Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[deliverable/linux.git] / drivers / lightnvm / rrpc.c
1 /*
2 * Copyright (C) 2015 IT University of Copenhagen
3 * Initial release: Matias Bjorling <m@bjorling.me>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License version
7 * 2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15 */
16
17 #include "rrpc.h"
18
19 static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20 static DECLARE_RWSEM(rrpc_lock);
21
22 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23 struct nvm_rq *rqd, unsigned long flags);
24
25 #define rrpc_for_each_lun(rrpc, rlun, i) \
26 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27 (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28
29 static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30 {
31 struct rrpc_block *rblk = a->rblk;
32 unsigned int pg_offset;
33
34 lockdep_assert_held(&rrpc->rev_lock);
35
36 if (a->addr == ADDR_EMPTY || !rblk)
37 return;
38
39 spin_lock(&rblk->lock);
40
41 div_u64_rem(a->addr, rrpc->dev->sec_per_blk, &pg_offset);
42 WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
43 rblk->nr_invalid_pages++;
44
45 spin_unlock(&rblk->lock);
46
47 rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
48 }
49
50 static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
51 unsigned int len)
52 {
53 sector_t i;
54
55 spin_lock(&rrpc->rev_lock);
56 for (i = slba; i < slba + len; i++) {
57 struct rrpc_addr *gp = &rrpc->trans_map[i];
58
59 rrpc_page_invalidate(rrpc, gp);
60 gp->rblk = NULL;
61 }
62 spin_unlock(&rrpc->rev_lock);
63 }
64
65 static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
66 sector_t laddr, unsigned int pages)
67 {
68 struct nvm_rq *rqd;
69 struct rrpc_inflight_rq *inf;
70
71 rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
72 if (!rqd)
73 return ERR_PTR(-ENOMEM);
74
75 inf = rrpc_get_inflight_rq(rqd);
76 if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
77 mempool_free(rqd, rrpc->rq_pool);
78 return NULL;
79 }
80
81 return rqd;
82 }
83
84 static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
85 {
86 struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
87
88 rrpc_unlock_laddr(rrpc, inf);
89
90 mempool_free(rqd, rrpc->rq_pool);
91 }
92
93 static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
94 {
95 sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
96 sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
97 struct nvm_rq *rqd;
98
99 while (1) {
100 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
101 if (rqd)
102 break;
103
104 schedule();
105 }
106
107 if (IS_ERR(rqd)) {
108 pr_err("rrpc: unable to acquire inflight IO\n");
109 bio_io_error(bio);
110 return;
111 }
112
113 rrpc_invalidate_range(rrpc, slba, len);
114 rrpc_inflight_laddr_release(rrpc, rqd);
115 }
116
117 static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
118 {
119 return (rblk->next_page == rrpc->dev->sec_per_blk);
120 }
121
122 /* Calculate relative addr for the given block, considering instantiated LUNs */
123 static u64 block_to_rel_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
124 {
125 struct nvm_block *blk = rblk->parent;
126 int lun_blk = blk->id % (rrpc->dev->blks_per_lun * rrpc->nr_luns);
127
128 return lun_blk * rrpc->dev->sec_per_blk;
129 }
130
131 /* Calculate global addr for the given block */
132 static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
133 {
134 struct nvm_block *blk = rblk->parent;
135
136 return blk->id * rrpc->dev->sec_per_blk;
137 }
138
139 static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
140 struct ppa_addr r)
141 {
142 struct ppa_addr l;
143 int secs, pgs, blks, luns;
144 sector_t ppa = r.ppa;
145
146 l.ppa = 0;
147
148 div_u64_rem(ppa, dev->sec_per_pg, &secs);
149 l.g.sec = secs;
150
151 sector_div(ppa, dev->sec_per_pg);
152 div_u64_rem(ppa, dev->pgs_per_blk, &pgs);
153 l.g.pg = pgs;
154
155 sector_div(ppa, dev->pgs_per_blk);
156 div_u64_rem(ppa, dev->blks_per_lun, &blks);
157 l.g.blk = blks;
158
159 sector_div(ppa, dev->blks_per_lun);
160 div_u64_rem(ppa, dev->luns_per_chnl, &luns);
161 l.g.lun = luns;
162
163 sector_div(ppa, dev->luns_per_chnl);
164 l.g.ch = ppa;
165
166 return l;
167 }
168
169 static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
170 {
171 struct ppa_addr paddr;
172
173 paddr.ppa = addr;
174 return linear_to_generic_addr(dev, paddr);
175 }
176
177 /* requires lun->lock taken */
178 static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *new_rblk,
179 struct rrpc_block **cur_rblk)
180 {
181 struct rrpc *rrpc = rlun->rrpc;
182
183 if (*cur_rblk) {
184 spin_lock(&(*cur_rblk)->lock);
185 WARN_ON(!block_is_full(rrpc, *cur_rblk));
186 spin_unlock(&(*cur_rblk)->lock);
187 }
188 *cur_rblk = new_rblk;
189 }
190
191 static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
192 unsigned long flags)
193 {
194 struct nvm_block *blk;
195 struct rrpc_block *rblk;
196
197 blk = nvm_get_blk(rrpc->dev, rlun->parent, flags);
198 if (!blk) {
199 pr_err("nvm: rrpc: cannot get new block from media manager\n");
200 return NULL;
201 }
202
203 rblk = rrpc_get_rblk(rlun, blk->id);
204 blk->priv = rblk;
205 bitmap_zero(rblk->invalid_pages, rrpc->dev->sec_per_blk);
206 rblk->next_page = 0;
207 rblk->nr_invalid_pages = 0;
208 atomic_set(&rblk->data_cmnt_size, 0);
209
210 return rblk;
211 }
212
213 static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
214 {
215 nvm_put_blk(rrpc->dev, rblk->parent);
216 }
217
218 static void rrpc_put_blks(struct rrpc *rrpc)
219 {
220 struct rrpc_lun *rlun;
221 int i;
222
223 for (i = 0; i < rrpc->nr_luns; i++) {
224 rlun = &rrpc->luns[i];
225 if (rlun->cur)
226 rrpc_put_blk(rrpc, rlun->cur);
227 if (rlun->gc_cur)
228 rrpc_put_blk(rrpc, rlun->gc_cur);
229 }
230 }
231
232 static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
233 {
234 int next = atomic_inc_return(&rrpc->next_lun);
235
236 return &rrpc->luns[next % rrpc->nr_luns];
237 }
238
239 static void rrpc_gc_kick(struct rrpc *rrpc)
240 {
241 struct rrpc_lun *rlun;
242 unsigned int i;
243
244 for (i = 0; i < rrpc->nr_luns; i++) {
245 rlun = &rrpc->luns[i];
246 queue_work(rrpc->krqd_wq, &rlun->ws_gc);
247 }
248 }
249
250 /*
251 * timed GC every interval.
