Merge branch 'for-3.11-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[deliverable/linux.git] / drivers / md / bcache / btree.c
1 /*
2 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
3 *
4 * Uses a block device as cache for other block devices; optimized for SSDs.
5 * All allocation is done in buckets, which should match the erase block size
6 * of the device.
7 *
8 * Buckets containing cached data are kept on a heap sorted by priority;
9 * bucket priority is increased on cache hit, and periodically all the buckets
10 * on the heap have their priority scaled down. This currently is just used as
11 * an LRU but in the future should allow for more intelligent heuristics.
12 *
13 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14 * counter. Garbage collection is used to remove stale pointers.
15 *
16 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17 * as keys are inserted we only sort the pages that have not yet been written.
18 * When garbage collection is run, we resort the entire node.
19 *
20 * All configuration is done via sysfs; see Documentation/bcache.txt.
21 */
22
23 #include "bcache.h"
24 #include "btree.h"
25 #include "debug.h"
26 #include "request.h"
27 #include "writeback.h"
28
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/prefetch.h>
33 #include <linux/random.h>
34 #include <linux/rcupdate.h>
35 #include <trace/events/bcache.h>
36
37 /*
38 * Todo:
39 * register_bcache: Return errors out to userspace correctly
40 *
41 * Writeback: don't undirty key until after a cache flush
42 *
43 * Create an iterator for key pointers
44 *
45 * On btree write error, mark bucket such that it won't be freed from the cache
46 *
47 * Journalling:
48 * Check for bad keys in replay
49 * Propagate barriers
50 * Refcount journal entries in journal_replay
51 *
52 * Garbage collection:
53 * Finish incremental gc
54 * Gc should free old UUIDs, data for invalid UUIDs
55 *
56 * Provide a way to list backing device UUIDs we have data cached for, and
57 * probably how long it's been since we've seen them, and a way to invalidate
58 * dirty data for devices that will never be attached again
59 *
60 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
61 * that based on that and how much dirty data we have we can keep writeback
62 * from being starved
63 *
64 * Add a tracepoint or somesuch to watch for writeback starvation
65 *
66 * When btree depth > 1 and splitting an interior node, we have to make sure
67 * alloc_bucket() cannot fail. This should be true but is not completely
68 * obvious.
69 *
70 * Make sure all allocations get charged to the root cgroup
71 *
72 * Plugging?
73 *
74 * If data write is less than hard sector size of ssd, round up offset in open
75 * bucket to the next whole sector
76 *
77 * Also lookup by cgroup in get_open_bucket()
78 *
79 * Superblock needs to be fleshed out for multiple cache devices
80 *
81 * Add a sysfs tunable for the number of writeback IOs in flight
82 *
83 * Add a sysfs tunable for the number of open data buckets
84 *
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
87 *
88 * Test module load/unload
89 */
90
91 static const char * const op_types[] = {
92 "insert", "replace"
93 };
94
95 static const char *op_type(struct btree_op *op)
96 {
97 return op_types[op->type];
98 }
99
100 #define MAX_NEED_GC 64
101 #define MAX_SAVE_PRIO 72
102
103 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
104
105 #define PTR_HASH(c, k) \
106 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
107
108 struct workqueue_struct *bch_gc_wq;
109 static struct workqueue_struct *btree_io_wq;
110
111 void bch_btree_op_init_stack(struct btree_op *op)
112 {
113 memset(op, 0, sizeof(struct btree_op));
114 closure_init_stack(&op->cl);
115 op->lock = -1;
116 bch_keylist_init(&op->keys);
117 }
118
119 /* Btree key manipulation */
120
121 static void bkey_put(struct cache_set *c, struct bkey *k, int level)
122 {
123 if ((level && KEY_OFFSET(k)) || !level)
124 __bkey_put(c, k);
125 }
126
127 /* Btree IO */
128
129 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
130 {
131 uint64_t crc = b->key.ptr[0];
132 void *data = (void *) i + 8, *end = end(i);
133
134 crc = bch_crc64_update(crc, data, end - data);
135 return crc ^ 0xffffffffffffffffULL;
136 }
137
138 static void bch_btree_node_read_done(struct btree *b)
139 {
140 const char *err = "bad btree header";
141 struct bset *i = b->sets[0].data;
142 struct btree_iter *iter;
143
144 iter = mempool_alloc(b->c->fill_iter, GFP_NOWAIT);
145 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
146 iter->used = 0;
147
148 if (!i->seq)
149 goto err;
150
151 for (;
152 b->written < btree_blocks(b) && i->seq == b->sets[0].data->seq;
153 i = write_block(b)) {
154 err = "unsupported bset version";
155 if (i->version > BCACHE_BSET_VERSION)
156 goto err;
157
158 err = "bad btree header";
159 if (b->written + set_blocks(i, b->c) > btree_blocks(b))
160 goto err;
161
162 err = "bad magic";
163 if (i->magic != bset_magic(b->c))
164 goto err;
165
166 err = "bad checksum";
167 switch (i->version) {
168 case 0:
169 if (i->csum != csum_set(i))
170 goto err;
171 break;
172 case BCACHE_BSET_VERSION:
173 if (i->csum != btree_csum_set(b, i))
174 goto err;
175 break;
176 }
177
178 err = "empty set";
179 if (i != b->sets[0].data && !i->keys)
180 goto err;
181
182 bch_btree_iter_push(iter, i->start, end(i));
183
184 b->written += set_blocks(i, b->c);
185 }
186
187 err = "corrupted btree";
188 for (i = write_block(b);
189 index(i, b) < btree_blocks(b);
190 i = ((void *) i) + block_bytes(b->c))
191 if (i->seq == b->sets[0].data->seq)
192 goto err;
193
194 bch_btree_sort_and_fix_extents(b, iter);
195
196 i = b->sets[0].data;
197 err = "short btree key";
198 if (b->sets[0].size &&
199 bkey_cmp(&b->key, &b->sets[0].end) < 0)
200 goto err;
201
202 if (b->written < btree_blocks(b))
203 bch_bset_init_next(b);
204 out:
205 mempool_free(iter, b->c->fill_iter);
206 return;
207 err:
208 set_btree_node_io_error(b);
209 bch_cache_set_error(b->c, "%s at bucket %zu, block %zu, %u keys",
210 err, PTR_BUCKET_NR(b->c, &b->key, 0),
211 index(i, b), i->keys);
212 goto out;
213 }
214
215 static void btree_node_read_endio(struct bio *bio, int error)
216 {
217 struct closure *cl = bio->bi_private;
218 closure_put(cl);
219 }
220
221 void bch_btree_node_read(struct btree *b)
222 {
223 uint64_t start_time = local_clock();
224 struct closure cl;
225 struct bio *bio;
226
227 trace_bcache_btree_read(b);
228
229 closure_init_stack(&cl);
230
231 bio = bch_bbio_alloc(b->c);
232 bio->bi_rw = REQ_META|READ_SYNC;
233 bio->bi_size = KEY_SIZE(&b->key) << 9;
234 bio->bi_end_io = btree_node_read_endio;
235 bio->bi_private = &cl;
236
237 bch_bio_map(bio, b->sets[0].data);
238
239 bch_submit_bbio(bio, b->c, &b->key, 0);
240 closure_sync(&cl);
241
242 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
243 set_btree_node_io_error(b);
244
245 bch_bbio_free(bio, b->c);
246
247 if (btree_node_io_error(b))
248 goto err;
249
250 bch_btree_node_read_done(b);
251
252 spin_lock(&b->c->btree_read_time_lock);
253 bch_time_stats_update(&b->c->btree_read_time, start_time);
254 spin_unlock(&b->c->btree_read_time_lock);
255
256 return;
257 err:
258 bch_cache_set_error(b->c, "io error reading bucket %lu",
259 PTR_BUCKET_NR(b->c, &b->key, 0));
260 }
261
262 static void btree_complete_write(struct btree *b, struct btree_write *w)
263 {
264 if (w->prio_blocked &&
265 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
266 wake_up_allocators(b->c);
267
268 if (w->journal) {
269 atomic_dec_bug(w->journal);
270 __closure_wake_up(&b->c->journal.wait);
271 }
272
273 w->prio_blocked = 0;
274 w->journal = NULL;
275 }
276
277 static void __btree_node_write_done(struct closure *cl)
278 {
279 struct btree *b = container_of(cl, struct btree, io.cl);
280 struct btree_write *w = btree_prev_write(b);
281
282 bch_bbio_free(b->bio, b->c);
283 b->bio = NULL;
284 btree_complete_write(b, w);
285
286 if (btree_node_dirty(b))
287 queue_delayed_work(btree_io_wq, &b->work,
288 msecs_to_jiffies(30000));
289
290 closure_return(cl);
291 }
292
293 static void btree_node_write_done(struct closure *cl)
294 {
295 struct btree *b = container_of(cl, struct btree, io.cl);
296 struct bio_vec *bv;
297 int n;
298
299 __bio_for_each_segment(bv, b->bio, n, 0)
300 __free_page(bv->bv_page);
301
302 __btree_node_write_done(cl);
303 }
304
305 static void btree_node_write_endio(struct bio *bio, int error)
306 {
307 struct closure *cl = bio->bi_private;
308 struct btree *b = container_of(cl, struct btree, io.cl);
309
310 if (error)
311 set_btree_node_io_error(b);
312
313 bch_bbio_count_io_errors(b->c, bio, error, "writing btree");
314 closure_put(cl);
315 }
316
317 static void do_btree_node_write(struct btree *b)
318 {
319 struct closure *cl = &b->io.cl;
320 struct bset *i = b->sets[b->nsets].data;
321 BKEY_PADDED(key) k;
322
323 i->version = BCACHE_BSET_VERSION;
324 i->csum = btree_csum_set(b, i);
325
326 BUG_ON(b->bio);
327 b->bio = bch_bbio_alloc(b->c);
328
329 b->bio->bi_end_io = btree_node_write_endio;
330 b->bio->bi_private = &b->io.cl;
331 b->bio->bi_rw = REQ_META|WRITE_SYNC|REQ_FUA;
332 b->bio->bi_size = set_blocks(i, b->c) * block_bytes(b->c);
333 bch_bio_map(b->bio, i);
334
335 /*
336 * If we're appending to a leaf node, we don't technically need FUA -
337 * this write just needs to be persisted before the next journal write,
338 * which will be marked FLUSH|FUA.
