1399 if (r < 0)
1400 return 0;
1401 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1402 if (r < 0)
1403 return 0;
1404 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1405 if (r < 0)
1406 return 0;
1407 data = ~0;
1408 r = kvm_write_guest_page(kvm, fn, &data, RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1409 sizeof(u8));
1410 if (r < 0)
1411 return 0;
1412 return 1;
1413 }
1414
1415 static void seg_setup(int seg)
1416 {
1417 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1418
1419 vmcs_write16(sf->selector, 0);
1420 vmcs_writel(sf->base, 0);
1421 vmcs_write32(sf->limit, 0xffff);
1422 vmcs_write32(sf->ar_bytes, 0x93);
1423 }
1424
1425 /*
1426 * Sets up the vmcs for emulated real mode.
1427 */
1428 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1429 {
1430 u32 host_sysenter_cs;
1431 u32 junk;
1432 unsigned long a;
1433 struct descriptor_table dt;
1434 int i;
1435 int ret = 0;
1436 unsigned long kvm_vmx_return;
1437 u64 msr;
1438 u32 exec_control;
1439
1440 if (!init_rmode_tss(vmx->vcpu.kvm)) {
1441 ret = -ENOMEM;
1442 goto out;
1443 }
1444
1445 vmx->vcpu.rmode.active = 0;
1446
1447 vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1448 set_cr8(&vmx->vcpu, 0);
1449 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1450 if (vmx->vcpu.vcpu_id == 0)
1451 msr |= MSR_IA32_APICBASE_BSP;
1452 kvm_set_apic_base(&vmx->vcpu, msr);
1453
1454 fx_init(&vmx->vcpu);
1455
1456 /*
1457 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1458 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1459 */
1460 if (vmx->vcpu.vcpu_id == 0) {
1461 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1462 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1463 } else {
1464 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.sipi_vector << 8);
1465 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.sipi_vector << 12);
1466 }
1467 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1468 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1469
1470 seg_setup(VCPU_SREG_DS);
1471 seg_setup(VCPU_SREG_ES);
1472 seg_setup(VCPU_SREG_FS);
1473 seg_setup(VCPU_SREG_GS);
1474 seg_setup(VCPU_SREG_SS);
1475
1476 vmcs_write16(GUEST_TR_SELECTOR, 0);
1477 vmcs_writel(GUEST_TR_BASE, 0);
1478 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1479 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1480
1481 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1482 vmcs_writel(GUEST_LDTR_BASE, 0);
1483 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1484 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1485
1486 vmcs_write32(GUEST_SYSENTER_CS, 0);
1487 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1488 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1489
1490 vmcs_writel(GUEST_RFLAGS, 0x02);
1491 if (vmx->vcpu.vcpu_id == 0)
1492 vmcs_writel(GUEST_RIP, 0xfff0);
1493 else
1494 vmcs_writel(GUEST_RIP, 0);
1495 vmcs_writel(GUEST_RSP, 0);
1496
1497 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1498 vmcs_writel(GUEST_DR7, 0x400);
1499
1500 vmcs_writel(GUEST_GDTR_BASE, 0);
1501 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1502
1503 vmcs_writel(GUEST_IDTR_BASE, 0);
1504 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1505
1506 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1507 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1508 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1509
1510 /* I/O */
1511 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1512 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1513
1514 guest_write_tsc(0);
1515
1516 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1517
1518 /* Special registers */
1519 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1520
1521 /* Control */
1522 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1523 vmcs_config.pin_based_exec_ctrl);
1524
1525 exec_control = vmcs_config.cpu_based_exec_ctrl;
1526 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1527 exec_control &= ~CPU_BASED_TPR_SHADOW;
1528 #ifdef CONFIG_X86_64
1529 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1530 CPU_BASED_CR8_LOAD_EXITING;
1531 #endif
1532 }
1533 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1534
1535 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1536 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1537 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1538
1539 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1540 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1541 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1542
1543 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1544 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1545 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1546 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1547 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1548 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1549 #ifdef CONFIG_X86_64
1550 rdmsrl(MSR_FS_BASE, a);
1551 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1552 rdmsrl(MSR_GS_BASE, a);
1553 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1554 #else
1555 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1556 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1557 #endif
1558
1559 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1560
1561 get_idt(&dt);