252 */
253 static void rrpc_gc_timer(unsigned long data)
254 {
255 struct rrpc *rrpc = (struct rrpc *)data;
256
257 rrpc_gc_kick(rrpc);
258 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
259 }
260
261 static void rrpc_end_sync_bio(struct bio *bio)
262 {
263 struct completion *waiting = bio->bi_private;
264
265 if (bio->bi_error)
266 pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
267
268 complete(waiting);
269 }
270
271 /*
272 * rrpc_move_valid_pages -- migrate live data off the block
273 * @rrpc: the 'rrpc' structure
274 * @block: the block from which to migrate live pages
275 *
276 * Description:
277 * GC algorithms may call this function to migrate remaining live
278 * pages off the block prior to erasing it. This function blocks
279 * further execution until the operation is complete.
280 */
281 static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
282 {
283 struct request_queue *q = rrpc->dev->q;
284 struct rrpc_rev_addr *rev;
285 struct nvm_rq *rqd;
286 struct bio *bio;
287 struct page *page;
288 int slot;
289 int nr_sec_per_blk = rrpc->dev->sec_per_blk;
290 u64 phys_addr;
291 DECLARE_COMPLETION_ONSTACK(wait);
292
293 if (bitmap_full(rblk->invalid_pages, nr_sec_per_blk))
294 return 0;
295
296 bio = bio_alloc(GFP_NOIO, 1);
297 if (!bio) {
298 pr_err("nvm: could not alloc bio to gc\n");
299 return -ENOMEM;
300 }
301
302 page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
303 if (!page) {
304 bio_put(bio);
305 return -ENOMEM;
306 }
307
308 while ((slot = find_first_zero_bit(rblk->invalid_pages,
309 nr_sec_per_blk)) < nr_sec_per_blk) {
310
311 /* Lock laddr */
312 phys_addr = rblk->parent->id * nr_sec_per_blk + slot;
313
314 try:
315 spin_lock(&rrpc->rev_lock);
316 /* Get logical address from physical to logical table */
317 rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
318 /* already updated by previous regular write */
319 if (rev->addr == ADDR_EMPTY) {
320 spin_unlock(&rrpc->rev_lock);
321 continue;
322 }
323
324 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
325 if (IS_ERR_OR_NULL(rqd)) {
326 spin_unlock(&rrpc->rev_lock);
327 schedule();
328 goto try;
329 }
330
331 spin_unlock(&rrpc->rev_lock);
332
333 /* Perform read to do GC */
334 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
335 bio_set_op_attrs(bio, REQ_OP_READ, 0);
336 bio->bi_private = &wait;
337 bio->bi_end_io = rrpc_end_sync_bio;
338
339 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
340 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
341
342 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
343 pr_err("rrpc: gc read failed.\n");
344 rrpc_inflight_laddr_release(rrpc, rqd);
345 goto finished;
346 }
347 wait_for_completion_io(&wait);
348 if (bio->bi_error) {
349 rrpc_inflight_laddr_release(rrpc, rqd);
350 goto finished;
351 }
352
353 bio_reset(bio);
354 reinit_completion(&wait);
355
356 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
357 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
358 bio->bi_private = &wait;
359 bio->bi_end_io = rrpc_end_sync_bio;
360
361 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
362
363 /* turn the command around and write the data back to a new
364 * address
365 */
366 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
367 pr_err("rrpc: gc write failed.\n");
368 rrpc_inflight_laddr_release(rrpc, rqd);
369 goto finished;
370 }
371 wait_for_completion_io(&wait);
372
373 rrpc_inflight_laddr_release(rrpc, rqd);
374 if (bio->bi_error)
375 goto finished;
376
377 bio_reset(bio);
378 }
379
380 finished:
381 mempool_free(page, rrpc->page_pool);
382 bio_put(bio);
383
384 if (!bitmap_full(rblk->invalid_pages, nr_sec_per_blk)) {
385 pr_err("nvm: failed to garbage collect block\n");
386 return -EIO;
387 }
388
389 return 0;
390 }
391
392 static void rrpc_block_gc(struct work_struct *work)
393 {
394 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
395 ws_gc);
396 struct rrpc *rrpc = gcb->rrpc;
397 struct rrpc_block *rblk = gcb->rblk;
398 struct rrpc_lun *rlun = rblk->rlun;
399 struct nvm_dev *dev = rrpc->dev;
400
401 mempool_free(gcb, rrpc->gcb_pool);
402 pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
403
404 if (rrpc_move_valid_pages(rrpc, rblk))
405 goto put_back;
406
407 if (nvm_erase_blk(dev, rblk->parent))
408 goto put_back;
409
410 rrpc_put_blk(rrpc, rblk);
411
412 return;
413
414 put_back:
415 spin_lock(&rlun->lock);
416 list_add_tail(&rblk->prio, &rlun->prio_list);
417 spin_unlock(&rlun->lock);
418 }
419
