KVM: Call x86_decode_insn() only when needed
[deliverable/linux.git] / drivers / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "irq.h"
21 #include "vmx.h"
22 #include "segment_descriptor.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29
30 #include <asm/io.h>
31 #include <asm/desc.h>
32
33 MODULE_AUTHOR("Qumranet");
34 MODULE_LICENSE("GPL");
35
36 struct vmcs {
37 u32 revision_id;
38 u32 abort;
39 char data[0];
40 };
41
42 struct vcpu_vmx {
43 struct kvm_vcpu vcpu;
44 int launched;
45 u8 fail;
46 struct kvm_msr_entry *guest_msrs;
47 struct kvm_msr_entry *host_msrs;
48 int nmsrs;
49 int save_nmsrs;
50 int msr_offset_efer;
51 #ifdef CONFIG_X86_64
52 int msr_offset_kernel_gs_base;
53 #endif
54 struct vmcs *vmcs;
55 struct {
56 int loaded;
57 u16 fs_sel, gs_sel, ldt_sel;
58 int gs_ldt_reload_needed;
59 int fs_reload_needed;
60 }host_state;
61
62 };
63
64 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
65 {
66 return container_of(vcpu, struct vcpu_vmx, vcpu);
67 }
68
69 static int init_rmode_tss(struct kvm *kvm);
70
71 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
72 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
73
74 static struct page *vmx_io_bitmap_a;
75 static struct page *vmx_io_bitmap_b;
76
77 #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
78
79 static struct vmcs_config {
80 int size;
81 int order;
82 u32 revision_id;
83 u32 pin_based_exec_ctrl;
84 u32 cpu_based_exec_ctrl;
85 u32 vmexit_ctrl;
86 u32 vmentry_ctrl;
87 } vmcs_config;
88
89 #define VMX_SEGMENT_FIELD(seg) \
90 [VCPU_SREG_##seg] = { \
91 .selector = GUEST_##seg##_SELECTOR, \
92 .base = GUEST_##seg##_BASE, \
93 .limit = GUEST_##seg##_LIMIT, \
94 .ar_bytes = GUEST_##seg##_AR_BYTES, \
95 }
96
97 static struct kvm_vmx_segment_field {
98 unsigned selector;
99 unsigned base;
100 unsigned limit;
101 unsigned ar_bytes;
102 } kvm_vmx_segment_fields[] = {
103 VMX_SEGMENT_FIELD(CS),
104 VMX_SEGMENT_FIELD(DS),
105 VMX_SEGMENT_FIELD(ES),
106 VMX_SEGMENT_FIELD(FS),
107 VMX_SEGMENT_FIELD(GS),
108 VMX_SEGMENT_FIELD(SS),
109 VMX_SEGMENT_FIELD(TR),
110 VMX_SEGMENT_FIELD(LDTR),
111 };
112
113 /*
114 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
115 * away by decrementing the array size.
116 */
117 static const u32 vmx_msr_index[] = {
118 #ifdef CONFIG_X86_64
119 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
120 #endif
121 MSR_EFER, MSR_K6_STAR,
122 };
123 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
124
125 static void load_msrs(struct kvm_msr_entry *e, int n)
126 {
127 int i;
128
129 for (i = 0; i < n; ++i)
130 wrmsrl(e[i].index, e[i].data);
131 }
132
133 static void save_msrs(struct kvm_msr_entry *e, int n)
134 {
135 int i;
136
137 for (i = 0; i < n; ++i)
138 rdmsrl(e[i].index, e[i].data);
139 }
140
141 static inline u64 msr_efer_save_restore_bits(struct kvm_msr_entry msr)
142 {
143 return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
144 }
145
146 static inline int msr_efer_need_save_restore(struct vcpu_vmx *vmx)
147 {
148 int efer_offset = vmx->msr_offset_efer;
149 return msr_efer_save_restore_bits(vmx->host_msrs[efer_offset]) !=
150 msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
151 }
152
153 static inline int is_page_fault(u32 intr_info)
154 {
155 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
156 INTR_INFO_VALID_MASK)) ==
157 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
158 }
159
160 static inline int is_no_device(u32 intr_info)
161 {
162 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
163 INTR_INFO_VALID_MASK)) ==
164 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
165 }
166
167 static inline int is_invalid_opcode(u32 intr_info)
168 {
169 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
170 INTR_INFO_VALID_MASK)) ==
171 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
172 }
173
174 static inline int is_external_interrupt(u32 intr_info)
175 {
176 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
177 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
178 }
179
180 static inline int cpu_has_vmx_tpr_shadow(void)
181 {
182 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
183 }
184
185 static inline int vm_need_tpr_shadow(struct kvm *kvm)
186 {
187 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
188 }
189
190 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
191 {
192 int i;
193
194 for (i = 0; i < vmx->nmsrs; ++i)
195 if (vmx->guest_msrs[i].index == msr)
196 return i;
197 return -1;
198 }
199
200 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
201 {
202 int i;
203
204 i = __find_msr_index(vmx, msr);
205 if (i >= 0)
206 return &vmx->guest_msrs[i];
207 return NULL;
208 }
209
210 static void vmcs_clear(struct vmcs *vmcs)
211 {
212 u64 phys_addr = __pa(vmcs);
213 u8 error;
214
215 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
216 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
217 : "cc", "memory");
218 if (error)
219 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
220 vmcs, phys_addr);
221 }
222
223 static void __vcpu_clear(void *arg)
224 {
225 struct vcpu_vmx *vmx = arg;
226 int cpu = raw_smp_processor_id();
227
228 if (vmx->vcpu.cpu == cpu)
229 vmcs_clear(vmx->vmcs);
230 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
231 per_cpu(current_vmcs, cpu) = NULL;
232 rdtscll(vmx->vcpu.host_tsc);
233 }
234
235 static void vcpu_clear(struct vcpu_vmx *vmx)
236 {
237 if (vmx->vcpu.cpu != raw_smp_processor_id() && vmx->vcpu.cpu != -1)
238 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear,
239 vmx, 0, 1);
240 else
241 __vcpu_clear(vmx);
242 vmx->launched = 0;
243 }
244
245 static unsigned long vmcs_readl(unsigned long field)
246 {
247 unsigned long value;
248
249 asm volatile (ASM_VMX_VMREAD_RDX_RAX
250 : "=a"(value) : "d"(field) : "cc");
251 return value;
252 }
253
254 static u16 vmcs_read16(unsigned long field)
255 {
256 return vmcs_readl(field);
257 }
258
259 static u32 vmcs_read32(unsigned long field)
260 {
261 return vmcs_readl(field);
262 }
263
264 static u64 vmcs_read64(unsigned long field)
265 {
266 #ifdef CONFIG_X86_64
267 return vmcs_readl(field);
268 #else
269 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
270 #endif
271 }
272
273 static noinline void vmwrite_error(unsigned long field, unsigned long value)
274 {
275 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
276 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
277 dump_stack();
278 }
279
280 static void vmcs_writel(unsigned long field, unsigned long value)
281 {
282 u8 error;
283
284 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
285 : "=q"(error) : "a"(value), "d"(field) : "cc" );
286 if (unlikely(error))
287 vmwrite_error(field, value);
288 }
289
290 static void vmcs_write16(unsigned long field, u16 value)
291 {
292 vmcs_writel(field, value);
293 }
294
295 static void vmcs_write32(unsigned long field, u32 value)
296 {
297 vmcs_writel(field, value);
298 }
299
300 static void vmcs_write64(unsigned long field, u64 value)
301 {
302 #ifdef CONFIG_X86_64
303 vmcs_writel(field, value);
304 #else
305 vmcs_writel(field, value);
306 asm volatile ("");
307 vmcs_writel(field+1, value >> 32);
308 #endif
309 }
310
311 static void vmcs_clear_bits(unsigned long field, u32 mask)
312 {
313 vmcs_writel(field, vmcs_readl(field) & ~mask);
314 }
315
316 static void vmcs_set_bits(unsigned long field, u32 mask)
317 {
318 vmcs_writel(field, vmcs_readl(field) | mask);
319 }
320
321 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
322 {
323 u32 eb;
324
325 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
326 if (!vcpu->fpu_active)
327 eb |= 1u << NM_VECTOR;
328 if (vcpu->guest_debug.enabled)
329 eb |= 1u << 1;
330 if (vcpu->rmode.active)
331 eb = ~0;
332 vmcs_write32(EXCEPTION_BITMAP, eb);
333 }
334
335 static void reload_tss(void)
336 {
337 #ifndef CONFIG_X86_64
338
339 /*
340 * VT restores TR but not its size. Useless.
341 */
342 struct descriptor_table gdt;
343 struct segment_descriptor *descs;
344
345 get_gdt(&gdt);
346 descs = (void *)gdt.base;
347 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
348 load_TR_desc();
349 #endif
350 }
351
352 static void load_transition_efer(struct vcpu_vmx *vmx)
353 {
354 u64 trans_efer;
355 int efer_offset = vmx->msr_offset_efer;
356
357 trans_efer = vmx->host_msrs[efer_offset].data;
358 trans_efer &= ~EFER_SAVE_RESTORE_BITS;
359 trans_efer |= msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
360 wrmsrl(MSR_EFER, trans_efer);
361 vmx->vcpu.stat.efer_reload++;
362 }
363
364 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
365 {
366 struct vcpu_vmx *vmx = to_vmx(vcpu);
367
368 if (vmx->host_state.loaded)
369 return;
370
371 vmx->host_state.loaded = 1;
372 /*
373 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
374 * allow segment selectors with cpl > 0 or ti == 1.
