lightnvm: remove _unlocked variant of [get/put]_blk
[deliverable/linux.git] / drivers / lightnvm / rrpc.c
1 /*
2 * Copyright (C) 2015 IT University of Copenhagen
3 * Initial release: Matias Bjorling <m@bjorling.me>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License version
7 * 2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15 */
16
17 #include "rrpc.h"
18
19 static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20 static DECLARE_RWSEM(rrpc_lock);
21
22 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23 struct nvm_rq *rqd, unsigned long flags);
24
25 #define rrpc_for_each_lun(rrpc, rlun, i) \
26 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27 (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28
29 static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30 {
31 struct rrpc_block *rblk = a->rblk;
32 unsigned int pg_offset;
33
34 lockdep_assert_held(&rrpc->rev_lock);
35
36 if (a->addr == ADDR_EMPTY || !rblk)
37 return;
38
39 spin_lock(&rblk->lock);
40
41 div_u64_rem(a->addr, rrpc->dev->sec_per_blk, &pg_offset);
42 WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
43 rblk->nr_invalid_pages++;
44
45 spin_unlock(&rblk->lock);
46
47 rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
48 }
49
50 static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
51 unsigned int len)
52 {
53 sector_t i;
54
55 spin_lock(&rrpc->rev_lock);
56 for (i = slba; i < slba + len; i++) {
57 struct rrpc_addr *gp = &rrpc->trans_map[i];
58
59 rrpc_page_invalidate(rrpc, gp);
60 gp->rblk = NULL;
61 }
62 spin_unlock(&rrpc->rev_lock);
63 }
64
65 static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
66 sector_t laddr, unsigned int pages)
67 {
68 struct nvm_rq *rqd;
69 struct rrpc_inflight_rq *inf;
70
71 rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
72 if (!rqd)
73 return ERR_PTR(-ENOMEM);
74
75 inf = rrpc_get_inflight_rq(rqd);
76 if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
77 mempool_free(rqd, rrpc->rq_pool);
78 return NULL;
79 }
80
81 return rqd;
82 }
83
84 static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
85 {
86 struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
87
88 rrpc_unlock_laddr(rrpc, inf);
89
90 mempool_free(rqd, rrpc->rq_pool);
91 }
92
93 static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
94 {
95 sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
96 sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
97 struct nvm_rq *rqd;
98
99 while (1) {
100 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
101 if (rqd)
102 break;
103
104 schedule();
105 }
106
107 if (IS_ERR(rqd)) {
108 pr_err("rrpc: unable to acquire inflight IO\n");
109 bio_io_error(bio);
110 return;
111 }
112
113 rrpc_invalidate_range(rrpc, slba, len);
114 rrpc_inflight_laddr_release(rrpc, rqd);
115 }
116
117 static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
118 {
119 return (rblk->next_page == rrpc->dev->sec_per_blk);
120 }
121
122 /* Calculate relative addr for the given block, considering instantiated LUNs */
123 static u64 block_to_rel_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
124 {
125 struct nvm_block *blk = rblk->parent;
126 int lun_blk = blk->id % (rrpc->dev->blks_per_lun * rrpc->nr_luns);
127
128 return lun_blk * rrpc->dev->sec_per_blk;
129 }
130
131 /* Calculate global addr for the given block */
132 static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
133 {
134 struct nvm_block *blk = rblk->parent;
135
136 return blk->id * rrpc->dev->sec_per_blk;
137 }
138
139 static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
140 struct ppa_addr r)
141 {
142 struct ppa_addr l;
143 int secs, pgs, blks, luns;
144 sector_t ppa = r.ppa;
145
146 l.ppa = 0;
147
148 div_u64_rem(ppa, dev->sec_per_pg, &secs);
149 l.g.sec = secs;
150
151 sector_div(ppa, dev->sec_per_pg);
152 div_u64_rem(ppa, dev->pgs_per_blk, &pgs);
153 l.g.pg = pgs;
154
155 sector_div(ppa, dev->pgs_per_blk);
156 div_u64_rem(ppa, dev->blks_per_lun, &blks);
157 l.g.blk = blks;
158
159 sector_div(ppa, dev->blks_per_lun);
160 div_u64_rem(ppa, dev->luns_per_chnl, &luns);
161 l.g.lun = luns;
162
163 sector_div(ppa, dev->luns_per_chnl);
164 l.g.ch = ppa;
165
166 return l;
167 }
168
169 static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
170 {
171 struct ppa_addr paddr;
172
173 paddr.ppa = addr;
174 return linear_to_generic_addr(dev, paddr);
175 }
176
177 /* requires lun->lock taken */
178 static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
179 {
180 struct rrpc *rrpc = rlun->rrpc;
181
182 BUG_ON(!rblk);
183
184 if (rlun->cur) {
185 spin_lock(&rlun->cur->lock);
186 WARN_ON(!block_is_full(rrpc, rlun->cur));
187 spin_unlock(&rlun->cur->lock);
188 }
189 rlun->cur = rblk;
190 }
191
192 static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
193 unsigned long flags)
194 {
195 struct nvm_block *blk;
196 struct rrpc_block *rblk;
197
198 blk = nvm_get_blk(rrpc->dev, rlun->parent, flags);
199 if (!blk) {
200 pr_err("nvm: rrpc: cannot get new block from media manager\n");
201 return NULL;
202 }
203
204 rblk = rrpc_get_rblk(rlun, blk->id);
205 blk->priv = rblk;
206 bitmap_zero(rblk->invalid_pages, rrpc->dev->sec_per_blk);
207 rblk->next_page = 0;
208 rblk->nr_invalid_pages = 0;
209 atomic_set(&rblk->data_cmnt_size, 0);
210
211 return rblk;
212 }
213
214 static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
215 {
216 nvm_put_blk(rrpc->dev, rblk->parent);
217 }
218
219 static void rrpc_put_blks(struct rrpc *rrpc)
220 {
221 struct rrpc_lun *rlun;
222 int i;
223
224 for (i = 0; i < rrpc->nr_luns; i++) {
225 rlun = &rrpc->luns[i];
226 if (rlun->cur)
227 rrpc_put_blk(rrpc, rlun->cur);
228 if (rlun->gc_cur)
229 rrpc_put_blk(rrpc, rlun->gc_cur);
230 }
231 }
232
233 static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
234 {
235 int next = atomic_inc_return(&rrpc->next_lun);
236
237 return &rrpc->luns[next % rrpc->nr_luns];
238 }
239
240 static void rrpc_gc_kick(struct rrpc *rrpc)
241 {
242 struct rrpc_lun *rlun;
243 unsigned int i;
244
245 for (i = 0; i < rrpc->nr_luns; i++) {
246 rlun = &rrpc->luns[i];
247 queue_work(rrpc->krqd_wq, &rlun->ws_gc);
248 }
249 }
250
251 /*
252 * timed GC every interval.