1562 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1563
1564 asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1565 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1566 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1567 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1568 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1569
1570 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1571 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1572 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1573 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1574 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1575 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1576
1577 for (i = 0; i < NR_VMX_MSR; ++i) {
1578 u32 index = vmx_msr_index[i];
1579 u32 data_low, data_high;
1580 u64 data;
1581 int j = vmx->nmsrs;
1582
1583 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1584 continue;
1585 if (wrmsr_safe(index, data_low, data_high) < 0)
1586 continue;
1587 data = data_low | ((u64)data_high << 32);
1588 vmx->host_msrs[j].index = index;
1589 vmx->host_msrs[j].reserved = 0;
1590 vmx->host_msrs[j].data = data;
1591 vmx->guest_msrs[j] = vmx->host_msrs[j];
1592 ++vmx->nmsrs;
1593 }
1594
1595 setup_msrs(vmx);
1596
1597 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1598
1599 /* 22.2.1, 20.8.1 */
1600 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1601
1602 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1603
1604 #ifdef CONFIG_X86_64
1605 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
1606 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
1607 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
1608 page_to_phys(vmx->vcpu.apic->regs_page));
1609 vmcs_write32(TPR_THRESHOLD, 0);
1610 #endif
1611
1612 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1613 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1614
1615 vmx->vcpu.cr0 = 0x60000010;
1616 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); // enter rmode
1617 vmx_set_cr4(&vmx->vcpu, 0);
1618 #ifdef CONFIG_X86_64
1619 vmx_set_efer(&vmx->vcpu, 0);
1620 #endif
1621 vmx_fpu_activate(&vmx->vcpu);
1622 update_exception_bitmap(&vmx->vcpu);
1623
1624 return 0;
1625
1626 out:
1627 return ret;
1628 }
1629
1630 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1631 {
1632 struct vcpu_vmx *vmx = to_vmx(vcpu);
1633
1634 vmx_vcpu_setup(vmx);
1635 }
1636
1637 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1638 {
1639 u16 ent[2];
1640 u16 cs;
1641 u16 ip;
1642 unsigned long flags;
1643 unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1644 u16 sp = vmcs_readl(GUEST_RSP);
1645 u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1646
1647 if (sp > ss_limit || sp < 6 ) {
1648 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1649 __FUNCTION__,
1650 vmcs_readl(GUEST_RSP),
1651 vmcs_readl(GUEST_SS_BASE),
1652 vmcs_read32(GUEST_SS_LIMIT));
1653 return;
1654 }
1655
1656 if (emulator_read_std(irq * sizeof(ent), &ent, sizeof(ent), vcpu) !=
1657 X86EMUL_CONTINUE) {
1658 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1659 return;
1660 }
1661
1662 flags = vmcs_readl(GUEST_RFLAGS);
1663 cs = vmcs_readl(GUEST_CS_BASE) >> 4;
1664 ip = vmcs_readl(GUEST_RIP);
1665
1666
1667 if (emulator_write_emulated(ss_base + sp - 2, &flags, 2, vcpu) != X86EMUL_CONTINUE ||
1668 emulator_write_emulated(ss_base + sp - 4, &cs, 2, vcpu) != X86EMUL_CONTINUE ||
1669 emulator_write_emulated(ss_base + sp - 6, &ip, 2, vcpu) != X86EMUL_CONTINUE) {
1670 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1671 return;
1672 }
1673
1674 vmcs_writel(GUEST_RFLAGS, flags &
1675 ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1676 vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1677 vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1678 vmcs_writel(GUEST_RIP, ent[0]);
1679 vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1680 }
1681
1682 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1683 {
1684 if (vcpu->rmode.active) {
1685 inject_rmode_irq(vcpu, irq);
1686 return;
1687 }
1688 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1689 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1690 }
1691
1692 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1693 {
1694 int word_index = __ffs(vcpu->irq_summary);
1695 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1696 int irq = word_index * BITS_PER_LONG + bit_index;
1697
1698 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1699 if (!vcpu->irq_pending[word_index])
1700 clear_bit(word_index, &vcpu->irq_summary);
1701 vmx_inject_irq(vcpu, irq);
1702 }
1703
1704
1705 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1706 struct kvm_run *kvm_run)
1707 {
1708 u32 cpu_based_vm_exec_control;
1709
1710 vcpu->interrupt_window_open =
1711 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1712 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1713
1714 if (vcpu->interrupt_window_open &&
1715 vcpu->irq_summary &&
1716 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1717 /*
1718 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1719 */
1720 kvm_do_inject_irq(vcpu);
1721
1722 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1723 if (!vcpu->interrupt_window_open &&
1724 (vcpu->irq_summary || kvm_run->request_interrupt_window))
1725 /*
1726 * Interrupts blocked. Wait for unblock.
