Merge branch 'linux-next' of git://git.infradead.org/ubi-2.6
[deliverable/linux.git] / drivers / macintosh / therm_pm72.c
1 /*
2 * Device driver for the thermostats & fan controller of the
3 * Apple G5 "PowerMac7,2" desktop machines.
4 *
5 * (c) Copyright IBM Corp. 2003-2004
6 *
7 * Maintained by: Benjamin Herrenschmidt
8 * <benh@kernel.crashing.org>
9 *
10 *
11 * The algorithm used is the PID control algorithm, used the same
12 * way the published Darwin code does, using the same values that
13 * are present in the Darwin 7.0 snapshot property lists.
14 *
15 * As far as the CPUs control loops are concerned, I use the
16 * calibration & PID constants provided by the EEPROM,
17 * I do _not_ embed any value from the property lists, as the ones
18 * provided by Darwin 7.0 seem to always have an older version that
19 * what I've seen on the actual computers.
20 * It would be interesting to verify that though. Darwin has a
21 * version code of 1.0.0d11 for all control loops it seems, while
22 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
23 *
24 * Darwin doesn't provide source to all parts, some missing
25 * bits like the AppleFCU driver or the actual scale of some
26 * of the values returned by sensors had to be "guessed" some
27 * way... or based on what Open Firmware does.
28 *
29 * I didn't yet figure out how to get the slots power consumption
30 * out of the FCU, so that part has not been implemented yet and
31 * the slots fan is set to a fixed 50% PWM, hoping this value is
32 * safe enough ...
33 *
34 * Note: I have observed strange oscillations of the CPU control
35 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36 * oscillates slowly (over several minutes) between the minimum
37 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38 * this, it could be some incorrect constant or an error in the
39 * way I ported the algorithm, or it could be just normal. I
40 * don't have full understanding on the way Apple tweaked the PID
41 * algorithm for the CPU control, it is definitely not a standard
42 * implementation...
43 *
44 * TODO: - Check MPU structure version/signature
45 * - Add things like /sbin/overtemp for non-critical
46 * overtemp conditions so userland can take some policy
47 * decisions, like slewing down CPUs
48 * - Deal with fan and i2c failures in a better way
49 * - Maybe do a generic PID based on params used for
50 * U3 and Drives ? Definitely need to factor code a bit
51 * bettter... also make sensor detection more robust using
52 * the device-tree to probe for them
53 * - Figure out how to get the slots consumption and set the
54 * slots fan accordingly
55 *
56 * History:
57 *
58 * Nov. 13, 2003 : 0.5
59 * - First release
60 *
61 * Nov. 14, 2003 : 0.6
62 * - Read fan speed from FCU, low level fan routines now deal
63 * with errors & check fan status, though higher level don't
64 * do much.
65 * - Move a bunch of definitions to .h file
66 *
67 * Nov. 18, 2003 : 0.7
68 * - Fix build on ppc64 kernel
69 * - Move back statics definitions to .c file
70 * - Avoid calling schedule_timeout with a negative number
71 *
72 * Dec. 18, 2003 : 0.8
73 * - Fix typo when reading back fan speed on 2 CPU machines
74 *
75 * Mar. 11, 2004 : 0.9
76 * - Rework code accessing the ADC chips, make it more robust and
77 * closer to the chip spec. Also make sure it is configured properly,
78 * I've seen yet unexplained cases where on startup, I would have stale
79 * values in the configuration register
80 * - Switch back to use of target fan speed for PID, thus lowering
81 * pressure on i2c
82 *
83 * Oct. 20, 2004 : 1.1
84 * - Add device-tree lookup for fan IDs, should detect liquid cooling
85 * pumps when present
86 * - Enable driver for PowerMac7,3 machines
87 * - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88 * - Add new CPU cooling algorithm for machines with liquid cooling
89 * - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90 * - Fix a signed/unsigned compare issue in some PID loops
91 *
92 * Mar. 10, 2005 : 1.2
93 * - Add basic support for Xserve G5
94 * - Retreive pumps min/max from EEPROM image in device-tree (broken)
95 * - Use min/max macros here or there
96 * - Latest darwin updated U3H min fan speed to 20% PWM
97 *
98 * July. 06, 2006 : 1.3
99 * - Fix setting of RPM fans on Xserve G5 (they were going too fast)
100 * - Add missing slots fan control loop for Xserve G5
101 * - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
102 * still can't properly implement the control loop for these, so let's
103 * reduce the noise a little bit, it appears that 40% still gives us
104 * a pretty good air flow
105 * - Add code to "tickle" the FCU regulary so it doesn't think that
106 * we are gone while in fact, the machine just didn't need any fan
107 * speed change lately
108 *
109 */
110
111 #include <linux/types.h>
112 #include <linux/module.h>
113 #include <linux/errno.h>
114 #include <linux/kernel.h>
115 #include <linux/delay.h>
116 #include <linux/sched.h>
117 #include <linux/slab.h>
118 #include <linux/init.h>
119 #include <linux/spinlock.h>
120 #include <linux/wait.h>
121 #include <linux/reboot.h>
122 #include <linux/kmod.h>
123 #include <linux/i2c.h>
124 #include <linux/kthread.h>
125 #include <linux/mutex.h>
126 #include <linux/of_device.h>
127 #include <linux/of_platform.h>
128 #include <asm/prom.h>
129 #include <asm/machdep.h>
130 #include <asm/io.h>
131 #include <asm/system.h>
132 #include <asm/sections.h>
133 #include <asm/macio.h>
134
135 #include "therm_pm72.h"
136
137 #define VERSION "1.3"
138
139 #undef DEBUG
140
141 #ifdef DEBUG
142 #define DBG(args...) printk(args)
143 #else
144 #define DBG(args...) do { } while(0)
145 #endif
146
147
148 /*
149 * Driver statics
150 */
151
152 static struct of_device * of_dev;
153 static struct i2c_adapter * u3_0;
154 static struct i2c_adapter * u3_1;
155 static struct i2c_adapter * k2;
156 static struct i2c_client * fcu;
157 static struct cpu_pid_state cpu_state[2];
158 static struct basckside_pid_params backside_params;
159 static struct backside_pid_state backside_state;
160 static struct drives_pid_state drives_state;
161 static struct dimm_pid_state dimms_state;
162 static struct slots_pid_state slots_state;
163 static int state;
164 static int cpu_count;
165 static int cpu_pid_type;
166 static struct task_struct *ctrl_task;
167 static struct completion ctrl_complete;
168 static int critical_state;
169 static int rackmac;
170 static s32 dimm_output_clamp;
171 static int fcu_rpm_shift;
172 static int fcu_tickle_ticks;
173 static DEFINE_MUTEX(driver_lock);
174
175 /*
176 * We have 3 types of CPU PID control. One is "split" old style control
177 * for intake & exhaust fans, the other is "combined" control for both
178 * CPUs that also deals with the pumps when present. To be "compatible"
179 * with OS X at this point, we only use "COMBINED" on the machines that
180 * are identified as having the pumps (though that identification is at
181 * least dodgy). Ultimately, we could probably switch completely to this
182 * algorithm provided we hack it to deal with the UP case
183 */
184 #define CPU_PID_TYPE_SPLIT 0
185 #define CPU_PID_TYPE_COMBINED 1
186 #define CPU_PID_TYPE_RACKMAC 2
187
188 /*
189 * This table describes all fans in the FCU. The "id" and "type" values
190 * are defaults valid for all earlier machines. Newer machines will
191 * eventually override the table content based on the device-tree
192 */
193 struct fcu_fan_table
194 {
195 char* loc; /* location code */
196 int type; /* 0 = rpm, 1 = pwm, 2 = pump */
197 int id; /* id or -1 */
198 };
199
200 #define FCU_FAN_RPM 0
201 #define FCU_FAN_PWM 1
202
203 #define FCU_FAN_ABSENT_ID -1
204
205 #define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans)
206
207 struct fcu_fan_table fcu_fans[] = {