375 */
376 vmx->host_state.ldt_sel = read_ldt();
377 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
378 vmx->host_state.fs_sel = read_fs();
379 if (!(vmx->host_state.fs_sel & 7)) {
380 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
381 vmx->host_state.fs_reload_needed = 0;
382 } else {
383 vmcs_write16(HOST_FS_SELECTOR, 0);
384 vmx->host_state.fs_reload_needed = 1;
385 }
386 vmx->host_state.gs_sel = read_gs();
387 if (!(vmx->host_state.gs_sel & 7))
388 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
389 else {
390 vmcs_write16(HOST_GS_SELECTOR, 0);
391 vmx->host_state.gs_ldt_reload_needed = 1;
392 }
393
394 #ifdef CONFIG_X86_64
395 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
396 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
397 #else
398 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
399 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
400 #endif
401
402 #ifdef CONFIG_X86_64
403 if (is_long_mode(&vmx->vcpu)) {
404 save_msrs(vmx->host_msrs +
405 vmx->msr_offset_kernel_gs_base, 1);
406 }
407 #endif
408 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
409 if (msr_efer_need_save_restore(vmx))
410 load_transition_efer(vmx);
411 }
412
413 static void vmx_load_host_state(struct vcpu_vmx *vmx)
414 {
415 unsigned long flags;
416
417 if (!vmx->host_state.loaded)
418 return;
419
420 vmx->host_state.loaded = 0;
421 if (vmx->host_state.fs_reload_needed)
422 load_fs(vmx->host_state.fs_sel);
423 if (vmx->host_state.gs_ldt_reload_needed) {
424 load_ldt(vmx->host_state.ldt_sel);
425 /*
426 * If we have to reload gs, we must take care to
427 * preserve our gs base.
428 */
429 local_irq_save(flags);
430 load_gs(vmx->host_state.gs_sel);
431 #ifdef CONFIG_X86_64
432 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
433 #endif
434 local_irq_restore(flags);
435 }
436 reload_tss();
437 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
438 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
439 if (msr_efer_need_save_restore(vmx))
440 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
441 }
442
443 /*
444 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
445 * vcpu mutex is already taken.
446 */
447 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
448 {
449 struct vcpu_vmx *vmx = to_vmx(vcpu);
450 u64 phys_addr = __pa(vmx->vmcs);
451 u64 tsc_this, delta;
452
453 if (vcpu->cpu != cpu) {
454 vcpu_clear(vmx);
455 kvm_migrate_apic_timer(vcpu);
456 }
457
458 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
459 u8 error;
460
461 per_cpu(current_vmcs, cpu) = vmx->vmcs;
462 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
463 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
464 : "cc");
465 if (error)
466 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
467 vmx->vmcs, phys_addr);
468 }
469
470 if (vcpu->cpu != cpu) {
471 struct descriptor_table dt;
472 unsigned long sysenter_esp;
473
474 vcpu->cpu = cpu;
475 /*
476 * Linux uses per-cpu TSS and GDT, so set these when switching
477 * processors.
478 */
479 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
480 get_gdt(&dt);
481 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
482
483 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
484 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
485
486 /*
487 * Make sure the time stamp counter is monotonous.
488 */
489 rdtscll(tsc_this);
490 delta = vcpu->host_tsc - tsc_this;
491 vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
492 }
493 }
494
495 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
496 {
497 vmx_load_host_state(to_vmx(vcpu));
498 kvm_put_guest_fpu(vcpu);
499 }
500
501 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
502 {
503 if (vcpu->fpu_active)
504 return;
505 vcpu->fpu_active = 1;
506 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
507 if (vcpu->cr0 & X86_CR0_TS)
508 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
509 update_exception_bitmap(vcpu);
510 }
511
512 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
513 {
514 if (!vcpu->fpu_active)
515 return;
516 vcpu->fpu_active = 0;
517 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
518 update_exception_bitmap(vcpu);
519 }
520
521 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
522 {
523 vcpu_clear(to_vmx(vcpu));
524 }
525
526 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
527 {
528 return vmcs_readl(GUEST_RFLAGS);
529 }
530
531 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
532 {
533 if (vcpu->rmode.active)
534 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
535 vmcs_writel(GUEST_RFLAGS, rflags);
536 }
537
538 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
539 {
540 unsigned long rip;
541 u32 interruptibility;
542
543 rip = vmcs_readl(GUEST_RIP);
544 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
545 vmcs_writel(GUEST_RIP, rip);
546
547 /*
548 * We emulated an instruction, so temporary interrupt blocking
549 * should be removed, if set.
550 */
551 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
552 if (interruptibility & 3)
553 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
554 interruptibility & ~3);
555 vcpu->interrupt_window_open = 1;
556 }
557
558 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
559 {
560 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
561 vmcs_readl(GUEST_RIP));
562 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
563 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
564 GP_VECTOR |
565 INTR_TYPE_EXCEPTION |
566 INTR_INFO_DELIEVER_CODE_MASK |
567 INTR_INFO_VALID_MASK);
568 }
569
570 static void vmx_inject_ud(struct kvm_vcpu *vcpu)
571 {
572 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
573 UD_VECTOR |
574 INTR_TYPE_EXCEPTION |
575 INTR_INFO_VALID_MASK);
576 }
577
578 /*
579 * Swap MSR entry in host/guest MSR entry array.
580 */
581 #ifdef CONFIG_X86_64
582 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
583 {
584 struct kvm_msr_entry tmp;
585
586 tmp = vmx->guest_msrs[to];
587 vmx->guest_msrs[to] = vmx->guest_msrs[from];
588 vmx->guest_msrs[from] = tmp;
589 tmp = vmx->host_msrs[to];
590 vmx->host_msrs[to] = vmx->host_msrs[from];
591 vmx->host_msrs[from] = tmp;
592 }
593 #endif
594
595 /*
596 * Set up the vmcs to automatically save and restore system
597 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
598 * mode, as fiddling with msrs is very expensive.
599 */
600 static void setup_msrs(struct vcpu_vmx *vmx)
601 {
602 int save_nmsrs;
603
604 save_nmsrs = 0;
605 #ifdef CONFIG_X86_64
606 if (is_long_mode(&vmx->vcpu)) {
607 int index;
608
609 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
610 if (index >= 0)
611 move_msr_up(vmx, index, save_nmsrs++);
612 index = __find_msr_index(vmx, MSR_LSTAR);
613 if (index >= 0)
614 move_msr_up(vmx, index, save_nmsrs++);
615 index = __find_msr_index(vmx, MSR_CSTAR);
616 if (index >= 0)
617 move_msr_up(vmx, index, save_nmsrs++);
618 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
619 if (index >= 0)
620 move_msr_up(vmx, index, save_nmsrs++);
621 /*
622 * MSR_K6_STAR is only needed on long mode guests, and only
623 * if efer.sce is enabled.
624 */
625 index = __find_msr_index(vmx, MSR_K6_STAR);
626 if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
627 move_msr_up(vmx, index, save_nmsrs++);
628 }
629 #endif
630 vmx->save_nmsrs = save_nmsrs;
631
632 #ifdef CONFIG_X86_64
633 vmx->msr_offset_kernel_gs_base =
634 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
635 #endif
636 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
637 }
638
639 /*
640 * reads and returns guest's timestamp counter "register"
641 * guest_tsc = host_tsc + tsc_offset -- 21.3
642 */
643 static u64 guest_read_tsc(void)
644 {
645 u64 host_tsc, tsc_offset;
646
647 rdtscll(host_tsc);
648 tsc_offset = vmcs_read64(TSC_OFFSET);
649 return host_tsc + tsc_offset;
650 }
651
652 /*
653 * writes 'guest_tsc' into guest's timestamp counter "register"
654 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
655 */
656 static void guest_write_tsc(u64 guest_tsc)
657 {
658 u64 host_tsc;
659
660 rdtscll(host_tsc);
661 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
662 }
663
664 /*
665 * Reads an msr value (of 'msr_index') into 'pdata'.
666 * Returns 0 on success, non-0 otherwise.
667 * Assumes vcpu_load() was already called.