339 *
340 * Similarly if we're writing a new btree root - the pointer is going to
341 * be in the next journal entry.
342 *
343 * But if we're writing a new btree node (that isn't a root) or
344 * appending to a non leaf btree node, we need either FUA or a flush
345 * when we write the parent with the new pointer. FUA is cheaper than a
346 * flush, and writes appending to leaf nodes aren't blocking anything so
347 * just make all btree node writes FUA to keep things sane.
348 */
349
350 bkey_copy(&k.key, &b->key);
351 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + bset_offset(b, i));
352
353 if (!bio_alloc_pages(b->bio, GFP_NOIO)) {
354 int j;
355 struct bio_vec *bv;
356 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
357
358 bio_for_each_segment(bv, b->bio, j)
359 memcpy(page_address(bv->bv_page),
360 base + j * PAGE_SIZE, PAGE_SIZE);
361
362 bch_submit_bbio(b->bio, b->c, &k.key, 0);
363
364 continue_at(cl, btree_node_write_done, NULL);
365 } else {
366 b->bio->bi_vcnt = 0;
367 bch_bio_map(b->bio, i);
368
369 bch_submit_bbio(b->bio, b->c, &k.key, 0);
370
371 closure_sync(cl);
372 __btree_node_write_done(cl);
373 }
374 }
375
376 void bch_btree_node_write(struct btree *b, struct closure *parent)
377 {
378 struct bset *i = b->sets[b->nsets].data;
379
380 trace_bcache_btree_write(b);
381
382 BUG_ON(current->bio_list);
383 BUG_ON(b->written >= btree_blocks(b));
384 BUG_ON(b->written && !i->keys);
385 BUG_ON(b->sets->data->seq != i->seq);
386 bch_check_key_order(b, i);
387
388 cancel_delayed_work(&b->work);
389
390 /* If caller isn't waiting for write, parent refcount is cache set */
391 closure_lock(&b->io, parent ?: &b->c->cl);
392
393 clear_bit(BTREE_NODE_dirty, &b->flags);
394 change_bit(BTREE_NODE_write_idx, &b->flags);
395
396 do_btree_node_write(b);
397
398 b->written += set_blocks(i, b->c);
399 atomic_long_add(set_blocks(i, b->c) * b->c->sb.block_size,
400 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
401
402 bch_btree_sort_lazy(b);
403
404 if (b->written < btree_blocks(b))
405 bch_bset_init_next(b);
406 }
407
408 static void btree_node_write_work(struct work_struct *w)
409 {
410 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
411
412 rw_lock(true, b, b->level);
413
414 if (btree_node_dirty(b))
415 bch_btree_node_write(b, NULL);
416 rw_unlock(true, b);
417 }
418
419 static void bch_btree_leaf_dirty(struct btree *b, struct btree_op *op)
420 {
421 struct bset *i = b->sets[b->nsets].data;
422 struct btree_write *w = btree_current_write(b);
423
424 BUG_ON(!b->written);
425 BUG_ON(!i->keys);
426
427 if (!btree_node_dirty(b))
428 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
429
430 set_btree_node_dirty(b);
431
432 if (op && op->journal) {
433 if (w->journal &&
434 journal_pin_cmp(b->c, w, op)) {
435 atomic_dec_bug(w->journal);
436 w->journal = NULL;
437 }
438
439 if (!w->journal) {
440 w->journal = op->journal;
441 atomic_inc(w->journal);
442 }
443 }
444
445 /* Force write if set is too big */
446 if (set_bytes(i) > PAGE_SIZE - 48 &&
447 !current->bio_list)
448 bch_btree_node_write(b, NULL);
449 }
450
451 /*
452 * Btree in memory cache - allocation/freeing
453 * mca -> memory cache
454 */
455
456 static void mca_reinit(struct btree *b)
457 {
458 unsigned i;
459
460 b->flags = 0;
461 b->written = 0;
462 b->nsets = 0;
463
464 for (i = 0; i < MAX_BSETS; i++)
465 b->sets[i].size = 0;
466 /*
467 * Second loop starts at 1 because b->sets[0]->data is the memory we
468 * allocated
469 */
470 for (i = 1; i < MAX_BSETS; i++)
471 b->sets[i].data = NULL;
472 }
473
474 #define mca_reserve(c) (((c->root && c->root->level) \
475 ? c->root->level : 1) * 8 + 16)
476 #define mca_can_free(c) \
477 max_t(int, 0, c->bucket_cache_used - mca_reserve(c))
478
479 static void mca_data_free(struct btree *b)
480 {
481 struct bset_tree *t = b->sets;
482 BUG_ON(!closure_is_unlocked(&b->io.cl));
483
484 if (bset_prev_bytes(b) < PAGE_SIZE)
485 kfree(t->prev);
486 else
487 free_pages((unsigned long) t->prev,
488 get_order(bset_prev_bytes(b)));
489
490 if (bset_tree_bytes(b) < PAGE_SIZE)
491 kfree(t->tree);
492 else
493 free_pages((unsigned long) t->tree,
494 get_order(bset_tree_bytes(b)));
495
496 free_pages((unsigned long) t->data, b->page_order);
497
498 t->prev = NULL;
499 t->tree = NULL;
500 t->data = NULL;
501 list_move(&b->list, &b->c->btree_cache_freed);
502 b->c->bucket_cache_used--;
503 }
504
505 static void mca_bucket_free(struct btree *b)
506 {
507 BUG_ON(btree_node_dirty(b));
508
509 b->key.ptr[0] = 0;
510 hlist_del_init_rcu(&b->hash);
511 list_move(&b->list, &b->c->btree_cache_freeable);
512 }
513
514 static unsigned btree_order(struct bkey *k)
515 {
516 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
517 }
518
519 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
520 {
521 struct bset_tree *t = b->sets;
522 BUG_ON(t->data);
523
524 b->page_order = max_t(unsigned,
525 ilog2(b->c->btree_pages),
526 btree_order(k));
527
528 t->data = (void *) __get_free_pages(gfp, b->page_order);
529 if (!t->data)
530 goto err;
531
532 t->tree = bset_tree_bytes(b) < PAGE_SIZE
533 ? kmalloc(bset_tree_bytes(b), gfp)
534 : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
535 if (!t->tree)
536 goto err;
537
538 t->prev = bset_prev_bytes(b) < PAGE_SIZE
539 ? kmalloc(bset_prev_bytes(b), gfp)
540 : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
541 if (!t->prev)
542 goto err;
543
544 list_move(&b->list, &b->c->btree_cache);
545 b->c->bucket_cache_used++;
546 return;
547 err:
548 mca_data_free(b);
549 }
550
551 static struct btree *mca_bucket_alloc(struct cache_set *c,
552 struct bkey *k, gfp_t gfp)
553 {
554 struct btree *b = kzalloc(sizeof(struct btree), gfp);
555 if (!b)
556 return NULL;
557
558 init_rwsem(&b->lock);
559 lockdep_set_novalidate_class(&b->lock);
560 INIT_LIST_HEAD(&b->list);
561 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
562 b->c = c;
563 closure_init_unlocked(&b->io);
564
565 mca_data_alloc(b, k, gfp);
566 return b;
567 }
568
569 static int mca_reap(struct btree *b, struct closure *cl, unsigned min_order)
570 {
571 lockdep_assert_held(&b->c->bucket_lock);
572
573 if (!down_write_trylock(&b->lock))
574 return -ENOMEM;
575
576 if (b->page_order < min_order) {
577 rw_unlock(true, b);
578 return -ENOMEM;
579 }
580
581 BUG_ON(btree_node_dirty(b) && !b->sets[0].data);
582
583 if (cl && btree_node_dirty(b))
584 bch_btree_node_write(b, NULL);
585
586 if (cl)
587 closure_wait_event_async(&b->io.wait, cl,
588 atomic_read(&b->io.cl.remaining) == -1);
589
590 if (btree_node_dirty(b) ||
591 !closure_is_unlocked(&b->io.cl) ||
592 work_pending(&b->work.work)) {
593 rw_unlock(true, b);
594 return -EAGAIN;
595 }
596
597 return 0;
598 }
599
600 static int bch_mca_shrink(struct shrinker *shrink, struct shrink_control *sc)
601 {
602 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
603 struct btree *b, *t;
604 unsigned long i, nr = sc->nr_to_scan;
605
606 if (c->shrinker_disabled)
607 return 0;
608
609 if (c->try_harder)
610 return 0;
611
612 /*
613 * If nr == 0, we're supposed to return the number of items we have
614 * cached. Not allowed to return -1.