253 */
254 static void rrpc_gc_timer(unsigned long data)
255 {
256 struct rrpc *rrpc = (struct rrpc *)data;
257
258 rrpc_gc_kick(rrpc);
259 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
260 }
261
262 static void rrpc_end_sync_bio(struct bio *bio)
263 {
264 struct completion *waiting = bio->bi_private;
265
266 if (bio->bi_error)
267 pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
268
269 complete(waiting);
270 }
271
272 /*
273 * rrpc_move_valid_pages -- migrate live data off the block
274 * @rrpc: the 'rrpc' structure
275 * @block: the block from which to migrate live pages
276 *
277 * Description:
278 * GC algorithms may call this function to migrate remaining live
279 * pages off the block prior to erasing it. This function blocks
280 * further execution until the operation is complete.
281 */
282 static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
283 {
284 struct request_queue *q = rrpc->dev->q;
285 struct rrpc_rev_addr *rev;
286 struct nvm_rq *rqd;
287 struct bio *bio;
288 struct page *page;
289 int slot;
290 int nr_sec_per_blk = rrpc->dev->sec_per_blk;
291 u64 phys_addr;
292 DECLARE_COMPLETION_ONSTACK(wait);
293
294 if (bitmap_full(rblk->invalid_pages, nr_sec_per_blk))
295 return 0;
296
297 bio = bio_alloc(GFP_NOIO, 1);
298 if (!bio) {
299 pr_err("nvm: could not alloc bio to gc\n");
300 return -ENOMEM;
301 }
302
303 page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
304 if (!page) {
305 bio_put(bio);
306 return -ENOMEM;
307 }
308
309 while ((slot = find_first_zero_bit(rblk->invalid_pages,
310 nr_sec_per_blk)) < nr_sec_per_blk) {
311
312 /* Lock laddr */
313 phys_addr = rblk->parent->id * nr_sec_per_blk + slot;
314
315 try:
316 spin_lock(&rrpc->rev_lock);
317 /* Get logical address from physical to logical table */
318 rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
319 /* already updated by previous regular write */
320 if (rev->addr == ADDR_EMPTY) {
321 spin_unlock(&rrpc->rev_lock);
322 continue;
323 }
324
325 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
326 if (IS_ERR_OR_NULL(rqd)) {
327 spin_unlock(&rrpc->rev_lock);
328 schedule();
329 goto try;
330 }
331
332 spin_unlock(&rrpc->rev_lock);
333
334 /* Perform read to do GC */
335 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
336 bio_set_op_attrs(bio, REQ_OP_READ, 0);
337 bio->bi_private = &wait;
338 bio->bi_end_io = rrpc_end_sync_bio;
339
340 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
341 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
342
343 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
344 pr_err("rrpc: gc read failed.\n");
345 rrpc_inflight_laddr_release(rrpc, rqd);
346 goto finished;
347 }
348 wait_for_completion_io(&wait);
349 if (bio->bi_error) {
350 rrpc_inflight_laddr_release(rrpc, rqd);
351 goto finished;
352 }
353
354 bio_reset(bio);
355 reinit_completion(&wait);
356
357 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
358 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
359 bio->bi_private = &wait;
360 bio->bi_end_io = rrpc_end_sync_bio;
361
362 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
363
364 /* turn the command around and write the data back to a new
365 * address
366 */
367 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
368 pr_err("rrpc: gc write failed.\n");
369 rrpc_inflight_laddr_release(rrpc, rqd);
370 goto finished;
371 }
372 wait_for_completion_io(&wait);
373
374 rrpc_inflight_laddr_release(rrpc, rqd);
375 if (bio->bi_error)
376 goto finished;
377
378 bio_reset(bio);
379 }
380
381 finished:
382 mempool_free(page, rrpc->page_pool);
383 bio_put(bio);
384
385 if (!bitmap_full(rblk->invalid_pages, nr_sec_per_blk)) {
386 pr_err("nvm: failed to garbage collect block\n");
387 return -EIO;
388 }
389
390 return 0;
391 }
392
393 static void rrpc_block_gc(struct work_struct *work)
394 {
395 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
396 ws_gc);
397 struct rrpc *rrpc = gcb->rrpc;
398 struct rrpc_block *rblk = gcb->rblk;
399 struct rrpc_lun *rlun = rblk->rlun;
400 struct nvm_dev *dev = rrpc->dev;
401
402 mempool_free(gcb, rrpc->gcb_pool);
403 pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
404
405 if (rrpc_move_valid_pages(rrpc, rblk))
406 goto put_back;
407
408 if (nvm_erase_blk(dev, rblk->parent))
409 goto put_back;
410
411 rrpc_put_blk(rrpc, rblk);
412
413 return;
414
415 put_back:
416 spin_lock(&rlun->lock);
417 list_add_tail(&rblk->prio, &rlun->prio_list);
418 spin_unlock(&rlun->lock);
419 }
420
421 /* the block with highest number of invalid pages, will be in the beginning
422 * of the list
423 */
424 static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
425 struct rrpc_block *rb)
426 {
427 if (ra->nr_invalid_pages == rb->nr_invalid_pages)
428 return ra;
429
430 return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
431 }
432
433 /* linearly find the block with highest number of invalid pages
434 * requires lun->lock
435 */
436 static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
437 {
438 struct list_head *prio_list = &rlun->prio_list;
439 struct rrpc_block *rblock, *max;
440
441 BUG_ON(list_empty(prio_list));
442
443 max = list_first_entry(prio_list, struct rrpc_block, prio);
444 list_for_each_entry(rblock, prio_list, prio)
445 max = rblock_max_invalid(max, rblock);
446
447 return max;
448 }
449
450 static void rrpc_lun_gc(struct work_struct *work)
451 {
452 struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
453 struct rrpc *rrpc = rlun->rrpc;
454 struct nvm_lun *lun = rlun->parent;
455 struct rrpc_block_gc *gcb;
456 unsigned int nr_blocks_need;
457
458 nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
459
460 if (nr_blocks_need < rrpc->nr_luns)
461 nr_blocks_need = rrpc->nr_luns;
462
463 spin_lock(&rlun->lock);
464 while (nr_blocks_need > lun->nr_free_blocks &&
465 !list_empty(&rlun->prio_list)) {
466 struct rrpc_block *rblock = block_prio_find_max(rlun);
467 struct nvm_block *block = rblock->parent;
468
469 if (!rblock->nr_invalid_pages)
470 break;
471
472 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
473 if (!gcb)
474 break;
475
476 list_del_init(&rblock->prio);
477
478 BUG_ON(!block_is_full(rrpc, rblock));
479
480 pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
481
482 gcb->rrpc = rrpc;
483 gcb->rblk = rblock;
484 INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
485
486 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
487
488 nr_blocks_need--;
489 }
490 spin_unlock(&rlun->lock);
491
492 /* TODO: Hint that request queue can be started again */
493 }
494
495 static void rrpc_gc_queue(struct work_struct *work)
496 {
497 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
498 ws_gc);
499 struct rrpc *rrpc = gcb->rrpc;
500 struct rrpc_block *rblk = gcb->rblk;
501 struct rrpc_lun *rlun = rblk->rlun;
502
503 spin_lock(&rlun->lock);
504 list_add_tail(&rblk->prio, &rlun->prio_list);
505 spin_unlock(&rlun->lock);
506
507 mempool_free(gcb, rrpc->gcb_pool);
508 pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
509 rblk->parent->id);
510 }
511
512 static const struct block_device_operations rrpc_fops = {
513 .owner = THIS_MODULE,
514 };
515
516 static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
517 {
518 unsigned int i;
519 struct rrpc_lun *rlun, *max_free;
520
521 if (!is_gc)
522 return get_next_lun(rrpc);
523
524 /* during GC, we don't care about RR, instead we want to make
525 * sure that we maintain evenness between the block luns.
526 */
527 max_free = &rrpc->luns[0];
528 /* prevent GC-ing lun from devouring pages of a lun with
529 * little free blocks. We don't take the lock as we only need an
530 * estimate.
531 */
532 rrpc_for_each_lun(rrpc, rlun, i) {
533 if (rlun->parent->nr_free_blocks >
534 max_free->parent->nr_free_blocks)
535 max_free = rlun;
536 }
537
538 return max_free;
539 }
540
541 static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
542 struct rrpc_block *rblk, u64 paddr)
543 {
544 struct rrpc_addr *gp;
545 struct rrpc_rev_addr *rev;
546
547 BUG_ON(laddr >= rrpc->nr_sects);
548
549 gp = &rrpc->trans_map[laddr];
550 spin_lock(&rrpc->rev_lock);
551 if (gp->rblk)
552 rrpc_page_invalidate(rrpc, gp);
553
554 gp->addr = paddr;
555 gp->rblk = rblk;
556
557 rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
558 rev->addr = laddr;
559 spin_unlock(&rrpc->rev_lock);
560
561 return gp;
562 }
563
564 static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
565 {
566 u64 addr = ADDR_EMPTY;
567
568 spin_lock(&rblk->lock);
569 if (block_is_full(rrpc, rblk))
570 goto out;
571
572 addr = block_to_addr(rrpc, rblk) + rblk->next_page;
573
574 rblk->next_page++;
575 out:
576 spin_unlock(&rblk->lock);
577 return addr;
578 }
579
580 /* Simple round-robin Logical to physical address translation.