1727 */
1728 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1729 else
1730 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1731 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1732 }
1733
1734 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1735 {
1736 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1737
1738 set_debugreg(dbg->bp[0], 0);
1739 set_debugreg(dbg->bp[1], 1);
1740 set_debugreg(dbg->bp[2], 2);
1741 set_debugreg(dbg->bp[3], 3);
1742
1743 if (dbg->singlestep) {
1744 unsigned long flags;
1745
1746 flags = vmcs_readl(GUEST_RFLAGS);
1747 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1748 vmcs_writel(GUEST_RFLAGS, flags);
1749 }
1750 }
1751
1752 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1753 int vec, u32 err_code)
1754 {
1755 if (!vcpu->rmode.active)
1756 return 0;
1757
1758 /*
1759 * Instruction with address size override prefix opcode 0x67
1760 * Cause the #SS fault with 0 error code in VM86 mode.
1761 */
1762 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1763 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
1764 return 1;
1765 return 0;
1766 }
1767
1768 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1769 {
1770 u32 intr_info, error_code;
1771 unsigned long cr2, rip;
1772 u32 vect_info;
1773 enum emulation_result er;
1774 int r;
1775
1776 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1777 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1778
1779 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1780 !is_page_fault(intr_info)) {
1781 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1782 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1783 }
1784
1785 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
1786 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1787 set_bit(irq, vcpu->irq_pending);
1788 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1789 }
1790
1791 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
1792 return 1; /* already handled by vmx_vcpu_run() */
1793
1794 if (is_no_device(intr_info)) {
1795 vmx_fpu_activate(vcpu);
1796 return 1;
1797 }
1798
1799 if (is_invalid_opcode(intr_info)) {
1800 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
1801 if (er != EMULATE_DONE)
1802 vmx_inject_ud(vcpu);
1803
1804 return 1;
1805 }
1806
1807 error_code = 0;
1808 rip = vmcs_readl(GUEST_RIP);
1809 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1810 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1811 if (is_page_fault(intr_info)) {
1812 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1813
1814 mutex_lock(&vcpu->kvm->lock);
1815 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1816 if (r < 0) {
1817 mutex_unlock(&vcpu->kvm->lock);
1818 return r;
1819 }
1820 if (!r) {
1821 mutex_unlock(&vcpu->kvm->lock);
1822 return 1;
1823 }
1824
1825 er = emulate_instruction(vcpu, kvm_run, cr2, error_code, 0);
1826 mutex_unlock(&vcpu->kvm->lock);
1827
1828 switch (er) {
1829 case EMULATE_DONE:
1830 return 1;
1831 case EMULATE_DO_MMIO:
1832 ++vcpu->stat.mmio_exits;
1833 return 0;
1834 case EMULATE_FAIL:
1835 kvm_report_emulation_failure(vcpu, "pagetable");
1836 break;
1837 default:
1838 BUG();
1839 }
1840 }
1841
1842 if (vcpu->rmode.active &&
1843 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1844 error_code)) {
1845 if (vcpu->halt_request) {
1846 vcpu->halt_request = 0;
1847 return kvm_emulate_halt(vcpu);
1848 }
1849 return 1;
1850 }
1851
1852 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1853 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1854 return 0;
1855 }
1856 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1857 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1858 kvm_run->ex.error_code = error_code;
1859 return 0;
1860 }
1861
1862 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1863 struct kvm_run *kvm_run)
1864 {
1865 ++vcpu->stat.irq_exits;
1866 return 1;
1867 }
1868
1869 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1870 {
1871 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1872 return 0;
1873 }
1874
1875 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1876 {
1877 unsigned long exit_qualification;
1878 int size, down, in, string, rep;
1879 unsigned port;
1880
1881 ++vcpu->stat.io_exits;
1882 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1883 string = (exit_qualification & 16) != 0;
1884
1885 if (string) {
1886 if (emulate_instruction(vcpu,
1887 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1888 return 0;
1889 return 1;
1890 }
1891
1892 size = (exit_qualification & 7) + 1;
1893 in = (exit_qualification & 8) != 0;
1894 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1895 rep = (exit_qualification & 32) != 0;
1896 port = exit_qualification >> 16;
1897
1898 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
1899 }
1900
1901 static void
1902 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1903 {
1904 /*
1905 * Patch in the VMCALL instruction:
1906 */
1907 hypercall[0] = 0x0f;
1908 hypercall[1] = 0x01;
1909 hypercall[2] = 0xc1;
1910 }
1911