668 */
669 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
670 {
671 u64 data;
672 struct kvm_msr_entry *msr;
673
674 if (!pdata) {
675 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
676 return -EINVAL;
677 }
678
679 switch (msr_index) {
680 #ifdef CONFIG_X86_64
681 case MSR_FS_BASE:
682 data = vmcs_readl(GUEST_FS_BASE);
683 break;
684 case MSR_GS_BASE:
685 data = vmcs_readl(GUEST_GS_BASE);
686 break;
687 case MSR_EFER:
688 return kvm_get_msr_common(vcpu, msr_index, pdata);
689 #endif
690 case MSR_IA32_TIME_STAMP_COUNTER:
691 data = guest_read_tsc();
692 break;
693 case MSR_IA32_SYSENTER_CS:
694 data = vmcs_read32(GUEST_SYSENTER_CS);
695 break;
696 case MSR_IA32_SYSENTER_EIP:
697 data = vmcs_readl(GUEST_SYSENTER_EIP);
698 break;
699 case MSR_IA32_SYSENTER_ESP:
700 data = vmcs_readl(GUEST_SYSENTER_ESP);
701 break;
702 default:
703 msr = find_msr_entry(to_vmx(vcpu), msr_index);
704 if (msr) {
705 data = msr->data;
706 break;
707 }
708 return kvm_get_msr_common(vcpu, msr_index, pdata);
709 }
710
711 *pdata = data;
712 return 0;
713 }
714
715 /*
716 * Writes msr value into into the appropriate "register".
717 * Returns 0 on success, non-0 otherwise.
718 * Assumes vcpu_load() was already called.
719 */
720 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
721 {
722 struct vcpu_vmx *vmx = to_vmx(vcpu);
723 struct kvm_msr_entry *msr;
724 int ret = 0;
725
726 switch (msr_index) {
727 #ifdef CONFIG_X86_64
728 case MSR_EFER:
729 ret = kvm_set_msr_common(vcpu, msr_index, data);
730 if (vmx->host_state.loaded)
731 load_transition_efer(vmx);
732 break;
733 case MSR_FS_BASE:
734 vmcs_writel(GUEST_FS_BASE, data);
735 break;
736 case MSR_GS_BASE:
737 vmcs_writel(GUEST_GS_BASE, data);
738 break;
739 #endif
740 case MSR_IA32_SYSENTER_CS:
741 vmcs_write32(GUEST_SYSENTER_CS, data);
742 break;
743 case MSR_IA32_SYSENTER_EIP:
744 vmcs_writel(GUEST_SYSENTER_EIP, data);
745 break;
746 case MSR_IA32_SYSENTER_ESP:
747 vmcs_writel(GUEST_SYSENTER_ESP, data);
748 break;
749 case MSR_IA32_TIME_STAMP_COUNTER:
750 guest_write_tsc(data);
751 break;
752 default:
753 msr = find_msr_entry(vmx, msr_index);
754 if (msr) {
755 msr->data = data;
756 if (vmx->host_state.loaded)
757 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
758 break;
759 }
760 ret = kvm_set_msr_common(vcpu, msr_index, data);
761 }
762
763 return ret;
764 }
765
766 /*
767 * Sync the rsp and rip registers into the vcpu structure. This allows
768 * registers to be accessed by indexing vcpu->regs.
769 */
770 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
771 {
772 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
773 vcpu->rip = vmcs_readl(GUEST_RIP);
774 }
775
776 /*
777 * Syncs rsp and rip back into the vmcs. Should be called after possible
778 * modification.
779 */
780 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
781 {
782 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
783 vmcs_writel(GUEST_RIP, vcpu->rip);
784 }
785
786 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
787 {
788 unsigned long dr7 = 0x400;
789 int old_singlestep;
790
791 old_singlestep = vcpu->guest_debug.singlestep;
792
793 vcpu->guest_debug.enabled = dbg->enabled;
794 if (vcpu->guest_debug.enabled) {
795 int i;
796
797 dr7 |= 0x200; /* exact */
798 for (i = 0; i < 4; ++i) {
799 if (!dbg->breakpoints[i].enabled)
800 continue;
801 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
802 dr7 |= 2 << (i*2); /* global enable */
803 dr7 |= 0 << (i*4+16); /* execution breakpoint */
804 }
805
806 vcpu->guest_debug.singlestep = dbg->singlestep;
807 } else
808 vcpu->guest_debug.singlestep = 0;
809
810 if (old_singlestep && !vcpu->guest_debug.singlestep) {
811 unsigned long flags;
812
813 flags = vmcs_readl(GUEST_RFLAGS);
814 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
815 vmcs_writel(GUEST_RFLAGS, flags);
816 }
817
818 update_exception_bitmap(vcpu);
819 vmcs_writel(GUEST_DR7, dr7);
820
821 return 0;
822 }
823
824 static int vmx_get_irq(struct kvm_vcpu *vcpu)
825 {
826 u32 idtv_info_field;
827
828 idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
829 if (idtv_info_field & INTR_INFO_VALID_MASK) {
830 if (is_external_interrupt(idtv_info_field))
831 return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
832 else
833 printk("pending exception: not handled yet\n");
834 }
835 return -1;
836 }
837
838 static __init int cpu_has_kvm_support(void)
839 {
840 unsigned long ecx = cpuid_ecx(1);
841 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
842 }
843
844 static __init int vmx_disabled_by_bios(void)
845 {
846 u64 msr;
847
848 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
849 return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
850 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
851 == MSR_IA32_FEATURE_CONTROL_LOCKED;
852 /* locked but not enabled */
853 }
854
855 static void hardware_enable(void *garbage)
856 {
857 int cpu = raw_smp_processor_id();
858 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
859 u64 old;
860
861 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
862 if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
863 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
864 != (MSR_IA32_FEATURE_CONTROL_LOCKED |
865 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
866 /* enable and lock */
867 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
868 MSR_IA32_FEATURE_CONTROL_LOCKED |
869 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
870 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
871 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
872 : "memory", "cc");
873 }
874
875 static void hardware_disable(void *garbage)
876 {
877 asm volatile (ASM_VMX_VMXOFF : : : "cc");
878 }
879
880 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
881 u32 msr, u32* result)
882 {
883 u32 vmx_msr_low, vmx_msr_high;
884 u32 ctl = ctl_min | ctl_opt;
885
886 rdmsr(msr, vmx_msr_low, vmx_msr_high);
887
888 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
889 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
890
891 /* Ensure minimum (required) set of control bits are supported. */
892 if (ctl_min & ~ctl)
893 return -EIO;
894
895 *result = ctl;
896 return 0;
897 }
898
899 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
900 {
901 u32 vmx_msr_low, vmx_msr_high;
902 u32 min, opt;
903 u32 _pin_based_exec_control = 0;
904 u32 _cpu_based_exec_control = 0;
905 u32 _vmexit_control = 0;
906 u32 _vmentry_control = 0;
907
908 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
909 opt = 0;
910 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
911 &_pin_based_exec_control) < 0)
912 return -EIO;
913
914 min = CPU_BASED_HLT_EXITING |
915 #ifdef CONFIG_X86_64
916 CPU_BASED_CR8_LOAD_EXITING |
917 CPU_BASED_CR8_STORE_EXITING |
918 #endif
919 CPU_BASED_USE_IO_BITMAPS |
920 CPU_BASED_MOV_DR_EXITING |
921 CPU_BASED_USE_TSC_OFFSETING;
922 #ifdef CONFIG_X86_64
923 opt = CPU_BASED_TPR_SHADOW;
924 #else
925 opt = 0;
926 #endif
927 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
928 &_cpu_based_exec_control) < 0)
929 return -EIO;
930 #ifdef CONFIG_X86_64
931 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
932 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
933 ~CPU_BASED_CR8_STORE_EXITING;
934 #endif
935
936 min = 0;
937 #ifdef CONFIG_X86_64
938 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
939 #endif
940 opt = 0;
941 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
942 &_vmexit_control) < 0)
943 return -EIO;
944
945 min = opt = 0;
946 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
947 &_vmentry_control) < 0)
948 return -EIO;
949
950 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
951
952 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
953 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
954 return -EIO;
955
956 #ifdef CONFIG_X86_64
957 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
958 if (vmx_msr_high & (1u<<16))
959 return -EIO;
960 #endif
961
962 /* Require Write-Back (WB) memory type for VMCS accesses. */
963 if (((vmx_msr_high >> 18) & 15) != 6)
964 return -EIO;
965
966 vmcs_conf->size = vmx_msr_high & 0x1fff;
967 vmcs_conf->order = get_order(vmcs_config.size);
968 vmcs_conf->revision_id = vmx_msr_low;
969
970 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
971 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
972 vmcs_conf->vmexit_ctrl = _vmexit_control;
973 vmcs_conf->vmentry_ctrl = _vmentry_control;
974
975 return 0;
976 }
977
978 static struct vmcs *alloc_vmcs_cpu(int cpu)
979 {
980 int node = cpu_to_node(cpu);
981 struct page *pages;
982 struct vmcs *vmcs;
983
984 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
985 if (!pages)
986 return NULL;
987 vmcs = page_address(pages);
988 memset(vmcs, 0, vmcs_config.size);
989 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
990 return vmcs;
991 }
992
993 static struct vmcs *alloc_vmcs(void)
994 {
995 return alloc_vmcs_cpu(raw_smp_processor_id());
996 }
997
998 static void free_vmcs(struct vmcs *vmcs)
999 {
1000 free_pages((unsigned long)vmcs, vmcs_config.order);
1001 }
1002
1003 static void free_kvm_area(void)
1004 {
1005 int cpu;
1006
1007 for_each_online_cpu(cpu)
1008 free_vmcs(per_cpu(vmxarea, cpu));
1009 }
1010
1011 static __init int alloc_kvm_area(void)
1012 {
1013 int cpu;
1014