581 *
582 * Retrieve the mapping using the active append point. Then update the ap for
583 * the next write to the disk.
584 *
585 * Returns rrpc_addr with the physical address and block. Remember to return to
586 * rrpc->addr_cache when request is finished.
587 */
588 static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
589 int is_gc)
590 {
591 struct rrpc_lun *rlun;
592 struct rrpc_block *rblk;
593 struct nvm_lun *lun;
594 u64 paddr;
595
596 rlun = rrpc_get_lun_rr(rrpc, is_gc);
597 lun = rlun->parent;
598
599 if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
600 return NULL;
601
602 spin_lock(&rlun->lock);
603
604 rblk = rlun->cur;
605 retry:
606 paddr = rrpc_alloc_addr(rrpc, rblk);
607
608 if (paddr == ADDR_EMPTY) {
609 rblk = rrpc_get_blk(rrpc, rlun, 0);
610 if (rblk) {
611 rrpc_set_lun_cur(rlun, rblk);
612 goto retry;
613 }
614
615 if (is_gc) {
616 /* retry from emergency gc block */
617 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
618 if (paddr == ADDR_EMPTY) {
619 rblk = rrpc_get_blk(rrpc, rlun, 1);
620 if (!rblk) {
621 pr_err("rrpc: no more blocks");
622 goto err;
623 }
624
625 rlun->gc_cur = rblk;
626 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
627 }
628 rblk = rlun->gc_cur;
629 }
630 }
631
632 spin_unlock(&rlun->lock);
633 return rrpc_update_map(rrpc, laddr, rblk, paddr);
634 err:
635 spin_unlock(&rlun->lock);
636 return NULL;
637 }
638
639 static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
640 {
641 struct rrpc_block_gc *gcb;
642
643 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
644 if (!gcb) {
645 pr_err("rrpc: unable to queue block for gc.");
646 return;
647 }
648
649 gcb->rrpc = rrpc;
650 gcb->rblk = rblk;
651
652 INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
653 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
654 }
655
656 static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
657 sector_t laddr, uint8_t npages)
658 {
659 struct rrpc_addr *p;
660 struct rrpc_block *rblk;
661 struct nvm_lun *lun;
662 int cmnt_size, i;
663
664 for (i = 0; i < npages; i++) {
665 p = &rrpc->trans_map[laddr + i];
666 rblk = p->rblk;
667 lun = rblk->parent->lun;
668
669 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
670 if (unlikely(cmnt_size == rrpc->dev->sec_per_blk))
671 rrpc_run_gc(rrpc, rblk);
672 }
673 }
674
675 static void rrpc_end_io(struct nvm_rq *rqd)
676 {
677 struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
678 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
679 uint8_t npages = rqd->nr_ppas;
680 sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
681
682 if (bio_data_dir(rqd->bio) == WRITE)
683 rrpc_end_io_write(rrpc, rrqd, laddr, npages);
684
685 bio_put(rqd->bio);
686
687 if (rrqd->flags & NVM_IOTYPE_GC)
688 return;
689
690 rrpc_unlock_rq(rrpc, rqd);
691
692 if (npages > 1)
693 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
694
695 mempool_free(rqd, rrpc->rq_pool);
696 }
697
698 static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
699 struct nvm_rq *rqd, unsigned long flags, int npages)
700 {
701 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
702 struct rrpc_addr *gp;
703 sector_t laddr = rrpc_get_laddr(bio);
704 int is_gc = flags & NVM_IOTYPE_GC;
705 int i;
706
707 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
708 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
709 return NVM_IO_REQUEUE;
710 }
711
712 for (i = 0; i < npages; i++) {
713 /* We assume that mapping occurs at 4KB granularity */
714 BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_sects));
715 gp = &rrpc->trans_map[laddr + i];
716
717 if (gp->rblk) {
718 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
719 gp->addr);
720 } else {
721 BUG_ON(is_gc);
722 rrpc_unlock_laddr(rrpc, r);
723 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
724 rqd->dma_ppa_list);
725 return NVM_IO_DONE;
726 }
727 }
728
729 rqd->opcode = NVM_OP_HBREAD;
730
731 return NVM_IO_OK;
732 }
733
734 static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
735 unsigned long flags)
736 {
737 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
738 int is_gc = flags & NVM_IOTYPE_GC;
739 sector_t laddr = rrpc_get_laddr(bio);
740 struct rrpc_addr *gp;
741
742 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
743 return NVM_IO_REQUEUE;
744
745 BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_sects));
746 gp = &rrpc->trans_map[laddr];
747
748 if (gp->rblk) {
749 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
750 } else {
751 BUG_ON(is_gc);
752 rrpc_unlock_rq(rrpc, rqd);
753 return NVM_IO_DONE;
754 }
755
756 rqd->opcode = NVM_OP_HBREAD;
757 rrqd->addr = gp;
758
759 return NVM_IO_OK;
760 }
761
762 static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
763 struct nvm_rq *rqd, unsigned long flags, int npages)
764 {
765 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
766 struct rrpc_addr *p;
767 sector_t laddr = rrpc_get_laddr(bio);
768 int is_gc = flags & NVM_IOTYPE_GC;
769 int i;
770
771 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
772 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
773 return NVM_IO_REQUEUE;
774 }
775
776 for (i = 0; i < npages; i++) {
777 /* We assume that mapping occurs at 4KB granularity */
778 p = rrpc_map_page(rrpc, laddr + i, is_gc);
779 if (!p) {
780 BUG_ON(is_gc);
781 rrpc_unlock_laddr(rrpc, r);
782 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
