lightnvm: remove unused lists from struct rrpc_block
[deliverable/linux.git] / drivers / lightnvm / rrpc.c
1 /*
2 * Copyright (C) 2015 IT University of Copenhagen
3 * Initial release: Matias Bjorling <m@bjorling.me>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License version
7 * 2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15 */
16
17 #include "rrpc.h"
18
19 static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20 static DECLARE_RWSEM(rrpc_lock);
21
22 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23 struct nvm_rq *rqd, unsigned long flags);
24
25 #define rrpc_for_each_lun(rrpc, rlun, i) \
26 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27 (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28
29 static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30 {
31 struct rrpc_block *rblk = a->rblk;
32 unsigned int pg_offset;
33
34 lockdep_assert_held(&rrpc->rev_lock);
35
36 if (a->addr == ADDR_EMPTY || !rblk)
37 return;
38
39 spin_lock(&rblk->lock);
40
41 div_u64_rem(a->addr, rrpc->dev->sec_per_blk, &pg_offset);
42 WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
43 rblk->nr_invalid_pages++;
44
45 spin_unlock(&rblk->lock);
46
47 rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
48 }
49
50 static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
51 unsigned int len)
52 {
53 sector_t i;
54
55 spin_lock(&rrpc->rev_lock);
56 for (i = slba; i < slba + len; i++) {
57 struct rrpc_addr *gp = &rrpc->trans_map[i];
58
59 rrpc_page_invalidate(rrpc, gp);
60 gp->rblk = NULL;
61 }
62 spin_unlock(&rrpc->rev_lock);
63 }
64
65 static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
66 sector_t laddr, unsigned int pages)
67 {
68 struct nvm_rq *rqd;
69 struct rrpc_inflight_rq *inf;
70
71 rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
72 if (!rqd)
73 return ERR_PTR(-ENOMEM);
74
75 inf = rrpc_get_inflight_rq(rqd);
76 if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
77 mempool_free(rqd, rrpc->rq_pool);
78 return NULL;
79 }
80
81 return rqd;
82 }
83
84 static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
85 {
86 struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
87
88 rrpc_unlock_laddr(rrpc, inf);
89
90 mempool_free(rqd, rrpc->rq_pool);
91 }
92
93 static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
94 {
95 sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
96 sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
97 struct nvm_rq *rqd;
98
99 while (1) {
100 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
101 if (rqd)
102 break;
103
104 schedule();
105 }
106
107 if (IS_ERR(rqd)) {
108 pr_err("rrpc: unable to acquire inflight IO\n");
109 bio_io_error(bio);
110 return;
111 }
112
113 rrpc_invalidate_range(rrpc, slba, len);
114 rrpc_inflight_laddr_release(rrpc, rqd);
115 }
116
117 static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
118 {
119 return (rblk->next_page == rrpc->dev->sec_per_blk);
120 }
121
122 /* Calculate relative addr for the given block, considering instantiated LUNs */
123 static u64 block_to_rel_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
124 {
125 struct nvm_block *blk = rblk->parent;
126 int lun_blk = blk->id % (rrpc->dev->blks_per_lun * rrpc->nr_luns);
127
128 return lun_blk * rrpc->dev->sec_per_blk;
129 }
130
131 /* Calculate global addr for the given block */
132 static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
133 {
134 struct nvm_block *blk = rblk->parent;
135
136 return blk->id * rrpc->dev->sec_per_blk;
137 }
138
139 static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
140 struct ppa_addr r)
141 {
142 struct ppa_addr l;
143 int secs, pgs, blks, luns;
144 sector_t ppa = r.ppa;
145
146 l.ppa = 0;
147
148 div_u64_rem(ppa, dev->sec_per_pg, &secs);
149 l.g.sec = secs;
150
151 sector_div(ppa, dev->sec_per_pg);
152 div_u64_rem(ppa, dev->pgs_per_blk, &pgs);
153 l.g.pg = pgs;
154
155 sector_div(ppa, dev->pgs_per_blk);
156 div_u64_rem(ppa, dev->blks_per_lun, &blks);
157 l.g.blk = blks;
158
159 sector_div(ppa, dev->blks_per_lun);
160 div_u64_rem(ppa, dev->luns_per_chnl, &luns);
161 l.g.lun = luns;
162
163 sector_div(ppa, dev->luns_per_chnl);
164 l.g.ch = ppa;
165
166 return l;
167 }
168
169 static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
170 {
171 struct ppa_addr paddr;
172
173 paddr.ppa = addr;
174 return linear_to_generic_addr(dev, paddr);
175 }
176
177 /* requires lun->lock taken */
178 static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
179 {
180 struct rrpc *rrpc = rlun->rrpc;
181
182 BUG_ON(!rblk);
183
184 if (rlun->cur) {
185 spin_lock(&rlun->cur->lock);
186 WARN_ON(!block_is_full(rrpc, rlun->cur));
187 spin_unlock(&rlun->cur->lock);
188 }
189 rlun->cur = rblk;
190 }
191
192 static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
193 unsigned long flags)
194 {
195 struct nvm_lun *lun = rlun->parent;
196 struct nvm_block *blk;
197 struct rrpc_block *rblk;
198
199 spin_lock(&lun->lock);
200 blk = nvm_get_blk_unlocked(rrpc->dev, rlun->parent, flags);
201 if (!blk) {
202 pr_err("nvm: rrpc: cannot get new block from media manager\n");