615 */
616 if (!nr)
617 return mca_can_free(c) * c->btree_pages;
618
619 /* Return -1 if we can't do anything right now */
620 if (sc->gfp_mask & __GFP_WAIT)
621 mutex_lock(&c->bucket_lock);
622 else if (!mutex_trylock(&c->bucket_lock))
623 return -1;
624
625 /*
626 * It's _really_ critical that we don't free too many btree nodes - we
627 * have to always leave ourselves a reserve. The reserve is how we
628 * guarantee that allocating memory for a new btree node can always
629 * succeed, so that inserting keys into the btree can always succeed and
630 * IO can always make forward progress:
631 */
632 nr /= c->btree_pages;
633 nr = min_t(unsigned long, nr, mca_can_free(c));
634
635 i = 0;
636 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
637 if (!nr)
638 break;
639
640 if (++i > 3 &&
641 !mca_reap(b, NULL, 0)) {
642 mca_data_free(b);
643 rw_unlock(true, b);
644 --nr;
645 }
646 }
647
648 /*
649 * Can happen right when we first start up, before we've read in any
650 * btree nodes
651 */
652 if (list_empty(&c->btree_cache))
653 goto out;
654
655 for (i = 0; nr && i < c->bucket_cache_used; i++) {
656 b = list_first_entry(&c->btree_cache, struct btree, list);
657 list_rotate_left(&c->btree_cache);
658
659 if (!b->accessed &&
660 !mca_reap(b, NULL, 0)) {
661 mca_bucket_free(b);
662 mca_data_free(b);
663 rw_unlock(true, b);
664 --nr;
665 } else
666 b->accessed = 0;
667 }
668 out:
669 nr = mca_can_free(c) * c->btree_pages;
670 mutex_unlock(&c->bucket_lock);
671 return nr;
672 }
673
674 void bch_btree_cache_free(struct cache_set *c)
675 {
676 struct btree *b;
677 struct closure cl;
678 closure_init_stack(&cl);
679
680 if (c->shrink.list.next)
681 unregister_shrinker(&c->shrink);
682
683 mutex_lock(&c->bucket_lock);
684
685 #ifdef CONFIG_BCACHE_DEBUG
686 if (c->verify_data)
687 list_move(&c->verify_data->list, &c->btree_cache);
688 #endif
689
690 list_splice(&c->btree_cache_freeable,
691 &c->btree_cache);
692
693 while (!list_empty(&c->btree_cache)) {
694 b = list_first_entry(&c->btree_cache, struct btree, list);
695
696 if (btree_node_dirty(b))
697 btree_complete_write(b, btree_current_write(b));
698 clear_bit(BTREE_NODE_dirty, &b->flags);
699
700 mca_data_free(b);
701 }
702
703 while (!list_empty(&c->btree_cache_freed)) {
704 b = list_first_entry(&c->btree_cache_freed,
705 struct btree, list);
706 list_del(&b->list);
707 cancel_delayed_work_sync(&b->work);
708 kfree(b);
709 }
710
711 mutex_unlock(&c->bucket_lock);
712 }
713
714 int bch_btree_cache_alloc(struct cache_set *c)
715 {
716 unsigned i;
717
718 /* XXX: doesn't check for errors */
719
720 closure_init_unlocked(&c->gc);
721
722 for (i = 0; i < mca_reserve(c); i++)
723 mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
724
725 list_splice_init(&c->btree_cache,
726 &c->btree_cache_freeable);
727
728 #ifdef CONFIG_BCACHE_DEBUG
729 mutex_init(&c->verify_lock);
730
731 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
732
733 if (c->verify_data &&
734 c->verify_data->sets[0].data)
735 list_del_init(&c->verify_data->list);
736 else
737 c->verify_data = NULL;
738 #endif
739
740 c->shrink.shrink = bch_mca_shrink;
741 c->shrink.seeks = 4;
742 c->shrink.batch = c->btree_pages * 2;
743 register_shrinker(&c->shrink);
744
745 return 0;
746 }
747
748 /* Btree in memory cache - hash table */
749
750 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
751 {
752 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
753 }
754
755 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
756 {
757 struct btree *b;
758
759 rcu_read_lock();
760 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
761 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
762 goto out;
763 b = NULL;
764 out:
765 rcu_read_unlock();
766 return b;
767 }
768
769 static struct btree *mca_cannibalize(struct cache_set *c, struct bkey *k,
770 int level, struct closure *cl)
771 {
772 int ret = -ENOMEM;
773 struct btree *i;
774
775 trace_bcache_btree_cache_cannibalize(c);
776
777 if (!cl)
778 return ERR_PTR(-ENOMEM);
779
780 /*
781 * Trying to free up some memory - i.e. reuse some btree nodes - may
782 * require initiating IO to flush the dirty part of the node. If we're
783 * running under generic_make_request(), that IO will never finish and
784 * we would deadlock. Returning -EAGAIN causes the cache lookup code to
785 * punt to workqueue and retry.
786 */
787 if (current->bio_list)
788 return ERR_PTR(-EAGAIN);
789
790 if (c->try_harder && c->try_harder != cl) {
791 closure_wait_event_async(&c->try_wait, cl, !c->try_harder);
792 return ERR_PTR(-EAGAIN);
793 }
794
795 c->try_harder = cl;
796 c->try_harder_start = local_clock();
797 retry:
798 list_for_each_entry_reverse(i, &c->btree_cache, list) {
799 int r = mca_reap(i, cl, btree_order(k));
800 if (!r)
801 return i;
802 if (r != -ENOMEM)
803 ret = r;
804 }
805
806 if (ret == -EAGAIN &&
807 closure_blocking(cl)) {
808 mutex_unlock(&c->bucket_lock);
809 closure_sync(cl);
810 mutex_lock(&c->bucket_lock);
811 goto retry;
812 }
813
814 return ERR_PTR(ret);
815 }
816
817 /*
818 * We can only have one thread cannibalizing other cached btree nodes at a time,
819 * or we'll deadlock. We use an open coded mutex to ensure that, which a
820 * cannibalize_bucket() will take. This means every time we unlock the root of
821 * the btree, we need to release this lock if we have it held.
822 */
823 void bch_cannibalize_unlock(struct cache_set *c, struct closure *cl)
824 {
825 if (c->try_harder == cl) {
826 bch_time_stats_update(&c->try_harder_time, c->try_harder_start);
827 c->try_harder = NULL;
828 __closure_wake_up(&c->try_wait);
829 }
830 }
831
832 static struct btree *mca_alloc(struct cache_set *c, struct bkey *k,
833 int level, struct closure *cl)
834 {
835 struct btree *b;
836
837 lockdep_assert_held(&c->bucket_lock);
838
839 if (mca_find(c, k))
840 return NULL;
841
842 /* btree_free() doesn't free memory; it sticks the node on the end of
843 * the list. Check if there's any freed nodes there:
844 */
845 list_for_each_entry(b, &c->btree_cache_freeable, list)
846 if (!mca_reap(b, NULL, btree_order(k)))
847 goto out;
848
849 /* We never free struct btree itself, just the memory that holds the on
850 * disk node. Check the freed list before allocating a new one:
851 */
852 list_for_each_entry(b, &c->btree_cache_freed, list)
853 if (!mca_reap(b, NULL, 0)) {
854 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
855 if (!b->sets[0].data)
856 goto err;
857 else
858 goto out;
859 }
860
861 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
862 if (!b)
863 goto err;
864
865 BUG_ON(!down_write_trylock(&b->lock));
866 if (!b->sets->data)
867 goto err;
868 out:
869 BUG_ON(!closure_is_unlocked(&b->io.cl));
870
871 bkey_copy(&b->key, k);
872 list_move(&b->list, &c->btree_cache);
873 hlist_del_init_rcu(&b->hash);
874 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
875
876 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
877 b->level = level;
878
879 mca_reinit(b);
880
881 return b;
882 err:
883 if (b)
884 rw_unlock(true, b);
885
886 b = mca_cannibalize(c, k, level, cl);
887 if (!IS_ERR(b))
888 goto out;
889
890 return b;
891 }
892
893 /**
894 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
895 * in from disk if necessary.
896 *
897 * If IO is necessary, it uses the closure embedded in struct btree_op to wait;
898 * if that closure is in non blocking mode, will return -EAGAIN.
899 *
900 * The btree node will have either a read or a write lock held, depending on
901 * level and op->lock.