783 rqd->dma_ppa_list);
784 rrpc_gc_kick(rrpc);
785 return NVM_IO_REQUEUE;
786 }
787
788 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
789 p->addr);
790 }
791
792 rqd->opcode = NVM_OP_HBWRITE;
793
794 return NVM_IO_OK;
795 }
796
797 static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
798 struct nvm_rq *rqd, unsigned long flags)
799 {
800 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
801 struct rrpc_addr *p;
802 int is_gc = flags & NVM_IOTYPE_GC;
803 sector_t laddr = rrpc_get_laddr(bio);
804
805 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
806 return NVM_IO_REQUEUE;
807
808 p = rrpc_map_page(rrpc, laddr, is_gc);
809 if (!p) {
810 BUG_ON(is_gc);
811 rrpc_unlock_rq(rrpc, rqd);
812 rrpc_gc_kick(rrpc);
813 return NVM_IO_REQUEUE;
814 }
815
816 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
817 rqd->opcode = NVM_OP_HBWRITE;
818 rrqd->addr = p;
819
820 return NVM_IO_OK;
821 }
822
823 static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
824 struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
825 {
826 if (npages > 1) {
827 rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
828 &rqd->dma_ppa_list);
829 if (!rqd->ppa_list) {
830 pr_err("rrpc: not able to allocate ppa list\n");
831 return NVM_IO_ERR;
832 }
833
834 if (bio_rw(bio) == WRITE)
835 return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
836 npages);
837
838 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
839 }
840
841 if (bio_rw(bio) == WRITE)
842 return rrpc_write_rq(rrpc, bio, rqd, flags);
843
844 return rrpc_read_rq(rrpc, bio, rqd, flags);
845 }
846
847 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
848 struct nvm_rq *rqd, unsigned long flags)
849 {
850 int err;
851 struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
852 uint8_t nr_pages = rrpc_get_pages(bio);
853 int bio_size = bio_sectors(bio) << 9;
854
855 if (bio_size < rrpc->dev->sec_size)
856 return NVM_IO_ERR;
857 else if (bio_size > rrpc->dev->max_rq_size)
858 return NVM_IO_ERR;
859
860 err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
861 if (err)
862 return err;
863
864 bio_get(bio);
865 rqd->bio = bio;
866 rqd->ins = &rrpc->instance;
867 rqd->nr_ppas = nr_pages;
868 rrq->flags = flags;
869
870 err = nvm_submit_io(rrpc->dev, rqd);
871 if (err) {
872 pr_err("rrpc: I/O submission failed: %d\n", err);
873 bio_put(bio);
874 if (!(flags & NVM_IOTYPE_GC)) {
875 rrpc_unlock_rq(rrpc, rqd);
876 if (rqd->nr_ppas > 1)
877 nvm_dev_dma_free(rrpc->dev,
878 rqd->ppa_list, rqd->dma_ppa_list);
879 }
880 return NVM_IO_ERR;
881 }
882
883 return NVM_IO_OK;
884 }
885
886 static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
887 {
888 struct rrpc *rrpc = q->queuedata;
889 struct nvm_rq *rqd;
890 int err;
891
892 if (bio_op(bio) == REQ_OP_DISCARD) {
893 rrpc_discard(rrpc, bio);
894 return BLK_QC_T_NONE;
895 }
896
897 rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
898 if (!rqd) {
899 pr_err_ratelimited("rrpc: not able to queue bio.");
900 bio_io_error(bio);
901 return BLK_QC_T_NONE;
902 }
903 memset(rqd, 0, sizeof(struct nvm_rq));
904
905 err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
906 switch (err) {
907 case NVM_IO_OK:
908 return BLK_QC_T_NONE;
909 case NVM_IO_ERR:
910 bio_io_error(bio);
911 break;
912 case NVM_IO_DONE:
913 bio_endio(bio);
914 break;
915 case NVM_IO_REQUEUE:
916 spin_lock(&rrpc->bio_lock);
917 bio_list_add(&rrpc->requeue_bios, bio);
918 spin_unlock(&rrpc->bio_lock);
919 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
920 break;
921 }
922
923 mempool_free(rqd, rrpc->rq_pool);
924 return BLK_QC_T_NONE;
925 }
926
927 static void rrpc_requeue(struct work_struct *work)
928 {
929 struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
930 struct bio_list bios;
931 struct bio *bio;
932
933 bio_list_init(&bios);
934
935 spin_lock(&rrpc->bio_lock);
936 bio_list_merge(&bios, &rrpc->requeue_bios);
937 bio_list_init(&rrpc->requeue_bios);
938 spin_unlock(&rrpc->bio_lock);
939
940 while ((bio = bio_list_pop(&bios)))
941 rrpc_make_rq(rrpc->disk->queue, bio);
942 }
943
944 static void rrpc_gc_free(struct rrpc *rrpc)
945 {
946 if (rrpc->krqd_wq)
947 destroy_workqueue(rrpc->krqd_wq);
948
949 if (rrpc->kgc_wq)
950 destroy_workqueue(rrpc->kgc_wq);
951 }
952
953 static int rrpc_gc_init(struct rrpc *rrpc)
954 {
955 rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
956 rrpc->nr_luns);
957 if (!rrpc->krqd_wq)
958 return -ENOMEM;
959
960 rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
961 if (!rrpc->kgc_wq)
962 return -ENOMEM;
963
964 setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
965
966 return 0;
967 }
968
969 static void rrpc_map_free(struct rrpc *rrpc)
970 {
971 vfree(rrpc->rev_trans_map);
972 vfree(rrpc->trans_map);
973 }
974
975 static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
976 {
977 struct rrpc *rrpc = (struct rrpc *)private;
978 struct nvm_dev *dev = rrpc->dev;
979 struct rrpc_addr *addr = rrpc->trans_map + slba;
980 struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
981 u64 elba = slba + nlb;
982 u64 i;
983
984 if (unlikely(elba > dev->total_secs)) {
985 pr_err("nvm: L2P data from device is out of bounds!\n");
986 return -EINVAL;
987 }
988
989 for (i = 0; i < nlb; i++) {
990 u64 pba = le64_to_cpu(entries[i]);
991 unsigned int mod;
992 /* LNVM treats address-spaces as silos, LBA and PBA are
993 * equally large and zero-indexed.