1015 for_each_online_cpu(cpu) {
1016 struct vmcs *vmcs;
1017
1018 vmcs = alloc_vmcs_cpu(cpu);
1019 if (!vmcs) {
1020 free_kvm_area();
1021 return -ENOMEM;
1022 }
1023
1024 per_cpu(vmxarea, cpu) = vmcs;
1025 }
1026 return 0;
1027 }
1028
1029 static __init int hardware_setup(void)
1030 {
1031 if (setup_vmcs_config(&vmcs_config) < 0)
1032 return -EIO;
1033 return alloc_kvm_area();
1034 }
1035
1036 static __exit void hardware_unsetup(void)
1037 {
1038 free_kvm_area();
1039 }
1040
1041 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1042 {
1043 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1044
1045 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1046 vmcs_write16(sf->selector, save->selector);
1047 vmcs_writel(sf->base, save->base);
1048 vmcs_write32(sf->limit, save->limit);
1049 vmcs_write32(sf->ar_bytes, save->ar);
1050 } else {
1051 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1052 << AR_DPL_SHIFT;
1053 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1054 }
1055 }
1056
1057 static void enter_pmode(struct kvm_vcpu *vcpu)
1058 {
1059 unsigned long flags;
1060
1061 vcpu->rmode.active = 0;
1062
1063 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
1064 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
1065 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
1066
1067 flags = vmcs_readl(GUEST_RFLAGS);
1068 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1069 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
1070 vmcs_writel(GUEST_RFLAGS, flags);
1071
1072 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1073 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1074
1075 update_exception_bitmap(vcpu);
1076
1077 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
1078 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
1079 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
1080 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
1081
1082 vmcs_write16(GUEST_SS_SELECTOR, 0);
1083 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1084
1085 vmcs_write16(GUEST_CS_SELECTOR,
1086 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1087 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1088 }
1089
1090 static gva_t rmode_tss_base(struct kvm* kvm)
1091 {
1092 gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
1093 return base_gfn << PAGE_SHIFT;
1094 }
1095
1096 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1097 {
1098 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1099
1100 save->selector = vmcs_read16(sf->selector);
1101 save->base = vmcs_readl(sf->base);
1102 save->limit = vmcs_read32(sf->limit);
1103 save->ar = vmcs_read32(sf->ar_bytes);
1104 vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
1105 vmcs_write32(sf->limit, 0xffff);
1106 vmcs_write32(sf->ar_bytes, 0xf3);
1107 }
1108
1109 static void enter_rmode(struct kvm_vcpu *vcpu)
1110 {
1111 unsigned long flags;
1112
1113 vcpu->rmode.active = 1;
1114
1115 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1116 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1117
1118 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1119 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1120
1121 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1122 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1123
1124 flags = vmcs_readl(GUEST_RFLAGS);
1125 vcpu->rmode.save_iopl = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1126
1127 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1128
1129 vmcs_writel(GUEST_RFLAGS, flags);
1130 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1131 update_exception_bitmap(vcpu);
1132
1133 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1134 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1135 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1136
1137 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1138 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1139 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1140 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1141 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1142
1143 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
1144 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
1145 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
1146 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
1147
1148 kvm_mmu_reset_context(vcpu);
1149 init_rmode_tss(vcpu->kvm);
1150 }
1151
1152 #ifdef CONFIG_X86_64
1153
1154 static void enter_lmode(struct kvm_vcpu *vcpu)
1155 {
1156 u32 guest_tr_ar;
1157
1158 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1159 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1160 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1161 __FUNCTION__);
1162 vmcs_write32(GUEST_TR_AR_BYTES,
1163 (guest_tr_ar & ~AR_TYPE_MASK)
1164 | AR_TYPE_BUSY_64_TSS);
1165 }
1166
1167 vcpu->shadow_efer |= EFER_LMA;
1168
1169 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1170 vmcs_write32(VM_ENTRY_CONTROLS,
1171 vmcs_read32(VM_ENTRY_CONTROLS)
1172 | VM_ENTRY_IA32E_MODE);
1173 }
1174
1175 static void exit_lmode(struct kvm_vcpu *vcpu)
1176 {
1177 vcpu->shadow_efer &= ~EFER_LMA;
1178
1179 vmcs_write32(VM_ENTRY_CONTROLS,
1180 vmcs_read32(VM_ENTRY_CONTROLS)
1181 & ~VM_ENTRY_IA32E_MODE);
1182 }
1183
1184 #endif
1185
1186 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1187 {
1188 vcpu->cr4 &= KVM_GUEST_CR4_MASK;
1189 vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1190 }
1191
1192 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1193 {
1194 vmx_fpu_deactivate(vcpu);
1195
1196 if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
1197 enter_pmode(vcpu);
1198
1199 if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
1200 enter_rmode(vcpu);
1201
1202 #ifdef CONFIG_X86_64
1203 if (vcpu->shadow_efer & EFER_LME) {
1204 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1205 enter_lmode(vcpu);
1206 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1207 exit_lmode(vcpu);
1208 }
1209 #endif
1210
1211 vmcs_writel(CR0_READ_SHADOW, cr0);
1212 vmcs_writel(GUEST_CR0,
1213 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1214 vcpu->cr0 = cr0;
1215
1216 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1217 vmx_fpu_activate(vcpu);
1218 }
1219
1220 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1221 {
1222 vmcs_writel(GUEST_CR3, cr3);
1223 if (vcpu->cr0 & X86_CR0_PE)
1224 vmx_fpu_deactivate(vcpu);
1225 }
1226
1227 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1228 {
1229 vmcs_writel(CR4_READ_SHADOW, cr4);
1230 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
1231 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1232 vcpu->cr4 = cr4;
1233 }
1234
1235 #ifdef CONFIG_X86_64
1236
1237 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1238 {
1239 struct vcpu_vmx *vmx = to_vmx(vcpu);
1240 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1241
1242 vcpu->shadow_efer = efer;
1243 if (efer & EFER_LMA) {
1244 vmcs_write32(VM_ENTRY_CONTROLS,
1245 vmcs_read32(VM_ENTRY_CONTROLS) |
1246 VM_ENTRY_IA32E_MODE);
1247 msr->data = efer;
1248
1249 } else {
1250 vmcs_write32(VM_ENTRY_CONTROLS,
1251 vmcs_read32(VM_ENTRY_CONTROLS) &
1252 ~VM_ENTRY_IA32E_MODE);
1253
1254 msr->data = efer & ~EFER_LME;
1255 }
1256 setup_msrs(vmx);
1257 }
1258
1259 #endif
1260
1261 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1262 {
1263 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1264
1265 return vmcs_readl(sf->base);
1266 }
1267
1268 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1269 struct kvm_segment *var, int seg)
1270 {
1271 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1272 u32 ar;
1273
1274 var->base = vmcs_readl(sf->base);
1275 var->limit = vmcs_read32(sf->limit);
1276 var->selector = vmcs_read16(sf->selector);
1277 ar = vmcs_read32(sf->ar_bytes);
1278 if (ar & AR_UNUSABLE_MASK)
1279 ar = 0;
1280 var->type = ar & 15;
1281 var->s = (ar >> 4) & 1;
1282 var->dpl = (ar >> 5) & 3;
1283 var->present = (ar >> 7) & 1;
1284 var->avl = (ar >> 12) & 1;
1285 var->l = (ar >> 13) & 1;
1286 var->db = (ar >> 14) & 1;
1287 var->g = (ar >> 15) & 1;
1288 var->unusable = (ar >> 16) & 1;
1289 }
1290
1291 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1292 {
1293 u32 ar;
1294
1295 if (var->unusable)
1296 ar = 1 << 16;
1297 else {
1298 ar = var->type & 15;
1299 ar |= (var->s & 1) << 4;
1300 ar |= (var->dpl & 3) << 5;
1301 ar |= (var->present & 1) << 7;
1302 ar |= (var->avl & 1) << 12;
1303 ar |= (var->l & 1) << 13;
1304 ar |= (var->db & 1) << 14;
1305 ar |= (var->g & 1) << 15;
1306 }
1307 if (ar == 0) /* a 0 value means unusable */
1308 ar = AR_UNUSABLE_MASK;
1309
1310 return ar;
1311 }
1312
1313 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1314 struct kvm_segment *var, int seg)
1315 {
1316 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1317 u32 ar;
1318
1319 if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
1320 vcpu->rmode.tr.selector = var->selector;
1321 vcpu->rmode.tr.base = var->base;
1322 vcpu->rmode.tr.limit = var->limit;
1323 vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
1324 return;
1325 }
1326 vmcs_writel(sf->base, var->base);
1327 vmcs_write32(sf->limit, var->limit);
1328 vmcs_write16(sf->selector, var->selector);
1329 if (vcpu->rmode.active && var->s) {
1330 /*
1331 * Hack real-mode segments into vm86 compatibility.