208 [BACKSIDE_FAN_PWM_INDEX] = {
209 .loc = "BACKSIDE,SYS CTRLR FAN",
210 .type = FCU_FAN_PWM,
211 .id = BACKSIDE_FAN_PWM_DEFAULT_ID,
212 },
213 [DRIVES_FAN_RPM_INDEX] = {
214 .loc = "DRIVE BAY",
215 .type = FCU_FAN_RPM,
216 .id = DRIVES_FAN_RPM_DEFAULT_ID,
217 },
218 [SLOTS_FAN_PWM_INDEX] = {
219 .loc = "SLOT,PCI FAN",
220 .type = FCU_FAN_PWM,
221 .id = SLOTS_FAN_PWM_DEFAULT_ID,
222 },
223 [CPUA_INTAKE_FAN_RPM_INDEX] = {
224 .loc = "CPU A INTAKE",
225 .type = FCU_FAN_RPM,
226 .id = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
227 },
228 [CPUA_EXHAUST_FAN_RPM_INDEX] = {
229 .loc = "CPU A EXHAUST",
230 .type = FCU_FAN_RPM,
231 .id = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
232 },
233 [CPUB_INTAKE_FAN_RPM_INDEX] = {
234 .loc = "CPU B INTAKE",
235 .type = FCU_FAN_RPM,
236 .id = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
237 },
238 [CPUB_EXHAUST_FAN_RPM_INDEX] = {
239 .loc = "CPU B EXHAUST",
240 .type = FCU_FAN_RPM,
241 .id = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
242 },
243 /* pumps aren't present by default, have to be looked up in the
244 * device-tree
245 */
246 [CPUA_PUMP_RPM_INDEX] = {
247 .loc = "CPU A PUMP",
248 .type = FCU_FAN_RPM,
249 .id = FCU_FAN_ABSENT_ID,
250 },
251 [CPUB_PUMP_RPM_INDEX] = {
252 .loc = "CPU B PUMP",
253 .type = FCU_FAN_RPM,
254 .id = FCU_FAN_ABSENT_ID,
255 },
256 /* Xserve fans */
257 [CPU_A1_FAN_RPM_INDEX] = {
258 .loc = "CPU A 1",
259 .type = FCU_FAN_RPM,
260 .id = FCU_FAN_ABSENT_ID,
261 },
262 [CPU_A2_FAN_RPM_INDEX] = {
263 .loc = "CPU A 2",
264 .type = FCU_FAN_RPM,
265 .id = FCU_FAN_ABSENT_ID,
266 },
267 [CPU_A3_FAN_RPM_INDEX] = {
268 .loc = "CPU A 3",
269 .type = FCU_FAN_RPM,
270 .id = FCU_FAN_ABSENT_ID,
271 },
272 [CPU_B1_FAN_RPM_INDEX] = {
273 .loc = "CPU B 1",
274 .type = FCU_FAN_RPM,
275 .id = FCU_FAN_ABSENT_ID,
276 },
277 [CPU_B2_FAN_RPM_INDEX] = {
278 .loc = "CPU B 2",
279 .type = FCU_FAN_RPM,
280 .id = FCU_FAN_ABSENT_ID,
281 },
282 [CPU_B3_FAN_RPM_INDEX] = {
283 .loc = "CPU B 3",
284 .type = FCU_FAN_RPM,
285 .id = FCU_FAN_ABSENT_ID,
286 },
287 };
288
289 /*
290 * Utility function to create an i2c_client structure and
291 * attach it to one of u3 adapters
292 */
293 static struct i2c_client *attach_i2c_chip(int id, const char *name)
294 {
295 struct i2c_client *clt;
296 struct i2c_adapter *adap;
297 struct i2c_board_info info;
298
299 if (id & 0x200)
300 adap = k2;
301 else if (id & 0x100)
302 adap = u3_1;
303 else
304 adap = u3_0;
305 if (adap == NULL)
306 return NULL;
307
308 memset(&info, 0, sizeof(struct i2c_board_info));
309 info.addr = (id >> 1) & 0x7f;
310 strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE);
311 clt = i2c_new_device(adap, &info);
312 if (!clt) {
313 printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
314 return NULL;
315 }
316
317 /*
318 * Let i2c-core delete that device on driver removal.
319 * This is safe because i2c-core holds the core_lock mutex for us.
320 */
321 list_add_tail(&clt->detected, &clt->driver->clients);
322 return clt;
323 }
324
325 /*
326 * Here are the i2c chip access wrappers
327 */
328
329 static void initialize_adc(struct cpu_pid_state *state)
330 {
331 int rc;
332 u8 buf[2];
333
334 /* Read ADC the configuration register and cache it. We
335 * also make sure Config2 contains proper values, I've seen
336 * cases where we got stale grabage in there, thus preventing
337 * proper reading of conv. values
338 */
339
340 /* Clear Config2 */
341 buf[0] = 5;
342 buf[1] = 0;
343 i2c_master_send(state->monitor, buf, 2);
344
345 /* Read & cache Config1 */
346 buf[0] = 1;
347 rc = i2c_master_send(state->monitor, buf, 1);
348 if (rc > 0) {
349 rc = i2c_master_recv(state->monitor, buf, 1);
350 if (rc > 0) {
351 state->adc_config = buf[0];
352 DBG("ADC config reg: %02x\n", state->adc_config);
353 /* Disable shutdown mode */
354 state->adc_config &= 0xfe;
355 buf[0] = 1;
356 buf[1] = state->adc_config;
357 rc = i2c_master_send(state->monitor, buf, 2);
358 }
359 }
360 if (rc <= 0)
361 printk(KERN_ERR "therm_pm72: Error reading ADC config"
362 " register !\n");
363 }
364
365 static int read_smon_adc(struct cpu_pid_state *state, int chan)
366 {
367 int rc, data, tries = 0;
368 u8 buf[2];
369
370 for (;;) {
371 /* Set channel */
372 buf[0] = 1;
373 buf[1] = (state->adc_config & 0x1f) | (chan << 5);
374 rc = i2c_master_send(state->monitor, buf, 2);
375 if (rc <= 0)
376 goto error;
377 /* Wait for convertion */
378 msleep(1);
379 /* Switch to data register */
380 buf[0] = 4;
381 rc = i2c_master_send(state->monitor, buf, 1);
382 if (rc <= 0)
383 goto error;
384 /* Read result */
385 rc = i2c_master_recv(state->monitor, buf, 2);
386 if (rc < 0)
387 goto error;
388 data = ((u16)buf[0]) << 8 | (u16)buf[1];
389 return data >> 6;
390 error:
391 DBG("Error reading ADC, retrying...\n");
392 if (++tries > 10) {
393 printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
394 return -1;
395 }
396 msleep(10);
397 }
398 }
399
400 static int read_lm87_reg(struct i2c_client * chip, int reg)
401 {
402 int rc, tries = 0;
403 u8 buf;
404
405 for (;;) {
406 /* Set address */
407 buf = (u8)reg;
408 rc = i2c_master_send(chip, &buf, 1);
409 if (rc <= 0)
410 goto error;
411 rc = i2c_master_recv(chip, &buf, 1);
412 if (rc <= 0)
413 goto error;
414 return (int)buf;
415 error:
416 DBG("Error reading LM87, retrying...\n");
417 if (++tries > 10) {
418 printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
419 return -1;
420 }
421 msleep(10);
422 }
423 }
424
425 static int fan_read_reg(int reg, unsigned char *buf, int nb)
426 {
427 int tries, nr, nw;
428
429 buf[0] = reg;
430 tries = 0;
431 for (;;) {
432 nw = i2c_master_send(fcu, buf, 1);
433 if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
434 break;
435 msleep(10);
436 ++tries;
437 }
438 if (nw <= 0) {
439 printk(KERN_ERR "Failure writing address to FCU: %d", nw);
440 return -EIO;
441 }
442 tries = 0;
443 for (;;) {
444 nr = i2c_master_recv(fcu, buf, nb);
445 if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100)
446 break;
447 msleep(10);
448 ++tries;
449 }
450 if (nr <= 0)
451 printk(KERN_ERR "Failure reading data from FCU: %d", nw);
452 return nr;
453 }
454
455 static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
456 {
457 int tries, nw;
458 unsigned char buf[16];
459
460 buf[0] = reg;
461 memcpy(buf+1, ptr, nb);
462 ++nb;
463 tries = 0;
464 for (;;) {
465 nw = i2c_master_send(fcu, buf, nb);
466 if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100)
467 break;
468 msleep(10);
469 ++tries;
470 }
471 if (nw < 0)
472 printk(KERN_ERR "Failure writing to FCU: %d", nw);
473 return nw;
474 }
475
476 static int start_fcu(void)
477 {
478 unsigned char buf = 0xff;
479 int rc;
480
481 rc = fan_write_reg(0xe, &buf, 1);
482 if (rc < 0)
483 return -EIO;
484 rc = fan_write_reg(0x2e, &buf, 1);
485 if (rc < 0)
486 return -EIO;
487 rc = fan_read_reg(0, &buf, 1);
488 if (rc < 0)
489 return -EIO;
490 fcu_rpm_shift = (buf == 1) ? 2 : 3;
491 printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
492 fcu_rpm_shift);
493
494 return 0;
495 }
496
497 static int set_rpm_fan(int fan_index, int rpm)
498 {
499 unsigned char buf[2];
500 int rc, id, min, max;
501
502 if (fcu_fans[fan_index].type != FCU_FAN_RPM)
503 return -EINVAL;
504 id = fcu_fans[fan_index].id;
505 if (id == FCU_FAN_ABSENT_ID)
506 return -EINVAL;
507
508 min = 2400 >> fcu_rpm_shift;
509 max = 56000 >> fcu_rpm_shift;
510
511 if (rpm < min)
512 rpm = min;
513 else if (rpm > max)
514 rpm = max;
515 buf[0] = rpm >> (8 - fcu_rpm_shift);
516 buf[1] = rpm << fcu_rpm_shift;
517 rc = fan_write_reg(0x10 + (id * 2), buf, 2);
518 if (rc < 0)
519 return -EIO;
520 return 0;
521 }
522
523 static int get_rpm_fan(int fan_index, int programmed)
524 {
525 unsigned char failure;
526 unsigned char active;