994 */
995 if (unlikely(pba >= dev->total_secs && pba != U64_MAX)) {
996 pr_err("nvm: L2P data entry is out of bounds!\n");
997 return -EINVAL;
998 }
999
1000 /* Address zero is a special one. The first page on a disk is
1001 * protected. As it often holds internal device boot
1002 * information.
1003 */
1004 if (!pba)
1005 continue;
1006
1007 div_u64_rem(pba, rrpc->nr_sects, &mod);
1008
1009 addr[i].addr = pba;
1010 raddr[mod].addr = slba + i;
1011 }
1012
1013 return 0;
1014 }
1015
1016 static int rrpc_map_init(struct rrpc *rrpc)
1017 {
1018 struct nvm_dev *dev = rrpc->dev;
1019 sector_t i;
1020 int ret;
1021
1022 rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_sects);
1023 if (!rrpc->trans_map)
1024 return -ENOMEM;
1025
1026 rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
1027 * rrpc->nr_sects);
1028 if (!rrpc->rev_trans_map)
1029 return -ENOMEM;
1030
1031 for (i = 0; i < rrpc->nr_sects; i++) {
1032 struct rrpc_addr *p = &rrpc->trans_map[i];
1033 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
1034
1035 p->addr = ADDR_EMPTY;
1036 r->addr = ADDR_EMPTY;
1037 }
1038
1039 if (!dev->ops->get_l2p_tbl)
1040 return 0;
1041
1042 /* Bring up the mapping table from device */
1043 ret = dev->ops->get_l2p_tbl(dev, rrpc->soffset, rrpc->nr_sects,
1044 rrpc_l2p_update, rrpc);
1045 if (ret) {
1046 pr_err("nvm: rrpc: could not read L2P table.\n");
1047 return -EINVAL;
1048 }
1049
1050 return 0;
1051 }
1052
1053 /* Minimum pages needed within a lun */
1054 #define PAGE_POOL_SIZE 16
1055 #define ADDR_POOL_SIZE 64
1056
1057 static int rrpc_core_init(struct rrpc *rrpc)
1058 {
1059 down_write(&rrpc_lock);
1060 if (!rrpc_gcb_cache) {
1061 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
1062 sizeof(struct rrpc_block_gc), 0, 0, NULL);
1063 if (!rrpc_gcb_cache) {
1064 up_write(&rrpc_lock);
1065 return -ENOMEM;
1066 }
1067
1068 rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1069 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1070 0, 0, NULL);
1071 if (!rrpc_rq_cache) {
1072 kmem_cache_destroy(rrpc_gcb_cache);
1073 up_write(&rrpc_lock);
1074 return -ENOMEM;
1075 }
1076 }
1077 up_write(&rrpc_lock);
1078
1079 rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1080 if (!rrpc->page_pool)
1081 return -ENOMEM;
1082
1083 rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
1084 rrpc_gcb_cache);
1085 if (!rrpc->gcb_pool)
1086 return -ENOMEM;
1087
1088 rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1089 if (!rrpc->rq_pool)
1090 return -ENOMEM;
1091
1092 spin_lock_init(&rrpc->inflights.lock);
1093 INIT_LIST_HEAD(&rrpc->inflights.reqs);
1094
1095 return 0;
1096 }
1097
1098 static void rrpc_core_free(struct rrpc *rrpc)
1099 {
1100 mempool_destroy(rrpc->page_pool);
1101 mempool_destroy(rrpc->gcb_pool);
1102 mempool_destroy(rrpc->rq_pool);
1103 }
1104
1105 static void rrpc_luns_free(struct rrpc *rrpc)
1106 {
1107 struct nvm_dev *dev = rrpc->dev;
1108 struct nvm_lun *lun;
1109 struct rrpc_lun *rlun;
1110 int i;
1111
1112 if (!rrpc->luns)
1113 return;
1114
1115 for (i = 0; i < rrpc->nr_luns; i++) {
1116 rlun = &rrpc->luns[i];
1117 lun = rlun->parent;
1118 if (!lun)
1119 break;
1120 dev->mt->release_lun(dev, lun->id);
1121 vfree(rlun->blocks);
1122 }
1123
1124 kfree(rrpc->luns);
1125 }
1126
1127 static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
1128 {
1129 struct nvm_dev *dev = rrpc->dev;