420 /* the block with highest number of invalid pages, will be in the beginning
421 * of the list
422 */
423 static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
424 struct rrpc_block *rb)
425 {
426 if (ra->nr_invalid_pages == rb->nr_invalid_pages)
427 return ra;
428
429 return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
430 }
431
432 /* linearly find the block with highest number of invalid pages
433 * requires lun->lock
434 */
435 static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
436 {
437 struct list_head *prio_list = &rlun->prio_list;
438 struct rrpc_block *rblock, *max;
439
440 BUG_ON(list_empty(prio_list));
441
442 max = list_first_entry(prio_list, struct rrpc_block, prio);
443 list_for_each_entry(rblock, prio_list, prio)
444 max = rblock_max_invalid(max, rblock);
445
446 return max;
447 }
448
449 static void rrpc_lun_gc(struct work_struct *work)
450 {
451 struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
452 struct rrpc *rrpc = rlun->rrpc;
453 struct nvm_lun *lun = rlun->parent;
454 struct rrpc_block_gc *gcb;
455 unsigned int nr_blocks_need;
456
457 nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
458
459 if (nr_blocks_need < rrpc->nr_luns)
460 nr_blocks_need = rrpc->nr_luns;
461
462 spin_lock(&rlun->lock);
463 while (nr_blocks_need > lun->nr_free_blocks &&
464 !list_empty(&rlun->prio_list)) {
465 struct rrpc_block *rblock = block_prio_find_max(rlun);
466 struct nvm_block *block = rblock->parent;
467
468 if (!rblock->nr_invalid_pages)
469 break;
470
471 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
472 if (!gcb)
473 break;
474
475 list_del_init(&rblock->prio);
476
477 BUG_ON(!block_is_full(rrpc, rblock));
478
479 pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
480
481 gcb->rrpc = rrpc;
482 gcb->rblk = rblock;
483 INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
484
485 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
486
487 nr_blocks_need--;
488 }
489 spin_unlock(&rlun->lock);
490
491 /* TODO: Hint that request queue can be started again */
492 }
493
494 static void rrpc_gc_queue(struct work_struct *work)
495 {
496 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
497 ws_gc);
498 struct rrpc *rrpc = gcb->rrpc;
499 struct rrpc_block *rblk = gcb->rblk;
500 struct rrpc_lun *rlun = rblk->rlun;
501
502 spin_lock(&rlun->lock);
503 list_add_tail(&rblk->prio, &rlun->prio_list);
504 spin_unlock(&rlun->lock);
505
506 mempool_free(gcb, rrpc->gcb_pool);
507 pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
508 rblk->parent->id);
509 }
510
511 static const struct block_device_operations rrpc_fops = {
512 .owner = THIS_MODULE,
513 };
514
515 static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
516 {
517 unsigned int i;
518 struct rrpc_lun *rlun, *max_free;
519
520 if (!is_gc)
521 return get_next_lun(rrpc);
522
523 /* during GC, we don't care about RR, instead we want to make
524 * sure that we maintain evenness between the block luns.
525 */
526 max_free = &rrpc->luns[0];
527 /* prevent GC-ing lun from devouring pages of a lun with
528 * little free blocks. We don't take the lock as we only need an
529 * estimate.
530 */
531 rrpc_for_each_lun(rrpc, rlun, i) {
532 if (rlun->parent->nr_free_blocks >
533 max_free->parent->nr_free_blocks)
534 max_free = rlun;
535 }
536
537 return max_free;
538 }
539
540 static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
541 struct rrpc_block *rblk, u64 paddr)
542 {
543 struct rrpc_addr *gp;
544 struct rrpc_rev_addr *rev;
545
546 BUG_ON(laddr >= rrpc->nr_sects);
547
548 gp = &rrpc->trans_map[laddr];
549 spin_lock(&rrpc->rev_lock);
550 if (gp->rblk)
551 rrpc_page_invalidate(rrpc, gp);
552
553 gp->addr = paddr;
554 gp->rblk = rblk;
555
556 rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
557 rev->addr = laddr;
558 spin_unlock(&rrpc->rev_lock);
559
560 return gp;
561 }
562
563 static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
564 {
565 u64 addr = ADDR_EMPTY;
566
567 spin_lock(&rblk->lock);
568 if (block_is_full(rrpc, rblk))
569 goto out;
570
571 addr = block_to_addr(rrpc, rblk) + rblk->next_page;
572
573 rblk->next_page++;
574 out:
575 spin_unlock(&rblk->lock);
576 return addr;
577 }
578
579 /* Map logical address to a physical page. The mapping implements a round robin
580 * approach and allocates a page from the next lun available.
581 *
582 * Returns rrpc_addr with the physical address and block. Returns NULL if no
583 * blocks in the next rlun are available.