1912 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1913 {
1914 unsigned long exit_qualification;
1915 int cr;
1916 int reg;
1917
1918 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1919 cr = exit_qualification & 15;
1920 reg = (exit_qualification >> 8) & 15;
1921 switch ((exit_qualification >> 4) & 3) {
1922 case 0: /* mov to cr */
1923 switch (cr) {
1924 case 0:
1925 vcpu_load_rsp_rip(vcpu);
1926 set_cr0(vcpu, vcpu->regs[reg]);
1927 skip_emulated_instruction(vcpu);
1928 return 1;
1929 case 3:
1930 vcpu_load_rsp_rip(vcpu);
1931 set_cr3(vcpu, vcpu->regs[reg]);
1932 skip_emulated_instruction(vcpu);
1933 return 1;
1934 case 4:
1935 vcpu_load_rsp_rip(vcpu);
1936 set_cr4(vcpu, vcpu->regs[reg]);
1937 skip_emulated_instruction(vcpu);
1938 return 1;
1939 case 8:
1940 vcpu_load_rsp_rip(vcpu);
1941 set_cr8(vcpu, vcpu->regs[reg]);
1942 skip_emulated_instruction(vcpu);
1943 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1944 return 0;
1945 };
1946 break;
1947 case 2: /* clts */
1948 vcpu_load_rsp_rip(vcpu);
1949 vmx_fpu_deactivate(vcpu);
1950 vcpu->cr0 &= ~X86_CR0_TS;
1951 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1952 vmx_fpu_activate(vcpu);
1953 skip_emulated_instruction(vcpu);
1954 return 1;
1955 case 1: /*mov from cr*/
1956 switch (cr) {
1957 case 3:
1958 vcpu_load_rsp_rip(vcpu);
1959 vcpu->regs[reg] = vcpu->cr3;
1960 vcpu_put_rsp_rip(vcpu);
1961 skip_emulated_instruction(vcpu);
1962 return 1;
1963 case 8:
1964 vcpu_load_rsp_rip(vcpu);
1965 vcpu->regs[reg] = get_cr8(vcpu);
1966 vcpu_put_rsp_rip(vcpu);
1967 skip_emulated_instruction(vcpu);
1968 return 1;
1969 }
1970 break;
1971 case 3: /* lmsw */
1972 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1973
1974 skip_emulated_instruction(vcpu);
1975 return 1;
1976 default:
1977 break;
1978 }
1979 kvm_run->exit_reason = 0;
1980 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
1981 (int)(exit_qualification >> 4) & 3, cr);
1982 return 0;
1983 }
1984
1985 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1986 {
1987 unsigned long exit_qualification;
1988 unsigned long val;
1989 int dr, reg;
1990
1991 /*
1992 * FIXME: this code assumes the host is debugging the guest.
1993 * need to deal with guest debugging itself too.
1994 */
1995 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1996 dr = exit_qualification & 7;
1997 reg = (exit_qualification >> 8) & 15;
1998 vcpu_load_rsp_rip(vcpu);
1999 if (exit_qualification & 16) {
2000 /* mov from dr */
2001 switch (dr) {
2002 case 6:
2003 val = 0xffff0ff0;
2004 break;
2005 case 7:
2006 val = 0x400;
2007 break;
2008 default:
2009 val = 0;
2010 }
2011 vcpu->regs[reg] = val;
2012 } else {
2013 /* mov to dr */
2014 }
2015 vcpu_put_rsp_rip(vcpu);
2016 skip_emulated_instruction(vcpu);
2017 return 1;
2018 }
2019
2020 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2021 {
2022 kvm_emulate_cpuid(vcpu);
2023 return 1;
2024 }
2025
2026 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2027 {
2028 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
2029 u64 data;
2030
2031 if (vmx_get_msr(vcpu, ecx, &data)) {
2032 vmx_inject_gp(vcpu, 0);
2033 return 1;
2034 }
2035
2036 /* FIXME: handling of bits 32:63 of rax, rdx */
2037 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
2038 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2039 skip_emulated_instruction(vcpu);
2040 return 1;
2041 }
2042
2043 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2044 {
2045 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
2046 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
2047 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
2048
2049 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2050 vmx_inject_gp(vcpu, 0);
2051 return 1;
2052 }
2053
2054 skip_emulated_instruction(vcpu);
2055 return 1;
2056 }
2057
2058 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2059 struct kvm_run *kvm_run)
2060 {
2061 return 1;
2062 }
2063
2064 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2065 struct kvm_run *kvm_run)
2066 {
2067 u32 cpu_based_vm_exec_control;
2068
2069 /* clear pending irq */
2070 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2071 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2072 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2073 /*
2074 * If the user space waits to inject interrupts, exit as soon as
2075 * possible
2076 */
2077 if (kvm_run->request_interrupt_window &&
2078 !vcpu->irq_summary) {
2079 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2080 ++vcpu->stat.irq_window_exits;
2081 return 0;
2082 }
2083 return 1;
2084 }
2085
2086 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2087 {
2088 skip_emulated_instruction(vcpu);
2089 return kvm_emulate_halt(vcpu);
2090 }
2091
2092 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2093 {
2094 skip_emulated_instruction(vcpu);
2095 kvm_emulate_hypercall(vcpu);
2096 return 1;
2097 }
2098
2099 /*
2100 * The exit handlers return 1 if the exit was handled fully and guest execution
2101 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2102 * to be done to userspace and return 0.