1332 */
1333 if (var->base == 0xffff0000 && var->selector == 0xf000)
1334 vmcs_writel(sf->base, 0xf0000);
1335 ar = 0xf3;
1336 } else
1337 ar = vmx_segment_access_rights(var);
1338 vmcs_write32(sf->ar_bytes, ar);
1339 }
1340
1341 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1342 {
1343 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1344
1345 *db = (ar >> 14) & 1;
1346 *l = (ar >> 13) & 1;
1347 }
1348
1349 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1350 {
1351 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1352 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1353 }
1354
1355 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1356 {
1357 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1358 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1359 }
1360
1361 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1362 {
1363 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1364 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1365 }
1366
1367 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1368 {
1369 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1370 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1371 }
1372
1373 static int init_rmode_tss(struct kvm* kvm)
1374 {
1375 struct page *p1, *p2, *p3;
1376 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1377 char *page;
1378
1379 p1 = gfn_to_page(kvm, fn++);
1380 p2 = gfn_to_page(kvm, fn++);
1381 p3 = gfn_to_page(kvm, fn);
1382
1383 if (!p1 || !p2 || !p3) {
1384 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
1385 return 0;
1386 }
1387
1388 page = kmap_atomic(p1, KM_USER0);
1389 clear_page(page);
1390 *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1391 kunmap_atomic(page, KM_USER0);
1392
1393 page = kmap_atomic(p2, KM_USER0);
1394 clear_page(page);
1395 kunmap_atomic(page, KM_USER0);
1396
1397 page = kmap_atomic(p3, KM_USER0);
1398 clear_page(page);
1399 *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
1400 kunmap_atomic(page, KM_USER0);
1401
1402 return 1;
1403 }
1404
1405 static void seg_setup(int seg)
1406 {
1407 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1408
1409 vmcs_write16(sf->selector, 0);
1410 vmcs_writel(sf->base, 0);
1411 vmcs_write32(sf->limit, 0xffff);
1412 vmcs_write32(sf->ar_bytes, 0x93);
1413 }
1414
1415 /*
1416 * Sets up the vmcs for emulated real mode.
1417 */
1418 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1419 {
1420 u32 host_sysenter_cs;
1421 u32 junk;
1422 unsigned long a;
1423 struct descriptor_table dt;
1424 int i;
1425 int ret = 0;
1426 unsigned long kvm_vmx_return;
1427 u64 msr;
1428 u32 exec_control;
1429
1430 if (!init_rmode_tss(vmx->vcpu.kvm)) {
1431 ret = -ENOMEM;
1432 goto out;
1433 }
1434
1435 vmx->vcpu.rmode.active = 0;
1436
1437 vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1438 set_cr8(&vmx->vcpu, 0);
1439 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1440 if (vmx->vcpu.vcpu_id == 0)
1441 msr |= MSR_IA32_APICBASE_BSP;
1442 kvm_set_apic_base(&vmx->vcpu, msr);
1443
1444 fx_init(&vmx->vcpu);
1445
1446 /*
1447 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1448 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1449 */
1450 if (vmx->vcpu.vcpu_id == 0) {
1451 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1452 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1453 } else {
1454 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.sipi_vector << 8);
1455 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.sipi_vector << 12);
1456 }
1457 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1458 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1459
1460 seg_setup(VCPU_SREG_DS);
1461 seg_setup(VCPU_SREG_ES);
1462 seg_setup(VCPU_SREG_FS);
1463 seg_setup(VCPU_SREG_GS);
1464 seg_setup(VCPU_SREG_SS);
1465
1466 vmcs_write16(GUEST_TR_SELECTOR, 0);
1467 vmcs_writel(GUEST_TR_BASE, 0);
1468 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1469 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1470
1471 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1472 vmcs_writel(GUEST_LDTR_BASE, 0);
1473 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1474 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1475
1476 vmcs_write32(GUEST_SYSENTER_CS, 0);
1477 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1478 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1479
1480 vmcs_writel(GUEST_RFLAGS, 0x02);
1481 if (vmx->vcpu.vcpu_id == 0)
1482 vmcs_writel(GUEST_RIP, 0xfff0);
1483 else
1484 vmcs_writel(GUEST_RIP, 0);
1485 vmcs_writel(GUEST_RSP, 0);
1486
1487 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1488 vmcs_writel(GUEST_DR7, 0x400);
1489
1490 vmcs_writel(GUEST_GDTR_BASE, 0);
1491 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1492
1493 vmcs_writel(GUEST_IDTR_BASE, 0);
1494 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1495
1496 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1497 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1498 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1499
1500 /* I/O */
1501 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1502 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1503
1504 guest_write_tsc(0);
1505
1506 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1507
1508 /* Special registers */
1509 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1510
1511 /* Control */
1512 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1513 vmcs_config.pin_based_exec_ctrl);
1514
1515 exec_control = vmcs_config.cpu_based_exec_ctrl;
1516 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1517 exec_control &= ~CPU_BASED_TPR_SHADOW;
1518 #ifdef CONFIG_X86_64
1519 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1520 CPU_BASED_CR8_LOAD_EXITING;
1521 #endif
1522 }
1523 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1524
1525 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1526 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1527 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1528
1529 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1530 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1531 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1532
1533 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1534 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1535 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1536 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1537 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1538 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1539 #ifdef CONFIG_X86_64
1540 rdmsrl(MSR_FS_BASE, a);
1541 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1542 rdmsrl(MSR_GS_BASE, a);
1543 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1544 #else
1545 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1546 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1547 #endif
1548
1549 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1550
1551 get_idt(&dt);
1552 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1553
1554 asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1555 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1556 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1557 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1558 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1559
1560 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1561 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1562 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1563 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1564 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1565 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1566
1567 for (i = 0; i < NR_VMX_MSR; ++i) {
1568 u32 index = vmx_msr_index[i];
1569 u32 data_low, data_high;
1570 u64 data;
1571 int j = vmx->nmsrs;
1572
1573 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1574 continue;
1575 if (wrmsr_safe(index, data_low, data_high) < 0)
1576 continue;
1577 data = data_low | ((u64)data_high << 32);
1578 vmx->host_msrs[j].index = index;
1579 vmx->host_msrs[j].reserved = 0;
1580 vmx->host_msrs[j].data = data;
1581 vmx->guest_msrs[j] = vmx->host_msrs[j];
1582 ++vmx->nmsrs;
1583 }
1584
1585 setup_msrs(vmx);
1586
1587 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1588
1589 /* 22.2.1, 20.8.1 */
1590 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1591
1592 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1593
1594 #ifdef CONFIG_X86_64
1595 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
1596 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
1597 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
1598 page_to_phys(vmx->vcpu.apic->regs_page));
1599 vmcs_write32(TPR_THRESHOLD, 0);
1600 #endif
1601
1602 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1603 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1604
1605 vmx->vcpu.cr0 = 0x60000010;
1606 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); // enter rmode
1607 vmx_set_cr4(&vmx->vcpu, 0);
1608 #ifdef CONFIG_X86_64
1609 vmx_set_efer(&vmx->vcpu, 0);
1610 #endif
1611 vmx_fpu_activate(&vmx->vcpu);
1612 update_exception_bitmap(&vmx->vcpu);
1613
1614 return 0;
1615
1616 out:
1617 return ret;
1618 }
1619
1620 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1621 {
1622 struct vcpu_vmx *vmx = to_vmx(vcpu);
1623
1624 vmx_vcpu_setup(vmx);
1625 }
1626
1627 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1628 {
1629 u16 ent[2];
1630 u16 cs;
1631 u16 ip;
1632 unsigned long flags;
1633 unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1634 u16 sp = vmcs_readl(GUEST_RSP);
1635 u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1636
1637 if (sp > ss_limit || sp < 6 ) {
1638 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1639 __FUNCTION__,
1640 vmcs_readl(GUEST_RSP),
1641 vmcs_readl(GUEST_SS_BASE),
1642 vmcs_read32(GUEST_SS_LIMIT));
1643 return;
1644 }
1645
1646 if (emulator_read_std(irq * sizeof(ent), &ent, sizeof(ent), vcpu) !=
1647 X86EMUL_CONTINUE) {
1648 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1649 return;
1650 }
1651
1652 flags = vmcs_readl(GUEST_RFLAGS);
1653 cs = vmcs_readl(GUEST_CS_BASE) >> 4;
1654 ip = vmcs_readl(GUEST_RIP);
1655
1656
1657 if (emulator_write_emulated(ss_base + sp - 2, &flags, 2, vcpu) != X86EMUL_CONTINUE ||
1658 emulator_write_emulated(ss_base + sp - 4, &cs, 2, vcpu) != X86EMUL_CONTINUE ||
1659 emulator_write_emulated(ss_base + sp - 6, &ip, 2, vcpu) != X86EMUL_CONTINUE) {
1660 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1661 return;
1662 }
1663
1664 vmcs_writel(GUEST_RFLAGS, flags &
1665 ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1666 vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1667 vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1668 vmcs_writel(GUEST_RIP, ent[0]);
1669 vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1670 }
1671
1672 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1673 {
1674 if (vcpu->rmode.active) {
1675 inject_rmode_irq(vcpu, irq);
1676 return;
1677 }
1678 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1679 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1680 }
1681
1682 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1683 {
1684 int word_index = __ffs(vcpu->irq_summary);
1685 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1686 int irq = word_index * BITS_PER_LONG + bit_index;
1687
1688 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1689 if (!vcpu->irq_pending[word_index])
1690 clear_bit(word_index, &vcpu->irq_summary);
1691 vmx_inject_irq(vcpu, irq);
1692 }
1693
1694
1695 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1696 struct kvm_run *kvm_run)
1697 {
1698 u32 cpu_based_vm_exec_control;
1699
1700 vcpu->interrupt_window_open =
1701 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1702 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1703
1704 if (vcpu->interrupt_window_open &&
1705 vcpu->irq_summary &&
1706 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1707 /*
1708 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1709 */
1710 kvm_do_inject_irq(vcpu);
1711
1712 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1713 if (!vcpu->interrupt_window_open &&
1714 (vcpu->irq_summary || kvm_run->request_interrupt_window))
1715 /*
1716 * Interrupts blocked. Wait for unblock.