584 */
585 static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
586 int is_gc)
587 {
588 struct rrpc_lun *rlun;
589 struct rrpc_block *rblk, **cur_rblk;
590 struct nvm_lun *lun;
591 u64 paddr;
592 int gc_force = 0;
593
594 rlun = rrpc_get_lun_rr(rrpc, is_gc);
595 lun = rlun->parent;
596
597 if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
598 return NULL;
599
600 /*
601 * page allocation steps:
602 * 1. Try to allocate new page from current rblk
603 * 2a. If succeed, proceed to map it in and return
604 * 2b. If fail, first try to allocate a new block from media manger,
605 * and then retry step 1. Retry until the normal block pool is
606 * exhausted.
607 * 3. If exhausted, and garbage collector is requesting the block,
608 * go to the reserved block and retry step 1.
609 * In the case that this fails as well, or it is not GC
610 * requesting, report not able to retrieve a block and let the
611 * caller handle further processing.
612 */
613
614 spin_lock(&rlun->lock);
615 cur_rblk = &rlun->cur;
616 rblk = rlun->cur;
617 retry:
618 paddr = rrpc_alloc_addr(rrpc, rblk);
619
620 if (paddr != ADDR_EMPTY)
621 goto done;
622
623 if (!list_empty(&rlun->wblk_list)) {
624 new_blk:
625 rblk = list_first_entry(&rlun->wblk_list, struct rrpc_block,
626 prio);
627 rrpc_set_lun_cur(rlun, rblk, cur_rblk);
628 list_del(&rblk->prio);
629 goto retry;
630 }
631 spin_unlock(&rlun->lock);
632
633 rblk = rrpc_get_blk(rrpc, rlun, gc_force);
634 if (rblk) {
635 spin_lock(&rlun->lock);
636 list_add_tail(&rblk->prio, &rlun->wblk_list);
637 /*
638 * another thread might already have added a new block,
639 * Therefore, make sure that one is used, instead of the
640 * one just added.
641 */
642 goto new_blk;
643 }
644
645 if (unlikely(is_gc) && !gc_force) {
646 /* retry from emergency gc block */
647 cur_rblk = &rlun->gc_cur;
648 rblk = rlun->gc_cur;
649 gc_force = 1;
650 spin_lock(&rlun->lock);
651 goto retry;
652 }
653
654 pr_err("rrpc: failed to allocate new block\n");
655 return NULL;
656 done:
657 spin_unlock(&rlun->lock);
658 return rrpc_update_map(rrpc, laddr, rblk, paddr);
659 }
660
661 static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
662 {
663 struct rrpc_block_gc *gcb;
664
665 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
666 if (!gcb) {
667 pr_err("rrpc: unable to queue block for gc.");
668 return;
669 }
670
671 gcb->rrpc = rrpc;
672 gcb->rblk = rblk;
673
674 INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
675 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
676 }
677
678 static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
679 sector_t laddr, uint8_t npages)
680 {
681 struct rrpc_addr *p;
682 struct rrpc_block *rblk;
683 struct nvm_lun *lun;
684 int cmnt_size, i;
685
686 for (i = 0; i < npages; i++) {
687 p = &rrpc->trans_map[laddr + i];
688 rblk = p->rblk;
689 lun = rblk->parent->lun;
690
691 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
692 if (unlikely(cmnt_size == rrpc->dev->sec_per_blk))
693 rrpc_run_gc(rrpc, rblk);
694 }
695 }
696
697 static void rrpc_end_io(struct nvm_rq *rqd)
698 {
699 struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
700 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
701 uint8_t npages = rqd->nr_ppas;
702 sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
703
704 if (bio_data_dir(rqd->bio) == WRITE)
705 rrpc_end_io_write(rrpc, rrqd, laddr, npages);
706
707 bio_put(rqd->bio);
708
709 if (rrqd->flags & NVM_IOTYPE_GC)
710 return;
711
712 rrpc_unlock_rq(rrpc, rqd);
713
714 if (npages > 1)
715 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
716
717 mempool_free(rqd, rrpc->rq_pool);
718 }
719
720 static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
721 struct nvm_rq *rqd, unsigned long flags, int npages)
722 {
723 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
724 struct rrpc_addr *gp;
725 sector_t laddr = rrpc_get_laddr(bio);
726 int is_gc = flags & NVM_IOTYPE_GC;
727 int i;
728
729 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
730 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
731 return NVM_IO_REQUEUE;
732 }
733
734 for (i = 0; i < npages; i++) {
735 /* We assume that mapping occurs at 4KB granularity */
736 BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_sects));
737 gp = &rrpc->trans_map[laddr + i];
738
739 if (gp->rblk) {
740 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
741 gp->addr);
742 } else {
743 BUG_ON(is_gc);
744 rrpc_unlock_laddr(rrpc, r);
745 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
746 rqd->dma_ppa_list);
747 return NVM_IO_DONE;
748 }
749 }
750
751 rqd->opcode = NVM_OP_HBREAD;
752
753 return NVM_IO_OK;
754 }
755
756 static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
757 unsigned long flags)
758 {
759 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
760 int is_gc = flags & NVM_IOTYPE_GC;
761 sector_t laddr = rrpc_get_laddr(bio);
762 struct rrpc_addr *gp;
763
764 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
765 return NVM_IO_REQUEUE;
766
767 BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_sects));
768 gp = &rrpc->trans_map[laddr];
769
770 if (gp->rblk) {
771 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
772 } else {
773 BUG_ON(is_gc);
774 rrpc_unlock_rq(rrpc, rqd);
775 return NVM_IO_DONE;
776 }
777
778 rqd->opcode = NVM_OP_HBREAD;
779 rrqd->addr = gp;
780
781 return NVM_IO_OK;
782 }
783
784 static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
785 struct nvm_rq *rqd, unsigned long flags, int npages)
786 {
787 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
788 struct rrpc_addr *p;
789 sector_t laddr = rrpc_get_laddr(bio);
790 int is_gc = flags & NVM_IOTYPE_GC;
791 int i;
792
793 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