527 unsigned char buf[2];
528 int rc, id, reg_base;
529
530 if (fcu_fans[fan_index].type != FCU_FAN_RPM)
531 return -EINVAL;
532 id = fcu_fans[fan_index].id;
533 if (id == FCU_FAN_ABSENT_ID)
534 return -EINVAL;
535
536 rc = fan_read_reg(0xb, &failure, 1);
537 if (rc != 1)
538 return -EIO;
539 if ((failure & (1 << id)) != 0)
540 return -EFAULT;
541 rc = fan_read_reg(0xd, &active, 1);
542 if (rc != 1)
543 return -EIO;
544 if ((active & (1 << id)) == 0)
545 return -ENXIO;
546
547 /* Programmed value or real current speed */
548 reg_base = programmed ? 0x10 : 0x11;
549 rc = fan_read_reg(reg_base + (id * 2), buf, 2);
550 if (rc != 2)
551 return -EIO;
552
553 return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
554 }
555
556 static int set_pwm_fan(int fan_index, int pwm)
557 {
558 unsigned char buf[2];
559 int rc, id;
560
561 if (fcu_fans[fan_index].type != FCU_FAN_PWM)
562 return -EINVAL;
563 id = fcu_fans[fan_index].id;
564 if (id == FCU_FAN_ABSENT_ID)
565 return -EINVAL;
566
567 if (pwm < 10)
568 pwm = 10;
569 else if (pwm > 100)
570 pwm = 100;
571 pwm = (pwm * 2559) / 1000;
572 buf[0] = pwm;
573 rc = fan_write_reg(0x30 + (id * 2), buf, 1);
574 if (rc < 0)
575 return rc;
576 return 0;
577 }
578
579 static int get_pwm_fan(int fan_index)
580 {
581 unsigned char failure;
582 unsigned char active;
583 unsigned char buf[2];
584 int rc, id;
585
586 if (fcu_fans[fan_index].type != FCU_FAN_PWM)
587 return -EINVAL;
588 id = fcu_fans[fan_index].id;
589 if (id == FCU_FAN_ABSENT_ID)
590 return -EINVAL;
591
592 rc = fan_read_reg(0x2b, &failure, 1);
593 if (rc != 1)
594 return -EIO;
595 if ((failure & (1 << id)) != 0)
596 return -EFAULT;
597 rc = fan_read_reg(0x2d, &active, 1);
598 if (rc != 1)
599 return -EIO;
600 if ((active & (1 << id)) == 0)
601 return -ENXIO;
602
603 /* Programmed value or real current speed */
604 rc = fan_read_reg(0x30 + (id * 2), buf, 1);
605 if (rc != 1)
606 return -EIO;
607
608 return (buf[0] * 1000) / 2559;
609 }
610
611 static void tickle_fcu(void)
612 {
613 int pwm;
614
615 pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
616
617 DBG("FCU Tickle, slots fan is: %d\n", pwm);
618 if (pwm < 0)
619 pwm = 100;
620
621 if (!rackmac) {
622 pwm = SLOTS_FAN_DEFAULT_PWM;
623 } else if (pwm < SLOTS_PID_OUTPUT_MIN)
624 pwm = SLOTS_PID_OUTPUT_MIN;
625
626 /* That is hopefully enough to make the FCU happy */
627 set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
628 }
629
630
631 /*
632 * Utility routine to read the CPU calibration EEPROM data
633 * from the device-tree
634 */
635 static int read_eeprom(int cpu, struct mpu_data *out)
636 {
637 struct device_node *np;
638 char nodename[64];
639 const u8 *data;
640 int len;
641
642 /* prom.c routine for finding a node by path is a bit brain dead
643 * and requires exact @xxx unit numbers. This is a bit ugly but
644 * will work for these machines
645 */
646 sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
647 np = of_find_node_by_path(nodename);
648 if (np == NULL) {
649 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
650 return -ENODEV;
651 }
652 data = of_get_property(np, "cpuid", &len);
653 if (data == NULL) {
654 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
655 of_node_put(np);
656 return -ENODEV;
657 }
658 memcpy(out, data, sizeof(struct mpu_data));
659 of_node_put(np);
660
661 return 0;
662 }
663
664 static void fetch_cpu_pumps_minmax(void)
665 {
666 struct cpu_pid_state *state0 = &cpu_state[0];
667 struct cpu_pid_state *state1 = &cpu_state[1];
668 u16 pump_min = 0, pump_max = 0xffff;
669 u16 tmp[4];
670
671 /* Try to fetch pumps min/max infos from eeprom */
672
673 memcpy(&tmp, &state0->mpu.processor_part_num, 8);
674 if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
675 pump_min = max(pump_min, tmp[0]);
676 pump_max = min(pump_max, tmp[1]);
677 }
678 if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
679 pump_min = max(pump_min, tmp[2]);
680 pump_max = min(pump_max, tmp[3]);
681 }
682
683 /* Double check the values, this _IS_ needed as the EEPROM on
684 * some dual 2.5Ghz G5s seem, at least, to have both min & max
685 * same to the same value ... (grrrr)
686 */
687 if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
688 pump_min = CPU_PUMP_OUTPUT_MIN;
689 pump_max = CPU_PUMP_OUTPUT_MAX;
690 }
691
692 state0->pump_min = state1->pump_min = pump_min;
693 state0->pump_max = state1->pump_max = pump_max;
694 }
695
696 /*
697 * Now, unfortunately, sysfs doesn't give us a nice void * we could
698 * pass around to the attribute functions, so we don't really have
699 * choice but implement a bunch of them...
700 *
701 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
702 * the input twice... I accept patches :)
703 */
704 #define BUILD_SHOW_FUNC_FIX(name, data) \
705 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
706 { \
707 ssize_t r; \
708 mutex_lock(&driver_lock); \
709 r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \
710 mutex_unlock(&driver_lock); \
711 return r; \
712 }
713 #define BUILD_SHOW_FUNC_INT(name, data) \
714 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
715 { \
716 return sprintf(buf, "%d", data); \
717 }
718
719 BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp)
720 BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage)
721 BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a)
722 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm)
723 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm)
724
725 BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp)
726 BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage)
727 BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a)
728 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm)
729 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm)
730
731 BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
732 BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
733
734 BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
735 BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
736
737 BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
738 BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
739
740 BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
741
742 static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
743 static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
744 static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
745 static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
746 static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
747
748 static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
749 static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
750 static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
751 static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
752 static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
753
754 static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
755 static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
756
757 static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
758 static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
759
760 static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
761 static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
762
763 static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
764
765 /*
766 * CPUs fans control loop
767 */
768
769 static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
770 {
771 s32 ltemp, volts, amps;
772 int index, rc = 0;
773
774 /* Default (in case of error) */
775 *temp = state->cur_temp;
776 *power = state->cur_power;
777
778 if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
779 index = (state->index == 0) ?
780 CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
781 else
782 index = (state->index == 0) ?