1130 struct rrpc_lun *rlun;
1131 int i, j, ret = -EINVAL;
1132
1133 if (dev->sec_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1134 pr_err("rrpc: number of pages per block too high.");
1135 return -EINVAL;
1136 }
1137
1138 spin_lock_init(&rrpc->rev_lock);
1139
1140 rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1141 GFP_KERNEL);
1142 if (!rrpc->luns)
1143 return -ENOMEM;
1144
1145 /* 1:1 mapping */
1146 for (i = 0; i < rrpc->nr_luns; i++) {
1147 int lunid = lun_begin + i;
1148 struct nvm_lun *lun;
1149
1150 if (dev->mt->reserve_lun(dev, lunid)) {
1151 pr_err("rrpc: lun %u is already allocated\n", lunid);
1152 goto err;
1153 }
1154
1155 lun = dev->mt->get_lun(dev, lunid);
1156 if (!lun)
1157 goto err;
1158
1159 rlun = &rrpc->luns[i];
1160 rlun->parent = lun;
1161 rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1162 rrpc->dev->blks_per_lun);
1163 if (!rlun->blocks) {
1164 ret = -ENOMEM;
1165 goto err;
1166 }
1167
1168 for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
1169 struct rrpc_block *rblk = &rlun->blocks[j];
1170 struct nvm_block *blk = &lun->blocks[j];
1171
1172 rblk->parent = blk;
1173 rblk->rlun = rlun;
1174 INIT_LIST_HEAD(&rblk->prio);
1175 spin_lock_init(&rblk->lock);
1176 }
1177
1178 rlun->rrpc = rrpc;
1179 INIT_LIST_HEAD(&rlun->prio_list);
1180
1181 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1182 spin_lock_init(&rlun->lock);
1183 }
1184
1185 return 0;
1186 err:
1187 return ret;
1188 }
1189
1190 /* returns 0 on success and stores the beginning address in *begin */
1191 static int rrpc_area_init(struct rrpc *rrpc, sector_t *begin)
1192 {
1193 struct nvm_dev *dev = rrpc->dev;
1194 struct nvmm_type *mt = dev->mt;
1195 sector_t size = rrpc->nr_sects * dev->sec_size;
1196 int ret;
1197
1198 size >>= 9;
1199
1200 ret = mt->get_area(dev, begin, size);
1201 if (!ret)
1202 *begin >>= (ilog2(dev->sec_size) - 9);
1203
1204 return ret;
1205 }
1206
1207 static void rrpc_area_free(struct rrpc *rrpc)
1208 {
1209 struct nvm_dev *dev = rrpc->dev;
1210 struct nvmm_type *mt = dev->mt;
1211 sector_t begin = rrpc->soffset << (ilog2(dev->sec_size) - 9);
1212
1213 mt->put_area(dev, begin);
1214 }
1215
1216 static void rrpc_free(struct rrpc *rrpc)
1217 {
1218 rrpc_gc_free(rrpc);
1219 rrpc_map_free(rrpc);
1220 rrpc_core_free(rrpc);
1221 rrpc_luns_free(rrpc);
1222 rrpc_area_free(rrpc);
1223
1224 kfree(rrpc);
1225 }
1226
1227 static void rrpc_exit(void *private)
1228 {
1229 struct rrpc *rrpc = private;
1230
1231 del_timer(&rrpc->gc_timer);
1232
1233 flush_workqueue(rrpc->krqd_wq);
1234 flush_workqueue(rrpc->kgc_wq);
1235
1236 rrpc_free(rrpc);
1237 }
1238
1239 static sector_t rrpc_capacity(void *private)
1240 {
1241 struct rrpc *rrpc = private;
1242 struct nvm_dev *dev = rrpc->dev;
1243 sector_t reserved, provisioned;
1244
1245 /* cur, gc, and two emergency blocks for each lun */
1246 reserved = rrpc->nr_luns * dev->sec_per_blk * 4;
1247 provisioned = rrpc->nr_sects - reserved;
1248
1249 if (reserved > rrpc->nr_sects) {
1250 pr_err("rrpc: not enough space available to expose storage.\n");
1251 return 0;
1252 }
1253
1254 sector_div(provisioned, 10);
1255 return provisioned * 9 * NR_PHY_IN_LOG;
1256 }
1257
1258 /*
1259 * Looks up the logical address from reverse trans map and check if its valid by
1260 * comparing the logical to physical address with the physical address.