203 spin_unlock(&lun->lock);
204 return NULL;
205 }
206
207 rblk = rrpc_get_rblk(rlun, blk->id);
208 spin_unlock(&lun->lock);
209
210 blk->priv = rblk;
211 bitmap_zero(rblk->invalid_pages, rrpc->dev->sec_per_blk);
212 rblk->next_page = 0;
213 rblk->nr_invalid_pages = 0;
214 atomic_set(&rblk->data_cmnt_size, 0);
215
216 return rblk;
217 }
218
219 static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
220 {
221 struct rrpc_lun *rlun = rblk->rlun;
222 struct nvm_lun *lun = rlun->parent;
223
224 spin_lock(&lun->lock);
225 nvm_put_blk_unlocked(rrpc->dev, rblk->parent);
226 spin_unlock(&lun->lock);
227 }
228
229 static void rrpc_put_blks(struct rrpc *rrpc)
230 {
231 struct rrpc_lun *rlun;
232 int i;
233
234 for (i = 0; i < rrpc->nr_luns; i++) {
235 rlun = &rrpc->luns[i];
236 if (rlun->cur)
237 rrpc_put_blk(rrpc, rlun->cur);
238 if (rlun->gc_cur)
239 rrpc_put_blk(rrpc, rlun->gc_cur);
240 }
241 }
242
243 static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
244 {
245 int next = atomic_inc_return(&rrpc->next_lun);
246
247 return &rrpc->luns[next % rrpc->nr_luns];
248 }
249
250 static void rrpc_gc_kick(struct rrpc *rrpc)
251 {
252 struct rrpc_lun *rlun;
253 unsigned int i;
254
255 for (i = 0; i < rrpc->nr_luns; i++) {
256 rlun = &rrpc->luns[i];
257 queue_work(rrpc->krqd_wq, &rlun->ws_gc);
258 }
259 }
260
261 /*
262 * timed GC every interval.
263 */
264 static void rrpc_gc_timer(unsigned long data)
265 {
266 struct rrpc *rrpc = (struct rrpc *)data;
267
268 rrpc_gc_kick(rrpc);
269 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
270 }
271
272 static void rrpc_end_sync_bio(struct bio *bio)
273 {
274 struct completion *waiting = bio->bi_private;
275
276 if (bio->bi_error)
277 pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
278
279 complete(waiting);
280 }
281
282 /*
283 * rrpc_move_valid_pages -- migrate live data off the block
284 * @rrpc: the 'rrpc' structure
285 * @block: the block from which to migrate live pages
286 *
287 * Description:
288 * GC algorithms may call this function to migrate remaining live
289 * pages off the block prior to erasing it. This function blocks
290 * further execution until the operation is complete.
291 */
292 static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
293 {
294 struct request_queue *q = rrpc->dev->q;
295 struct rrpc_rev_addr *rev;
296 struct nvm_rq *rqd;
297 struct bio *bio;
298 struct page *page;
299 int slot;
300 int nr_sec_per_blk = rrpc->dev->sec_per_blk;
301 u64 phys_addr;
302 DECLARE_COMPLETION_ONSTACK(wait);
303
304 if (bitmap_full(rblk->invalid_pages, nr_sec_per_blk))
305 return 0;
306
307 bio = bio_alloc(GFP_NOIO, 1);
308 if (!bio) {
309 pr_err("nvm: could not alloc bio to gc\n");
310 return -ENOMEM;
311 }
312
313 page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
314 if (!page) {
315 bio_put(bio);
316 return -ENOMEM;
317 }
318
319 while ((slot = find_first_zero_bit(rblk->invalid_pages,
320 nr_sec_per_blk)) < nr_sec_per_blk) {
321
322 /* Lock laddr */
323 phys_addr = rblk->parent->id * nr_sec_per_blk + slot;
324
325 try:
326 spin_lock(&rrpc->rev_lock);
327 /* Get logical address from physical to logical table */
328 rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
329 /* already updated by previous regular write */
330 if (rev->addr == ADDR_EMPTY) {
331 spin_unlock(&rrpc->rev_lock);
332 continue;
333 }
334
335 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
336 if (IS_ERR_OR_NULL(rqd)) {
337 spin_unlock(&rrpc->rev_lock);
338 schedule();
339 goto try;
340 }
341
342 spin_unlock(&rrpc->rev_lock);
343
344 /* Perform read to do GC */
345 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
346 bio_set_op_attrs(bio, REQ_OP_READ, 0);
347 bio->bi_private = &wait;
348 bio->bi_end_io = rrpc_end_sync_bio;
349
350 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
351 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
352
353 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
354 pr_err("rrpc: gc read failed.\n");
355 rrpc_inflight_laddr_release(rrpc, rqd);
356 goto finished;
357 }
358 wait_for_completion_io(&wait);
359 if (bio->bi_error) {
360 rrpc_inflight_laddr_release(rrpc, rqd);
361 goto finished;
362 }
363
364 bio_reset(bio);
365 reinit_completion(&wait);
366
367 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
368 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
369 bio->bi_private = &wait;
370 bio->bi_end_io = rrpc_end_sync_bio;
371
372 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
373
374 /* turn the command around and write the data back to a new
375 * address
376 */
377 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
378 pr_err("rrpc: gc write failed.\n");
379 rrpc_inflight_laddr_release(rrpc, rqd);
380 goto finished;
381 }
382 wait_for_completion_io(&wait);
383
384 rrpc_inflight_laddr_release(rrpc, rqd);
385 if (bio->bi_error)
386 goto finished;
387
388 bio_reset(bio);
389 }
390
391 finished:
392 mempool_free(page, rrpc->page_pool);
393 bio_put(bio);
394
395 if (!bitmap_full(rblk->invalid_pages, nr_sec_per_blk)) {