783 CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
784
785 /* Read current fan status */
786 rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
787 if (rc < 0) {
788 /* XXX What do we do now ? Nothing for now, keep old value, but
789 * return error upstream
790 */
791 DBG(" cpu %d, fan reading error !\n", state->index);
792 } else {
793 state->rpm = rc;
794 DBG(" cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
795 }
796
797 /* Get some sensor readings and scale it */
798 ltemp = read_smon_adc(state, 1);
799 if (ltemp == -1) {
800 /* XXX What do we do now ? */
801 state->overtemp++;
802 if (rc == 0)
803 rc = -EIO;
804 DBG(" cpu %d, temp reading error !\n", state->index);
805 } else {
806 /* Fixup temperature according to diode calibration
807 */
808 DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
809 state->index,
810 ltemp, state->mpu.mdiode, state->mpu.bdiode);
811 *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
812 state->last_temp = *temp;
813 DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp)));
814 }
815
816 /*
817 * Read voltage & current and calculate power
818 */
819 volts = read_smon_adc(state, 3);
820 amps = read_smon_adc(state, 4);
821
822 /* Scale voltage and current raw sensor values according to fixed scales
823 * obtained in Darwin and calculate power from I and V
824 */
825 volts *= ADC_CPU_VOLTAGE_SCALE;
826 amps *= ADC_CPU_CURRENT_SCALE;
827 *power = (((u64)volts) * ((u64)amps)) >> 16;
828 state->voltage = volts;
829 state->current_a = amps;
830 state->last_power = *power;
831
832 DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
833 state->index, FIX32TOPRINT(state->current_a),
834 FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
835
836 return 0;
837 }
838
839 static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
840 {
841 s32 power_target, integral, derivative, proportional, adj_in_target, sval;
842 s64 integ_p, deriv_p, prop_p, sum;
843 int i;
844
845 /* Calculate power target value (could be done once for all)
846 * and convert to a 16.16 fp number
847 */
848 power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
849 DBG(" power target: %d.%03d, error: %d.%03d\n",
850 FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
851
852 /* Store temperature and power in history array */
853 state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
854 state->temp_history[state->cur_temp] = temp;
855 state->cur_power = (state->cur_power + 1) % state->count_power;
856 state->power_history[state->cur_power] = power;
857 state->error_history[state->cur_power] = power_target - power;
858
859 /* If first loop, fill the history table */
860 if (state->first) {
861 for (i = 0; i < (state->count_power - 1); i++) {
862 state->cur_power = (state->cur_power + 1) % state->count_power;
863 state->power_history[state->cur_power] = power;
864 state->error_history[state->cur_power] = power_target - power;
865 }
866 for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
867 state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
868 state->temp_history[state->cur_temp] = temp;
869 }
870 state->first = 0;
871 }
872
873 /* Calculate the integral term normally based on the "power" values */
874 sum = 0;
875 integral = 0;
876 for (i = 0; i < state->count_power; i++)
877 integral += state->error_history[i];
878 integral *= CPU_PID_INTERVAL;
879 DBG(" integral: %08x\n", integral);
880
881 /* Calculate the adjusted input (sense value).
882 * G_r is 12.20
883 * integ is 16.16
884 * so the result is 28.36
885 *
886 * input target is mpu.ttarget, input max is mpu.tmax
887 */
888 integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
889 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
890 sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
891 adj_in_target = (state->mpu.ttarget << 16);
892 if (adj_in_target > sval)
893 adj_in_target = sval;
894 DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
895 state->mpu.ttarget);
896
897 /* Calculate the derivative term */
898 derivative = state->temp_history[state->cur_temp] -
899 state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
900 % CPU_TEMP_HISTORY_SIZE];
901 derivative /= CPU_PID_INTERVAL;
902 deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
903 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
904 sum += deriv_p;
905
906 /* Calculate the proportional term */
907 proportional = temp - adj_in_target;
908 prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
909 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
910 sum += prop_p;
911
912 /* Scale sum */
913 sum >>= 36;
914
915 DBG(" sum: %d\n", (int)sum);
916 state->rpm += (s32)sum;
917 }
918
919 static void do_monitor_cpu_combined(void)
920 {
921 struct cpu_pid_state *state0 = &cpu_state[0];
922 struct cpu_pid_state *state1 = &cpu_state[1];
923 s32 temp0, power0, temp1, power1;
924 s32 temp_combi, power_combi;
925 int rc, intake, pump;
926
927 rc = do_read_one_cpu_values(state0, &temp0, &power0);
928 if (rc < 0) {
929 /* XXX What do we do now ? */
930 }
931 state1->overtemp = 0;
932 rc = do_read_one_cpu_values(state1, &temp1, &power1);
933 if (rc < 0) {
934 /* XXX What do we do now ? */
935 }
936 if (state1->overtemp)
937 state0->overtemp++;
938
939 temp_combi = max(temp0, temp1);
940 power_combi = max(power0, power1);
941
942 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
943 * full blown immediately and try to trigger a shutdown
944 */
945 if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
946 printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
947 temp_combi >> 16);
948 state0->overtemp += CPU_MAX_OVERTEMP / 4;
949 } else if (temp_combi > (state0->mpu.tmax << 16))
950 state0->overtemp++;
951 else
952 state0->overtemp = 0;
953 if (state0->overtemp >= CPU_MAX_OVERTEMP)
954 critical_state = 1;
955 if (state0->overtemp > 0) {
956 state0->rpm = state0->mpu.rmaxn_exhaust_fan;
957 state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
958 pump = state0->pump_max;
959 goto do_set_fans;
960 }
961
962 /* Do the PID */
963 do_cpu_pid(state0, temp_combi, power_combi);
964
965 /* Range check */
966 state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
967 state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
968
969 /* Calculate intake fan speed */
970 intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
971 intake = max(intake, (int)state0->mpu.rminn_intake_fan);
972 intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
973 state0->intake_rpm = intake;
974
975 /* Calculate pump speed */
976 pump = (state0->rpm * state0->pump_max) /
977 state0->mpu.rmaxn_exhaust_fan;
978 pump = min(pump, state0->pump_max);
979 pump = max(pump, state0->pump_min);
980
981 do_set_fans:
982 /* We copy values from state 0 to state 1 for /sysfs */
983 state1->rpm = state0->rpm;
984 state1->intake_rpm = state0->intake_rpm;
985
986 DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
987 state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
988
989 /* We should check for errors, shouldn't we ? But then, what
990 * do we do once the error occurs ? For FCU notified fan
991 * failures (-EFAULT) we probably want to notify userland
992 * some way...
993 */
994 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
995 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
996 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
997 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
998
999 if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1000 set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
1001 if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1002 set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
1003 }
1004
1005 static void do_monitor_cpu_split(struct cpu_pid_state *state)
1006 {
1007 s32 temp, power;
1008 int rc, intake;
1009
1010 /* Read current fan status */
1011 rc = do_read_one_cpu_values(state, &temp, &power);
1012 if (rc < 0) {
1013 /* XXX What do we do now ? */
1014 }
1015
1016 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1017 * full blown immediately and try to trigger a shutdown
1018 */
1019 if (temp >= ((state->mpu.tmax + 8) << 16)) {
1020 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1021 " (%d) !\n",
1022 state->index, temp >> 16);
1023 state->overtemp += CPU_MAX_OVERTEMP / 4;
1024 } else if (temp > (state->mpu.tmax << 16))
1025 state->overtemp++;
1026 else
1027 state->overtemp = 0;
1028 if (state->overtemp >= CPU_MAX_OVERTEMP)
1029 critical_state = 1;
1030 if (state->overtemp > 0) {
1031 state->rpm = state->mpu.rmaxn_exhaust_fan;
1032 state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1033 goto do_set_fans;
1034 }
1035
1036 /* Do the PID */
1037 do_cpu_pid(state, temp, power);
1038
1039 /* Range check */
1040 state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1041 state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1042
1043 /* Calculate intake fan */
1044 intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1045 intake = max(intake, (int)state->mpu.rminn_intake_fan);
1046 intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1047 state->intake_rpm = intake;
1048
1049 do_set_fans:
1050 DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1051 state->index, (int)state->rpm, intake, state->overtemp);
1052
1053 /* We should check for errors, shouldn't we ? But then, what
1054 * do we do once the error occurs ? For FCU notified fan
1055 * failures (-EFAULT) we probably want to notify userland
1056 * some way...
1057 */
1058 if (state->index == 0) {
1059 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1060 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1061 } else {
1062 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1063 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1064 }
1065 }
1066
1067 static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1068 {
1069 s32 temp, power, fan_min;
1070 int rc;
1071
1072 /* Read current fan status */
1073 rc = do_read_one_cpu_values(state, &temp, &power);
1074 if (rc < 0) {
1075 /* XXX What do we do now ? */
1076 }
1077
1078 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1079 * full blown immediately and try to trigger a shutdown
1080 */
1081 if (temp >= ((state->mpu.tmax + 8) << 16)) {
1082 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1083 " (%d) !\n",
1084 state->index, temp >> 16);
1085 state->overtemp = CPU_MAX_OVERTEMP / 4;
1086 } else if (temp > (state->mpu.tmax << 16))
1087 state->overtemp++;
1088 else
1089 state->overtemp = 0;
1090 if (state->overtemp >= CPU_MAX_OVERTEMP)
1091 critical_state = 1;
1092 if (state->overtemp > 0) {
1093 state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1094 goto do_set_fans;
1095 }
1096
1097 /* Do the PID */
1098 do_cpu_pid(state, temp, power);
1099
1100 /* Check clamp from dimms */
1101 fan_min = dimm_output_clamp;
1102 fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1103
1104 DBG(" CPU min mpu = %d, min dimm = %d\n",
1105 state->mpu.rminn_intake_fan, dimm_output_clamp);
1106
1107 state->rpm = max(state->rpm, (int)fan_min);
1108 state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1109 state->intake_rpm = state->rpm;
1110
1111 do_set_fans:
1112 DBG("** CPU %d RPM: %d overtemp: %d\n",
1113 state->index, (int)state->rpm, state->overtemp);
1114
1115 /* We should check for errors, shouldn't we ? But then, what
1116 * do we do once the error occurs ? For FCU notified fan
1117 * failures (-EFAULT) we probably want to notify userland
1118 * some way...