2103 */
2104 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2105 struct kvm_run *kvm_run) = {
2106 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2107 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2108 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2109 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2110 [EXIT_REASON_CR_ACCESS] = handle_cr,
2111 [EXIT_REASON_DR_ACCESS] = handle_dr,
2112 [EXIT_REASON_CPUID] = handle_cpuid,
2113 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2114 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2115 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2116 [EXIT_REASON_HLT] = handle_halt,
2117 [EXIT_REASON_VMCALL] = handle_vmcall,
2118 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold
2119 };
2120
2121 static const int kvm_vmx_max_exit_handlers =
2122 ARRAY_SIZE(kvm_vmx_exit_handlers);
2123
2124 /*
2125 * The guest has exited. See if we can fix it or if we need userspace
2126 * assistance.
2127 */
2128 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2129 {
2130 u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2131 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2132 struct vcpu_vmx *vmx = to_vmx(vcpu);
2133
2134 if (unlikely(vmx->fail)) {
2135 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2136 kvm_run->fail_entry.hardware_entry_failure_reason
2137 = vmcs_read32(VM_INSTRUCTION_ERROR);
2138 return 0;
2139 }
2140
2141 if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
2142 exit_reason != EXIT_REASON_EXCEPTION_NMI )
2143 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2144 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
2145 if (exit_reason < kvm_vmx_max_exit_handlers
2146 && kvm_vmx_exit_handlers[exit_reason])
2147 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2148 else {
2149 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2150 kvm_run->hw.hardware_exit_reason = exit_reason;
2151 }
2152 return 0;
2153 }
2154
2155 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2156 {
2157 }
2158
2159 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2160 {
2161 int max_irr, tpr;
2162
2163 if (!vm_need_tpr_shadow(vcpu->kvm))
2164 return;
2165
2166 if (!kvm_lapic_enabled(vcpu) ||
2167 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2168 vmcs_write32(TPR_THRESHOLD, 0);
2169 return;
2170 }
2171
2172 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2173 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2174 }
2175
2176 static void enable_irq_window(struct kvm_vcpu *vcpu)
2177 {
2178 u32 cpu_based_vm_exec_control;
2179
2180 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2181 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2182 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2183 }
2184
2185 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2186 {
2187 u32 idtv_info_field, intr_info_field;
2188 int has_ext_irq, interrupt_window_open;
2189 int vector;
2190
2191 kvm_inject_pending_timer_irqs(vcpu);
2192 update_tpr_threshold(vcpu);
2193
2194 has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2195 intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2196 idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2197 if (intr_info_field & INTR_INFO_VALID_MASK) {
2198 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2199 /* TODO: fault when IDT_Vectoring */
2200 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2201 }
2202 if (has_ext_irq)
2203 enable_irq_window(vcpu);
2204 return;
2205 }
2206 if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2207 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2208 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2209 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2210
2211 if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
2212 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2213 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2214 if (unlikely(has_ext_irq))