396 pr_err("nvm: failed to garbage collect block\n");
397 return -EIO;
398 }
399
400 return 0;
401 }
402
403 static void rrpc_block_gc(struct work_struct *work)
404 {
405 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
406 ws_gc);
407 struct rrpc *rrpc = gcb->rrpc;
408 struct rrpc_block *rblk = gcb->rblk;
409 struct rrpc_lun *rlun = rblk->rlun;
410 struct nvm_dev *dev = rrpc->dev;
411
412 mempool_free(gcb, rrpc->gcb_pool);
413 pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
414
415 if (rrpc_move_valid_pages(rrpc, rblk))
416 goto put_back;
417
418 if (nvm_erase_blk(dev, rblk->parent))
419 goto put_back;
420
421 rrpc_put_blk(rrpc, rblk);
422
423 return;
424
425 put_back:
426 spin_lock(&rlun->lock);
427 list_add_tail(&rblk->prio, &rlun->prio_list);
428 spin_unlock(&rlun->lock);
429 }
430
431 /* the block with highest number of invalid pages, will be in the beginning
432 * of the list
433 */
434 static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
435 struct rrpc_block *rb)
436 {
437 if (ra->nr_invalid_pages == rb->nr_invalid_pages)
438 return ra;
439
440 return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
441 }
442
443 /* linearly find the block with highest number of invalid pages
444 * requires lun->lock
445 */
446 static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
447 {
448 struct list_head *prio_list = &rlun->prio_list;
449 struct rrpc_block *rblock, *max;
450
451 BUG_ON(list_empty(prio_list));
452
453 max = list_first_entry(prio_list, struct rrpc_block, prio);
454 list_for_each_entry(rblock, prio_list, prio)
455 max = rblock_max_invalid(max, rblock);
456
457 return max;
458 }
459
460 static void rrpc_lun_gc(struct work_struct *work)
461 {
462 struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
463 struct rrpc *rrpc = rlun->rrpc;
464 struct nvm_lun *lun = rlun->parent;
465 struct rrpc_block_gc *gcb;
466 unsigned int nr_blocks_need;
467
468 nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
469
470 if (nr_blocks_need < rrpc->nr_luns)
471 nr_blocks_need = rrpc->nr_luns;
472
473 spin_lock(&rlun->lock);
474 while (nr_blocks_need > lun->nr_free_blocks &&
475 !list_empty(&rlun->prio_list)) {
476 struct rrpc_block *rblock = block_prio_find_max(rlun);
477 struct nvm_block *block = rblock->parent;
478
479 if (!rblock->nr_invalid_pages)
480 break;
481
482 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
483 if (!gcb)
484 break;
485
486 list_del_init(&rblock->prio);
487
488 BUG_ON(!block_is_full(rrpc, rblock));
489
490 pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
491
492 gcb->rrpc = rrpc;
493 gcb->rblk = rblock;
494 INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
495
496 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
497
498 nr_blocks_need--;
499 }
500 spin_unlock(&rlun->lock);
501
502 /* TODO: Hint that request queue can be started again */
503 }
504
505 static void rrpc_gc_queue(struct work_struct *work)
506 {
507 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
508 ws_gc);
509 struct rrpc *rrpc = gcb->rrpc;
510 struct rrpc_block *rblk = gcb->rblk;
511 struct rrpc_lun *rlun = rblk->rlun;
512
513 spin_lock(&rlun->lock);
514 list_add_tail(&rblk->prio, &rlun->prio_list);
515 spin_unlock(&rlun->lock);
516
517 mempool_free(gcb, rrpc->gcb_pool);
518 pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
519 rblk->parent->id);
520 }
521
522 static const struct block_device_operations rrpc_fops = {
523 .owner = THIS_MODULE,
524 };
525
526 static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
527 {
528 unsigned int i;
529 struct rrpc_lun *rlun, *max_free;
530
531 if (!is_gc)
532 return get_next_lun(rrpc);
533
534 /* during GC, we don't care about RR, instead we want to make
535 * sure that we maintain evenness between the block luns.
536 */
537 max_free = &rrpc->luns[0];
538 /* prevent GC-ing lun from devouring pages of a lun with
539 * little free blocks. We don't take the lock as we only need an
540 * estimate.
541 */
542 rrpc_for_each_lun(rrpc, rlun, i) {
543 if (rlun->parent->nr_free_blocks >
544 max_free->parent->nr_free_blocks)
545 max_free = rlun;
546 }
547
548 return max_free;
549 }
550
551 static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
552 struct rrpc_block *rblk, u64 paddr)
553 {
554 struct rrpc_addr *gp;
555 struct rrpc_rev_addr *rev;
556
557 BUG_ON(laddr >= rrpc->nr_sects);
558
559 gp = &rrpc->trans_map[laddr];
560 spin_lock(&rrpc->rev_lock);
561 if (gp->rblk)
562 rrpc_page_invalidate(rrpc, gp);
563
564 gp->addr = paddr;
565 gp->rblk = rblk;
566
567 rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
568 rev->addr = laddr;
569 spin_unlock(&rrpc->rev_lock);
570
571 return gp;
572 }
573
574 static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
575 {
576 u64 addr = ADDR_EMPTY;
577
578 spin_lock(&rblk->lock);
579 if (block_is_full(rrpc, rblk))
580 goto out;
581
582 addr = block_to_addr(rrpc, rblk) + rblk->next_page;
583
584 rblk->next_page++;
585 out:
586 spin_unlock(&rblk->lock);
587 return addr;
588 }
589
590 /* Simple round-robin Logical to physical address translation.