1119 */
1120 if (state->index == 0) {
1121 set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1122 set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1123 set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1124 } else {
1125 set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1126 set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1127 set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1128 }
1129 }
1130
1131 /*
1132 * Initialize the state structure for one CPU control loop
1133 */
1134 static int init_cpu_state(struct cpu_pid_state *state, int index)
1135 {
1136 int err;
1137
1138 state->index = index;
1139 state->first = 1;
1140 state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1141 state->overtemp = 0;
1142 state->adc_config = 0x00;
1143
1144
1145 if (index == 0)
1146 state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1147 else if (index == 1)
1148 state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1149 if (state->monitor == NULL)
1150 goto fail;
1151
1152 if (read_eeprom(index, &state->mpu))
1153 goto fail;
1154
1155 state->count_power = state->mpu.tguardband;
1156 if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1157 printk(KERN_WARNING "Warning ! too many power history slots\n");
1158 state->count_power = CPU_POWER_HISTORY_SIZE;
1159 }
1160 DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1161
1162 if (index == 0) {
1163 err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1164 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1165 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1166 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1167 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1168 } else {
1169 err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1170 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1171 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1172 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1173 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1174 }
1175 if (err)
1176 printk(KERN_WARNING "Failed to create some of the atribute"
1177 "files for CPU %d\n", index);
1178
1179 return 0;
1180 fail:
1181 state->monitor = NULL;
1182
1183 return -ENODEV;
1184 }
1185
1186 /*
1187 * Dispose of the state data for one CPU control loop
1188 */
1189 static void dispose_cpu_state(struct cpu_pid_state *state)
1190 {
1191 if (state->monitor == NULL)
1192 return;
1193
1194 if (state->index == 0) {
1195 device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1196 device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1197 device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1198 device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1199 device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1200 } else {
1201 device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1202 device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1203 device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1204 device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1205 device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1206 }
1207
1208 state->monitor = NULL;
1209 }
1210
1211 /*
1212 * Motherboard backside & U3 heatsink fan control loop
1213 */
1214 static void do_monitor_backside(struct backside_pid_state *state)
1215 {
1216 s32 temp, integral, derivative, fan_min;
1217 s64 integ_p, deriv_p, prop_p, sum;
1218 int i, rc;
1219
1220 if (--state->ticks != 0)
1221 return;
1222 state->ticks = backside_params.interval;
1223
1224 DBG("backside:\n");
1225
1226 /* Check fan status */
1227 rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1228 if (rc < 0) {
1229 printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1230 /* XXX What do we do now ? */
1231 } else
1232 state->pwm = rc;
1233 DBG(" current pwm: %d\n", state->pwm);
1234
1235 /* Get some sensor readings */
1236 temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1237 state->last_temp = temp;
1238 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1239 FIX32TOPRINT(backside_params.input_target));
1240
1241 /* Store temperature and error in history array */
1242 state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1243 state->sample_history[state->cur_sample] = temp;
1244 state->error_history[state->cur_sample] = temp - backside_params.input_target;
1245
1246 /* If first loop, fill the history table */
1247 if (state->first) {
1248 for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1249 state->cur_sample = (state->cur_sample + 1) %
1250 BACKSIDE_PID_HISTORY_SIZE;
1251 state->sample_history[state->cur_sample] = temp;
1252 state->error_history[state->cur_sample] =
1253 temp - backside_params.input_target;
1254 }
1255 state->first = 0;
1256 }
1257
1258 /* Calculate the integral term */
1259 sum = 0;
1260 integral = 0;
1261 for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1262 integral += state->error_history[i];
1263 integral *= backside_params.interval;
1264 DBG(" integral: %08x\n", integral);
1265 integ_p = ((s64)backside_params.G_r) * (s64)integral;
1266 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1267 sum += integ_p;
1268
1269 /* Calculate the derivative term */
1270 derivative = state->error_history[state->cur_sample] -
1271 state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1272 % BACKSIDE_PID_HISTORY_SIZE];
1273 derivative /= backside_params.interval;
1274 deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1275 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1276 sum += deriv_p;
1277
1278 /* Calculate the proportional term */
1279 prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1280 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1281 sum += prop_p;
1282
1283 /* Scale sum */
1284 sum >>= 36;
1285
1286 DBG(" sum: %d\n", (int)sum);
1287 if (backside_params.additive)
1288 state->pwm += (s32)sum;
1289 else
1290 state->pwm = sum;
1291
1292 /* Check for clamp */
1293 fan_min = (dimm_output_clamp * 100) / 14000;
1294 fan_min = max(fan_min, backside_params.output_min);
1295
1296 state->pwm = max(state->pwm, fan_min);
1297 state->pwm = min(state->pwm, backside_params.output_max);
1298
1299 DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1300 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1301 }
1302
1303 /*
1304 * Initialize the state structure for the backside fan control loop
1305 */
1306 static int init_backside_state(struct backside_pid_state *state)
1307 {
1308 struct device_node *u3;
1309 int u3h = 1; /* conservative by default */
1310 int err;
1311
1312 /*
1313 * There are different PID params for machines with U3 and machines
1314 * with U3H, pick the right ones now
1315 */
1316 u3 = of_find_node_by_path("/u3@0,f8000000");
1317 if (u3 != NULL) {
1318 const u32 *vers = of_get_property(u3, "device-rev", NULL);
1319 if (vers)
1320 if (((*vers) & 0x3f) < 0x34)
1321 u3h = 0;
1322 of_node_put(u3);
1323 }
1324
1325 if (rackmac) {
1326 backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1327 backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1328 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1329 backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1330 backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1331 backside_params.G_r = BACKSIDE_PID_G_r;
1332 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1333 backside_params.additive = 0;
1334 } else if (u3h) {
1335 backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1336 backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1337 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1338 backside_params.interval = BACKSIDE_PID_INTERVAL;
1339 backside_params.G_p = BACKSIDE_PID_G_p;
1340 backside_params.G_r = BACKSIDE_PID_G_r;
1341 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1342 backside_params.additive = 1;
1343 } else {
1344 backside_params.G_d = BACKSIDE_PID_U3_G_d;
1345 backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1346 backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1347 backside_params.interval = BACKSIDE_PID_INTERVAL;
1348 backside_params.G_p = BACKSIDE_PID_G_p;
1349 backside_params.G_r = BACKSIDE_PID_G_r;
1350 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1351 backside_params.additive = 1;
1352 }
1353
1354 state->ticks = 1;
1355 state->first = 1;
1356 state->pwm = 50;
1357
1358 state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1359 if (state->monitor == NULL)
1360 return -ENODEV;
1361
1362 err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1363 err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1364 if (err)
1365 printk(KERN_WARNING "Failed to create attribute file(s)"
1366 " for backside fan\n");
1367
1368 return 0;
1369 }
1370
1371 /*
1372 * Dispose of the state data for the backside control loop
1373 */
1374 static void dispose_backside_state(struct backside_pid_state *state)
1375 {
1376 if (state->monitor == NULL)
1377 return;
1378
1379 device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1380 device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1381
1382 state->monitor = NULL;
1383 }
1384
1385 /*
1386 * Drives bay fan control loop
1387 */
1388 static void do_monitor_drives(struct drives_pid_state *state)
1389 {
1390 s32 temp, integral, derivative;
1391 s64 integ_p, deriv_p, prop_p, sum;
1392 int i, rc;
1393
1394 if (--state->ticks != 0)
1395 return;
1396 state->ticks = DRIVES_PID_INTERVAL;
1397
1398 DBG("drives:\n");
1399
1400 /* Check fan status */
1401 rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1402 if (rc < 0) {