2215 enable_irq_window(vcpu);
2216 return;
2217 }
2218 if (!has_ext_irq)
2219 return;
2220 interrupt_window_open =
2221 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2222 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2223 if (interrupt_window_open) {
2224 vector = kvm_cpu_get_interrupt(vcpu);
2225 vmx_inject_irq(vcpu, vector);
2226 kvm_timer_intr_post(vcpu, vector);
2227 } else
2228 enable_irq_window(vcpu);
2229 }
2230
2231 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2232 {
2233 struct vcpu_vmx *vmx = to_vmx(vcpu);
2234 u32 intr_info;
2235
2236 /*
2237 * Loading guest fpu may have cleared host cr0.ts
2238 */
2239 vmcs_writel(HOST_CR0, read_cr0());
2240
2241 asm (
2242 /* Store host registers */
2243 #ifdef CONFIG_X86_64
2244 "push %%rax; push %%rbx; push %%rdx;"
2245 "push %%rsi; push %%rdi; push %%rbp;"
2246 "push %%r8; push %%r9; push %%r10; push %%r11;"
2247 "push %%r12; push %%r13; push %%r14; push %%r15;"
2248 "push %%rcx \n\t"
2249 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2250 #else
2251 "pusha; push %%ecx \n\t"
2252 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2253 #endif
2254 /* Check if vmlaunch of vmresume is needed */
2255 "cmp $0, %1 \n\t"
2256 /* Load guest registers. Don't clobber flags. */
2257 #ifdef CONFIG_X86_64
2258 "mov %c[cr2](%3), %%rax \n\t"
2259 "mov %%rax, %%cr2 \n\t"
2260 "mov %c[rax](%3), %%rax \n\t"
2261 "mov %c[rbx](%3), %%rbx \n\t"
2262 "mov %c[rdx](%3), %%rdx \n\t"
2263 "mov %c[rsi](%3), %%rsi \n\t"
2264 "mov %c[rdi](%3), %%rdi \n\t"
2265 "mov %c[rbp](%3), %%rbp \n\t"
2266 "mov %c[r8](%3), %%r8 \n\t"
2267 "mov %c[r9](%3), %%r9 \n\t"
2268 "mov %c[r10](%3), %%r10 \n\t"
2269 "mov %c[r11](%3), %%r11 \n\t"
2270 "mov %c[r12](%3), %%r12 \n\t"
2271 "mov %c[r13](%3), %%r13 \n\t"
2272 "mov %c[r14](%3), %%r14 \n\t"
2273 "mov %c[r15](%3), %%r15 \n\t"
2274 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
2275 #else
2276 "mov %c[cr2](%3), %%eax \n\t"
2277 "mov %%eax, %%cr2 \n\t"
2278 "mov %c[rax](%3), %%eax \n\t"
2279 "mov %c[rbx](%3), %%ebx \n\t"
2280 "mov %c[rdx](%3), %%edx \n\t"
2281 "mov %c[rsi](%3), %%esi \n\t"
2282 "mov %c[rdi](%3), %%edi \n\t"
2283 "mov %c[rbp](%3), %%ebp \n\t"
2284 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
2285 #endif
2286 /* Enter guest mode */
2287 "jne .Llaunched \n\t"
2288 ASM_VMX_VMLAUNCH "\n\t"
2289 "jmp .Lkvm_vmx_return \n\t"
2290 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2291 ".Lkvm_vmx_return: "
2292 /* Save guest registers, load host registers, keep flags */
2293 #ifdef CONFIG_X86_64
2294 "xchg %3, (%%rsp) \n\t"
2295 "mov %%rax, %c[rax](%3) \n\t"
2296 "mov %%rbx, %c[rbx](%3) \n\t"
2297 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
2298 "mov %%rdx, %c[rdx](%3) \n\t"
2299 "mov %%rsi, %c[rsi](%3) \n\t"
2300 "mov %%rdi, %c[rdi](%3) \n\t"
2301 "mov %%rbp, %c[rbp](%3) \n\t"
2302 "mov %%r8, %c[r8](%3) \n\t"
2303 "mov %%r9, %c[r9](%3) \n\t"
2304 "mov %%r10, %c[r10](%3) \n\t"
2305 "mov %%r11, %c[r11](%3) \n\t"
2306 "mov %%r12, %c[r12](%3) \n\t"
2307 "mov %%r13, %c[r13](%3) \n\t"
2308 "mov %%r14, %c[r14](%3) \n\t"
2309 "mov %%r15, %c[r15](%3) \n\t"
2310 "mov %%cr2, %%rax \n\t"
2311 "mov %%rax, %c[cr2](%3) \n\t"
2312 "mov (%%rsp), %3 \n\t"
2313
2314 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
2315 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
2316 "pop %%rbp; pop %%rdi; pop %%rsi;"
2317 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
2318 #else
2319 "xchg %3, (%%esp) \n\t"
2320 "mov %%eax, %c[rax](%3) \n\t"
2321 "mov %%ebx, %c[rbx](%3) \n\t"
2322 "pushl (%%esp); popl %c[rcx](%3) \n\t"
2323 "mov %%edx, %c[rdx](%3) \n\t"
2324 "mov %%esi, %c[rsi](%3) \n\t"
2325 "mov %%edi, %c[rdi](%3) \n\t"
2326 "mov %%ebp, %c[rbp](%3) \n\t"
2327 "mov %%cr2, %%eax \n\t"
2328 "mov %%eax, %c[cr2](%3) \n\t"