902 */
903 struct btree *bch_btree_node_get(struct cache_set *c, struct bkey *k,
904 int level, struct btree_op *op)
905 {
906 int i = 0;
907 bool write = level <= op->lock;
908 struct btree *b;
909
910 BUG_ON(level < 0);
911 retry:
912 b = mca_find(c, k);
913
914 if (!b) {
915 if (current->bio_list)
916 return ERR_PTR(-EAGAIN);
917
918 mutex_lock(&c->bucket_lock);
919 b = mca_alloc(c, k, level, &op->cl);
920 mutex_unlock(&c->bucket_lock);
921
922 if (!b)
923 goto retry;
924 if (IS_ERR(b))
925 return b;
926
927 bch_btree_node_read(b);
928
929 if (!write)
930 downgrade_write(&b->lock);
931 } else {
932 rw_lock(write, b, level);
933 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
934 rw_unlock(write, b);
935 goto retry;
936 }
937 BUG_ON(b->level != level);
938 }
939
940 b->accessed = 1;
941
942 for (; i <= b->nsets && b->sets[i].size; i++) {
943 prefetch(b->sets[i].tree);
944 prefetch(b->sets[i].data);
945 }
946
947 for (; i <= b->nsets; i++)
948 prefetch(b->sets[i].data);
949
950 if (btree_node_io_error(b)) {
951 rw_unlock(write, b);
952 return ERR_PTR(-EIO);
953 }
954
955 BUG_ON(!b->written);
956
957 return b;
958 }
959
960 static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level)
961 {
962 struct btree *b;
963
964 mutex_lock(&c->bucket_lock);
965 b = mca_alloc(c, k, level, NULL);
966 mutex_unlock(&c->bucket_lock);
967
968 if (!IS_ERR_OR_NULL(b)) {
969 bch_btree_node_read(b);
970 rw_unlock(true, b);
971 }
972 }
973
974 /* Btree alloc */
975
976 static void btree_node_free(struct btree *b, struct btree_op *op)
977 {
978 unsigned i;
979
980 trace_bcache_btree_node_free(b);
981
982 /*
983 * The BUG_ON() in btree_node_get() implies that we must have a write
984 * lock on parent to free or even invalidate a node
985 */
986 BUG_ON(op->lock <= b->level);
987 BUG_ON(b == b->c->root);
988
989 if (btree_node_dirty(b))
990 btree_complete_write(b, btree_current_write(b));
991 clear_bit(BTREE_NODE_dirty, &b->flags);
992
993 cancel_delayed_work(&b->work);
994
995 mutex_lock(&b->c->bucket_lock);
996
997 for (i = 0; i < KEY_PTRS(&b->key); i++) {
998 BUG_ON(atomic_read(&PTR_BUCKET(b->c, &b->key, i)->pin));
999
1000 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1001 PTR_BUCKET(b->c, &b->key, i));
1002 }
1003
1004 bch_bucket_free(b->c, &b->key);
1005 mca_bucket_free(b);
1006 mutex_unlock(&b->c->bucket_lock);
1007 }
1008
1009 struct btree *bch_btree_node_alloc(struct cache_set *c, int level,
1010 struct closure *cl)
1011 {
1012 BKEY_PADDED(key) k;
1013 struct btree *b = ERR_PTR(-EAGAIN);
1014
1015 mutex_lock(&c->bucket_lock);
1016 retry:
1017 if (__bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, cl))
1018 goto err;
1019
1020 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1021
1022 b = mca_alloc(c, &k.key, level, cl);
1023 if (IS_ERR(b))
1024 goto err_free;
1025
1026 if (!b) {
1027 cache_bug(c,
1028 "Tried to allocate bucket that was in btree cache");
1029 __bkey_put(c, &k.key);
1030 goto retry;
1031 }
1032
1033 b->accessed = 1;
1034 bch_bset_init_next(b);
1035
1036 mutex_unlock(&c->bucket_lock);
1037
1038 trace_bcache_btree_node_alloc(b);
1039 return b;
1040 err_free:
1041 bch_bucket_free(c, &k.key);
1042 __bkey_put(c, &k.key);
1043 err:
1044 mutex_unlock(&c->bucket_lock);
1045
1046 trace_bcache_btree_node_alloc_fail(b);
1047 return b;
1048 }
1049
1050 static struct btree *btree_node_alloc_replacement(struct btree *b,
1051 struct closure *cl)
1052 {
1053 struct btree *n = bch_btree_node_alloc(b->c, b->level, cl);
1054 if (!IS_ERR_OR_NULL(n))
1055 bch_btree_sort_into(b, n);
1056
1057 return n;
1058 }
1059
1060 /* Garbage collection */
1061
1062 uint8_t __bch_btree_mark_key(struct cache_set *c, int level, struct bkey *k)
1063 {
1064 uint8_t stale = 0;
1065 unsigned i;
1066 struct bucket *g;
1067
1068 /*
1069 * ptr_invalid() can't return true for the keys that mark btree nodes as
1070 * freed, but since ptr_bad() returns true we'll never actually use them
1071 * for anything and thus we don't want mark their pointers here
1072 */
1073 if (!bkey_cmp(k, &ZERO_KEY))
1074 return stale;
1075
1076 for (i = 0; i < KEY_PTRS(k); i++) {
1077 if (!ptr_available(c, k, i))
1078 continue;
1079
1080 g = PTR_BUCKET(c, k, i);
1081
1082 if (gen_after(g->gc_gen, PTR_GEN(k, i)))
1083 g->gc_gen = PTR_GEN(k, i);
1084
1085 if (ptr_stale(c, k, i)) {
1086 stale = max(stale, ptr_stale(c, k, i));
1087 continue;
1088 }
1089
1090 cache_bug_on(GC_MARK(g) &&
1091 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1092 c, "inconsistent ptrs: mark = %llu, level = %i",
1093 GC_MARK(g), level);
1094
1095 if (level)
1096 SET_GC_MARK(g, GC_MARK_METADATA);
1097 else if (KEY_DIRTY(k))
1098 SET_GC_MARK(g, GC_MARK_DIRTY);
1099
1100 /* guard against overflow */
1101 SET_GC_SECTORS_USED(g, min_t(unsigned,
1102 GC_SECTORS_USED(g) + KEY_SIZE(k),
1103 (1 << 14) - 1));
1104
1105 BUG_ON(!GC_SECTORS_USED(g));
1106 }
1107
1108 return stale;
1109 }
1110
1111 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1112
1113 static int btree_gc_mark_node(struct btree *b, unsigned *keys,
1114 struct gc_stat *gc)
1115 {
1116 uint8_t stale = 0;
1117 unsigned last_dev = -1;
1118 struct bcache_device *d = NULL;
1119 struct bkey *k;
1120 struct btree_iter iter;
1121 struct bset_tree *t;
1122
1123 gc->nodes++;
1124
1125 for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
1126 if (last_dev != KEY_INODE(k)) {
1127 last_dev = KEY_INODE(k);
1128
1129 d = KEY_INODE(k) < b->c->nr_uuids
1130 ? b->c->devices[last_dev]
1131 : NULL;
1132 }
1133
1134 stale = max(stale, btree_mark_key(b, k));
1135
1136 if (bch_ptr_bad(b, k))
1137 continue;
1138
1139 *keys += bkey_u64s(k);
1140
1141 gc->key_bytes += bkey_u64s(k);
1142 gc->nkeys++;
1143
1144 gc->data += KEY_SIZE(k);
1145 if (KEY_DIRTY(k))
1146 gc->dirty += KEY_SIZE(k);
1147 }
1148
1149 for (t = b->sets; t <= &b->sets[b->nsets]; t++)
1150 btree_bug_on(t->size &&
1151 bset_written(b, t) &&
1152 bkey_cmp(&b->key, &t->end) < 0,
1153 b, "found short btree key in gc");
1154
1155 return stale;
1156 }
1157
1158 static struct btree *btree_gc_alloc(struct btree *b, struct bkey *k,
1159 struct btree_op *op)
1160 {
1161 /*
1162 * We block priorities from being written for the duration of garbage
1163 * collection, so we can't sleep in btree_alloc() ->
1164 * bch_bucket_alloc_set(), or we'd risk deadlock - so we don't pass it
1165 * our closure.
1166 */
1167 struct btree *n = btree_node_alloc_replacement(b, NULL);
1168
1169 if (!IS_ERR_OR_NULL(n)) {
1170 swap(b, n);
1171 __bkey_put(b->c, &b->key);
1172
1173 memcpy(k->ptr, b->key.ptr,
1174 sizeof(uint64_t) * KEY_PTRS(&b->key));
1175
1176 btree_node_free(n, op);
1177 up_write(&n->lock);
1178 }
1179
1180 return b;
1181 }
1182
1183 /*
1184 * Leaving this at 2 until we've got incremental garbage collection done; it
1185 * could be higher (and has been tested with 4) except that garbage collection
1186 * could take much longer, adversely affecting latency.