591 *
592 * Retrieve the mapping using the active append point. Then update the ap for
593 * the next write to the disk.
594 *
595 * Returns rrpc_addr with the physical address and block. Remember to return to
596 * rrpc->addr_cache when request is finished.
597 */
598 static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
599 int is_gc)
600 {
601 struct rrpc_lun *rlun;
602 struct rrpc_block *rblk;
603 struct nvm_lun *lun;
604 u64 paddr;
605
606 rlun = rrpc_get_lun_rr(rrpc, is_gc);
607 lun = rlun->parent;
608
609 if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
610 return NULL;
611
612 spin_lock(&rlun->lock);
613
614 rblk = rlun->cur;
615 retry:
616 paddr = rrpc_alloc_addr(rrpc, rblk);
617
618 if (paddr == ADDR_EMPTY) {
619 rblk = rrpc_get_blk(rrpc, rlun, 0);
620 if (rblk) {
621 rrpc_set_lun_cur(rlun, rblk);
622 goto retry;
623 }
624
625 if (is_gc) {
626 /* retry from emergency gc block */
627 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
628 if (paddr == ADDR_EMPTY) {
629 rblk = rrpc_get_blk(rrpc, rlun, 1);
630 if (!rblk) {
631 pr_err("rrpc: no more blocks");
632 goto err;
633 }
634
635 rlun->gc_cur = rblk;
636 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
637 }
638 rblk = rlun->gc_cur;
639 }
640 }
641
642 spin_unlock(&rlun->lock);
643 return rrpc_update_map(rrpc, laddr, rblk, paddr);
644 err:
645 spin_unlock(&rlun->lock);
646 return NULL;
647 }
648
649 static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
650 {
651 struct rrpc_block_gc *gcb;
652
653 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
654 if (!gcb) {
655 pr_err("rrpc: unable to queue block for gc.");
656 return;
657 }
658
659 gcb->rrpc = rrpc;
660 gcb->rblk = rblk;
661
662 INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
663 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
664 }
665
666 static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
667 sector_t laddr, uint8_t npages)
668 {
669 struct rrpc_addr *p;
670 struct rrpc_block *rblk;
671 struct nvm_lun *lun;
672 int cmnt_size, i;
673
674 for (i = 0; i < npages; i++) {
675 p = &rrpc->trans_map[laddr + i];
676 rblk = p->rblk;
677 lun = rblk->parent->lun;
678
679 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
680 if (unlikely(cmnt_size == rrpc->dev->sec_per_blk))
681 rrpc_run_gc(rrpc, rblk);
682 }
683 }
684
685 static void rrpc_end_io(struct nvm_rq *rqd)
686 {
687 struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
688 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
689 uint8_t npages = rqd->nr_ppas;
690 sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
691
692 if (bio_data_dir(rqd->bio) == WRITE)
693 rrpc_end_io_write(rrpc, rrqd, laddr, npages);
694
695 bio_put(rqd->bio);
696
697 if (rrqd->flags & NVM_IOTYPE_GC)
698 return;
699
700 rrpc_unlock_rq(rrpc, rqd);
701
702 if (npages > 1)
703 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
704
705 mempool_free(rqd, rrpc->rq_pool);
706 }
707
708 static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
709 struct nvm_rq *rqd, unsigned long flags, int npages)
710 {
711 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
712 struct rrpc_addr *gp;
713 sector_t laddr = rrpc_get_laddr(bio);
714 int is_gc = flags & NVM_IOTYPE_GC;
715 int i;
716
717 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
718 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
719 return NVM_IO_REQUEUE;
720 }
721
722 for (i = 0; i < npages; i++) {
723 /* We assume that mapping occurs at 4KB granularity */
724 BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_sects));
725 gp = &rrpc->trans_map[laddr + i];
726
727 if (gp->rblk) {
728 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
729 gp->addr);
730 } else {
731 BUG_ON(is_gc);
732 rrpc_unlock_laddr(rrpc, r);
733 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
734 rqd->dma_ppa_list);
735 return NVM_IO_DONE;
736 }
737 }
738
739 rqd->opcode = NVM_OP_HBREAD;
740
741 return NVM_IO_OK;
742 }
743
744 static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
745 unsigned long flags)
746 {
747 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
748 int is_gc = flags & NVM_IOTYPE_GC;
749 sector_t laddr = rrpc_get_laddr(bio);
750 struct rrpc_addr *gp;
751
752 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
753 return NVM_IO_REQUEUE;
754
755 BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_sects));
756 gp = &rrpc->trans_map[laddr];
757
758 if (gp->rblk) {
759 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
760 } else {
761 BUG_ON(is_gc);
762 rrpc_unlock_rq(rrpc, rqd);
763 return NVM_IO_DONE;
764 }
765
766 rqd->opcode = NVM_OP_HBREAD;
767 rrqd->addr = gp;
768
769 return NVM_IO_OK;
770 }
771
772 static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
773 struct nvm_rq *rqd, unsigned long flags, int npages)
774 {
775 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
776 struct rrpc_addr *p;
777 sector_t laddr = rrpc_get_laddr(bio);
778 int is_gc = flags & NVM_IOTYPE_GC;
779 int i;
780
781 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
782 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
783 return NVM_IO_REQUEUE;
784 }
785
786 for (i = 0; i < npages; i++) {
787 /* We assume that mapping occurs at 4KB granularity */
788 p = rrpc_map_page(rrpc, laddr + i, is_gc);
789 if (!p) {
790 BUG_ON(is_gc);
791 rrpc_unlock_laddr(rrpc, r);
792 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