794 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
795 return NVM_IO_REQUEUE;
796 }
797
798 for (i = 0; i < npages; i++) {
799 /* We assume that mapping occurs at 4KB granularity */
800 p = rrpc_map_page(rrpc, laddr + i, is_gc);
801 if (!p) {
802 BUG_ON(is_gc);
803 rrpc_unlock_laddr(rrpc, r);
804 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
805 rqd->dma_ppa_list);
806 rrpc_gc_kick(rrpc);
807 return NVM_IO_REQUEUE;
808 }
809
810 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
811 p->addr);
812 }
813
814 rqd->opcode = NVM_OP_HBWRITE;
815
816 return NVM_IO_OK;
817 }
818
819 static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
820 struct nvm_rq *rqd, unsigned long flags)
821 {
822 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
823 struct rrpc_addr *p;
824 int is_gc = flags & NVM_IOTYPE_GC;
825 sector_t laddr = rrpc_get_laddr(bio);
826
827 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
828 return NVM_IO_REQUEUE;
829
830 p = rrpc_map_page(rrpc, laddr, is_gc);
831 if (!p) {
832 BUG_ON(is_gc);
833 rrpc_unlock_rq(rrpc, rqd);
834 rrpc_gc_kick(rrpc);
835 return NVM_IO_REQUEUE;
836 }
837
838 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
839 rqd->opcode = NVM_OP_HBWRITE;
840 rrqd->addr = p;
841
842 return NVM_IO_OK;
843 }
844
845 static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
846 struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
847 {
848 if (npages > 1) {
849 rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
850 &rqd->dma_ppa_list);
851 if (!rqd->ppa_list) {
852 pr_err("rrpc: not able to allocate ppa list\n");
853 return NVM_IO_ERR;
854 }
855
856 if (bio_op(bio) == REQ_OP_WRITE)
857 return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
858 npages);
859
860 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
861 }
862
863 if (bio_op(bio) == REQ_OP_WRITE)
864 return rrpc_write_rq(rrpc, bio, rqd, flags);
865
866 return rrpc_read_rq(rrpc, bio, rqd, flags);
867 }
868
869 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
870 struct nvm_rq *rqd, unsigned long flags)
871 {
872 int err;
873 struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
874 uint8_t nr_pages = rrpc_get_pages(bio);
875 int bio_size = bio_sectors(bio) << 9;
876
877 if (bio_size < rrpc->dev->sec_size)
878 return NVM_IO_ERR;
879 else if (bio_size > rrpc->dev->max_rq_size)
880 return NVM_IO_ERR;
881
882 err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
883 if (err)
884 return err;
885
886 bio_get(bio);
887 rqd->bio = bio;
888 rqd->ins = &rrpc->instance;
889 rqd->nr_ppas = nr_pages;
890 rrq->flags = flags;
891
892 err = nvm_submit_io(rrpc->dev, rqd);
893 if (err) {
894 pr_err("rrpc: I/O submission failed: %d\n", err);
895 bio_put(bio);
896 if (!(flags & NVM_IOTYPE_GC)) {
897 rrpc_unlock_rq(rrpc, rqd);
898 if (rqd->nr_ppas > 1)
899 nvm_dev_dma_free(rrpc->dev,
900 rqd->ppa_list, rqd->dma_ppa_list);
901 }
902 return NVM_IO_ERR;
903 }
904
905 return NVM_IO_OK;
906 }
907
908 static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
909 {
910 struct rrpc *rrpc = q->queuedata;
911 struct nvm_rq *rqd;
912 int err;
913
914 if (bio_op(bio) == REQ_OP_DISCARD) {
915 rrpc_discard(rrpc, bio);
916 return BLK_QC_T_NONE;
917 }
918
919 rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
920 if (!rqd) {
921 pr_err_ratelimited("rrpc: not able to queue bio.");
922 bio_io_error(bio);
923 return BLK_QC_T_NONE;
924 }
925 memset(rqd, 0, sizeof(struct nvm_rq));
926
927 err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
928 switch (err) {
929 case NVM_IO_OK:
930 return BLK_QC_T_NONE;
931 case NVM_IO_ERR:
932 bio_io_error(bio);
933 break;
934 case NVM_IO_DONE:
935 bio_endio(bio);
936 break;
937 case NVM_IO_REQUEUE:
938 spin_lock(&rrpc->bio_lock);
939 bio_list_add(&rrpc->requeue_bios, bio);
940 spin_unlock(&rrpc->bio_lock);
941 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
942 break;
943 }
944
945 mempool_free(rqd, rrpc->rq_pool);
946 return BLK_QC_T_NONE;
947 }
948
949 static void rrpc_requeue(struct work_struct *work)
950 {
951 struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
952 struct bio_list bios;
953 struct bio *bio;
954
955 bio_list_init(&bios);
956
957 spin_lock(&rrpc->bio_lock);
958 bio_list_merge(&bios, &rrpc->requeue_bios);
959 bio_list_init(&rrpc->requeue_bios);
960 spin_unlock(&rrpc->bio_lock);
961
962 while ((bio = bio_list_pop(&bios)))
963 rrpc_make_rq(rrpc->disk->queue, bio);
964 }
965
966 static void rrpc_gc_free(struct rrpc *rrpc)
967 {
968 if (rrpc->krqd_wq)
969 destroy_workqueue(rrpc->krqd_wq);
970
971 if (rrpc->kgc_wq)
972 destroy_workqueue(rrpc->kgc_wq);
973 }
974
975 static int rrpc_gc_init(struct rrpc *rrpc)
976 {
977 rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
978 rrpc->nr_luns);
979 if (!rrpc->krqd_wq)
980 return -ENOMEM;
981
982 rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
983 if (!rrpc->kgc_wq)
984 return -ENOMEM;
985
986 setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
987
988 return 0;
989 }
990
991 static void rrpc_map_free(struct rrpc *rrpc)
992 {
993 vfree(rrpc->rev_trans_map);
994 vfree(rrpc->trans_map);
995 }
996
997 static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
998 {
999 struct rrpc *rrpc = (struct rrpc *)private;
1000 struct nvm_dev *dev = rrpc->dev;
1001 struct rrpc_addr *addr = rrpc->trans_map + slba;
1002 struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
1003 u64 elba = slba + nlb;
1004 u64 i;
1005
1006 if (unlikely(elba > dev->total_secs)) {
1007 pr_err("nvm: L2P data from device is out of bounds!\n");
1008 return -EINVAL;
1009 }
1010
1011 for (i = 0; i < nlb; i++) {
1012 u64 pba = le64_to_cpu(entries[i]);
1013 unsigned int mod;
1014 /* LNVM treats address-spaces as silos, LBA and PBA are
1015 * equally large and zero-indexed.