1403 printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1404 /* XXX What do we do now ? */
1405 } else
1406 state->rpm = rc;
1407 DBG(" current rpm: %d\n", state->rpm);
1408
1409 /* Get some sensor readings */
1410 temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1411 DS1775_TEMP)) << 8;
1412 state->last_temp = temp;
1413 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1414 FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1415
1416 /* Store temperature and error in history array */
1417 state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1418 state->sample_history[state->cur_sample] = temp;
1419 state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1420
1421 /* If first loop, fill the history table */
1422 if (state->first) {
1423 for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1424 state->cur_sample = (state->cur_sample + 1) %
1425 DRIVES_PID_HISTORY_SIZE;
1426 state->sample_history[state->cur_sample] = temp;
1427 state->error_history[state->cur_sample] =
1428 temp - DRIVES_PID_INPUT_TARGET;
1429 }
1430 state->first = 0;
1431 }
1432
1433 /* Calculate the integral term */
1434 sum = 0;
1435 integral = 0;
1436 for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1437 integral += state->error_history[i];
1438 integral *= DRIVES_PID_INTERVAL;
1439 DBG(" integral: %08x\n", integral);
1440 integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1441 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1442 sum += integ_p;
1443
1444 /* Calculate the derivative term */
1445 derivative = state->error_history[state->cur_sample] -
1446 state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1447 % DRIVES_PID_HISTORY_SIZE];
1448 derivative /= DRIVES_PID_INTERVAL;
1449 deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1450 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1451 sum += deriv_p;
1452
1453 /* Calculate the proportional term */
1454 prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1455 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1456 sum += prop_p;
1457
1458 /* Scale sum */
1459 sum >>= 36;
1460
1461 DBG(" sum: %d\n", (int)sum);
1462 state->rpm += (s32)sum;
1463
1464 state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1465 state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1466
1467 DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1468 set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1469 }
1470
1471 /*
1472 * Initialize the state structure for the drives bay fan control loop
1473 */
1474 static int init_drives_state(struct drives_pid_state *state)
1475 {
1476 int err;
1477
1478 state->ticks = 1;
1479 state->first = 1;
1480 state->rpm = 1000;
1481
1482 state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1483 if (state->monitor == NULL)
1484 return -ENODEV;
1485
1486 err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1487 err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1488 if (err)
1489 printk(KERN_WARNING "Failed to create attribute file(s)"
1490 " for drives bay fan\n");
1491
1492 return 0;
1493 }
1494
1495 /*
1496 * Dispose of the state data for the drives control loop
1497 */
1498 static void dispose_drives_state(struct drives_pid_state *state)
1499 {
1500 if (state->monitor == NULL)
1501 return;
1502
1503 device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1504 device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1505
1506 state->monitor = NULL;
1507 }
1508
1509 /*
1510 * DIMMs temp control loop
1511 */
1512 static void do_monitor_dimms(struct dimm_pid_state *state)
1513 {
1514 s32 temp, integral, derivative, fan_min;
1515 s64 integ_p, deriv_p, prop_p, sum;
1516 int i;
1517
1518 if (--state->ticks != 0)
1519 return;
1520 state->ticks = DIMM_PID_INTERVAL;
1521
1522 DBG("DIMM:\n");
1523
1524 DBG(" current value: %d\n", state->output);
1525
1526 temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1527 if (temp < 0)
1528 return;
1529 temp <<= 16;
1530 state->last_temp = temp;
1531 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1532 FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1533
1534 /* Store temperature and error in history array */
1535 state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1536 state->sample_history[state->cur_sample] = temp;
1537 state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1538
1539 /* If first loop, fill the history table */
1540 if (state->first) {
1541 for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1542 state->cur_sample = (state->cur_sample + 1) %
1543 DIMM_PID_HISTORY_SIZE;
1544 state->sample_history[state->cur_sample] = temp;
1545 state->error_history[state->cur_sample] =
1546 temp - DIMM_PID_INPUT_TARGET;
1547 }
1548 state->first = 0;
1549 }
1550
1551 /* Calculate the integral term */
1552 sum = 0;
1553 integral = 0;
1554 for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1555 integral += state->error_history[i];
1556 integral *= DIMM_PID_INTERVAL;
1557 DBG(" integral: %08x\n", integral);
1558 integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1559 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1560 sum += integ_p;
1561
1562 /* Calculate the derivative term */
1563 derivative = state->error_history[state->cur_sample] -
1564 state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1565 % DIMM_PID_HISTORY_SIZE];
1566 derivative /= DIMM_PID_INTERVAL;
1567 deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1568 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1569 sum += deriv_p;
1570
1571 /* Calculate the proportional term */
1572 prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1573 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1574 sum += prop_p;
1575
1576 /* Scale sum */
1577 sum >>= 36;
1578
1579 DBG(" sum: %d\n", (int)sum);
1580 state->output = (s32)sum;
1581 state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1582 state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1583 dimm_output_clamp = state->output;
1584
1585 DBG("** DIMM clamp value: %d\n", (int)state->output);
1586
1587 /* Backside PID is only every 5 seconds, force backside fan clamping now */
1588 fan_min = (dimm_output_clamp * 100) / 14000;
1589 fan_min = max(fan_min, backside_params.output_min);
1590 if (backside_state.pwm < fan_min) {
1591 backside_state.pwm = fan_min;
1592 DBG(" -> applying clamp to backside fan now: %d !\n", fan_min);
1593 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1594 }
1595 }
1596
1597 /*
1598 * Initialize the state structure for the DIMM temp control loop
1599 */
1600 static int init_dimms_state(struct dimm_pid_state *state)
1601 {
1602 state->ticks = 1;
1603 state->first = 1;
1604 state->output = 4000;
1605
1606 state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1607 if (state->monitor == NULL)
1608 return -ENODEV;
1609
1610 if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature))
1611 printk(KERN_WARNING "Failed to create attribute file"
1612 " for DIMM temperature\n");
1613
1614 return 0;
1615 }
1616
1617 /*
1618 * Dispose of the state data for the DIMM control loop
1619 */
1620 static void dispose_dimms_state(struct dimm_pid_state *state)
1621 {
1622 if (state->monitor == NULL)
1623 return;
1624
1625 device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1626
1627 state->monitor = NULL;
1628 }
1629
1630 /*
1631 * Slots fan control loop
1632 */
1633 static void do_monitor_slots(struct slots_pid_state *state)
1634 {
1635 s32 temp, integral, derivative;
1636 s64 integ_p, deriv_p, prop_p, sum;
1637 int i, rc;
1638
1639 if (--state->ticks != 0)
1640 return;
1641 state->ticks = SLOTS_PID_INTERVAL;
1642
1643 DBG("slots:\n");
1644
1645 /* Check fan status */
1646 rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
1647 if (rc < 0) {
1648 printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
1649 /* XXX What do we do now ? */
1650 } else
1651 state->pwm = rc;
1652 DBG(" current pwm: %d\n", state->pwm);
1653
1654 /* Get some sensor readings */
1655 temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1656 DS1775_TEMP)) << 8;
1657 state->last_temp = temp;
1658 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1659 FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
1660
1661 /* Store temperature and error in history array */
1662 state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
1663 state->sample_history[state->cur_sample] = temp;
1664 state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
1665
1666 /* If first loop, fill the history table */
1667 if (state->first) {
1668 for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
1669 state->cur_sample = (state->cur_sample + 1) %
1670 SLOTS_PID_HISTORY_SIZE;
1671 state->sample_history[state->cur_sample] = temp;
1672 state->error_history[state->cur_sample] =
1673 temp - SLOTS_PID_INPUT_TARGET;
1674 }
1675 state->first = 0;
1676 }
1677
1678 /* Calculate the integral term */
1679 sum = 0;
1680 integral = 0;
1681 for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
1682 integral += state->error_history[i];
1683 integral *= SLOTS_PID_INTERVAL;
1684 DBG(" integral: %08x\n", integral);
1685 integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
1686 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1687 sum += integ_p;
1688
1689 /* Calculate the derivative term */
1690 derivative = state->error_history[state->cur_sample] -
1691 state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
1692 % SLOTS_PID_HISTORY_SIZE];
1693 derivative /= SLOTS_PID_INTERVAL;
1694 deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