1717 */
1718 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1719 else
1720 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1721 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1722 }
1723
1724 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1725 {
1726 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1727
1728 set_debugreg(dbg->bp[0], 0);
1729 set_debugreg(dbg->bp[1], 1);
1730 set_debugreg(dbg->bp[2], 2);
1731 set_debugreg(dbg->bp[3], 3);
1732
1733 if (dbg->singlestep) {
1734 unsigned long flags;
1735
1736 flags = vmcs_readl(GUEST_RFLAGS);
1737 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1738 vmcs_writel(GUEST_RFLAGS, flags);
1739 }
1740 }
1741
1742 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1743 int vec, u32 err_code)
1744 {
1745 if (!vcpu->rmode.active)
1746 return 0;
1747
1748 /*
1749 * Instruction with address size override prefix opcode 0x67
1750 * Cause the #SS fault with 0 error code in VM86 mode.
1751 */
1752 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1753 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
1754 return 1;
1755 return 0;
1756 }
1757
1758 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1759 {
1760 u32 intr_info, error_code;
1761 unsigned long cr2, rip;
1762 u32 vect_info;
1763 enum emulation_result er;
1764 int r;
1765
1766 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1767 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1768
1769 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1770 !is_page_fault(intr_info)) {
1771 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1772 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1773 }
1774
1775 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
1776 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1777 set_bit(irq, vcpu->irq_pending);
1778 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1779 }
1780
1781 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
1782 return 1; /* already handled by vmx_vcpu_run() */
1783
1784 if (is_no_device(intr_info)) {
1785 vmx_fpu_activate(vcpu);
1786 return 1;
1787 }
1788
1789 if (is_invalid_opcode(intr_info)) {
1790 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
1791 if (er != EMULATE_DONE)
1792 vmx_inject_ud(vcpu);
1793
1794 return 1;
1795 }
1796
1797 error_code = 0;
1798 rip = vmcs_readl(GUEST_RIP);
1799 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1800 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1801 if (is_page_fault(intr_info)) {
1802 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1803
1804 mutex_lock(&vcpu->kvm->lock);
1805 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1806 if (r < 0) {
1807 mutex_unlock(&vcpu->kvm->lock);
1808 return r;
1809 }
1810 if (!r) {
1811 mutex_unlock(&vcpu->kvm->lock);
1812 return 1;
1813 }
1814
1815 er = emulate_instruction(vcpu, kvm_run, cr2, error_code, 0);
1816 mutex_unlock(&vcpu->kvm->lock);
1817
1818 switch (er) {
1819 case EMULATE_DONE:
1820 return 1;
1821 case EMULATE_DO_MMIO:
1822 ++vcpu->stat.mmio_exits;
1823 return 0;
1824 case EMULATE_FAIL:
1825 kvm_report_emulation_failure(vcpu, "pagetable");
1826 break;
1827 default:
1828 BUG();
1829 }
1830 }
1831
1832 if (vcpu->rmode.active &&
1833 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1834 error_code)) {
1835 if (vcpu->halt_request) {
1836 vcpu->halt_request = 0;
1837 return kvm_emulate_halt(vcpu);
1838 }
1839 return 1;
1840 }
1841
1842 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1843 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1844 return 0;
1845 }
1846 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1847 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1848 kvm_run->ex.error_code = error_code;
1849 return 0;
1850 }
1851
1852 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1853 struct kvm_run *kvm_run)
1854 {
1855 ++vcpu->stat.irq_exits;
1856 return 1;
1857 }
1858
1859 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1860 {
1861 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1862 return 0;
1863 }
1864
1865 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1866 {
1867 unsigned long exit_qualification;
1868 int size, down, in, string, rep;
1869 unsigned port;
1870
1871 ++vcpu->stat.io_exits;
1872 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1873 string = (exit_qualification & 16) != 0;
1874
1875 if (string) {
1876 if (emulate_instruction(vcpu,
1877 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1878 return 0;
1879 return 1;
1880 }
1881
1882 size = (exit_qualification & 7) + 1;
1883 in = (exit_qualification & 8) != 0;
1884 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1885 rep = (exit_qualification & 32) != 0;
1886 port = exit_qualification >> 16;
1887
1888 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
1889 }
1890
1891 static void
1892 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1893 {
1894 /*
1895 * Patch in the VMCALL instruction:
1896 */
1897 hypercall[0] = 0x0f;
1898 hypercall[1] = 0x01;
1899 hypercall[2] = 0xc1;
1900 }
1901
1902 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1903 {
1904 unsigned long exit_qualification;
1905 int cr;
1906 int reg;
1907
1908 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1909 cr = exit_qualification & 15;
1910 reg = (exit_qualification >> 8) & 15;
1911 switch ((exit_qualification >> 4) & 3) {
1912 case 0: /* mov to cr */
1913 switch (cr) {
1914 case 0:
1915 vcpu_load_rsp_rip(vcpu);
1916 set_cr0(vcpu, vcpu->regs[reg]);
1917 skip_emulated_instruction(vcpu);
1918 return 1;
1919 case 3:
1920 vcpu_load_rsp_rip(vcpu);
1921 set_cr3(vcpu, vcpu->regs[reg]);
1922 skip_emulated_instruction(vcpu);
1923 return 1;
1924 case 4:
1925 vcpu_load_rsp_rip(vcpu);
1926 set_cr4(vcpu, vcpu->regs[reg]);
1927 skip_emulated_instruction(vcpu);
1928 return 1;
1929 case 8:
1930 vcpu_load_rsp_rip(vcpu);
1931 set_cr8(vcpu, vcpu->regs[reg]);
1932 skip_emulated_instruction(vcpu);
1933 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1934 return 0;
1935 };
1936 break;
1937 case 2: /* clts */
1938 vcpu_load_rsp_rip(vcpu);
1939 vmx_fpu_deactivate(vcpu);
1940 vcpu->cr0 &= ~X86_CR0_TS;
1941 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1942 vmx_fpu_activate(vcpu);
1943 skip_emulated_instruction(vcpu);
1944 return 1;
1945 case 1: /*mov from cr*/
1946 switch (cr) {
1947 case 3:
1948 vcpu_load_rsp_rip(vcpu);
1949 vcpu->regs[reg] = vcpu->cr3;
1950 vcpu_put_rsp_rip(vcpu);
1951 skip_emulated_instruction(vcpu);
1952 return 1;
1953 case 8:
1954 vcpu_load_rsp_rip(vcpu);
1955 vcpu->regs[reg] = get_cr8(vcpu);
1956 vcpu_put_rsp_rip(vcpu);
1957 skip_emulated_instruction(vcpu);
1958 return 1;
1959 }
1960 break;
1961 case 3: /* lmsw */
1962 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1963
1964 skip_emulated_instruction(vcpu);
1965 return 1;
1966 default:
1967 break;
1968 }
1969 kvm_run->exit_reason = 0;
1970 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
1971 (int)(exit_qualification >> 4) & 3, cr);
1972 return 0;
1973 }
1974
1975 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1976 {
1977 unsigned long exit_qualification;
1978 unsigned long val;
1979 int dr, reg;
1980
1981 /*
1982 * FIXME: this code assumes the host is debugging the guest.
1983 * need to deal with guest debugging itself too.