1187 */
1188 #define GC_MERGE_NODES 2U
1189
1190 struct gc_merge_info {
1191 struct btree *b;
1192 struct bkey *k;
1193 unsigned keys;
1194 };
1195
1196 static void btree_gc_coalesce(struct btree *b, struct btree_op *op,
1197 struct gc_stat *gc, struct gc_merge_info *r)
1198 {
1199 unsigned nodes = 0, keys = 0, blocks;
1200 int i;
1201
1202 while (nodes < GC_MERGE_NODES && r[nodes].b)
1203 keys += r[nodes++].keys;
1204
1205 blocks = btree_default_blocks(b->c) * 2 / 3;
1206
1207 if (nodes < 2 ||
1208 __set_blocks(b->sets[0].data, keys, b->c) > blocks * (nodes - 1))
1209 return;
1210
1211 for (i = nodes - 1; i >= 0; --i) {
1212 if (r[i].b->written)
1213 r[i].b = btree_gc_alloc(r[i].b, r[i].k, op);
1214
1215 if (r[i].b->written)
1216 return;
1217 }
1218
1219 for (i = nodes - 1; i > 0; --i) {
1220 struct bset *n1 = r[i].b->sets->data;
1221 struct bset *n2 = r[i - 1].b->sets->data;
1222 struct bkey *k, *last = NULL;
1223
1224 keys = 0;
1225
1226 if (i == 1) {
1227 /*
1228 * Last node we're not getting rid of - we're getting
1229 * rid of the node at r[0]. Have to try and fit all of
1230 * the remaining keys into this node; we can't ensure
1231 * they will always fit due to rounding and variable
1232 * length keys (shouldn't be possible in practice,
1233 * though)
1234 */
1235 if (__set_blocks(n1, n1->keys + r->keys,
1236 b->c) > btree_blocks(r[i].b))
1237 return;
1238
1239 keys = n2->keys;
1240 last = &r->b->key;
1241 } else
1242 for (k = n2->start;
1243 k < end(n2);
1244 k = bkey_next(k)) {
1245 if (__set_blocks(n1, n1->keys + keys +
1246 bkey_u64s(k), b->c) > blocks)
1247 break;
1248
1249 last = k;
1250 keys += bkey_u64s(k);
1251 }
1252
1253 BUG_ON(__set_blocks(n1, n1->keys + keys,
1254 b->c) > btree_blocks(r[i].b));
1255
1256 if (last) {
1257 bkey_copy_key(&r[i].b->key, last);
1258 bkey_copy_key(r[i].k, last);
1259 }
1260
1261 memcpy(end(n1),
1262 n2->start,
1263 (void *) node(n2, keys) - (void *) n2->start);
1264
1265 n1->keys += keys;
1266
1267 memmove(n2->start,
1268 node(n2, keys),
1269 (void *) end(n2) - (void *) node(n2, keys));
1270
1271 n2->keys -= keys;
1272
1273 r[i].keys = n1->keys;
1274 r[i - 1].keys = n2->keys;
1275 }
1276
1277 btree_node_free(r->b, op);
1278 up_write(&r->b->lock);
1279
1280 trace_bcache_btree_gc_coalesce(nodes);
1281
1282 gc->nodes--;
1283 nodes--;
1284
1285 memmove(&r[0], &r[1], sizeof(struct gc_merge_info) * nodes);
1286 memset(&r[nodes], 0, sizeof(struct gc_merge_info));
1287 }
1288
1289 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1290 struct closure *writes, struct gc_stat *gc)
1291 {
1292 void write(struct btree *r)
1293 {
1294 if (!r->written)
1295 bch_btree_node_write(r, &op->cl);
1296 else if (btree_node_dirty(r))
1297 bch_btree_node_write(r, writes);
1298
1299 up_write(&r->lock);
1300 }
1301
1302 int ret = 0, stale;
1303 unsigned i;
1304 struct gc_merge_info r[GC_MERGE_NODES];
1305
1306 memset(r, 0, sizeof(r));
1307
1308 while ((r->k = bch_next_recurse_key(b, &b->c->gc_done))) {
1309 r->b = bch_btree_node_get(b->c, r->k, b->level - 1, op);
1310
1311 if (IS_ERR(r->b)) {
1312 ret = PTR_ERR(r->b);
1313 break;
1314 }
1315
1316 r->keys = 0;
1317 stale = btree_gc_mark_node(r->b, &r->keys, gc);
1318
1319 if (!b->written &&
1320 (r->b->level || stale > 10 ||
1321 b->c->gc_always_rewrite))
1322 r->b = btree_gc_alloc(r->b, r->k, op);
1323
1324 if (r->b->level)
1325 ret = btree_gc_recurse(r->b, op, writes, gc);
1326
1327 if (ret) {
1328 write(r->b);
1329 break;
1330 }
1331
1332 bkey_copy_key(&b->c->gc_done, r->k);
1333
1334 if (!b->written)
1335 btree_gc_coalesce(b, op, gc, r);
1336
1337 if (r[GC_MERGE_NODES - 1].b)
1338 write(r[GC_MERGE_NODES - 1].b);
1339
1340 memmove(&r[1], &r[0],
1341 sizeof(struct gc_merge_info) * (GC_MERGE_NODES - 1));
1342
1343 /* When we've got incremental GC working, we'll want to do
1344 * if (should_resched())
1345 * return -EAGAIN;
1346 */
1347 cond_resched();
1348 #if 0
1349 if (need_resched()) {
1350 ret = -EAGAIN;
1351 break;
1352 }
1353 #endif
1354 }
1355
1356 for (i = 1; i < GC_MERGE_NODES && r[i].b; i++)
1357 write(r[i].b);
1358
1359 /* Might have freed some children, must remove their keys */
1360 if (!b->written)
1361 bch_btree_sort(b);
1362
1363 return ret;
1364 }
1365
1366 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1367 struct closure *writes, struct gc_stat *gc)
1368 {
1369 struct btree *n = NULL;
1370 unsigned keys = 0;
1371 int ret = 0, stale = btree_gc_mark_node(b, &keys, gc);
1372
1373 if (b->level || stale > 10)
1374 n = btree_node_alloc_replacement(b, NULL);
1375
1376 if (!IS_ERR_OR_NULL(n))
1377 swap(b, n);
1378
1379 if (b->level)
1380 ret = btree_gc_recurse(b, op, writes, gc);
1381
1382 if (!b->written || btree_node_dirty(b)) {
1383 bch_btree_node_write(b, n ? &op->cl : NULL);
1384 }
1385
1386 if (!IS_ERR_OR_NULL(n)) {
1387 closure_sync(&op->cl);
1388 bch_btree_set_root(b);
1389 btree_node_free(n, op);
1390 rw_unlock(true, b);
1391 }
1392
1393 return ret;
1394 }
1395
1396 static void btree_gc_start(struct cache_set *c)
1397 {
1398 struct cache *ca;
1399 struct bucket *b;
1400 unsigned i;
1401
1402 if (!c->gc_mark_valid)
1403 return;
1404
1405 mutex_lock(&c->bucket_lock);
1406
1407 c->gc_mark_valid = 0;
1408 c->gc_done = ZERO_KEY;
1409
1410 for_each_cache(ca, c, i)
1411 for_each_bucket(b, ca) {
1412 b->gc_gen = b->gen;
1413 if (!atomic_read(&b->pin)) {
1414 SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
1415 SET_GC_SECTORS_USED(b, 0);
1416 }
1417 }
1418
1419 mutex_unlock(&c->bucket_lock);
1420 }
1421
1422 size_t bch_btree_gc_finish(struct cache_set *c)
1423 {
1424 size_t available = 0;
1425 struct bucket *b;
1426 struct cache *ca;
1427 unsigned i;
1428
1429 mutex_lock(&c->bucket_lock);
1430
1431 set_gc_sectors(c);
1432 c->gc_mark_valid = 1;
1433 c->need_gc = 0;
1434
1435 if (c->root)
1436 for (i = 0; i < KEY_PTRS(&c->root->key); i++)
1437 SET_GC_MARK(PTR_BUCKET(c, &c->root->key, i),
1438 GC_MARK_METADATA);
1439
1440 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1441 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1442 GC_MARK_METADATA);
1443
1444 for_each_cache(ca, c, i) {
1445 uint64_t *i;
1446
1447 ca->invalidate_needs_gc = 0;
1448
1449 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1450 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1451
1452 for (i = ca->prio_buckets;
1453 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1454 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1455
1456 for_each_bucket(b, ca) {
1457 b->last_gc = b->gc_gen;
1458 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1459
1460 if (!atomic_read(&b->pin) &&
1461 GC_MARK(b) == GC_MARK_RECLAIMABLE) {
1462 available++;
1463 if (!GC_SECTORS_USED(b))
1464 bch_bucket_add_unused(ca, b);
1465 }
1466 }
1467 }
1468
1469 mutex_unlock(&c->bucket_lock);
1470 return available;
1471 }
1472
1473 static void bch_btree_gc(struct closure *cl)
1474 {
1475 struct cache_set *c = container_of(cl, struct cache_set, gc.cl);
1476 int ret;
1477 unsigned long available;
1478 struct gc_stat stats;
1479 struct closure writes;
1480 struct btree_op op;
1481 uint64_t start_time = local_clock();
1482
1483 trace_bcache_gc_start(c);
1484
1485 memset(&stats, 0, sizeof(struct gc_stat));
1486 closure_init_stack(&writes);
1487 bch_btree_op_init_stack(&op);
1488 op.lock = SHRT_MAX;
1489
1490 btree_gc_start(c);
1491
1492 atomic_inc(&c->prio_blocked);
1493
1494 ret = btree_root(gc_root, c, &op, &writes, &stats);
1495 closure_sync(&op.cl);
1496 closure_sync(&writes);
1497
1498 if (ret) {
1499 pr_warn("gc failed!");
1500 continue_at(cl, bch_btree_gc, bch_gc_wq);
1501 }
1502
1503 /* Possibly wait for new UUIDs or whatever to hit disk */
1504 bch_journal_meta(c, &op.cl);
1505 closure_sync(&op.cl);
1506
1507 available = bch_btree_gc_finish(c);
1508
1509 atomic_dec(&c->prio_blocked);
1510 wake_up_allocators(c);
1511
1512 bch_time_stats_update(&c->btree_gc_time, start_time);
1513
1514 stats.key_bytes *= sizeof(uint64_t);
1515 stats.dirty <<= 9;
1516 stats.data <<= 9;
1517 stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
1518 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1519
1520 trace_bcache_gc_end(c);
1521
1522 continue_at(cl, bch_moving_gc, bch_gc_wq);
1523 }
1524
1525 void bch_queue_gc(struct cache_set *c)
1526 {
1527 closure_trylock_call(&c->gc.cl, bch_btree_gc, bch_gc_wq, &c->cl);
1528 }
1529
1530 /* Initial partial gc */
1531
1532 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op,
1533 unsigned long **seen)
1534 {
1535 int ret;
1536 unsigned i;
1537 struct bkey *k;
1538 struct bucket *g;
1539 struct btree_iter iter;
1540
1541 for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
1542 for (i = 0; i < KEY_PTRS(k); i++) {
1543 if (!ptr_available(b->c, k, i))
1544 continue;
1545
1546 g = PTR_BUCKET(b->c, k, i);
1547
1548 if (!__test_and_set_bit(PTR_BUCKET_NR(b->c, k, i),
1549 seen[PTR_DEV(k, i)]) ||
1550 !ptr_stale(b->c, k, i)) {
1551 g->gen = PTR_GEN(k, i);
1552
1553 if (b->level)
1554 g->prio = BTREE_PRIO;
1555 else if (g->prio == BTREE_PRIO)
1556 g->prio = INITIAL_PRIO;
1557 }
1558 }
1559
1560 btree_mark_key(b, k);
1561 }
1562
1563 if (b->level) {
1564 k = bch_next_recurse_key(b, &ZERO_KEY);
1565
1566 while (k) {
1567 struct bkey *p = bch_next_recurse_key(b, k);
1568 if (p)
1569 btree_node_prefetch(b->c, p, b->level - 1);
1570
1571 ret = btree(check_recurse, k, b, op, seen);
1572 if (ret)
1573 return ret;
1574
1575 k = p;
1576 }
1577 }
1578
1579 return 0;
1580 }
1581
1582 int bch_btree_check(struct cache_set *c, struct btree_op *op)
1583 {
1584 int ret = -ENOMEM;
1585 unsigned i;
1586 unsigned long *seen[MAX_CACHES_PER_SET];
1587
1588 memset(seen, 0, sizeof(seen));
1589
1590 for (i = 0; c->cache[i]; i++) {
1591 size_t n = DIV_ROUND_UP(c->cache[i]->sb.nbuckets, 8);
1592 seen[i] = kmalloc(n, GFP_KERNEL);
1593 if (!seen[i])
1594 goto err;
1595
1596 /* Disables the seen array until prio_read() uses it too */
1597 memset(seen[i], 0xFF, n);
1598 }
1599
1600 ret = btree_root(check_recurse, c, op, seen);
1601 err:
1602 for (i = 0; i < MAX_CACHES_PER_SET; i++)
1603 kfree(seen[i]);
1604 return ret;
1605 }
1606
1607 /* Btree insertion */
1608
1609 static void shift_keys(struct btree *b, struct bkey *where, struct bkey *insert)
1610 {
1611 struct bset *i = b->sets[b->nsets].data;
1612
1613 memmove((uint64_t *) where + bkey_u64s(insert),
1614 where,
1615 (void *) end(i) - (void *) where);
1616
1617 i->keys += bkey_u64s(insert);
1618 bkey_copy(where, insert);
1619 bch_bset_fix_lookup_table(b, where);
1620 }
1621
1622 static bool fix_overlapping_extents(struct btree *b,
1623 struct bkey *insert,
1624 struct btree_iter *iter,
1625 struct btree_op *op)
1626 {
1627 void subtract_dirty(struct bkey *k, uint64_t offset, int sectors)
1628 {
1629 if (KEY_DIRTY(k))
1630 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
1631 offset, -sectors);
1632 }
1633
1634 uint64_t old_offset;
1635 unsigned old_size, sectors_found = 0;
1636
1637 while (1) {
1638 struct bkey *k = bch_btree_iter_next(iter);
1639 if (!k ||
1640 bkey_cmp(&START_KEY(k), insert) >= 0)
1641 break;
1642
1643 if (bkey_cmp(k, &START_KEY(insert)) <= 0)
1644 continue;
1645
1646 old_offset = KEY_START(k);
1647 old_size = KEY_SIZE(k);
1648
1649 /*
1650 * We might overlap with 0 size extents; we can't skip these
1651 * because if they're in the set we're inserting to we have to
1652 * adjust them so they don't overlap with the key we're
1653 * inserting. But we don't want to check them for BTREE_REPLACE
1654 * operations.