1695 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1696 sum += deriv_p;
1697
1698 /* Calculate the proportional term */
1699 prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1700 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1701 sum += prop_p;
1702
1703 /* Scale sum */
1704 sum >>= 36;
1705
1706 DBG(" sum: %d\n", (int)sum);
1707 state->pwm = (s32)sum;
1708
1709 state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
1710 state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
1711
1712 DBG("** DRIVES PWM: %d\n", (int)state->pwm);
1713 set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
1714 }
1715
1716 /*
1717 * Initialize the state structure for the slots bay fan control loop
1718 */
1719 static int init_slots_state(struct slots_pid_state *state)
1720 {
1721 int err;
1722
1723 state->ticks = 1;
1724 state->first = 1;
1725 state->pwm = 50;
1726
1727 state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
1728 if (state->monitor == NULL)
1729 return -ENODEV;
1730
1731 err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
1732 err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1733 if (err)
1734 printk(KERN_WARNING "Failed to create attribute file(s)"
1735 " for slots bay fan\n");
1736
1737 return 0;
1738 }
1739
1740 /*
1741 * Dispose of the state data for the slots control loop
1742 */
1743 static void dispose_slots_state(struct slots_pid_state *state)
1744 {
1745 if (state->monitor == NULL)
1746 return;
1747
1748 device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
1749 device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1750
1751 state->monitor = NULL;
1752 }
1753
1754
1755 static int call_critical_overtemp(void)
1756 {
1757 char *argv[] = { critical_overtemp_path, NULL };
1758 static char *envp[] = { "HOME=/",
1759 "TERM=linux",
1760 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1761 NULL };
1762
1763 return call_usermodehelper(critical_overtemp_path,
1764 argv, envp, UMH_WAIT_EXEC);
1765 }
1766
1767
1768 /*
1769 * Here's the kernel thread that calls the various control loops
1770 */
1771 static int main_control_loop(void *x)
1772 {
1773 DBG("main_control_loop started\n");
1774
1775 mutex_lock(&driver_lock);
1776
1777 if (start_fcu() < 0) {
1778 printk(KERN_ERR "kfand: failed to start FCU\n");
1779 mutex_unlock(&driver_lock);
1780 goto out;
1781 }
1782
1783 /* Set the PCI fan once for now on non-RackMac */
1784 if (!rackmac)
1785 set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1786
1787 /* Initialize ADCs */
1788 initialize_adc(&cpu_state[0]);
1789 if (cpu_state[1].monitor != NULL)
1790 initialize_adc(&cpu_state[1]);
1791
1792 fcu_tickle_ticks = FCU_TICKLE_TICKS;
1793
1794 mutex_unlock(&driver_lock);
1795
1796 while (state == state_attached) {
1797 unsigned long elapsed, start;
1798
1799 start = jiffies;
1800
1801 mutex_lock(&driver_lock);
1802
1803 /* Tickle the FCU just in case */
1804 if (--fcu_tickle_ticks < 0) {
1805 fcu_tickle_ticks = FCU_TICKLE_TICKS;
1806 tickle_fcu();
1807 }
1808
1809 /* First, we always calculate the new DIMMs state on an Xserve */
1810 if (rackmac)
1811 do_monitor_dimms(&dimms_state);
1812
1813 /* Then, the CPUs */
1814 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1815 do_monitor_cpu_combined();
1816 else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1817 do_monitor_cpu_rack(&cpu_state[0]);
1818 if (cpu_state[1].monitor != NULL)
1819 do_monitor_cpu_rack(&cpu_state[1]);
1820 // better deal with UP
1821 } else {
1822 do_monitor_cpu_split(&cpu_state[0]);
1823 if (cpu_state[1].monitor != NULL)
1824 do_monitor_cpu_split(&cpu_state[1]);
1825 // better deal with UP
1826 }
1827 /* Then, the rest */
1828 do_monitor_backside(&backside_state);
1829 if (rackmac)
1830 do_monitor_slots(&slots_state);
1831 else
1832 do_monitor_drives(&drives_state);
1833 mutex_unlock(&driver_lock);
1834
1835 if (critical_state == 1) {
1836 printk(KERN_WARNING "Temperature control detected a critical condition\n");
1837 printk(KERN_WARNING "Attempting to shut down...\n");
1838 if (call_critical_overtemp()) {
1839 printk(KERN_WARNING "Can't call %s, power off now!\n",
1840 critical_overtemp_path);
1841 machine_power_off();
1842 }
1843 }
1844 if (critical_state > 0)
1845 critical_state++;
1846 if (critical_state > MAX_CRITICAL_STATE) {
1847 printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1848 machine_power_off();
1849 }
1850
1851 // FIXME: Deal with signals
1852 elapsed = jiffies - start;
1853 if (elapsed < HZ)
1854 schedule_timeout_interruptible(HZ - elapsed);
1855 }
1856
1857 out:
1858 DBG("main_control_loop ended\n");
1859
1860 ctrl_task = 0;
1861 complete_and_exit(&ctrl_complete, 0);
1862 }
1863
1864 /*
1865 * Dispose the control loops when tearing down
1866 */
1867 static void dispose_control_loops(void)
1868 {
1869 dispose_cpu_state(&cpu_state[0]);
1870 dispose_cpu_state(&cpu_state[1]);
1871 dispose_backside_state(&backside_state);
1872 dispose_drives_state(&drives_state);
1873 dispose_slots_state(&slots_state);
1874 dispose_dimms_state(&dimms_state);
1875 }
1876
1877 /*
1878 * Create the control loops. U3-0 i2c bus is up, so we can now
1879 * get to the various sensors
1880 */
1881 static int create_control_loops(void)
1882 {
1883 struct device_node *np;
1884
1885 /* Count CPUs from the device-tree, we don't care how many are
1886 * actually used by Linux
1887 */
1888 cpu_count = 0;
1889 for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1890 cpu_count++;
1891
1892 DBG("counted %d CPUs in the device-tree\n", cpu_count);
1893
1894 /* Decide the type of PID algorithm to use based on the presence of
1895 * the pumps, though that may not be the best way, that is good enough
1896 * for now
1897 */
1898 if (rackmac)
1899 cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1900 else if (machine_is_compatible("PowerMac7,3")
1901 && (cpu_count > 1)
1902 && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1903 && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1904 printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1905 cpu_pid_type = CPU_PID_TYPE_COMBINED;
1906 } else
1907 cpu_pid_type = CPU_PID_TYPE_SPLIT;
1908
1909 /* Create control loops for everything. If any fail, everything
1910 * fails
1911 */
1912 if (init_cpu_state(&cpu_state[0], 0))
1913 goto fail;
1914 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1915 fetch_cpu_pumps_minmax();
1916
1917 if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1))
1918 goto fail;
1919 if (init_backside_state(&backside_state))
1920 goto fail;
1921 if (rackmac && init_dimms_state(&dimms_state))
1922 goto fail;
1923 if (rackmac && init_slots_state(&slots_state))
1924 goto fail;
1925 if (!rackmac && init_drives_state(&drives_state))
1926 goto fail;
1927
1928 DBG("all control loops up !\n");
1929
1930 return 0;
1931
1932 fail:
1933 DBG("failure creating control loops, disposing\n");
1934
1935 dispose_control_loops();
1936
1937 return -ENODEV;
1938 }
1939
1940 /*
1941 * Start the control loops after everything is up, that is create
1942 * the thread that will make them run
1943 */
1944 static void start_control_loops(void)
1945 {
1946 init_completion(&ctrl_complete);
1947
1948 ctrl_task = kthread_run(main_control_loop, NULL, "kfand");
1949 }
1950
1951 /*
1952 * Stop the control loops when tearing down
1953 */
1954 static void stop_control_loops(void)
1955 {
1956 if (ctrl_task)
1957 wait_for_completion(&ctrl_complete);
1958 }
1959
1960 /*
1961 * Attach to the i2c FCU after detecting U3-1 bus
1962 */
1963 static int attach_fcu(void)
1964 {
1965 fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1966 if (fcu == NULL)
1967 return -ENODEV;
1968
1969 DBG("FCU attached\n");
1970
1971 return 0;
1972 }
1973
1974 /*
1975 * Detach from the i2c FCU when tearing down
1976 */
1977 static void detach_fcu(void)
1978 {
1979 fcu = NULL;
1980 }
1981
1982 /*
1983 * Attach to the i2c controller. We probe the various chips based
1984 * on the device-tree nodes and build everything for the driver to
1985 * run, we then kick the driver monitoring thread
1986 */
1987 static int therm_pm72_attach(struct i2c_adapter *adapter)
1988 {
1989 mutex_lock(&driver_lock);
1990
1991 /* Check state */
1992 if (state == state_detached)
1993 state = state_attaching;
1994 if (state != state_attaching) {
1995 mutex_unlock(&driver_lock);
1996 return 0;
1997 }
1998
1999 /* Check if we are looking for one of these */
2000 if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
2001 u3_0 = adapter;
2002 DBG("found U3-0\n");
2003 if (k2 || !rackmac)
2004 if (create_control_loops())
2005 u3_0 = NULL;
2006 } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
2007 u3_1 = adapter;
2008 DBG("found U3-1, attaching FCU\n");
2009 if (attach_fcu())
2010 u3_1 = NULL;
2011 } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
2012 k2 = adapter;
2013 DBG("Found K2\n");
2014 if (u3_0 && rackmac)
2015 if (create_control_loops())
2016 k2 = NULL;
2017 }
2018 /* We got all we need, start control loops */
2019 if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
2020 DBG("everything up, starting control loops\n");
2021 state = state_attached;
2022 start_control_loops();
2023 }
2024 mutex_unlock(&driver_lock);
2025
2026 return 0;
2027 }
2028
2029 static int therm_pm72_probe(struct i2c_client *client,
2030 const struct i2c_device_id *id)
2031 {
2032 /* Always succeed, the real work was done in therm_pm72_attach() */
2033 return 0;
2034 }
2035
2036 /*
2037 * Called when any of the devices which participates into thermal management
2038 * is going away.
