bcache: A block layer cache
[deliverable/linux.git] / drivers / md / bcache / super.c
1 /*
2 * bcache setup/teardown code, and some metadata io - read a superblock and
3 * figure out what to do with it.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13
14 #include <linux/buffer_head.h>
15 #include <linux/debugfs.h>
16 #include <linux/genhd.h>
17 #include <linux/module.h>
18 #include <linux/random.h>
19 #include <linux/reboot.h>
20 #include <linux/sysfs.h>
21
22 MODULE_LICENSE("GPL");
23 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
24
25 static const char bcache_magic[] = {
26 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
27 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
28 };
29
30 static const char invalid_uuid[] = {
31 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
32 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
33 };
34
35 /* Default is -1; we skip past it for struct cached_dev's cache mode */
36 const char * const bch_cache_modes[] = {
37 "default",
38 "writethrough",
39 "writeback",
40 "writearound",
41 "none",
42 NULL
43 };
44
45 struct uuid_entry_v0 {
46 uint8_t uuid[16];
47 uint8_t label[32];
48 uint32_t first_reg;
49 uint32_t last_reg;
50 uint32_t invalidated;
51 uint32_t pad;
52 };
53
54 static struct kobject *bcache_kobj;
55 struct mutex bch_register_lock;
56 LIST_HEAD(bch_cache_sets);
57 static LIST_HEAD(uncached_devices);
58
59 static int bcache_major, bcache_minor;
60 static wait_queue_head_t unregister_wait;
61 struct workqueue_struct *bcache_wq;
62
63 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
64
65 static void bio_split_pool_free(struct bio_split_pool *p)
66 {
67 if (p->bio_split)
68 bioset_free(p->bio_split);
69
70 }
71
72 static int bio_split_pool_init(struct bio_split_pool *p)
73 {
74 p->bio_split = bioset_create(4, 0);
75 if (!p->bio_split)
76 return -ENOMEM;
77
78 p->bio_split_hook = mempool_create_kmalloc_pool(4,
79 sizeof(struct bio_split_hook));
80 if (!p->bio_split_hook)
81 return -ENOMEM;
82
83 return 0;
84 }
85
86 /* Superblock */
87
88 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
89 struct page **res)
90 {
91 const char *err;
92 struct cache_sb *s;
93 struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
94 unsigned i;
95
96 if (!bh)
97 return "IO error";
98
99 s = (struct cache_sb *) bh->b_data;
100
101 sb->offset = le64_to_cpu(s->offset);
102 sb->version = le64_to_cpu(s->version);
103
104 memcpy(sb->magic, s->magic, 16);
105 memcpy(sb->uuid, s->uuid, 16);
106 memcpy(sb->set_uuid, s->set_uuid, 16);
107 memcpy(sb->label, s->label, SB_LABEL_SIZE);
108
109 sb->flags = le64_to_cpu(s->flags);
110 sb->seq = le64_to_cpu(s->seq);
111
112 sb->nbuckets = le64_to_cpu(s->nbuckets);
113 sb->block_size = le16_to_cpu(s->block_size);
114 sb->bucket_size = le16_to_cpu(s->bucket_size);
115
116 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
117 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
118 sb->last_mount = le32_to_cpu(s->last_mount);
119
120 sb->first_bucket = le16_to_cpu(s->first_bucket);
121 sb->keys = le16_to_cpu(s->keys);
122
123 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
124 sb->d[i] = le64_to_cpu(s->d[i]);
125
126 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
127 sb->version, sb->flags, sb->seq, sb->keys);
128
129 err = "Not a bcache superblock";
130 if (sb->offset != SB_SECTOR)
131 goto err;
132
133 if (memcmp(sb->magic, bcache_magic, 16))
134 goto err;
135
136 err = "Too many journal buckets";
137 if (sb->keys > SB_JOURNAL_BUCKETS)
138 goto err;
139
140 err = "Bad checksum";
141 if (s->csum != csum_set(s))
142 goto err;
143
144 err = "Bad UUID";
145 if (is_zero(sb->uuid, 16))
146 goto err;
147
148 err = "Unsupported superblock version";
149 if (sb->version > BCACHE_SB_VERSION)
150 goto err;
151
152 err = "Bad block/bucket size";
153 if (!is_power_of_2(sb->block_size) || sb->block_size > PAGE_SECTORS ||
154 !is_power_of_2(sb->bucket_size) || sb->bucket_size < PAGE_SECTORS)