1655 */
1656
1657 if (op->type == BTREE_REPLACE &&
1658 KEY_SIZE(k)) {
1659 /*
1660 * k might have been split since we inserted/found the
1661 * key we're replacing
1662 */
1663 unsigned i;
1664 uint64_t offset = KEY_START(k) -
1665 KEY_START(&op->replace);
1666
1667 /* But it must be a subset of the replace key */
1668 if (KEY_START(k) < KEY_START(&op->replace) ||
1669 KEY_OFFSET(k) > KEY_OFFSET(&op->replace))
1670 goto check_failed;
1671
1672 /* We didn't find a key that we were supposed to */
1673 if (KEY_START(k) > KEY_START(insert) + sectors_found)
1674 goto check_failed;
1675
1676 if (KEY_PTRS(&op->replace) != KEY_PTRS(k))
1677 goto check_failed;
1678
1679 /* skip past gen */
1680 offset <<= 8;
1681
1682 BUG_ON(!KEY_PTRS(&op->replace));
1683
1684 for (i = 0; i < KEY_PTRS(&op->replace); i++)
1685 if (k->ptr[i] != op->replace.ptr[i] + offset)
1686 goto check_failed;
1687
1688 sectors_found = KEY_OFFSET(k) - KEY_START(insert);
1689 }
1690
1691 if (bkey_cmp(insert, k) < 0 &&
1692 bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
1693 /*
1694 * We overlapped in the middle of an existing key: that
1695 * means we have to split the old key. But we have to do
1696 * slightly different things depending on whether the
1697 * old key has been written out yet.
1698 */
1699
1700 struct bkey *top;
1701
1702 subtract_dirty(k, KEY_START(insert), KEY_SIZE(insert));
1703
1704 if (bkey_written(b, k)) {
1705 /*
1706 * We insert a new key to cover the top of the
1707 * old key, and the old key is modified in place
1708 * to represent the bottom split.
1709 *
1710 * It's completely arbitrary whether the new key
1711 * is the top or the bottom, but it has to match
1712 * up with what btree_sort_fixup() does - it
1713 * doesn't check for this kind of overlap, it
1714 * depends on us inserting a new key for the top
1715 * here.
1716 */
1717 top = bch_bset_search(b, &b->sets[b->nsets],
1718 insert);
1719 shift_keys(b, top, k);
1720 } else {
1721 BKEY_PADDED(key) temp;
1722 bkey_copy(&temp.key, k);
1723 shift_keys(b, k, &temp.key);
1724 top = bkey_next(k);
1725 }
1726
1727 bch_cut_front(insert, top);
1728 bch_cut_back(&START_KEY(insert), k);
1729 bch_bset_fix_invalidated_key(b, k);
1730 return false;
1731 }
1732
1733 if (bkey_cmp(insert, k) < 0) {
1734 bch_cut_front(insert, k);
1735 } else {
1736 if (bkey_written(b, k) &&
1737 bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
1738 /*
1739 * Completely overwrote, so we don't have to
1740 * invalidate the binary search tree
1741 */
1742 bch_cut_front(k, k);
1743 } else {
1744 __bch_cut_back(&START_KEY(insert), k);
1745 bch_bset_fix_invalidated_key(b, k);
1746 }
1747 }
1748
1749 subtract_dirty(k, old_offset, old_size - KEY_SIZE(k));
1750 }
1751
1752 check_failed:
1753 if (op->type == BTREE_REPLACE) {
1754 if (!sectors_found) {
1755 op->insert_collision = true;
1756 return true;
1757 } else if (sectors_found < KEY_SIZE(insert)) {
1758 SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
1759 (KEY_SIZE(insert) - sectors_found));
1760 SET_KEY_SIZE(insert, sectors_found);
1761 }
1762 }
1763
1764 return false;
1765 }
1766
1767 static bool btree_insert_key(struct btree *b, struct btree_op *op,
1768 struct bkey *k)
1769 {
1770 struct bset *i = b->sets[b->nsets].data;
1771 struct bkey *m, *prev;
1772 unsigned status = BTREE_INSERT_STATUS_INSERT;
1773
1774 BUG_ON(bkey_cmp(k, &b->key) > 0);
1775 BUG_ON(b->level && !KEY_PTRS(k));
1776 BUG_ON(!b->level && !KEY_OFFSET(k));
1777
1778 if (!b->level) {
1779 struct btree_iter iter;
1780 struct bkey search = KEY(KEY_INODE(k), KEY_START(k), 0);
1781
1782 /*
1783 * bset_search() returns the first key that is strictly greater
1784 * than the search key - but for back merging, we want to find
1785 * the first key that is greater than or equal to KEY_START(k) -
1786 * unless KEY_START(k) is 0.
