lguest: allow any process to send interrupts
[deliverable/linux.git] / drivers / lguest / lguest_user.c
1 /*P:200 This contains all the /dev/lguest code, whereby the userspace launcher
2 * controls and communicates with the Guest. For example, the first write will
3 * tell us the Guest's memory layout, pagetable, entry point and kernel address
4 * offset. A read will run the Guest until something happens, such as a signal
5 * or the Guest doing a NOTIFY out to the Launcher. :*/
6 #include <linux/uaccess.h>
7 #include <linux/miscdevice.h>
8 #include <linux/fs.h>
9 #include <linux/sched.h>
10 #include "lg.h"
11
12 /*L:055 When something happens, the Waker process needs a way to stop the
13 * kernel running the Guest and return to the Launcher. So the Waker writes
14 * LHREQ_BREAK and the value "1" to /dev/lguest to do this. Once the Launcher
15 * has done whatever needs attention, it writes LHREQ_BREAK and "0" to release
16 * the Waker. */
17 static int break_guest_out(struct lg_cpu *cpu, const unsigned long __user*input)
18 {
19 unsigned long on;
20
21 /* Fetch whether they're turning break on or off. */
22 if (get_user(on, input) != 0)
23 return -EFAULT;
24
25 if (on) {
26 cpu->break_out = 1;
27 if (!wake_up_process(cpu->tsk))
28 kick_process(cpu->tsk);
29 /* Wait for them to reset it */
30 return wait_event_interruptible(cpu->break_wq, !cpu->break_out);
31 } else {
32 cpu->break_out = 0;
33 wake_up(&cpu->break_wq);
34 return 0;
35 }
36 }
37
38 /*L:050 Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
39 * number to /dev/lguest. */
40 static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
41 {
42 unsigned long irq;
43
44 if (get_user(irq, input) != 0)
45 return -EFAULT;
46 if (irq >= LGUEST_IRQS)
47 return -EINVAL;
48
49 set_interrupt(cpu, irq);
50 return 0;
51 }
52
53 /*L:040 Once our Guest is initialized, the Launcher makes it run by reading
54 * from /dev/lguest. */
55 static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
56 {
57 struct lguest *lg = file->private_data;
58 struct lg_cpu *cpu;
59 unsigned int cpu_id = *o;
60
61 /* You must write LHREQ_INITIALIZE first! */
62 if (!lg)
63 return -EINVAL;
64
65 /* Watch out for arbitrary vcpu indexes! */
66 if (cpu_id >= lg->nr_cpus)
67 return -EINVAL;
68
69 cpu = &lg->cpus[cpu_id];
70
71 /* If you're not the task which owns the Guest, go away. */
72 if (current != cpu->tsk)
73 return -EPERM;
74
75 /* If the Guest is already dead, we indicate why */
76 if (lg->dead) {
77 size_t len;
78
79 /* lg->dead either contains an error code, or a string. */
80 if (IS_ERR(lg->dead))
81 return PTR_ERR(lg->dead);
82
83 /* We can only return as much as the buffer they read with. */
84 len = min(size, strlen(lg->dead)+1);
85 if (copy_to_user(user, lg->dead, len) != 0)
86 return -EFAULT;
87 return len;
88 }
89
90 /* If we returned from read() last time because the Guest sent I/O,
91 * clear the flag. */
92 if (cpu->pending_notify)
93 cpu->pending_notify = 0;
94
95 /* Run the Guest until something interesting happens. */
96 return run_guest(cpu, (unsigned long __user *)user);
97 }
98
99 /*L:025 This actually initializes a CPU. For the moment, a Guest is only
100 * uniprocessor, so "id" is always 0. */
101 static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
102 {
103 /* We have a limited number the number of CPUs in the lguest struct. */
104 if (id >= ARRAY_SIZE(cpu->lg->cpus))
105 return -EINVAL;
106
107 /* Set up this CPU's id, and pointer back to the lguest struct. */
108 cpu->id = id;
109 cpu->lg = container_of((cpu - id), struct lguest, cpus[0]);
110 cpu->lg->nr_cpus++;
111
112 /* Each CPU has a timer it can set. */
113 init_clockdev(cpu);
114
115 /* We need a complete page for the Guest registers: they are accessible