2329 "mov (%%esp), %3 \n\t"
2330
2331 "pop %%ecx; popa \n\t"
2332 #endif
2333 "setbe %0 \n\t"
2334 : "=q" (vmx->fail)
2335 : "r"(vmx->launched), "d"((unsigned long)HOST_RSP),
2336 "c"(vcpu),
2337 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
2338 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
2339 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
2340 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
2341 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
2342 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
2343 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
2344 #ifdef CONFIG_X86_64
2345 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
2346 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
2347 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
2348 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
2349 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
2350 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
2351 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
2352 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
2353 #endif
2354 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
2355 : "cc", "memory" );
2356
2357 vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2358
2359 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2360 vmx->launched = 1;
2361
2362 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2363
2364 /* We need to handle NMIs before interrupts are enabled */
2365 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2366 asm("int $2");
2367 }
2368
2369 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2370 unsigned long addr,
2371 u32 err_code)
2372 {
2373 u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2374
2375 ++vcpu->stat.pf_guest;
2376
2377 if (is_page_fault(vect_info)) {
2378 printk(KERN_DEBUG "inject_page_fault: "
2379 "double fault 0x%lx @ 0x%lx\n",
2380 addr, vmcs_readl(GUEST_RIP));
2381 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2382 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2383 DF_VECTOR |
2384 INTR_TYPE_EXCEPTION |
2385 INTR_INFO_DELIEVER_CODE_MASK |
2386 INTR_INFO_VALID_MASK);
2387 return;
2388 }
2389 vcpu->cr2 = addr;
2390 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2391 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2392 PF_VECTOR |
2393 INTR_TYPE_EXCEPTION |
2394 INTR_INFO_DELIEVER_CODE_MASK |
2395 INTR_INFO_VALID_MASK);
2396
2397 }
2398
2399 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2400 {
2401 struct vcpu_vmx *vmx = to_vmx(vcpu);
2402
2403 if (vmx->vmcs) {
2404 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2405 free_vmcs(vmx->vmcs);
2406 vmx->vmcs = NULL;
2407 }
2408 }
2409
2410 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2411 {
2412 struct vcpu_vmx *vmx = to_vmx(vcpu);
2413
2414 vmx_free_vmcs(vcpu);
2415 kfree(vmx->host_msrs);
2416 kfree(vmx->guest_msrs);
2417 kvm_vcpu_uninit(vcpu);
2418 kmem_cache_free(kvm_vcpu_cache, vmx);
2419 }
2420
2421 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2422 {
2423 int err;
2424 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2425 int cpu;
2426
2427 if (!vmx)
2428 return ERR_PTR(-ENOMEM);
2429
2430 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2431 if (err)
2432 goto free_vcpu;
2433
2434 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2435 if (!vmx->guest_msrs) {
2436 err = -ENOMEM;
2437 goto uninit_vcpu;
2438 }
2439
2440 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2441 if (!vmx->host_msrs)
2442 goto free_guest_msrs;
2443
2444 vmx->vmcs = alloc_vmcs();
2445 if (!vmx->vmcs)
2446 goto free_msrs;
2447
2448 vmcs_clear(vmx->vmcs);
2449
2450 cpu = get_cpu();
2451 vmx_vcpu_load(&vmx->vcpu, cpu);
2452 err = vmx_vcpu_setup(vmx);
2453 vmx_vcpu_put(&vmx->vcpu);
2454 put_cpu();
2455 if (err)
2456 goto free_vmcs;
2457
2458 return &vmx->vcpu;
2459
2460 free_vmcs:
2461 free_vmcs(vmx->vmcs);