155 goto err;
156
157 err = "Too many buckets";
158 if (sb->nbuckets > LONG_MAX)
159 goto err;
160
161 err = "Not enough buckets";
162 if (sb->nbuckets < 1 << 7)
163 goto err;
164
165 err = "Invalid superblock: device too small";
166 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
167 goto err;
168
169 if (sb->version == CACHE_BACKING_DEV)
170 goto out;
171
172 err = "Bad UUID";
173 if (is_zero(sb->set_uuid, 16))
174 goto err;
175
176 err = "Bad cache device number in set";
177 if (!sb->nr_in_set ||
178 sb->nr_in_set <= sb->nr_this_dev ||
179 sb->nr_in_set > MAX_CACHES_PER_SET)
180 goto err;
181
182 err = "Journal buckets not sequential";
183 for (i = 0; i < sb->keys; i++)
184 if (sb->d[i] != sb->first_bucket + i)
185 goto err;
186
187 err = "Too many journal buckets";
188 if (sb->first_bucket + sb->keys > sb->nbuckets)
189 goto err;
190
191 err = "Invalid superblock: first bucket comes before end of super";
192 if (sb->first_bucket * sb->bucket_size < 16)
193 goto err;
194 out:
195 sb->last_mount = get_seconds();
196 err = NULL;
197
198 get_page(bh->b_page);
199 *res = bh->b_page;
200 err:
201 put_bh(bh);
202 return err;
203 }
204
205 static void write_bdev_super_endio(struct bio *bio, int error)
206 {
207 struct cached_dev *dc = bio->bi_private;
208 /* XXX: error checking */
209
210 closure_put(&dc->sb_write.cl);
211 }
212
213 static void __write_super(struct cache_sb *sb, struct bio *bio)
214 {
215 struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
216 unsigned i;
217
218 bio->bi_sector = SB_SECTOR;
219 bio->bi_rw = REQ_SYNC|REQ_META;
220 bio->bi_size = SB_SIZE;
221 bio_map(bio, NULL);
222
223 out->offset = cpu_to_le64(sb->offset);
224 out->version = cpu_to_le64(sb->version);
225
226 memcpy(out->uuid, sb->uuid, 16);
227 memcpy(out->set_uuid, sb->set_uuid, 16);
228 memcpy(out->label, sb->label, SB_LABEL_SIZE);
229
230 out->flags = cpu_to_le64(sb->flags);
231 out->seq = cpu_to_le64(sb->seq);
232
233 out->last_mount = cpu_to_le32(sb->last_mount);
234 out->first_bucket = cpu_to_le16(sb->first_bucket);
235 out->keys = cpu_to_le16(sb->keys);
236
237 for (i = 0; i < sb->keys; i++)
238 out->d[i] = cpu_to_le64(sb->d[i]);
239
240 out->csum = csum_set(out);
241
242 pr_debug("ver %llu, flags %llu, seq %llu",
243 sb->version, sb->flags, sb->seq);
244
245 submit_bio(REQ_WRITE, bio);
246 }
247
248 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
249 {
250 struct closure *cl = &dc->sb_write.cl;
251 struct bio *bio = &dc->sb_bio;
252
253 closure_lock(&dc->sb_write, parent);
254
255 bio_reset(bio);
256 bio->bi_bdev = dc->bdev;
257 bio->bi_end_io = write_bdev_super_endio;
258 bio->bi_private = dc;
259
260 closure_get(cl);
261 __write_super(&dc->sb, bio);
262
263 closure_return(cl);
264 }
265
266 static void write_super_endio(struct bio *bio, int error)
267 {
268 struct cache *ca = bio->bi_private;
269
270 bch_count_io_errors(ca, error, "writing superblock");
271 closure_put(&ca->set->sb_write.cl);
272 }
273
274 void bcache_write_super(struct cache_set *c)
275 {
276 struct closure *cl = &c->sb_write.cl;
277 struct cache *ca;
278 unsigned i;
279
280 closure_lock(&c->sb_write, &c->cl);
281
282 c->sb.seq++;
283
284 for_each_cache(ca, c, i) {
285 struct bio *bio = &ca->sb_bio;
286
287 ca->sb.version = BCACHE_SB_VERSION;
288 ca->sb.seq = c->sb.seq;
289 ca->sb.last_mount = c->sb.last_mount;
290
291 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
292
293 bio_reset(bio);
294 bio->bi_bdev = ca->bdev;
295 bio->bi_end_io = write_super_endio;
296 bio->bi_private = ca;
297
298 closure_get(cl);
299 __write_super(&ca->sb, bio);
300 }
301
302 closure_return(cl);
303 }
304
305 /* UUID io */
306
307 static void uuid_endio(struct bio *bio, int error)
308 {
309 struct closure *cl = bio->bi_private;
310 struct cache_set *c = container_of(cl, struct cache_set, uuid_write.cl);
311
312 cache_set_err_on(error, c, "accessing uuids");