1984 */
1985 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1986 dr = exit_qualification & 7;
1987 reg = (exit_qualification >> 8) & 15;
1988 vcpu_load_rsp_rip(vcpu);
1989 if (exit_qualification & 16) {
1990 /* mov from dr */
1991 switch (dr) {
1992 case 6:
1993 val = 0xffff0ff0;
1994 break;
1995 case 7:
1996 val = 0x400;
1997 break;
1998 default:
1999 val = 0;
2000 }
2001 vcpu->regs[reg] = val;
2002 } else {
2003 /* mov to dr */
2004 }
2005 vcpu_put_rsp_rip(vcpu);
2006 skip_emulated_instruction(vcpu);
2007 return 1;
2008 }
2009
2010 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2011 {
2012 kvm_emulate_cpuid(vcpu);
2013 return 1;
2014 }
2015
2016 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2017 {
2018 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
2019 u64 data;
2020
2021 if (vmx_get_msr(vcpu, ecx, &data)) {
2022 vmx_inject_gp(vcpu, 0);
2023 return 1;
2024 }
2025
2026 /* FIXME: handling of bits 32:63 of rax, rdx */
2027 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
2028 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2029 skip_emulated_instruction(vcpu);
2030 return 1;
2031 }
2032
2033 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2034 {
2035 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
2036 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
2037 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
2038
2039 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2040 vmx_inject_gp(vcpu, 0);
2041 return 1;
2042 }
2043
2044 skip_emulated_instruction(vcpu);
2045 return 1;
2046 }
2047
2048 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2049 struct kvm_run *kvm_run)
2050 {
2051 return 1;
2052 }
2053
2054 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2055 struct kvm_run *kvm_run)
2056 {
2057 u32 cpu_based_vm_exec_control;
2058
2059 /* clear pending irq */
2060 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2061 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2062 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2063 /*
2064 * If the user space waits to inject interrupts, exit as soon as
2065 * possible
2066 */
2067 if (kvm_run->request_interrupt_window &&
2068 !vcpu->irq_summary) {
2069 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2070 ++vcpu->stat.irq_window_exits;
2071 return 0;
2072 }
2073 return 1;
2074 }
2075
2076 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2077 {
2078 skip_emulated_instruction(vcpu);
2079 return kvm_emulate_halt(vcpu);
2080 }
2081
2082 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2083 {
2084 skip_emulated_instruction(vcpu);
2085 kvm_emulate_hypercall(vcpu);
2086 return 1;
2087 }
2088
2089 /*
2090 * The exit handlers return 1 if the exit was handled fully and guest execution
2091 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2092 * to be done to userspace and return 0.
2093 */
2094 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2095 struct kvm_run *kvm_run) = {
2096 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2097 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2098 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2099 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2100 [EXIT_REASON_CR_ACCESS] = handle_cr,
2101 [EXIT_REASON_DR_ACCESS] = handle_dr,
2102 [EXIT_REASON_CPUID] = handle_cpuid,
2103 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2104 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2105 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2106 [EXIT_REASON_HLT] = handle_halt,
2107 [EXIT_REASON_VMCALL] = handle_vmcall,
2108 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold
2109 };
2110
2111 static const int kvm_vmx_max_exit_handlers =
2112 ARRAY_SIZE(kvm_vmx_exit_handlers);
2113
2114 /*
2115 * The guest has exited. See if we can fix it or if we need userspace
2116 * assistance.
2117 */
2118 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2119 {
2120 u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2121 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2122 struct vcpu_vmx *vmx = to_vmx(vcpu);
2123
2124 if (unlikely(vmx->fail)) {
2125 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2126 kvm_run->fail_entry.hardware_entry_failure_reason
2127 = vmcs_read32(VM_INSTRUCTION_ERROR);
2128 return 0;
2129 }
2130
2131 if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
2132 exit_reason != EXIT_REASON_EXCEPTION_NMI )
2133 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2134 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
2135 if (exit_reason < kvm_vmx_max_exit_handlers
2136 && kvm_vmx_exit_handlers[exit_reason])
2137 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2138 else {
2139 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2140 kvm_run->hw.hardware_exit_reason = exit_reason;
2141 }
2142 return 0;
2143 }
2144
2145 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2146 {
2147 }
2148
2149 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2150 {
2151 int max_irr, tpr;
2152
2153 if (!vm_need_tpr_shadow(vcpu->kvm))
2154 return;
2155
2156 if (!kvm_lapic_enabled(vcpu) ||
2157 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2158 vmcs_write32(TPR_THRESHOLD, 0);
2159 return;
2160 }
2161
2162 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2163 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2164 }
2165
2166 static void enable_irq_window(struct kvm_vcpu *vcpu)
2167 {
2168 u32 cpu_based_vm_exec_control;
2169
2170 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2171 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2172 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2173 }
2174
2175 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2176 {
2177 u32 idtv_info_field, intr_info_field;
2178 int has_ext_irq, interrupt_window_open;
2179 int vector;
2180
2181 kvm_inject_pending_timer_irqs(vcpu);
2182 update_tpr_threshold(vcpu);
2183
2184 has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2185 intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2186 idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2187 if (intr_info_field & INTR_INFO_VALID_MASK) {
2188 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2189 /* TODO: fault when IDT_Vectoring */
2190 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2191 }
2192 if (has_ext_irq)
2193 enable_irq_window(vcpu);
2194 return;
2195 }
2196 if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2197 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2198 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2199 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2200
2201 if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
2202 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2203 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2204 if (unlikely(has_ext_irq))
2205 enable_irq_window(vcpu);
2206 return;
2207 }
2208 if (!has_ext_irq)
2209 return;
2210 interrupt_window_open =
2211 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2212 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2213 if (interrupt_window_open) {
2214 vector = kvm_cpu_get_interrupt(vcpu);
2215 vmx_inject_irq(vcpu, vector);
2216 kvm_timer_intr_post(vcpu, vector);
2217 } else
2218 enable_irq_window(vcpu);
2219 }
2220
2221 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2222 {
2223 struct vcpu_vmx *vmx = to_vmx(vcpu);
2224 u32 intr_info;
2225
2226 /*
2227 * Loading guest fpu may have cleared host cr0.ts
2228 */
2229 vmcs_writel(HOST_CR0, read_cr0());
2230
2231 asm (
2232 /* Store host registers */
2233 #ifdef CONFIG_X86_64
2234 "push %%rax; push %%rbx; push %%rdx;"
2235 "push %%rsi; push %%rdi; push %%rbp;"
2236 "push %%r8; push %%r9; push %%r10; push %%r11;"
2237 "push %%r12; push %%r13; push %%r14; push %%r15;"
2238 "push %%rcx \n\t"
2239 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2240 #else
2241 "pusha; push %%ecx \n\t"
2242 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2243 #endif
2244 /* Check if vmlaunch of vmresume is needed */
2245 "cmp $0, %1 \n\t"
2246 /* Load guest registers. Don't clobber flags. */
2247 #ifdef CONFIG_X86_64
2248 "mov %c[cr2](%3), %%rax \n\t"
2249 "mov %%rax, %%cr2 \n\t"
2250 "mov %c[rax](%3), %%rax \n\t"
2251 "mov %c[rbx](%3), %%rbx \n\t"
2252 "mov %c[rdx](%3), %%rdx \n\t"
2253 "mov %c[rsi](%3), %%rsi \n\t"
2254 "mov %c[rdi](%3), %%rdi \n\t"
2255 "mov %c[rbp](%3), %%rbp \n\t"
2256 "mov %c[r8](%3), %%r8 \n\t"
2257 "mov %c[r9](%3), %%r9 \n\t"
2258 "mov %c[r10](%3), %%r10 \n\t"
2259 "mov %c[r11](%3), %%r11 \n\t"
2260 "mov %c[r12](%3), %%r12 \n\t"
2261 "mov %c[r13](%3), %%r13 \n\t"
2262 "mov %c[r14](%3), %%r14 \n\t"
2263 "mov %c[r15](%3), %%r15 \n\t"
2264 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
2265 #else
2266 "mov %c[cr2](%3), %%eax \n\t"
2267 "mov %%eax, %%cr2 \n\t"
2268 "mov %c[rax](%3), %%eax \n\t"
2269 "mov %c[rbx](%3), %%ebx \n\t"
2270 "mov %c[rdx](%3), %%edx \n\t"
2271 "mov %c[rsi](%3), %%esi \n\t"
2272 "mov %c[rdi](%3), %%edi \n\t"
2273 "mov %c[rbp](%3), %%ebp \n\t"
2274 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
2275 #endif
2276 /* Enter guest mode */
2277 "jne .Llaunched \n\t"
2278 ASM_VMX_VMLAUNCH "\n\t"
2279 "jmp .Lkvm_vmx_return \n\t"