1016 */
1017 if (unlikely(pba >= dev->total_secs && pba != U64_MAX)) {
1018 pr_err("nvm: L2P data entry is out of bounds!\n");
1019 return -EINVAL;
1020 }
1021
1022 /* Address zero is a special one. The first page on a disk is
1023 * protected. As it often holds internal device boot
1024 * information.
1025 */
1026 if (!pba)
1027 continue;
1028
1029 div_u64_rem(pba, rrpc->nr_sects, &mod);
1030
1031 addr[i].addr = pba;
1032 raddr[mod].addr = slba + i;
1033 }
1034
1035 return 0;
1036 }
1037
1038 static int rrpc_map_init(struct rrpc *rrpc)
1039 {
1040 struct nvm_dev *dev = rrpc->dev;
1041 sector_t i;
1042 int ret;
1043
1044 rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_sects);
1045 if (!rrpc->trans_map)
1046 return -ENOMEM;
1047
1048 rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
1049 * rrpc->nr_sects);
1050 if (!rrpc->rev_trans_map)
1051 return -ENOMEM;
1052
1053 for (i = 0; i < rrpc->nr_sects; i++) {
1054 struct rrpc_addr *p = &rrpc->trans_map[i];
1055 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
1056
1057 p->addr = ADDR_EMPTY;
1058 r->addr = ADDR_EMPTY;
1059 }
1060
1061 if (!dev->ops->get_l2p_tbl)
1062 return 0;
1063
1064 /* Bring up the mapping table from device */
1065 ret = dev->ops->get_l2p_tbl(dev, rrpc->soffset, rrpc->nr_sects,
1066 rrpc_l2p_update, rrpc);
1067 if (ret) {
1068 pr_err("nvm: rrpc: could not read L2P table.\n");
1069 return -EINVAL;
1070 }
1071
1072 return 0;
1073 }
1074
1075 /* Minimum pages needed within a lun */
1076 #define PAGE_POOL_SIZE 16
1077 #define ADDR_POOL_SIZE 64
1078
1079 static int rrpc_core_init(struct rrpc *rrpc)
1080 {
1081 down_write(&rrpc_lock);
1082 if (!rrpc_gcb_cache) {
1083 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
1084 sizeof(struct rrpc_block_gc), 0, 0, NULL);
1085 if (!rrpc_gcb_cache) {
1086 up_write(&rrpc_lock);
1087 return -ENOMEM;
1088 }
1089
1090 rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1091 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1092 0, 0, NULL);
1093 if (!rrpc_rq_cache) {
1094 kmem_cache_destroy(rrpc_gcb_cache);
1095 up_write(&rrpc_lock);
1096 return -ENOMEM;
1097 }
1098 }
1099 up_write(&rrpc_lock);
1100
1101 rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1102 if (!rrpc->page_pool)
1103 return -ENOMEM;
1104
1105 rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
1106 rrpc_gcb_cache);
1107 if (!rrpc->gcb_pool)
1108 return -ENOMEM;
1109
1110 rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1111 if (!rrpc->rq_pool)
1112 return -ENOMEM;
1113
1114 spin_lock_init(&rrpc->inflights.lock);
1115 INIT_LIST_HEAD(&rrpc->inflights.reqs);
1116
1117 return 0;
1118 }
1119
1120 static void rrpc_core_free(struct rrpc *rrpc)
1121 {
1122 mempool_destroy(rrpc->page_pool);
1123 mempool_destroy(rrpc->gcb_pool);
1124 mempool_destroy(rrpc->rq_pool);
1125 }
1126
1127 static void rrpc_luns_free(struct rrpc *rrpc)
1128 {
1129 struct nvm_dev *dev = rrpc->dev;
1130 struct nvm_lun *lun;
1131 struct rrpc_lun *rlun;
1132 int i;
1133
1134 if (!rrpc->luns)
1135 return;
1136
1137 for (i = 0; i < rrpc->nr_luns; i++) {
1138 rlun = &rrpc->luns[i];
1139 lun = rlun->parent;
1140 if (!lun)
1141 break;
1142 dev->mt->release_lun(dev, lun->id);
1143 vfree(rlun->blocks);
1144 }
1145
1146 kfree(rrpc->luns);
1147 }
1148
1149 static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
1150 {
1151 struct nvm_dev *dev = rrpc->dev;