313 bch_bbio_free(bio, c);
314 closure_put(cl);
315 }
316
317 static void uuid_io(struct cache_set *c, unsigned long rw,
318 struct bkey *k, struct closure *parent)
319 {
320 struct closure *cl = &c->uuid_write.cl;
321 struct uuid_entry *u;
322 unsigned i;
323
324 BUG_ON(!parent);
325 closure_lock(&c->uuid_write, parent);
326
327 for (i = 0; i < KEY_PTRS(k); i++) {
328 struct bio *bio = bch_bbio_alloc(c);
329
330 bio->bi_rw = REQ_SYNC|REQ_META|rw;
331 bio->bi_size = KEY_SIZE(k) << 9;
332
333 bio->bi_end_io = uuid_endio;
334 bio->bi_private = cl;
335 bio_map(bio, c->uuids);
336
337 bch_submit_bbio(bio, c, k, i);
338
339 if (!(rw & WRITE))
340 break;
341 }
342
343 pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read",
344 pkey(&c->uuid_bucket));
345
346 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
347 if (!is_zero(u->uuid, 16))
348 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
349 u - c->uuids, u->uuid, u->label,
350 u->first_reg, u->last_reg, u->invalidated);
351
352 closure_return(cl);
353 }
354
355 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
356 {
357 struct bkey *k = &j->uuid_bucket;
358
359 if (__bch_ptr_invalid(c, 1, k))
360 return "bad uuid pointer";
361
362 bkey_copy(&c->uuid_bucket, k);
363 uuid_io(c, READ_SYNC, k, cl);
364
365 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
366 struct uuid_entry_v0 *u0 = (void *) c->uuids;
367 struct uuid_entry *u1 = (void *) c->uuids;
368 int i;
369
370 closure_sync(cl);
371
372 /*
373 * Since the new uuid entry is bigger than the old, we have to
374 * convert starting at the highest memory address and work down
375 * in order to do it in place
376 */
377
378 for (i = c->nr_uuids - 1;
379 i >= 0;
380 --i) {
381 memcpy(u1[i].uuid, u0[i].uuid, 16);
382 memcpy(u1[i].label, u0[i].label, 32);
383
384 u1[i].first_reg = u0[i].first_reg;
385 u1[i].last_reg = u0[i].last_reg;
386 u1[i].invalidated = u0[i].invalidated;
387
388 u1[i].flags = 0;
389 u1[i].sectors = 0;
390 }
391 }
392
393 return NULL;
394 }
395
396 static int __uuid_write(struct cache_set *c)
397 {
398 BKEY_PADDED(key) k;
399 struct closure cl;
400 closure_init_stack(&cl);
401
402 lockdep_assert_held(&bch_register_lock);
403
404 if (bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, &cl))
405 return 1;
406
407 SET_KEY_SIZE(&k.key, c->sb.bucket_size);
408 uuid_io(c, REQ_WRITE, &k.key, &cl);
409 closure_sync(&cl);
410
411 bkey_copy(&c->uuid_bucket, &k.key);
412 __bkey_put(c, &k.key);
413 return 0;
414 }
415
416 int bch_uuid_write(struct cache_set *c)
417 {
418 int ret = __uuid_write(c);
419
420 if (!ret)
421 bch_journal_meta(c, NULL);
422
423 return ret;
424 }
425
426 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
427 {
428 struct uuid_entry *u;
429
430 for (u = c->uuids;
431 u < c->uuids + c->nr_uuids; u++)
432 if (!memcmp(u->uuid, uuid, 16))
433 return u;
434
435 return NULL;
436 }
437
438 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
439 {
440 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
441 return uuid_find(c, zero_uuid);
442 }
443
444 /*
445 * Bucket priorities/gens:
446 *
447 * For each bucket, we store on disk its
448 * 8 bit gen
449 * 16 bit priority
450 *
451 * See alloc.c for an explanation of the gen. The priority is used to implement
452 * lru (and in the future other) cache replacement policies; for most purposes
453 * it's just an opaque integer.
454 *
455 * The gens and the priorities don't have a whole lot to do with each other, and
456 * it's actually the gens that must be written out at specific times - it's no
457 * big deal if the priorities don't get written, if we lose them we just reuse
458 * buckets in suboptimal order.
459 *
460 * On disk they're stored in a packed array, and in as many buckets are required
461 * to fit them all. The buckets we use to store them form a list; the journal
462 * header points to the first bucket, the first bucket points to the second
463 * bucket, et cetera.