1261 * Returns 0 on free, otherwise 1 if in use
1262 */
1263 static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1264 {
1265 struct nvm_dev *dev = rrpc->dev;
1266 int offset;
1267 struct rrpc_addr *laddr;
1268 u64 bpaddr, paddr, pladdr;
1269
1270 bpaddr = block_to_rel_addr(rrpc, rblk);
1271 for (offset = 0; offset < dev->sec_per_blk; offset++) {
1272 paddr = bpaddr + offset;
1273
1274 pladdr = rrpc->rev_trans_map[paddr].addr;
1275 if (pladdr == ADDR_EMPTY)
1276 continue;
1277
1278 laddr = &rrpc->trans_map[pladdr];
1279
1280 if (paddr == laddr->addr) {
1281 laddr->rblk = rblk;
1282 } else {
1283 set_bit(offset, rblk->invalid_pages);
1284 rblk->nr_invalid_pages++;
1285 }
1286 }
1287 }
1288
1289 static int rrpc_blocks_init(struct rrpc *rrpc)
1290 {
1291 struct rrpc_lun *rlun;
1292 struct rrpc_block *rblk;
1293 int lun_iter, blk_iter;
1294
1295 for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1296 rlun = &rrpc->luns[lun_iter];
1297
1298 for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
1299 blk_iter++) {
1300 rblk = &rlun->blocks[blk_iter];
1301 rrpc_block_map_update(rrpc, rblk);
1302 }
1303 }
1304
1305 return 0;
1306 }
1307
1308 static int rrpc_luns_configure(struct rrpc *rrpc)
1309 {
1310 struct rrpc_lun *rlun;
1311 struct rrpc_block *rblk;
1312 int i;
1313
1314 for (i = 0; i < rrpc->nr_luns; i++) {
1315 rlun = &rrpc->luns[i];
1316
1317 rblk = rrpc_get_blk(rrpc, rlun, 0);
1318 if (!rblk)
1319 goto err;
1320
1321 rrpc_set_lun_cur(rlun, rblk);
1322
1323 /* Emergency gc block */
1324 rblk = rrpc_get_blk(rrpc, rlun, 1);
1325 if (!rblk)
1326 goto err;
1327 rlun->gc_cur = rblk;
1328 }
1329
1330 return 0;
1331 err:
1332 rrpc_put_blks(rrpc);
1333 return -EINVAL;
1334 }
1335
1336 static struct nvm_tgt_type tt_rrpc;
1337
1338 static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
1339 int lun_begin, int lun_end)
1340 {
1341 struct request_queue *bqueue = dev->q;
1342 struct request_queue *tqueue = tdisk->queue;
1343 struct rrpc *rrpc;
1344 sector_t soffset;
1345 int ret;
1346
1347 if (!(dev->identity.dom & NVM_RSP_L2P)) {
1348 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1349 dev->identity.dom);
1350 return ERR_PTR(-EINVAL);
1351 }
1352
1353 rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1354 if (!rrpc)
1355 return ERR_PTR(-ENOMEM);
1356
1357 rrpc->instance.tt = &tt_rrpc;
1358 rrpc->dev = dev;
1359 rrpc->disk = tdisk;
1360
1361 bio_list_init(&rrpc->requeue_bios);
1362 spin_lock_init(&rrpc->bio_lock);
1363 INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1364
1365 rrpc->nr_luns = lun_end - lun_begin + 1;
1366 rrpc->total_blocks = (unsigned long)dev->blks_per_lun * rrpc->nr_luns;
1367 rrpc->nr_sects = (unsigned long long)dev->sec_per_lun * rrpc->nr_luns;
1368
1369 /* simple round-robin strategy */
1370 atomic_set(&rrpc->next_lun, -1);
1371
1372 ret = rrpc_area_init(rrpc, &soffset);
1373 if (ret < 0) {
1374 pr_err("nvm: rrpc: could not initialize area\n");
1375 return ERR_PTR(ret);
1376 }
1377 rrpc->soffset = soffset;
1378
1379 ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
1380 if (ret) {
1381 pr_err("nvm: rrpc: could not initialize luns\n");
1382 goto err;
1383 }
1384
1385 rrpc->poffset = dev->sec_per_lun * lun_begin;
1386 rrpc->lun_offset = lun_begin;
1387
1388 ret = rrpc_core_init(rrpc);
1389 if (ret) {
1390 pr_err("nvm: rrpc: could not initialize core\n");
1391 goto err;
1392 }
1393
1394 ret = rrpc_map_init(rrpc);
1395 if (ret) {
1396 pr_err("nvm: rrpc: could not initialize maps\n");
1397 goto err;
1398 }
1399
1400 ret = rrpc_blocks_init(rrpc);
1401 if (ret) {
1402 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1403 goto err;
1404 }
1405
1406 ret = rrpc_luns_configure(rrpc);
1407 if (ret) {
1408 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1409 goto err;
1410 }
1411
1412 ret = rrpc_gc_init(rrpc);
1413 if (ret) {
1414 pr_err("nvm: rrpc: could not initialize gc\n");
1415 goto err;
1416 }
1417
1418 /* inherit the size from the underlying device */
1419 blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1420 blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1421
1422 pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1423 rrpc->nr_luns, (unsigned long long)rrpc->nr_sects);
1424
1425 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1426
1427 return rrpc;
1428 err:
1429 rrpc_free(rrpc);
1430 return ERR_PTR(ret);
1431 }
1432
1433 /* round robin, page-based FTL, and cost-based GC */
1434 static struct nvm_tgt_type tt_rrpc = {
1435 .name = "rrpc",
1436 .version = {1, 0, 0},
1437
1438 .make_rq = rrpc_make_rq,
1439 .capacity = rrpc_capacity,
1440 .end_io = rrpc_end_io,
1441
1442 .init = rrpc_init,
1443 .exit = rrpc_exit,
1444 };
1445
1446 static int __init rrpc_module_init(void)
1447 {
1448 return nvm_register_tgt_type(&tt_rrpc);
1449 }
1450
1451 static void rrpc_module_exit(void)
1452 {
1453 nvm_unregister_tgt_type(&tt_rrpc);
1454 }
1455
1456 module_init(rrpc_module_init);
1457 module_exit(rrpc_module_exit);
1458 MODULE_LICENSE("GPL v2");
1459 MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");
This page took 0.058907 seconds and 6 git commands to generate.