2280 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2281 ".Lkvm_vmx_return: "
2282 /* Save guest registers, load host registers, keep flags */
2283 #ifdef CONFIG_X86_64
2284 "xchg %3, (%%rsp) \n\t"
2285 "mov %%rax, %c[rax](%3) \n\t"
2286 "mov %%rbx, %c[rbx](%3) \n\t"
2287 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
2288 "mov %%rdx, %c[rdx](%3) \n\t"
2289 "mov %%rsi, %c[rsi](%3) \n\t"
2290 "mov %%rdi, %c[rdi](%3) \n\t"
2291 "mov %%rbp, %c[rbp](%3) \n\t"
2292 "mov %%r8, %c[r8](%3) \n\t"
2293 "mov %%r9, %c[r9](%3) \n\t"
2294 "mov %%r10, %c[r10](%3) \n\t"
2295 "mov %%r11, %c[r11](%3) \n\t"
2296 "mov %%r12, %c[r12](%3) \n\t"
2297 "mov %%r13, %c[r13](%3) \n\t"
2298 "mov %%r14, %c[r14](%3) \n\t"
2299 "mov %%r15, %c[r15](%3) \n\t"
2300 "mov %%cr2, %%rax \n\t"
2301 "mov %%rax, %c[cr2](%3) \n\t"
2302 "mov (%%rsp), %3 \n\t"
2303
2304 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
2305 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
2306 "pop %%rbp; pop %%rdi; pop %%rsi;"
2307 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
2308 #else
2309 "xchg %3, (%%esp) \n\t"
2310 "mov %%eax, %c[rax](%3) \n\t"
2311 "mov %%ebx, %c[rbx](%3) \n\t"
2312 "pushl (%%esp); popl %c[rcx](%3) \n\t"
2313 "mov %%edx, %c[rdx](%3) \n\t"
2314 "mov %%esi, %c[rsi](%3) \n\t"
2315 "mov %%edi, %c[rdi](%3) \n\t"
2316 "mov %%ebp, %c[rbp](%3) \n\t"
2317 "mov %%cr2, %%eax \n\t"
2318 "mov %%eax, %c[cr2](%3) \n\t"
2319 "mov (%%esp), %3 \n\t"
2320
2321 "pop %%ecx; popa \n\t"
2322 #endif
2323 "setbe %0 \n\t"
2324 : "=q" (vmx->fail)
2325 : "r"(vmx->launched), "d"((unsigned long)HOST_RSP),
2326 "c"(vcpu),
2327 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
2328 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
2329 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
2330 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
2331 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
2332 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
2333 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
2334 #ifdef CONFIG_X86_64
2335 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
2336 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
2337 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
2338 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
2339 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
2340 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
2341 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
2342 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
2343 #endif
2344 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
2345 : "cc", "memory" );
2346
2347 vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2348
2349 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2350 vmx->launched = 1;
2351
2352 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2353
2354 /* We need to handle NMIs before interrupts are enabled */
2355 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2356 asm("int $2");
2357 }
2358
2359 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2360 unsigned long addr,
2361 u32 err_code)
2362 {
2363 u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2364
2365 ++vcpu->stat.pf_guest;
2366
2367 if (is_page_fault(vect_info)) {
2368 printk(KERN_DEBUG "inject_page_fault: "
2369 "double fault 0x%lx @ 0x%lx\n",
2370 addr, vmcs_readl(GUEST_RIP));
2371 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2372 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2373 DF_VECTOR |
2374 INTR_TYPE_EXCEPTION |
2375 INTR_INFO_DELIEVER_CODE_MASK |
2376 INTR_INFO_VALID_MASK);
2377 return;
2378 }
2379 vcpu->cr2 = addr;
2380 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2381 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2382 PF_VECTOR |
2383 INTR_TYPE_EXCEPTION |
2384 INTR_INFO_DELIEVER_CODE_MASK |
2385 INTR_INFO_VALID_MASK);
2386
2387 }
2388
2389 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2390 {
2391 struct vcpu_vmx *vmx = to_vmx(vcpu);
2392
2393 if (vmx->vmcs) {
2394 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2395 free_vmcs(vmx->vmcs);
2396 vmx->vmcs = NULL;
2397 }
2398 }
2399
2400 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2401 {
2402 struct vcpu_vmx *vmx = to_vmx(vcpu);
2403
2404 vmx_free_vmcs(vcpu);
2405 kfree(vmx->host_msrs);
2406 kfree(vmx->guest_msrs);
2407 kvm_vcpu_uninit(vcpu);
2408 kmem_cache_free(kvm_vcpu_cache, vmx);
2409 }
2410
2411 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2412 {
2413 int err;
2414 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2415 int cpu;
2416
2417 if (!vmx)
2418 return ERR_PTR(-ENOMEM);
2419
2420 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2421 if (err)
2422 goto free_vcpu;
2423
2424 if (irqchip_in_kernel(kvm)) {
2425 err = kvm_create_lapic(&vmx->vcpu);
2426 if (err < 0)
2427 goto free_vcpu;
2428 }
2429
2430 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2431 if (!vmx->guest_msrs) {
2432 err = -ENOMEM;
2433 goto uninit_vcpu;
2434 }
2435
2436 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2437 if (!vmx->host_msrs)
2438 goto free_guest_msrs;
2439
2440 vmx->vmcs = alloc_vmcs();
2441 if (!vmx->vmcs)
2442 goto free_msrs;
2443
2444 vmcs_clear(vmx->vmcs);
2445
2446 cpu = get_cpu();
2447 vmx_vcpu_load(&vmx->vcpu, cpu);
2448 err = vmx_vcpu_setup(vmx);
2449 vmx_vcpu_put(&vmx->vcpu);
2450 put_cpu();
2451 if (err)
2452 goto free_vmcs;
2453
2454 return &vmx->vcpu;
2455
2456 free_vmcs:
2457 free_vmcs(vmx->vmcs);
2458 free_msrs:
2459 kfree(vmx->host_msrs);
2460 free_guest_msrs:
2461 kfree(vmx->guest_msrs);
2462 uninit_vcpu:
2463 kvm_vcpu_uninit(&vmx->vcpu);
2464 free_vcpu:
2465 kmem_cache_free(kvm_vcpu_cache, vmx);
2466 return ERR_PTR(err);
2467 }
2468
2469 static void __init vmx_check_processor_compat(void *rtn)
2470 {
2471 struct vmcs_config vmcs_conf;
2472
2473 *(int *)rtn = 0;
2474 if (setup_vmcs_config(&vmcs_conf) < 0)
2475 *(int *)rtn = -EIO;
2476 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2477 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2478 smp_processor_id());
2479 *(int *)rtn = -EIO;
2480 }
2481 }
2482
2483 static struct kvm_x86_ops vmx_x86_ops = {
2484 .cpu_has_kvm_support = cpu_has_kvm_support,
2485 .disabled_by_bios = vmx_disabled_by_bios,
2486 .hardware_setup = hardware_setup,
2487 .hardware_unsetup = hardware_unsetup,
2488 .check_processor_compatibility = vmx_check_processor_compat,
2489 .hardware_enable = hardware_enable,
2490 .hardware_disable = hardware_disable,
2491
2492 .vcpu_create = vmx_create_vcpu,
2493 .vcpu_free = vmx_free_vcpu,
2494 .vcpu_reset = vmx_vcpu_reset,
2495
2496 .prepare_guest_switch = vmx_save_host_state,
2497 .vcpu_load = vmx_vcpu_load,
2498 .vcpu_put = vmx_vcpu_put,
2499 .vcpu_decache = vmx_vcpu_decache,
2500
2501 .set_guest_debug = set_guest_debug,
2502 .guest_debug_pre = kvm_guest_debug_pre,
2503 .get_msr = vmx_get_msr,
2504 .set_msr = vmx_set_msr,
2505 .get_segment_base = vmx_get_segment_base,
2506 .get_segment = vmx_get_segment,
2507 .set_segment = vmx_set_segment,
2508 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2509 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2510 .set_cr0 = vmx_set_cr0,
2511 .set_cr3 = vmx_set_cr3,
2512 .set_cr4 = vmx_set_cr4,
2513 #ifdef CONFIG_X86_64
2514 .set_efer = vmx_set_efer,
2515 #endif
2516 .get_idt = vmx_get_idt,
2517 .set_idt = vmx_set_idt,
2518 .get_gdt = vmx_get_gdt,
2519 .set_gdt = vmx_set_gdt,
2520 .cache_regs = vcpu_load_rsp_rip,
2521 .decache_regs = vcpu_put_rsp_rip,
2522 .get_rflags = vmx_get_rflags,
2523 .set_rflags = vmx_set_rflags,
2524
2525 .tlb_flush = vmx_flush_tlb,
2526 .inject_page_fault = vmx_inject_page_fault,
2527
2528 .inject_gp = vmx_inject_gp,
2529
2530 .run = vmx_vcpu_run,
2531 .handle_exit = kvm_handle_exit,
2532 .skip_emulated_instruction = skip_emulated_instruction,
2533 .patch_hypercall = vmx_patch_hypercall,
2534 .get_irq = vmx_get_irq,
2535 .set_irq = vmx_inject_irq,
2536 .inject_pending_irq = vmx_intr_assist,
2537 .inject_pending_vectors = do_interrupt_requests,
2538 };
2539
2540 static int __init vmx_init(void)
2541 {
2542 void *iova;
2543 int r;
2544
2545 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2546 if (!vmx_io_bitmap_a)
2547 return -ENOMEM;
2548
2549 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2550 if (!vmx_io_bitmap_b) {
2551 r = -ENOMEM;
2552 goto out;
2553 }
2554
2555 /*
2556 * Allow direct access to the PC debug port (it is often used for I/O
2557 * delays, but the vmexits simply slow things down).
2558 */
2559 iova = kmap(vmx_io_bitmap_a);
2560 memset(iova, 0xff, PAGE_SIZE);
2561 clear_bit(0x80, iova);
2562 kunmap(vmx_io_bitmap_a);
2563
2564 iova = kmap(vmx_io_bitmap_b);
2565 memset(iova, 0xff, PAGE_SIZE);
2566 kunmap(vmx_io_bitmap_b);
2567
2568 r = kvm_init_x86(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2569 if (r)
2570 goto out1;
2571
2572 return 0;
2573
2574 out1:
2575 __free_page(vmx_io_bitmap_b);
2576 out:
2577 __free_page(vmx_io_bitmap_a);
2578 return r;
2579 }
2580
2581 static void __exit vmx_exit(void)
2582 {
2583 __free_page(vmx_io_bitmap_b);
2584 __free_page(vmx_io_bitmap_a);
2585
2586 kvm_exit_x86();
2587 }
2588
2589 module_init(vmx_init)
2590 module_exit(vmx_exit)
This page took 0.67761 seconds and 5 git commands to generate.