2462 free_msrs:
2463 kfree(vmx->host_msrs);
2464 free_guest_msrs:
2465 kfree(vmx->guest_msrs);
2466 uninit_vcpu:
2467 kvm_vcpu_uninit(&vmx->vcpu);
2468 free_vcpu:
2469 kmem_cache_free(kvm_vcpu_cache, vmx);
2470 return ERR_PTR(err);
2471 }
2472
2473 static void __init vmx_check_processor_compat(void *rtn)
2474 {
2475 struct vmcs_config vmcs_conf;
2476
2477 *(int *)rtn = 0;
2478 if (setup_vmcs_config(&vmcs_conf) < 0)
2479 *(int *)rtn = -EIO;
2480 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2481 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2482 smp_processor_id());
2483 *(int *)rtn = -EIO;
2484 }
2485 }
2486
2487 static struct kvm_x86_ops vmx_x86_ops = {
2488 .cpu_has_kvm_support = cpu_has_kvm_support,
2489 .disabled_by_bios = vmx_disabled_by_bios,
2490 .hardware_setup = hardware_setup,
2491 .hardware_unsetup = hardware_unsetup,
2492 .check_processor_compatibility = vmx_check_processor_compat,
2493 .hardware_enable = hardware_enable,
2494 .hardware_disable = hardware_disable,
2495
2496 .vcpu_create = vmx_create_vcpu,
2497 .vcpu_free = vmx_free_vcpu,
2498 .vcpu_reset = vmx_vcpu_reset,
2499
2500 .prepare_guest_switch = vmx_save_host_state,
2501 .vcpu_load = vmx_vcpu_load,
2502 .vcpu_put = vmx_vcpu_put,
2503 .vcpu_decache = vmx_vcpu_decache,
2504
2505 .set_guest_debug = set_guest_debug,
2506 .guest_debug_pre = kvm_guest_debug_pre,
2507 .get_msr = vmx_get_msr,
2508 .set_msr = vmx_set_msr,
2509 .get_segment_base = vmx_get_segment_base,
2510 .get_segment = vmx_get_segment,
2511 .set_segment = vmx_set_segment,
2512 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2513 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2514 .set_cr0 = vmx_set_cr0,
2515 .set_cr3 = vmx_set_cr3,
2516 .set_cr4 = vmx_set_cr4,
2517 #ifdef CONFIG_X86_64
2518 .set_efer = vmx_set_efer,
2519 #endif
2520 .get_idt = vmx_get_idt,
2521 .set_idt = vmx_set_idt,
2522 .get_gdt = vmx_get_gdt,
2523 .set_gdt = vmx_set_gdt,
2524 .cache_regs = vcpu_load_rsp_rip,
2525 .decache_regs = vcpu_put_rsp_rip,
2526 .get_rflags = vmx_get_rflags,
2527 .set_rflags = vmx_set_rflags,
2528
2529 .tlb_flush = vmx_flush_tlb,
2530 .inject_page_fault = vmx_inject_page_fault,
2531
2532 .inject_gp = vmx_inject_gp,
2533
2534 .run = vmx_vcpu_run,
2535 .handle_exit = kvm_handle_exit,
2536 .skip_emulated_instruction = skip_emulated_instruction,
2537 .patch_hypercall = vmx_patch_hypercall,
2538 .get_irq = vmx_get_irq,
2539 .set_irq = vmx_inject_irq,
2540 .inject_pending_irq = vmx_intr_assist,
2541 .inject_pending_vectors = do_interrupt_requests,
2542 };
2543
2544 static int __init vmx_init(void)
2545 {
2546 void *iova;
2547 int r;
2548
2549 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2550 if (!vmx_io_bitmap_a)
2551 return -ENOMEM;
2552
2553 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2554 if (!vmx_io_bitmap_b) {
2555 r = -ENOMEM;
2556 goto out;
2557 }
2558
2559 /*
2560 * Allow direct access to the PC debug port (it is often used for I/O
2561 * delays, but the vmexits simply slow things down).
2562 */
2563 iova = kmap(vmx_io_bitmap_a);
2564 memset(iova, 0xff, PAGE_SIZE);
2565 clear_bit(0x80, iova);
2566 kunmap(vmx_io_bitmap_a);
2567
2568 iova = kmap(vmx_io_bitmap_b);
2569 memset(iova, 0xff, PAGE_SIZE);
2570 kunmap(vmx_io_bitmap_b);
2571
2572 r = kvm_init_x86(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2573 if (r)
2574 goto out1;
2575
2576 if (bypass_guest_pf)
2577 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
2578
2579 return 0;
2580
2581 out1:
2582 __free_page(vmx_io_bitmap_b);
2583 out:
2584 __free_page(vmx_io_bitmap_a);
2585 return r;
2586 }
2587
2588 static void __exit vmx_exit(void)
2589 {
2590 __free_page(vmx_io_bitmap_b);
2591 __free_page(vmx_io_bitmap_a);
2592
2593 kvm_exit_x86();
2594 }
2595
2596 module_init(vmx_init)
2597 module_exit(vmx_exit)
This page took 0.084843 seconds and 5 git commands to generate.