1152 struct rrpc_lun *rlun;
1153 int i, j, ret = -EINVAL;
1154
1155 if (dev->sec_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1156 pr_err("rrpc: number of pages per block too high.");
1157 return -EINVAL;
1158 }
1159
1160 spin_lock_init(&rrpc->rev_lock);
1161
1162 rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1163 GFP_KERNEL);
1164 if (!rrpc->luns)
1165 return -ENOMEM;
1166
1167 /* 1:1 mapping */
1168 for (i = 0; i < rrpc->nr_luns; i++) {
1169 int lunid = lun_begin + i;
1170 struct nvm_lun *lun;
1171
1172 if (dev->mt->reserve_lun(dev, lunid)) {
1173 pr_err("rrpc: lun %u is already allocated\n", lunid);
1174 goto err;
1175 }
1176
1177 lun = dev->mt->get_lun(dev, lunid);
1178 if (!lun)
1179 goto err;
1180
1181 rlun = &rrpc->luns[i];
1182 rlun->parent = lun;
1183 rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1184 rrpc->dev->blks_per_lun);
1185 if (!rlun->blocks) {
1186 ret = -ENOMEM;
1187 goto err;
1188 }
1189
1190 for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
1191 struct rrpc_block *rblk = &rlun->blocks[j];
1192 struct nvm_block *blk = &lun->blocks[j];
1193
1194 rblk->parent = blk;
1195 rblk->rlun = rlun;
1196 INIT_LIST_HEAD(&rblk->prio);
1197 spin_lock_init(&rblk->lock);
1198 }
1199
1200 rlun->rrpc = rrpc;
1201 INIT_LIST_HEAD(&rlun->prio_list);
1202 INIT_LIST_HEAD(&rlun->wblk_list);
1203
1204 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1205 spin_lock_init(&rlun->lock);
1206 }
1207
1208 return 0;
1209 err:
1210 return ret;
1211 }
1212
1213 /* returns 0 on success and stores the beginning address in *begin */
1214 static int rrpc_area_init(struct rrpc *rrpc, sector_t *begin)
1215 {
1216 struct nvm_dev *dev = rrpc->dev;
1217 struct nvmm_type *mt = dev->mt;
1218 sector_t size = rrpc->nr_sects * dev->sec_size;
1219 int ret;
1220
1221 size >>= 9;
1222
1223 ret = mt->get_area(dev, begin, size);
1224 if (!ret)
1225 *begin >>= (ilog2(dev->sec_size) - 9);
1226
1227 return ret;
1228 }
1229
1230 static void rrpc_area_free(struct rrpc *rrpc)
1231 {
1232 struct nvm_dev *dev = rrpc->dev;
1233 struct nvmm_type *mt = dev->mt;
1234 sector_t begin = rrpc->soffset << (ilog2(dev->sec_size) - 9);
1235
1236 mt->put_area(dev, begin);
1237 }
1238
1239 static void rrpc_free(struct rrpc *rrpc)
1240 {
1241 rrpc_gc_free(rrpc);
1242 rrpc_map_free(rrpc);
1243 rrpc_core_free(rrpc);
1244 rrpc_luns_free(rrpc);
1245 rrpc_area_free(rrpc);
1246
1247 kfree(rrpc);
1248 }
1249
1250 static void rrpc_exit(void *private)
1251 {
1252 struct rrpc *rrpc = private;
1253
1254 del_timer(&rrpc->gc_timer);
1255
1256 flush_workqueue(rrpc->krqd_wq);
1257 flush_workqueue(rrpc->kgc_wq);
1258
1259 rrpc_free(rrpc);
1260 }
1261
1262 static sector_t rrpc_capacity(void *private)
1263 {
1264 struct rrpc *rrpc = private;
1265 struct nvm_dev *dev = rrpc->dev;
1266 sector_t reserved, provisioned;
1267
1268 /* cur, gc, and two emergency blocks for each lun */
1269 reserved = rrpc->nr_luns * dev->sec_per_blk * 4;
1270 provisioned = rrpc->nr_sects - reserved;
1271
1272 if (reserved > rrpc->nr_sects) {
1273 pr_err("rrpc: not enough space available to expose storage.\n");
1274 return 0;
1275 }
1276
1277 sector_div(provisioned, 10);
1278 return provisioned * 9 * NR_PHY_IN_LOG;
1279 }
1280
1281 /*
1282 * Looks up the logical address from reverse trans map and check if its valid by
1283 * comparing the logical to physical address with the physical address.