2039 */
2040 static int therm_pm72_remove(struct i2c_client *client)
2041 {
2042 struct i2c_adapter *adapter = client->adapter;
2043
2044 mutex_lock(&driver_lock);
2045
2046 if (state != state_detached)
2047 state = state_detaching;
2048
2049 /* Stop control loops if any */
2050 DBG("stopping control loops\n");
2051 mutex_unlock(&driver_lock);
2052 stop_control_loops();
2053 mutex_lock(&driver_lock);
2054
2055 if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
2056 DBG("lost U3-0, disposing control loops\n");
2057 dispose_control_loops();
2058 u3_0 = NULL;
2059 }
2060
2061 if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
2062 DBG("lost U3-1, detaching FCU\n");
2063 detach_fcu();
2064 u3_1 = NULL;
2065 }
2066 if (u3_0 == NULL && u3_1 == NULL)
2067 state = state_detached;
2068
2069 mutex_unlock(&driver_lock);
2070
2071 return 0;
2072 }
2073
2074 /*
2075 * i2c_driver structure to attach to the host i2c controller
2076 */
2077
2078 static const struct i2c_device_id therm_pm72_id[] = {
2079 /*
2080 * Fake device name, thermal management is done by several
2081 * chips but we don't need to differentiate between them at
2082 * this point.
2083 */
2084 { "therm_pm72", 0 },
2085 { }
2086 };
2087
2088 static struct i2c_driver therm_pm72_driver = {
2089 .driver = {
2090 .name = "therm_pm72",
2091 },
2092 .attach_adapter = therm_pm72_attach,
2093 .probe = therm_pm72_probe,
2094 .remove = therm_pm72_remove,
2095 .id_table = therm_pm72_id,
2096 };
2097
2098 static int fan_check_loc_match(const char *loc, int fan)
2099 {
2100 char tmp[64];
2101 char *c, *e;
2102
2103 strlcpy(tmp, fcu_fans[fan].loc, 64);
2104
2105 c = tmp;
2106 for (;;) {
2107 e = strchr(c, ',');
2108 if (e)
2109 *e = 0;
2110 if (strcmp(loc, c) == 0)
2111 return 1;
2112 if (e == NULL)
2113 break;
2114 c = e + 1;
2115 }
2116 return 0;
2117 }
2118
2119 static void fcu_lookup_fans(struct device_node *fcu_node)
2120 {
2121 struct device_node *np = NULL;
2122 int i;
2123
2124 /* The table is filled by default with values that are suitable
2125 * for the old machines without device-tree informations. We scan
2126 * the device-tree and override those values with whatever is
2127 * there
2128 */
2129
2130 DBG("Looking up FCU controls in device-tree...\n");
2131
2132 while ((np = of_get_next_child(fcu_node, np)) != NULL) {
2133 int type = -1;
2134 const char *loc;
2135 const u32 *reg;
2136
2137 DBG(" control: %s, type: %s\n", np->name, np->type);
2138
2139 /* Detect control type */
2140 if (!strcmp(np->type, "fan-rpm-control") ||
2141 !strcmp(np->type, "fan-rpm"))
2142 type = FCU_FAN_RPM;
2143 if (!strcmp(np->type, "fan-pwm-control") ||
2144 !strcmp(np->type, "fan-pwm"))
2145 type = FCU_FAN_PWM;
2146 /* Only care about fans for now */
2147 if (type == -1)
2148 continue;
2149
2150 /* Lookup for a matching location */
2151 loc = of_get_property(np, "location", NULL);
2152 reg = of_get_property(np, "reg", NULL);
2153 if (loc == NULL || reg == NULL)
2154 continue;
2155 DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
2156
2157 for (i = 0; i < FCU_FAN_COUNT; i++) {
2158 int fan_id;
2159
2160 if (!fan_check_loc_match(loc, i))
2161 continue;
2162 DBG(" location match, index: %d\n", i);
2163 fcu_fans[i].id = FCU_FAN_ABSENT_ID;
2164 if (type != fcu_fans[i].type) {
2165 printk(KERN_WARNING "therm_pm72: Fan type mismatch "
2166 "in device-tree for %s\n", np->full_name);
2167 break;
2168 }
2169 if (type == FCU_FAN_RPM)
2170 fan_id = ((*reg) - 0x10) / 2;
2171 else
2172 fan_id = ((*reg) - 0x30) / 2;
2173 if (fan_id > 7) {
2174 printk(KERN_WARNING "therm_pm72: Can't parse "
2175 "fan ID in device-tree for %s\n", np->full_name);
2176 break;
2177 }
2178 DBG(" fan id -> %d, type -> %d\n", fan_id, type);
2179 fcu_fans[i].id = fan_id;
2180 }
2181 }
2182
2183 /* Now dump the array */
2184 printk(KERN_INFO "Detected fan controls:\n");
2185 for (i = 0; i < FCU_FAN_COUNT; i++) {
2186 if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
2187 continue;
2188 printk(KERN_INFO " %d: %s fan, id %d, location: %s\n", i,
2189 fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
2190 fcu_fans[i].id, fcu_fans[i].loc);
2191 }
2192 }
2193
2194 static int fcu_of_probe(struct of_device* dev, const struct of_device_id *match)
2195 {
2196 state = state_detached;
2197
2198 /* Lookup the fans in the device tree */
2199 fcu_lookup_fans(dev->node);
2200
2201 /* Add the driver */
2202 return i2c_add_driver(&therm_pm72_driver);
2203 }
2204
2205 static int fcu_of_remove(struct of_device* dev)
2206 {
2207 i2c_del_driver(&therm_pm72_driver);
2208
2209 return 0;
2210 }
2211
2212 static struct of_device_id fcu_match[] =
2213 {
2214 {
2215 .type = "fcu",
2216 },
2217 {},
2218 };
2219
2220 static struct of_platform_driver fcu_of_platform_driver =
2221 {
2222 .name = "temperature",
2223 .match_table = fcu_match,
2224 .probe = fcu_of_probe,
2225 .remove = fcu_of_remove
2226 };
2227
2228 /*
2229 * Check machine type, attach to i2c controller
2230 */
2231 static int __init therm_pm72_init(void)
2232 {
2233 struct device_node *np;
2234
2235 rackmac = machine_is_compatible("RackMac3,1");
2236
2237 if (!machine_is_compatible("PowerMac7,2") &&
2238 !machine_is_compatible("PowerMac7,3") &&
2239 !rackmac)
2240 return -ENODEV;
2241
2242 printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION);
2243
2244 np = of_find_node_by_type(NULL, "fcu");
2245 if (np == NULL) {
2246 /* Some machines have strangely broken device-tree */
2247 np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2248 if (np == NULL) {
2249 printk(KERN_ERR "Can't find FCU in device-tree !\n");
2250 return -ENODEV;
2251 }
2252 }
2253 of_dev = of_platform_device_create(np, "temperature", NULL);
2254 if (of_dev == NULL) {
2255 printk(KERN_ERR "Can't register FCU platform device !\n");
2256 return -ENODEV;
2257 }
2258
2259 of_register_platform_driver(&fcu_of_platform_driver);
2260
2261 return 0;
2262 }
2263
2264 static void __exit therm_pm72_exit(void)
2265 {
2266 of_unregister_platform_driver(&fcu_of_platform_driver);
2267
2268 if (of_dev)
2269 of_device_unregister(of_dev);
2270 }
2271
2272 module_init(therm_pm72_init);
2273 module_exit(therm_pm72_exit);
2274
2275 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2276 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2277 MODULE_LICENSE("GPL");
2278
This page took 0.118217 seconds and 6 git commands to generate.