116 * to the Guest and we can only grant it access to whole pages. */
117 cpu->regs_page = get_zeroed_page(GFP_KERNEL);
118 if (!cpu->regs_page)
119 return -ENOMEM;
120
121 /* We actually put the registers at the bottom of the page. */
122 cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
123
124 /* Now we initialize the Guest's registers, handing it the start
125 * address. */
126 lguest_arch_setup_regs(cpu, start_ip);
127
128 /* Initialize the queue for the Waker to wait on */
129 init_waitqueue_head(&cpu->break_wq);
130
131 /* We keep a pointer to the Launcher task (ie. current task) for when
132 * other Guests want to wake this one (eg. console input). */
133 cpu->tsk = current;
134
135 /* We need to keep a pointer to the Launcher's memory map, because if
136 * the Launcher dies we need to clean it up. If we don't keep a
137 * reference, it is destroyed before close() is called. */
138 cpu->mm = get_task_mm(cpu->tsk);
139
140 /* We remember which CPU's pages this Guest used last, for optimization
141 * when the same Guest runs on the same CPU twice. */
142 cpu->last_pages = NULL;
143
144 /* No error == success. */
145 return 0;
146 }
147
148 /*L:020 The initialization write supplies 3 pointer sized (32 or 64 bit)
149 * values (in addition to the LHREQ_INITIALIZE value). These are:
150 *
151 * base: The start of the Guest-physical memory inside the Launcher memory.
152 *
153 * pfnlimit: The highest (Guest-physical) page number the Guest should be
154 * allowed to access. The Guest memory lives inside the Launcher, so it sets
155 * this to ensure the Guest can only reach its own memory.
156 *
157 * start: The first instruction to execute ("eip" in x86-speak).
158 */
159 static int initialize(struct file *file, const unsigned long __user *input)
160 {
161 /* "struct lguest" contains everything we (the Host) know about a
162 * Guest. */
163 struct lguest *lg;
164 int err;
165 unsigned long args[3];
166
167 /* We grab the Big Lguest lock, which protects against multiple
168 * simultaneous initializations. */
169 mutex_lock(&lguest_lock);
170 /* You can't initialize twice! Close the device and start again... */
171 if (file->private_data) {
172 err = -EBUSY;
173 goto unlock;
174 }
175
176 if (copy_from_user(args, input, sizeof(args)) != 0) {
177 err = -EFAULT;
178 goto unlock;
179 }
180
181 lg = kzalloc(sizeof(*lg), GFP_KERNEL);
182 if (!lg) {
183 err = -ENOMEM;
184 goto unlock;
185 }
186
187 /* Populate the easy fields of our "struct lguest" */
188 lg->mem_base = (void __user *)args[0];
189 lg->pfn_limit = args[1];
190
191 /* This is the first cpu (cpu 0) and it will start booting at args[2] */
192 err = lg_cpu_start(&lg->cpus[0], 0, args[2]);
193 if (err)
194 goto release_guest;
195
196 /* Initialize the Guest's shadow page tables, using the toplevel
197 * address the Launcher gave us. This allocates memory, so can fail. */
198 err = init_guest_pagetable(lg);
199 if (err)
200 goto free_regs;
201
202 /* We keep our "struct lguest" in the file's private_data. */
203 file->private_data = lg;
204
205 mutex_unlock(&lguest_lock);
206
207 /* And because this is a write() call, we return the length used. */
208 return sizeof(args);
209
210 free_regs:
211 /* FIXME: This should be in free_vcpu */
212 free_page(lg->cpus[0].regs_page);
213 release_guest:
214 kfree(lg);
215 unlock:
216 mutex_unlock(&lguest_lock);
217 return err;
218 }
219
220 /*L:010 The first operation the Launcher does must be a write. All writes
221 * start with an unsigned long number: for the first write this must be
222 * LHREQ_INITIALIZE to set up the Guest. After that the Launcher can use
223 * writes of other values to send interrupts.