1284 * Returns 0 on free, otherwise 1 if in use
1285 */
1286 static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1287 {
1288 struct nvm_dev *dev = rrpc->dev;
1289 int offset;
1290 struct rrpc_addr *laddr;
1291 u64 bpaddr, paddr, pladdr;
1292
1293 bpaddr = block_to_rel_addr(rrpc, rblk);
1294 for (offset = 0; offset < dev->sec_per_blk; offset++) {
1295 paddr = bpaddr + offset;
1296
1297 pladdr = rrpc->rev_trans_map[paddr].addr;
1298 if (pladdr == ADDR_EMPTY)
1299 continue;
1300
1301 laddr = &rrpc->trans_map[pladdr];
1302
1303 if (paddr == laddr->addr) {
1304 laddr->rblk = rblk;
1305 } else {
1306 set_bit(offset, rblk->invalid_pages);
1307 rblk->nr_invalid_pages++;
1308 }
1309 }
1310 }
1311
1312 static int rrpc_blocks_init(struct rrpc *rrpc)
1313 {
1314 struct rrpc_lun *rlun;
1315 struct rrpc_block *rblk;
1316 int lun_iter, blk_iter;
1317
1318 for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1319 rlun = &rrpc->luns[lun_iter];
1320
1321 for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
1322 blk_iter++) {
1323 rblk = &rlun->blocks[blk_iter];
1324 rrpc_block_map_update(rrpc, rblk);
1325 }
1326 }
1327
1328 return 0;
1329 }
1330
1331 static int rrpc_luns_configure(struct rrpc *rrpc)
1332 {
1333 struct rrpc_lun *rlun;
1334 struct rrpc_block *rblk;
1335 int i;
1336
1337 for (i = 0; i < rrpc->nr_luns; i++) {
1338 rlun = &rrpc->luns[i];
1339
1340 rblk = rrpc_get_blk(rrpc, rlun, 0);
1341 if (!rblk)
1342 goto err;
1343 rrpc_set_lun_cur(rlun, rblk, &rlun->cur);
1344
1345 /* Emergency gc block */
1346 rblk = rrpc_get_blk(rrpc, rlun, 1);
1347 if (!rblk)
1348 goto err;
1349 rrpc_set_lun_cur(rlun, rblk, &rlun->gc_cur);
1350 }
1351
1352 return 0;
1353 err:
1354 rrpc_put_blks(rrpc);
1355 return -EINVAL;
1356 }
1357
1358 static struct nvm_tgt_type tt_rrpc;
1359
1360 static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
1361 int lun_begin, int lun_end)
1362 {
1363 struct request_queue *bqueue = dev->q;
1364 struct request_queue *tqueue = tdisk->queue;
1365 struct rrpc *rrpc;
1366 sector_t soffset;
1367 int ret;
1368
1369 if (!(dev->identity.dom & NVM_RSP_L2P)) {
1370 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1371 dev->identity.dom);
1372 return ERR_PTR(-EINVAL);
1373 }
1374
1375 rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1376 if (!rrpc)
1377 return ERR_PTR(-ENOMEM);
1378
1379 rrpc->instance.tt = &tt_rrpc;
1380 rrpc->dev = dev;
1381 rrpc->disk = tdisk;
1382
1383 bio_list_init(&rrpc->requeue_bios);
1384 spin_lock_init(&rrpc->bio_lock);
1385 INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1386
1387 rrpc->nr_luns = lun_end - lun_begin + 1;
1388 rrpc->total_blocks = (unsigned long)dev->blks_per_lun * rrpc->nr_luns;
1389 rrpc->nr_sects = (unsigned long long)dev->sec_per_lun * rrpc->nr_luns;
1390
1391 /* simple round-robin strategy */
1392 atomic_set(&rrpc->next_lun, -1);
1393
1394 ret = rrpc_area_init(rrpc, &soffset);
1395 if (ret < 0) {
1396 pr_err("nvm: rrpc: could not initialize area\n");
1397 return ERR_PTR(ret);
1398 }
1399 rrpc->soffset = soffset;
1400
1401 ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
1402 if (ret) {
1403 pr_err("nvm: rrpc: could not initialize luns\n");
1404 goto err;
1405 }
1406
1407 rrpc->poffset = dev->sec_per_lun * lun_begin;
1408 rrpc->lun_offset = lun_begin;
1409
1410 ret = rrpc_core_init(rrpc);
1411 if (ret) {
1412 pr_err("nvm: rrpc: could not initialize core\n");
1413 goto err;
1414 }
1415
1416 ret = rrpc_map_init(rrpc);
1417 if (ret) {
1418 pr_err("nvm: rrpc: could not initialize maps\n");
1419 goto err;
1420 }
1421
1422 ret = rrpc_blocks_init(rrpc);
1423 if (ret) {
1424 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1425 goto err;
1426 }
1427
1428 ret = rrpc_luns_configure(rrpc);
1429 if (ret) {
1430 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1431 goto err;
1432 }
1433
1434 ret = rrpc_gc_init(rrpc);
1435 if (ret) {
1436 pr_err("nvm: rrpc: could not initialize gc\n");
1437 goto err;
1438 }
1439
1440 /* inherit the size from the underlying device */
1441 blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1442 blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1443
1444 pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1445 rrpc->nr_luns, (unsigned long long)rrpc->nr_sects);
1446
1447 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1448
1449 return rrpc;
1450 err:
1451 rrpc_free(rrpc);
1452 return ERR_PTR(ret);
1453 }
1454
1455 /* round robin, page-based FTL, and cost-based GC */
1456 static struct nvm_tgt_type tt_rrpc = {
1457 .name = "rrpc",
1458 .version = {1, 0, 0},
1459
1460 .make_rq = rrpc_make_rq,
1461 .capacity = rrpc_capacity,
1462 .end_io = rrpc_end_io,
1463
1464 .init = rrpc_init,
1465 .exit = rrpc_exit,
1466 };
1467
1468 static int __init rrpc_module_init(void)
1469 {
1470 return nvm_register_tgt_type(&tt_rrpc);
1471 }
1472
1473 static void rrpc_module_exit(void)
1474 {
1475 nvm_unregister_tgt_type(&tt_rrpc);
1476 }
1477
1478 module_init(rrpc_module_init);
1479 module_exit(rrpc_module_exit);
1480 MODULE_LICENSE("GPL v2");
1481 MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");
This page took 0.118987 seconds and 6 git commands to generate.