1787 */
1788 if (KEY_OFFSET(&search))
1789 SET_KEY_OFFSET(&search, KEY_OFFSET(&search) - 1);
1790
1791 prev = NULL;
1792 m = bch_btree_iter_init(b, &iter, &search);
1793
1794 if (fix_overlapping_extents(b, k, &iter, op))
1795 return false;
1796
1797 while (m != end(i) &&
1798 bkey_cmp(k, &START_KEY(m)) > 0)
1799 prev = m, m = bkey_next(m);
1800
1801 if (key_merging_disabled(b->c))
1802 goto insert;
1803
1804 /* prev is in the tree, if we merge we're done */
1805 status = BTREE_INSERT_STATUS_BACK_MERGE;
1806 if (prev &&
1807 bch_bkey_try_merge(b, prev, k))
1808 goto merged;
1809
1810 status = BTREE_INSERT_STATUS_OVERWROTE;
1811 if (m != end(i) &&
1812 KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
1813 goto copy;
1814
1815 status = BTREE_INSERT_STATUS_FRONT_MERGE;
1816 if (m != end(i) &&
1817 bch_bkey_try_merge(b, k, m))
1818 goto copy;
1819 } else
1820 m = bch_bset_search(b, &b->sets[b->nsets], k);
1821
1822 insert: shift_keys(b, m, k);
1823 copy: bkey_copy(m, k);
1824 merged:
1825 if (KEY_DIRTY(k))
1826 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
1827 KEY_START(k), KEY_SIZE(k));
1828
1829 bch_check_keys(b, "%u for %s", status, op_type(op));
1830
1831 if (b->level && !KEY_OFFSET(k))
1832 btree_current_write(b)->prio_blocked++;
1833
1834 trace_bcache_btree_insert_key(b, k, op->type, status);
1835
1836 return true;
1837 }
1838
1839 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op)
1840 {
1841 bool ret = false;
1842 struct bkey *k;
1843 unsigned oldsize = bch_count_data(b);
1844
1845 while ((k = bch_keylist_pop(&op->keys))) {
1846 bkey_put(b->c, k, b->level);
1847 ret |= btree_insert_key(b, op, k);
1848 }
1849
1850 BUG_ON(bch_count_data(b) < oldsize);
1851 return ret;
1852 }
1853
1854 bool bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
1855 struct bio *bio)
1856 {
1857 bool ret = false;
1858 uint64_t btree_ptr = b->key.ptr[0];
1859 unsigned long seq = b->seq;
1860 BKEY_PADDED(k) tmp;
1861
1862 rw_unlock(false, b);
1863 rw_lock(true, b, b->level);
1864
1865 if (b->key.ptr[0] != btree_ptr ||
1866 b->seq != seq + 1 ||
1867 should_split(b))
1868 goto out;
1869
1870 op->replace = KEY(op->inode, bio_end_sector(bio), bio_sectors(bio));
1871
1872 SET_KEY_PTRS(&op->replace, 1);
1873 get_random_bytes(&op->replace.ptr[0], sizeof(uint64_t));
1874
1875 SET_PTR_DEV(&op->replace, 0, PTR_CHECK_DEV);
1876
1877 bkey_copy(&tmp.k, &op->replace);
1878
1879 BUG_ON(op->type != BTREE_INSERT);
1880 BUG_ON(!btree_insert_key(b, op, &tmp.k));
1881 ret = true;
1882 out:
1883 downgrade_write(&b->lock);
1884 return ret;
1885 }
1886
1887 static int btree_split(struct btree *b, struct btree_op *op)
1888 {
1889 bool split, root = b == b->c->root;
1890 struct btree *n1, *n2 = NULL, *n3 = NULL;
1891 uint64_t start_time = local_clock();
1892
1893 if (b->level)
1894 set_closure_blocking(&op->cl);
1895
1896 n1 = btree_node_alloc_replacement(b, &op->cl);
1897 if (IS_ERR(n1))
1898 goto err;
1899
1900 split = set_blocks(n1->sets[0].data, n1->c) > (btree_blocks(b) * 4) / 5;
1901
1902 if (split) {
1903 unsigned keys = 0;
1904
1905 trace_bcache_btree_node_split(b, n1->sets[0].data->keys);
1906
1907 n2 = bch_btree_node_alloc(b->c, b->level, &op->cl);
1908 if (IS_ERR(n2))
1909 goto err_free1;
1910
1911 if (root) {
1912 n3 = bch_btree_node_alloc(b->c, b->level + 1, &op->cl);
1913 if (IS_ERR(n3))
1914 goto err_free2;
1915 }
1916
1917 bch_btree_insert_keys(n1, op);
1918
1919 /* Has to be a linear search because we don't have an auxiliary
1920 * search tree yet
1921 */
1922
1923 while (keys < (n1->sets[0].data->keys * 3) / 5)
1924 keys += bkey_u64s(node(n1->sets[0].data, keys));
1925
1926 bkey_copy_key(&n1->key, node(n1->sets[0].data, keys));
1927 keys += bkey_u64s(node(n1->sets[0].data, keys));
1928
1929 n2->sets[0].data->keys = n1->sets[0].data->keys - keys;
1930 n1->sets[0].data->keys = keys;
1931
1932 memcpy(n2->sets[0].data->start,
1933 end(n1->sets[0].data),
1934 n2->sets[0].data->keys * sizeof(uint64_t));
1935
1936 bkey_copy_key(&n2->key, &b->key);
1937
1938 bch_keylist_add(&op->keys, &n2->key);
1939 bch_btree_node_write(n2, &op->cl);
1940 rw_unlock(true, n2);
1941 } else {
1942 trace_bcache_btree_node_compact(b, n1->sets[0].data->keys);
1943
1944 bch_btree_insert_keys(n1, op);
1945 }
1946
1947 bch_keylist_add(&op->keys, &n1->key);
1948 bch_btree_node_write(n1, &op->cl);
1949
1950 if (n3) {
1951 bkey_copy_key(&n3->key, &MAX_KEY);
1952 bch_btree_insert_keys(n3, op);
1953 bch_btree_node_write(n3, &op->cl);
1954
1955 closure_sync(&op->cl);
1956 bch_btree_set_root(n3);
1957 rw_unlock(true, n3);
1958 } else if (root) {
1959 op->keys.top = op->keys.bottom;
1960 closure_sync(&op->cl);
1961 bch_btree_set_root(n1);
1962 } else {
1963 unsigned i;
1964
1965 bkey_copy(op->keys.top, &b->key);
1966 bkey_copy_key(op->keys.top, &ZERO_KEY);
1967
1968 for (i = 0; i < KEY_PTRS(&b->key); i++) {
1969 uint8_t g = PTR_BUCKET(b->c, &b->key, i)->gen + 1;
1970
1971 SET_PTR_GEN(op->keys.top, i, g);
1972 }
1973
1974 bch_keylist_push(&op->keys);
1975 closure_sync(&op->cl);
1976 atomic_inc(&b->c->prio_blocked);
1977 }
1978
1979 rw_unlock(true, n1);
1980 btree_node_free(b, op);
1981
1982 bch_time_stats_update(&b->c->btree_split_time, start_time);
1983
1984 return 0;
1985 err_free2:
1986 __bkey_put(n2->c, &n2->key);
1987 btree_node_free(n2, op);
1988 rw_unlock(true, n2);
1989 err_free1:
1990 __bkey_put(n1->c, &n1->key);
1991 btree_node_free(n1, op);
1992 rw_unlock(true, n1);
1993 err:
1994 if (n3 == ERR_PTR(-EAGAIN) ||
1995 n2 == ERR_PTR(-EAGAIN) ||
1996 n1 == ERR_PTR(-EAGAIN))
1997 return -EAGAIN;
1998
1999 pr_warn("couldn't split");
2000 return -ENOMEM;
2001 }
2002
2003 static int bch_btree_insert_recurse(struct btree *b, struct btree_op *op,
2004 struct keylist *stack_keys)
2005 {
2006 if (b->level) {
2007 int ret;
2008 struct bkey *insert = op->keys.bottom;
2009 struct bkey *k = bch_next_recurse_key(b, &START_KEY(insert));
2010
2011 if (!k) {
2012 btree_bug(b, "no key to recurse on at level %i/%i",
2013 b->level, b->c->root->level);
2014
2015 op->keys.top = op->keys.bottom;
2016 return -EIO;
2017 }
2018
2019 if (bkey_cmp(insert, k) > 0) {
2020 unsigned i;
2021
2022 if (op->type == BTREE_REPLACE) {
2023 __bkey_put(b->c, insert);
2024 op->keys.top = op->keys.bottom;
2025 op->insert_collision = true;
2026 return 0;
2027 }
2028
2029 for (i = 0; i < KEY_PTRS(insert); i++)
2030 atomic_inc(&PTR_BUCKET(b->c, insert, i)->pin);
2031
2032 bkey_copy(stack_keys->top, insert);
2033
2034 bch_cut_back(k, insert);
2035 bch_cut_front(k, stack_keys->top);
2036
2037 bch_keylist_push(stack_keys);
2038 }
2039
2040 ret = btree(insert_recurse, k, b, op, stack_keys);
2041 if (ret)
2042 return ret;
2043 }
2044
2045 if (!bch_keylist_empty(&op->keys)) {
2046 if (should_split(b)) {
2047 if (op->lock <= b->c->root->level) {
2048 BUG_ON(b->level);
2049 op->lock = b->c->root->level + 1;
2050 return -EINTR;
2051 }
2052 return btree_split(b, op);
2053 }
2054
2055 BUG_ON(write_block(b) != b->sets[b->nsets].data);
2056
2057 if (bch_btree_insert_keys(b, op)) {
2058 if (!b->level)
2059 bch_btree_leaf_dirty(b, op);
2060 else
2061 bch_btree_node_write(b, &op->cl);
2062 }
2063 }
2064
2065 return 0;
2066 }
2067
2068 int bch_btree_insert(struct btree_op *op, struct cache_set *c)
2069 {
2070 int ret = 0;
2071 struct keylist stack_keys;
2072
2073 /*
2074 * Don't want to block with the btree locked unless we have to,
2075 * otherwise we get deadlocks with try_harder and between split/gc
2076 */
2077 clear_closure_blocking(&op->cl);
2078
2079 BUG_ON(bch_keylist_empty(&op->keys));
2080 bch_keylist_copy(&stack_keys, &op->keys);
2081 bch_keylist_init(&op->keys);
2082
2083 while (!bch_keylist_empty(&stack_keys) ||
2084 !bch_keylist_empty(&op->keys)) {
2085 if (bch_keylist_empty(&op->keys)) {
2086 bch_keylist_add(&op->keys,
2087 bch_keylist_pop(&stack_keys));
2088 op->lock = 0;
2089 }
2090
2091 ret = btree_root(insert_recurse, c, op, &stack_keys);
2092
2093 if (ret == -EAGAIN) {
2094 ret = 0;
2095 closure_sync(&op->cl);
2096 } else if (ret) {
2097 struct bkey *k;
2098
2099 pr_err("error %i trying to insert key for %s",
2100 ret, op_type(op));
2101
2102 while ((k = bch_keylist_pop(&stack_keys) ?:
2103 bch_keylist_pop(&op->keys)))
2104 bkey_put(c, k, 0);
2105 }
2106 }
2107
2108 bch_keylist_free(&stack_keys);
2109
2110 if (op->journal)
2111 atomic_dec_bug(op->journal);
2112 op->journal = NULL;
2113 return ret;
2114 }
2115
2116 void bch_btree_set_root(struct btree *b)
2117 {
2118 unsigned i;
2119 struct closure cl;
2120
2121 closure_init_stack(&cl);
2122
2123 trace_bcache_btree_set_root(b);
2124
2125 BUG_ON(!b->written);
2126
2127 for (i = 0; i < KEY_PTRS(&b->key); i++)
2128 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2129
2130 mutex_lock(&b->c->bucket_lock);
2131 list_del_init(&b->list);
2132 mutex_unlock(&b->c->bucket_lock);
2133
2134 b->c->root = b;
2135 __bkey_put(b->c, &b->key);
2136
2137 bch_journal_meta(b->c, &cl);
2138 closure_sync(&cl);
2139 }
2140
2141 /* Cache lookup */
2142
2143 static int submit_partial_cache_miss(struct btree *b, struct btree_op *op,
2144 struct bkey *k)
2145 {
2146 struct search *s = container_of(op, struct search, op);
2147 struct bio *bio = &s->bio.bio;
2148 int ret = 0;
2149
2150 while (!ret &&
2151 !op->lookup_done) {
2152 unsigned sectors = INT_MAX;
2153
2154 if (KEY_INODE(k) == op->inode) {
2155 if (KEY_START(k) <= bio->bi_sector)
2156 break;
2157
2158 sectors = min_t(uint64_t, sectors,
2159 KEY_START(k) - bio->bi_sector);
2160 }
2161
2162 ret = s->d->cache_miss(b, s, bio, sectors);
2163 }
2164
2165 return ret;
2166 }
2167
2168 /*
2169 * Read from a single key, handling the initial cache miss if the key starts in
2170 * the middle of the bio
2171 */
2172 static int submit_partial_cache_hit(struct btree *b, struct btree_op *op,
2173 struct bkey *k)
2174 {
2175 struct search *s = container_of(op, struct search, op);
2176 struct bio *bio = &s->bio.bio;
2177 unsigned ptr;
2178 struct bio *n;
2179
2180 int ret = submit_partial_cache_miss(b, op, k);
2181 if (ret || op->lookup_done)
2182 return ret;
2183
2184 /* XXX: figure out best pointer - for multiple cache devices */
2185 ptr = 0;
2186
2187 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
2188
2189 while (!op->lookup_done &&
2190 KEY_INODE(k) == op->inode &&
2191 bio->bi_sector < KEY_OFFSET(k)) {
2192 struct bkey *bio_key;
2193 sector_t sector = PTR_OFFSET(k, ptr) +
2194 (bio->bi_sector - KEY_START(k));
2195 unsigned sectors = min_t(uint64_t, INT_MAX,
2196 KEY_OFFSET(k) - bio->bi_sector);
2197
2198 n = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
2199 if (n == bio)
2200 op->lookup_done = true;
2201
2202 bio_key = &container_of(n, struct bbio, bio)->key;
2203
2204 /*
2205 * The bucket we're reading from might be reused while our bio
2206 * is in flight, and we could then end up reading the wrong
2207 * data.