793 rqd->dma_ppa_list);
794 rrpc_gc_kick(rrpc);
795 return NVM_IO_REQUEUE;
796 }
797
798 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
799 p->addr);
800 }
801
802 rqd->opcode = NVM_OP_HBWRITE;
803
804 return NVM_IO_OK;
805 }
806
807 static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
808 struct nvm_rq *rqd, unsigned long flags)
809 {
810 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
811 struct rrpc_addr *p;
812 int is_gc = flags & NVM_IOTYPE_GC;
813 sector_t laddr = rrpc_get_laddr(bio);
814
815 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
816 return NVM_IO_REQUEUE;
817
818 p = rrpc_map_page(rrpc, laddr, is_gc);
819 if (!p) {
820 BUG_ON(is_gc);
821 rrpc_unlock_rq(rrpc, rqd);
822 rrpc_gc_kick(rrpc);
823 return NVM_IO_REQUEUE;
824 }
825
826 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
827 rqd->opcode = NVM_OP_HBWRITE;
828 rrqd->addr = p;
829
830 return NVM_IO_OK;
831 }
832
833 static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
834 struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
835 {
836 if (npages > 1) {
837 rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
838 &rqd->dma_ppa_list);
839 if (!rqd->ppa_list) {
840 pr_err("rrpc: not able to allocate ppa list\n");
841 return NVM_IO_ERR;
842 }
843
844 if (bio_rw(bio) == WRITE)
845 return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
846 npages);
847
848 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
849 }
850
851 if (bio_rw(bio) == WRITE)
852 return rrpc_write_rq(rrpc, bio, rqd, flags);
853
854 return rrpc_read_rq(rrpc, bio, rqd, flags);
855 }
856
857 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
858 struct nvm_rq *rqd, unsigned long flags)
859 {
860 int err;
861 struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
862 uint8_t nr_pages = rrpc_get_pages(bio);
863 int bio_size = bio_sectors(bio) << 9;
864
865 if (bio_size < rrpc->dev->sec_size)
866 return NVM_IO_ERR;
867 else if (bio_size > rrpc->dev->max_rq_size)
868 return NVM_IO_ERR;
869
870 err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
871 if (err)
872 return err;
873
874 bio_get(bio);
875 rqd->bio = bio;
876 rqd->ins = &rrpc->instance;
877 rqd->nr_ppas = nr_pages;
878 rrq->flags = flags;
879
880 err = nvm_submit_io(rrpc->dev, rqd);
881 if (err) {
882 pr_err("rrpc: I/O submission failed: %d\n", err);
883 bio_put(bio);
884 if (!(flags & NVM_IOTYPE_GC)) {
885 rrpc_unlock_rq(rrpc, rqd);
886 if (rqd->nr_ppas > 1)
887 nvm_dev_dma_free(rrpc->dev,
888 rqd->ppa_list, rqd->dma_ppa_list);
889 }
890 return NVM_IO_ERR;
891 }
892
893 return NVM_IO_OK;
894 }
895
896 static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
897 {
898 struct rrpc *rrpc = q->queuedata;
899 struct nvm_rq *rqd;
900 int err;
901
902 if (bio_op(bio) == REQ_OP_DISCARD) {
903 rrpc_discard(rrpc, bio);
904 return BLK_QC_T_NONE;
905 }
906
907 rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
908 if (!rqd) {
909 pr_err_ratelimited("rrpc: not able to queue bio.");
910 bio_io_error(bio);
911 return BLK_QC_T_NONE;
912 }
913 memset(rqd, 0, sizeof(struct nvm_rq));
914
915 err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
916 switch (err) {
917 case NVM_IO_OK:
918 return BLK_QC_T_NONE;
919 case NVM_IO_ERR:
920 bio_io_error(bio);
921 break;
922 case NVM_IO_DONE:
923 bio_endio(bio);
924 break;
925 case NVM_IO_REQUEUE:
926 spin_lock(&rrpc->bio_lock);
927 bio_list_add(&rrpc->requeue_bios, bio);
928 spin_unlock(&rrpc->bio_lock);
929 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
930 break;
931 }
932
933 mempool_free(rqd, rrpc->rq_pool);
934 return BLK_QC_T_NONE;
935 }
936
937 static void rrpc_requeue(struct work_struct *work)
938 {
939 struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
940 struct bio_list bios;
941 struct bio *bio;
942
943 bio_list_init(&bios);
944
945 spin_lock(&rrpc->bio_lock);
946 bio_list_merge(&bios, &rrpc->requeue_bios);
947 bio_list_init(&rrpc->requeue_bios);
948 spin_unlock(&rrpc->bio_lock);
949
950 while ((bio = bio_list_pop(&bios)))
951 rrpc_make_rq(rrpc->disk->queue, bio);
952 }
953
954 static void rrpc_gc_free(struct rrpc *rrpc)
955 {
956 if (rrpc->krqd_wq)
957 destroy_workqueue(rrpc->krqd_wq);
958
959 if (rrpc->kgc_wq)
960 destroy_workqueue(rrpc->kgc_wq);
961 }
962
963 static int rrpc_gc_init(struct rrpc *rrpc)
964 {
965 rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
966 rrpc->nr_luns);
967 if (!rrpc->krqd_wq)
968 return -ENOMEM;
969
970 rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
971 if (!rrpc->kgc_wq)
972 return -ENOMEM;
973
974 setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
975
976 return 0;
977 }
978
979 static void rrpc_map_free(struct rrpc *rrpc)
980 {
981 vfree(rrpc->rev_trans_map);
982 vfree(rrpc->trans_map);
983 }
984
985 static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
986 {
987 struct rrpc *rrpc = (struct rrpc *)private;
988 struct nvm_dev *dev = rrpc->dev;
989 struct rrpc_addr *addr = rrpc->trans_map + slba;
990 struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
991 u64 elba = slba + nlb;
992 u64 i;
993
994 if (unlikely(elba > dev->total_secs)) {
995 pr_err("nvm: L2P data from device is out of bounds!\n");
996 return -EINVAL;
997 }
998
999 for (i = 0; i < nlb; i++) {
1000 u64 pba = le64_to_cpu(entries[i]);
1001 unsigned int mod;
1002 /* LNVM treats address-spaces as silos, LBA and PBA are
1003 * equally large and zero-indexed.