224 *
225 * Note that we overload the "offset" in the /dev/lguest file to indicate what
226 * CPU number we're dealing with. Currently this is always 0, since we only
227 * support uniprocessor Guests, but you can see the beginnings of SMP support
228 * here. */
229 static ssize_t write(struct file *file, const char __user *in,
230 size_t size, loff_t *off)
231 {
232 /* Once the Guest is initialized, we hold the "struct lguest" in the
233 * file private data. */
234 struct lguest *lg = file->private_data;
235 const unsigned long __user *input = (const unsigned long __user *)in;
236 unsigned long req;
237 struct lg_cpu *uninitialized_var(cpu);
238 unsigned int cpu_id = *off;
239
240 /* The first value tells us what this request is. */
241 if (get_user(req, input) != 0)
242 return -EFAULT;
243 input++;
244
245 /* If you haven't initialized, you must do that first. */
246 if (req != LHREQ_INITIALIZE) {
247 if (!lg || (cpu_id >= lg->nr_cpus))
248 return -EINVAL;
249 cpu = &lg->cpus[cpu_id];
250
251 /* Once the Guest is dead, you can only read() why it died. */
252 if (lg->dead)
253 return -ENOENT;
254 }
255
256 switch (req) {
257 case LHREQ_INITIALIZE:
258 return initialize(file, input);
259 case LHREQ_IRQ:
260 return user_send_irq(cpu, input);
261 case LHREQ_BREAK:
262 return break_guest_out(cpu, input);
263 default:
264 return -EINVAL;
265 }
266 }
267
268 /*L:060 The final piece of interface code is the close() routine. It reverses
269 * everything done in initialize(). This is usually called because the
270 * Launcher exited.
271 *
272 * Note that the close routine returns 0 or a negative error number: it can't
273 * really fail, but it can whine. I blame Sun for this wart, and K&R C for
274 * letting them do it. :*/
275 static int close(struct inode *inode, struct file *file)
276 {
277 struct lguest *lg = file->private_data;
278 unsigned int i;
279
280 /* If we never successfully initialized, there's nothing to clean up */
281 if (!lg)
282 return 0;
283
284 /* We need the big lock, to protect from inter-guest I/O and other
285 * Launchers initializing guests. */
286 mutex_lock(&lguest_lock);
287
288 /* Free up the shadow page tables for the Guest. */
289 free_guest_pagetable(lg);
290
291 for (i = 0; i < lg->nr_cpus; i++) {
292 /* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
293 hrtimer_cancel(&lg->cpus[i].hrt);
294 /* We can free up the register page we allocated. */
295 free_page(lg->cpus[i].regs_page);
296 /* Now all the memory cleanups are done, it's safe to release
297 * the Launcher's memory management structure. */
298 mmput(lg->cpus[i].mm);
299 }
300 /* If lg->dead doesn't contain an error code it will be NULL or a
301 * kmalloc()ed string, either of which is ok to hand to kfree(). */
302 if (!IS_ERR(lg->dead))
303 kfree(lg->dead);
304 /* Free the memory allocated to the lguest_struct */
305 kfree(lg);
306 /* Release lock and exit. */
307 mutex_unlock(&lguest_lock);
308
309 return 0;
310 }
311
312 /*L:000
313 * Welcome to our journey through the Launcher!
314 *
315 * The Launcher is the Host userspace program which sets up, runs and services
316 * the Guest. In fact, many comments in the Drivers which refer to "the Host"
317 * doing things are inaccurate: the Launcher does all the device handling for
318 * the Guest, but the Guest can't know that.
319 *
320 * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
321 * shall see more of that later.
322 *
323 * We begin our understanding with the Host kernel interface which the Launcher
324 * uses: reading and writing a character device called /dev/lguest. All the
325 * work happens in the read(), write() and close() routines: */
326 static struct file_operations lguest_fops = {
327 .owner = THIS_MODULE,
328 .release = close,
329 .write = write,
330 .read = read,
331 };
332
333 /* This is a textbook example of a "misc" character device. Populate a "struct
334 * miscdevice" and register it with misc_register(). */
335 static struct miscdevice lguest_dev = {
336 .minor = MISC_DYNAMIC_MINOR,
337 .name = "lguest",
338 .fops = &lguest_fops,
339 };
340
341 int __init lguest_device_init(void)
342 {
343 return misc_register(&lguest_dev);
344 }
345
346 void __exit lguest_device_remove(void)
347 {
348 misc_deregister(&lguest_dev);
349 }
This page took 0.038756 seconds and 5 git commands to generate.