2208 *
2209 * We guard against this by checking (in cache_read_endio()) if
2210 * the pointer is stale again; if so, we treat it as an error
2211 * and reread from the backing device (but we don't pass that
2212 * error up anywhere).
2213 */
2214
2215 bch_bkey_copy_single_ptr(bio_key, k, ptr);
2216 SET_PTR_OFFSET(bio_key, 0, sector);
2217
2218 n->bi_end_io = bch_cache_read_endio;
2219 n->bi_private = &s->cl;
2220
2221 __bch_submit_bbio(n, b->c);
2222 }
2223
2224 return 0;
2225 }
2226
2227 int bch_btree_search_recurse(struct btree *b, struct btree_op *op)
2228 {
2229 struct search *s = container_of(op, struct search, op);
2230 struct bio *bio = &s->bio.bio;
2231
2232 int ret = 0;
2233 struct bkey *k;
2234 struct btree_iter iter;
2235 bch_btree_iter_init(b, &iter, &KEY(op->inode, bio->bi_sector, 0));
2236
2237 do {
2238 k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad);
2239 if (!k) {
2240 /*
2241 * b->key would be exactly what we want, except that
2242 * pointers to btree nodes have nonzero size - we
2243 * wouldn't go far enough
2244 */
2245
2246 ret = submit_partial_cache_miss(b, op,
2247 &KEY(KEY_INODE(&b->key),
2248 KEY_OFFSET(&b->key), 0));
2249 break;
2250 }
2251
2252 ret = b->level
2253 ? btree(search_recurse, k, b, op)
2254 : submit_partial_cache_hit(b, op, k);
2255 } while (!ret &&
2256 !op->lookup_done);
2257
2258 return ret;
2259 }
2260
2261 /* Keybuf code */
2262
2263 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2264 {
2265 /* Overlapping keys compare equal */
2266 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2267 return -1;
2268 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2269 return 1;
2270 return 0;
2271 }
2272
2273 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2274 struct keybuf_key *r)
2275 {
2276 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2277 }
2278
2279 static int bch_btree_refill_keybuf(struct btree *b, struct btree_op *op,
2280 struct keybuf *buf, struct bkey *end,
2281 keybuf_pred_fn *pred)
2282 {
2283 struct btree_iter iter;
2284 bch_btree_iter_init(b, &iter, &buf->last_scanned);
2285
2286 while (!array_freelist_empty(&buf->freelist)) {
2287 struct bkey *k = bch_btree_iter_next_filter(&iter, b,
2288 bch_ptr_bad);
2289
2290 if (!b->level) {
2291 if (!k) {
2292 buf->last_scanned = b->key;
2293 break;
2294 }
2295
2296 buf->last_scanned = *k;
2297 if (bkey_cmp(&buf->last_scanned, end) >= 0)
2298 break;
2299
2300 if (pred(buf, k)) {
2301 struct keybuf_key *w;
2302
2303 spin_lock(&buf->lock);
2304
2305 w = array_alloc(&buf->freelist);
2306
2307 w->private = NULL;
2308 bkey_copy(&w->key, k);
2309
2310 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2311 array_free(&buf->freelist, w);
2312
2313 spin_unlock(&buf->lock);
2314 }
2315 } else {
2316 if (!k)
2317 break;
2318
2319 btree(refill_keybuf, k, b, op, buf, end, pred);
2320 /*
2321 * Might get an error here, but can't really do anything
2322 * and it'll get logged elsewhere. Just read what we
2323 * can.
2324 */
2325
2326 if (bkey_cmp(&buf->last_scanned, end) >= 0)
2327 break;
2328
2329 cond_resched();
2330 }
2331 }
2332
2333 return 0;
2334 }
2335
2336 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2337 struct bkey *end, keybuf_pred_fn *pred)
2338 {
2339 struct bkey start = buf->last_scanned;
2340 struct btree_op op;
2341 bch_btree_op_init_stack(&op);
2342
2343 cond_resched();
2344
2345 btree_root(refill_keybuf, c, &op, buf, end, pred);
2346 closure_sync(&op.cl);
2347
2348 pr_debug("found %s keys from %llu:%llu to %llu:%llu",
2349 RB_EMPTY_ROOT(&buf->keys) ? "no" :
2350 array_freelist_empty(&buf->freelist) ? "some" : "a few",
2351 KEY_INODE(&start), KEY_OFFSET(&start),
2352 KEY_INODE(&buf->last_scanned), KEY_OFFSET(&buf->last_scanned));
2353
2354 spin_lock(&buf->lock);
2355
2356 if (!RB_EMPTY_ROOT(&buf->keys)) {
2357 struct keybuf_key *w;
2358 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2359 buf->start = START_KEY(&w->key);
2360
2361 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2362 buf->end = w->key;
2363 } else {
2364 buf->start = MAX_KEY;
2365 buf->end = MAX_KEY;
2366 }
2367
2368 spin_unlock(&buf->lock);
2369 }
2370
2371 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2372 {
2373 rb_erase(&w->node, &buf->keys);
2374 array_free(&buf->freelist, w);
2375 }
2376
2377 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2378 {
2379 spin_lock(&buf->lock);
2380 __bch_keybuf_del(buf, w);
2381 spin_unlock(&buf->lock);
2382 }
2383
2384 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2385 struct bkey *end)
2386 {
2387 bool ret = false;
2388 struct keybuf_key *p, *w, s;
2389 s.key = *start;
2390
2391 if (bkey_cmp(end, &buf->start) <= 0 ||
2392 bkey_cmp(start, &buf->end) >= 0)
2393 return false;
2394
2395 spin_lock(&buf->lock);
2396 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2397
2398 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2399 p = w;
2400 w = RB_NEXT(w, node);
2401
2402 if (p->private)
2403 ret = true;
2404 else
2405 __bch_keybuf_del(buf, p);
2406 }
2407
2408 spin_unlock(&buf->lock);
2409 return ret;
2410 }
2411
2412 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2413 {
2414 struct keybuf_key *w;
2415 spin_lock(&buf->lock);
2416
2417 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2418
2419 while (w && w->private)
2420 w = RB_NEXT(w, node);
2421
2422 if (w)
2423 w->private = ERR_PTR(-EINTR);
2424
2425 spin_unlock(&buf->lock);
2426 return w;
2427 }
2428
2429 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2430 struct keybuf *buf,
2431 struct bkey *end,
2432 keybuf_pred_fn *pred)
2433 {
2434 struct keybuf_key *ret;
2435
2436 while (1) {
2437 ret = bch_keybuf_next(buf);
2438 if (ret)
2439 break;
2440
2441 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2442 pr_debug("scan finished");
2443 break;
2444 }
2445
2446 bch_refill_keybuf(c, buf, end, pred);
2447 }
2448
2449 return ret;
2450 }
2451
2452 void bch_keybuf_init(struct keybuf *buf)
2453 {
2454 buf->last_scanned = MAX_KEY;
2455 buf->keys = RB_ROOT;
2456
2457 spin_lock_init(&buf->lock);
2458 array_allocator_init(&buf->freelist);
2459 }
2460
2461 void bch_btree_exit(void)
2462 {
2463 if (btree_io_wq)
2464 destroy_workqueue(btree_io_wq);
2465 if (bch_gc_wq)
2466 destroy_workqueue(bch_gc_wq);
2467 }
2468
2469 int __init bch_btree_init(void)
2470 {
2471 if (!(bch_gc_wq = create_singlethread_workqueue("bch_btree_gc")) ||
2472 !(btree_io_wq = create_singlethread_workqueue("bch_btree_io")))
2473 return -ENOMEM;
2474
2475 return 0;
2476 }
This page took 0.089099 seconds and 6 git commands to generate.