1004 */
1005 if (unlikely(pba >= dev->total_secs && pba != U64_MAX)) {
1006 pr_err("nvm: L2P data entry is out of bounds!\n");
1007 return -EINVAL;
1008 }
1009
1010 /* Address zero is a special one. The first page on a disk is
1011 * protected. As it often holds internal device boot
1012 * information.
1013 */
1014 if (!pba)
1015 continue;
1016
1017 div_u64_rem(pba, rrpc->nr_sects, &mod);
1018
1019 addr[i].addr = pba;
1020 raddr[mod].addr = slba + i;
1021 }
1022
1023 return 0;
1024 }
1025
1026 static int rrpc_map_init(struct rrpc *rrpc)
1027 {
1028 struct nvm_dev *dev = rrpc->dev;
1029 sector_t i;
1030 int ret;
1031
1032 rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_sects);
1033 if (!rrpc->trans_map)
1034 return -ENOMEM;
1035
1036 rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
1037 * rrpc->nr_sects);
1038 if (!rrpc->rev_trans_map)
1039 return -ENOMEM;
1040
1041 for (i = 0; i < rrpc->nr_sects; i++) {
1042 struct rrpc_addr *p = &rrpc->trans_map[i];
1043 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
1044
1045 p->addr = ADDR_EMPTY;
1046 r->addr = ADDR_EMPTY;
1047 }
1048
1049 if (!dev->ops->get_l2p_tbl)
1050 return 0;
1051
1052 /* Bring up the mapping table from device */
1053 ret = dev->ops->get_l2p_tbl(dev, rrpc->soffset, rrpc->nr_sects,
1054 rrpc_l2p_update, rrpc);
1055 if (ret) {
1056 pr_err("nvm: rrpc: could not read L2P table.\n");
1057 return -EINVAL;
1058 }
1059
1060 return 0;
1061 }
1062
1063 /* Minimum pages needed within a lun */
1064 #define PAGE_POOL_SIZE 16
1065 #define ADDR_POOL_SIZE 64
1066
1067 static int rrpc_core_init(struct rrpc *rrpc)
1068 {
1069 down_write(&rrpc_lock);
1070 if (!rrpc_gcb_cache) {
1071 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
1072 sizeof(struct rrpc_block_gc), 0, 0, NULL);
1073 if (!rrpc_gcb_cache) {
1074 up_write(&rrpc_lock);
1075 return -ENOMEM;
1076 }
1077
1078 rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1079 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1080 0, 0, NULL);
1081 if (!rrpc_rq_cache) {
1082 kmem_cache_destroy(rrpc_gcb_cache);
1083 up_write(&rrpc_lock);
1084 return -ENOMEM;
1085 }
1086 }
1087 up_write(&rrpc_lock);
1088
1089 rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1090 if (!rrpc->page_pool)
1091 return -ENOMEM;
1092
1093 rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
1094 rrpc_gcb_cache);
1095 if (!rrpc->gcb_pool)
1096 return -ENOMEM;
1097
1098 rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1099 if (!rrpc->rq_pool)
1100 return -ENOMEM;
1101
1102 spin_lock_init(&rrpc->inflights.lock);
1103 INIT_LIST_HEAD(&rrpc->inflights.reqs);
1104
1105 return 0;
1106 }
1107
1108 static void rrpc_core_free(struct rrpc *rrpc)
1109 {
1110 mempool_destroy(rrpc->page_pool);
1111 mempool_destroy(rrpc->gcb_pool);
1112 mempool_destroy(rrpc->rq_pool);
1113 }
1114
1115 static void rrpc_luns_free(struct rrpc *rrpc)
1116 {
1117 struct nvm_dev *dev = rrpc->dev;
1118 struct nvm_lun *lun;
1119 struct rrpc_lun *rlun;
1120 int i;
1121
1122 if (!rrpc->luns)
1123 return;
1124
1125 for (i = 0; i < rrpc->nr_luns; i++) {
1126 rlun = &rrpc->luns[i];
1127 lun = rlun->parent;
1128 if (!lun)
1129 break;
1130 dev->mt->release_lun(dev, lun->id);
1131 vfree(rlun->blocks);
1132 }
1133
1134 kfree(rrpc->luns);
1135 }
1136
1137 static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
1138 {
1139 struct nvm_dev *dev = rrpc->dev;
1140 struct rrpc_lun *rlun;
1141 int i, j, ret = -EINVAL;
1142
1143 if (dev->sec_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1144 pr_err("rrpc: number of pages per block too high.");
1145 return -EINVAL;
1146 }
1147
1148 spin_lock_init(&rrpc->rev_lock);
1149
1150 rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1151 GFP_KERNEL);
1152 if (!rrpc->luns)
1153 return -ENOMEM;
1154
1155 /* 1:1 mapping */
1156 for (i = 0; i < rrpc->nr_luns; i++) {
1157 int lunid = lun_begin + i;
1158 struct nvm_lun *lun;
1159
1160 if (dev->mt->reserve_lun(dev, lunid)) {
1161 pr_err("rrpc: lun %u is already allocated\n", lunid);
1162 goto err;
1163 }
1164
1165 lun = dev->mt->get_lun(dev, lunid);
1166 if (!lun)
1167 goto err;
1168
1169 rlun = &rrpc->luns[i];
1170 rlun->parent = lun;
1171 rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1172 rrpc->dev->blks_per_lun);
1173 if (!rlun->blocks) {
1174 ret = -ENOMEM;
1175 goto err;
1176 }
1177
1178 for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
1179 struct rrpc_block *rblk = &rlun->blocks[j];
1180 struct nvm_block *blk = &lun->blocks[j];
1181
1182 rblk->parent = blk;
1183 rblk->rlun = rlun;
1184 INIT_LIST_HEAD(&rblk->prio);
1185 spin_lock_init(&rblk->lock);
1186 }
1187
1188 rlun->rrpc = rrpc;
1189 INIT_LIST_HEAD(&rlun->prio_list);
1190
1191 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1192 spin_lock_init(&rlun->lock);
1193 }
1194
1195 return 0;
1196 err:
1197 return ret;
1198 }
1199
1200 /* returns 0 on success and stores the beginning address in *begin */
1201 static int rrpc_area_init(struct rrpc *rrpc, sector_t *begin)
1202 {
1203 struct nvm_dev *dev = rrpc->dev;
1204 struct nvmm_type *mt = dev->mt;
1205 sector_t size = rrpc->nr_sects * dev->sec_size;
1206 int ret;
1207
1208 size >>= 9;
1209
1210 ret = mt->get_area(dev, begin, size);
1211 if (!ret)
1212 *begin >>= (ilog2(dev->sec_size) - 9);
1213
1214 return ret;
1215 }
1216
1217 static void rrpc_area_free(struct rrpc *rrpc)
1218 {
1219 struct nvm_dev *dev = rrpc->dev;
1220 struct nvmm_type *mt = dev->mt;
1221 sector_t begin = rrpc->soffset << (ilog2(dev->sec_size) - 9);
1222
1223 mt->put_area(dev, begin);
1224 }
1225
1226 static void rrpc_free(struct rrpc *rrpc)
1227 {
1228 rrpc_gc_free(rrpc);
1229 rrpc_map_free(rrpc);
1230 rrpc_core_free(rrpc);
1231 rrpc_luns_free(rrpc);
1232 rrpc_area_free(rrpc);
1233
1234 kfree(rrpc);
1235 }
1236
1237 static void rrpc_exit(void *private)
1238 {
1239 struct rrpc *rrpc = private;
1240
1241 del_timer(&rrpc->gc_timer);
1242
1243 flush_workqueue(rrpc->krqd_wq);
1244 flush_workqueue(rrpc->kgc_wq);
1245
1246 rrpc_free(rrpc);
1247 }
1248
1249 static sector_t rrpc_capacity(void *private)
1250 {
1251 struct rrpc *rrpc = private;
1252 struct nvm_dev *dev = rrpc->dev;
1253 sector_t reserved, provisioned;
1254
1255 /* cur, gc, and two emergency blocks for each lun */
1256 reserved = rrpc->nr_luns * dev->sec_per_blk * 4;
1257 provisioned = rrpc->nr_sects - reserved;
1258
1259 if (reserved > rrpc->nr_sects) {
1260 pr_err("rrpc: not enough space available to expose storage.\n");
1261 return 0;
1262 }
1263
1264 sector_div(provisioned, 10);
1265 return provisioned * 9 * NR_PHY_IN_LOG;
1266 }
1267
1268 /*
1269 * Looks up the logical address from reverse trans map and check if its valid by
1270 * comparing the logical to physical address with the physical address.
1271 * Returns 0 on free, otherwise 1 if in use
1272 */
1273 static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1274 {
1275 struct nvm_dev *dev = rrpc->dev;
1276 int offset;
1277 struct rrpc_addr *laddr;
1278 u64 bpaddr, paddr, pladdr;
1279
1280 bpaddr = block_to_rel_addr(rrpc, rblk);
1281 for (offset = 0; offset < dev->sec_per_blk; offset++) {
1282 paddr = bpaddr + offset;
1283
1284 pladdr = rrpc->rev_trans_map[paddr].addr;
1285 if (pladdr == ADDR_EMPTY)
1286 continue;
1287
1288 laddr = &rrpc->trans_map[pladdr];
1289
1290 if (paddr == laddr->addr) {
1291 laddr->rblk = rblk;
1292 } else {
1293 set_bit(offset, rblk->invalid_pages);
1294 rblk->nr_invalid_pages++;
1295 }
1296 }
1297 }
1298
1299 static int rrpc_blocks_init(struct rrpc *rrpc)
1300 {
1301 struct rrpc_lun *rlun;
1302 struct rrpc_block *rblk;
1303 int lun_iter, blk_iter;
1304
1305 for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1306 rlun = &rrpc->luns[lun_iter];
1307
1308 for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
1309 blk_iter++) {
1310 rblk = &rlun->blocks[blk_iter];
1311 rrpc_block_map_update(rrpc, rblk);
1312 }
1313 }
1314
1315 return 0;
1316 }
1317
1318 static int rrpc_luns_configure(struct rrpc *rrpc)
1319 {
1320 struct rrpc_lun *rlun;
1321 struct rrpc_block *rblk;
1322 int i;
1323
1324 for (i = 0; i < rrpc->nr_luns; i++) {
1325 rlun = &rrpc->luns[i];
1326
1327 rblk = rrpc_get_blk(rrpc, rlun, 0);
1328 if (!rblk)
1329 goto err;
1330
1331 rrpc_set_lun_cur(rlun, rblk);
1332
1333 /* Emergency gc block */
1334 rblk = rrpc_get_blk(rrpc, rlun, 1);
1335 if (!rblk)
1336 goto err;
1337 rlun->gc_cur = rblk;
1338 }
1339
1340 return 0;
1341 err:
1342 rrpc_put_blks(rrpc);
1343 return -EINVAL;
1344 }
1345
1346 static struct nvm_tgt_type tt_rrpc;
1347
1348 static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
1349 int lun_begin, int lun_end)
1350 {
1351 struct request_queue *bqueue = dev->q;
1352 struct request_queue *tqueue = tdisk->queue;
1353 struct rrpc *rrpc;
1354 sector_t soffset;
1355 int ret;
1356
1357 if (!(dev->identity.dom & NVM_RSP_L2P)) {
1358 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1359 dev->identity.dom);
1360 return ERR_PTR(-EINVAL);
1361 }
1362
1363 rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1364 if (!rrpc)
1365 return ERR_PTR(-ENOMEM);
1366
1367 rrpc->instance.tt = &tt_rrpc;
1368 rrpc->dev = dev;
1369 rrpc->disk = tdisk;
1370
1371 bio_list_init(&rrpc->requeue_bios);
1372 spin_lock_init(&rrpc->bio_lock);
1373 INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1374
1375 rrpc->nr_luns = lun_end - lun_begin + 1;
1376 rrpc->total_blocks = (unsigned long)dev->blks_per_lun * rrpc->nr_luns;
1377 rrpc->nr_sects = (unsigned long long)dev->sec_per_lun * rrpc->nr_luns;
1378
1379 /* simple round-robin strategy */
1380 atomic_set(&rrpc->next_lun, -1);
1381
1382 ret = rrpc_area_init(rrpc, &soffset);
1383 if (ret < 0) {
1384 pr_err("nvm: rrpc: could not initialize area\n");
1385 return ERR_PTR(ret);
1386 }
1387 rrpc->soffset = soffset;
1388
1389 ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
1390 if (ret) {
1391 pr_err("nvm: rrpc: could not initialize luns\n");
1392 goto err;
1393 }
1394
1395 rrpc->poffset = dev->sec_per_lun * lun_begin;
1396 rrpc->lun_offset = lun_begin;
1397
1398 ret = rrpc_core_init(rrpc);
1399 if (ret) {
1400 pr_err("nvm: rrpc: could not initialize core\n");
1401 goto err;
1402 }
1403
1404 ret = rrpc_map_init(rrpc);
1405 if (ret) {
1406 pr_err("nvm: rrpc: could not initialize maps\n");
1407 goto err;
1408 }
1409
1410 ret = rrpc_blocks_init(rrpc);
1411 if (ret) {
1412 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1413 goto err;
1414 }
1415
1416 ret = rrpc_luns_configure(rrpc);
1417 if (ret) {
1418 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1419 goto err;
1420 }
1421
1422 ret = rrpc_gc_init(rrpc);
1423 if (ret) {
1424 pr_err("nvm: rrpc: could not initialize gc\n");
1425 goto err;
1426 }
1427
1428 /* inherit the size from the underlying device */
1429 blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1430 blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1431
1432 pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1433 rrpc->nr_luns, (unsigned long long)rrpc->nr_sects);
1434
1435 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1436
1437 return rrpc;
1438 err:
1439 rrpc_free(rrpc);
1440 return ERR_PTR(ret);
1441 }
1442
1443 /* round robin, page-based FTL, and cost-based GC */
1444 static struct nvm_tgt_type tt_rrpc = {
1445 .name = "rrpc",
1446 .version = {1, 0, 0},
1447
1448 .make_rq = rrpc_make_rq,
1449 .capacity = rrpc_capacity,
1450 .end_io = rrpc_end_io,
1451
1452 .init = rrpc_init,
1453 .exit = rrpc_exit,
1454 };
1455
1456 static int __init rrpc_module_init(void)
1457 {
1458 return nvm_register_tgt_type(&tt_rrpc);
1459 }
1460
1461 static void rrpc_module_exit(void)
1462 {
1463 nvm_unregister_tgt_type(&tt_rrpc);
1464 }
1465
1466 module_init(rrpc_module_init);
1467 module_exit(rrpc_module_exit);
1468 MODULE_LICENSE("GPL v2");
1469 MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");
This page took 0.104711 seconds and 6 git commands to generate.