464 *
465 * This code is used by the allocation code; periodically (whenever it runs out
466 * of buckets to allocate from) the allocation code will invalidate some
467 * buckets, but it can't use those buckets until their new gens are safely on
468 * disk.
469 */
470
471 static void prio_endio(struct bio *bio, int error)
472 {
473 struct cache *ca = bio->bi_private;
474
475 cache_set_err_on(error, ca->set, "accessing priorities");
476 bch_bbio_free(bio, ca->set);
477 closure_put(&ca->prio);
478 }
479
480 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
481 {
482 struct closure *cl = &ca->prio;
483 struct bio *bio = bch_bbio_alloc(ca->set);
484
485 closure_init_stack(cl);
486
487 bio->bi_sector = bucket * ca->sb.bucket_size;
488 bio->bi_bdev = ca->bdev;
489 bio->bi_rw = REQ_SYNC|REQ_META|rw;
490 bio->bi_size = bucket_bytes(ca);
491
492 bio->bi_end_io = prio_endio;
493 bio->bi_private = ca;
494 bio_map(bio, ca->disk_buckets);
495
496 closure_bio_submit(bio, &ca->prio, ca);
497 closure_sync(cl);
498 }
499
500 #define buckets_free(c) "free %zu, free_inc %zu, unused %zu", \
501 fifo_used(&c->free), fifo_used(&c->free_inc), fifo_used(&c->unused)
502
503 void bch_prio_write(struct cache *ca)
504 {
505 int i;
506 struct bucket *b;
507 struct closure cl;
508
509 closure_init_stack(&cl);
510
511 lockdep_assert_held(&ca->set->bucket_lock);
512
513 for (b = ca->buckets;
514 b < ca->buckets + ca->sb.nbuckets; b++)
515 b->disk_gen = b->gen;
516
517 ca->disk_buckets->seq++;
518
519 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
520 &ca->meta_sectors_written);
521
522 pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
523 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
524 blktrace_msg(ca, "Starting priorities: " buckets_free(ca));
525
526 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
527 long bucket;
528 struct prio_set *p = ca->disk_buckets;
529 struct bucket_disk *d = p->data, *end = d + prios_per_bucket(ca);
530
531 for (b = ca->buckets + i * prios_per_bucket(ca);
532 b < ca->buckets + ca->sb.nbuckets && d < end;
533 b++, d++) {
534 d->prio = cpu_to_le16(b->prio);
535 d->gen = b->gen;
536 }
537
538 p->next_bucket = ca->prio_buckets[i + 1];
539 p->magic = pset_magic(ca);
540 p->csum = crc64(&p->magic, bucket_bytes(ca) - 8);
541
542 bucket = bch_bucket_alloc(ca, WATERMARK_PRIO, &cl);
543 BUG_ON(bucket == -1);
544
545 mutex_unlock(&ca->set->bucket_lock);
546 prio_io(ca, bucket, REQ_WRITE);
547 mutex_lock(&ca->set->bucket_lock);
548
549 ca->prio_buckets[i] = bucket;
550 atomic_dec_bug(&ca->buckets[bucket].pin);
551 }
552
553 mutex_unlock(&ca->set->bucket_lock);
554
555 bch_journal_meta(ca->set, &cl);
556 closure_sync(&cl);
557
558 mutex_lock(&ca->set->bucket_lock);
559
560 ca->need_save_prio = 0;
561
562 /*
563 * Don't want the old priorities to get garbage collected until after we
564 * finish writing the new ones, and they're journalled
565 */
566 for (i = 0; i < prio_buckets(ca); i++)
567 ca->prio_last_buckets[i] = ca->prio_buckets[i];
568 }
569
570 static void prio_read(struct cache *ca, uint64_t bucket)
571 {
572 struct prio_set *p = ca->disk_buckets;
573 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
574 struct bucket *b;
575 unsigned bucket_nr = 0;
576
577 for (b = ca->buckets;
578 b < ca->buckets + ca->sb.nbuckets;
579 b++, d++) {
580 if (d == end) {
581 ca->prio_buckets[bucket_nr] = bucket;
582 ca->prio_last_buckets[bucket_nr] = bucket;
583 bucket_nr++;
584
585 prio_io(ca, bucket, READ_SYNC);
586
587 if (p->csum != crc64(&p->magic, bucket_bytes(ca) - 8))
588 pr_warn("bad csum reading priorities");
589
590 if (p->magic != pset_magic(ca))
591 pr_warn("bad magic reading priorities");
592
593 bucket = p->next_bucket;
594 d = p->data;
595 }
596
597 b->prio = le16_to_cpu(d->prio);
598 b->gen = b->disk_gen = b->last_gc = b->gc_gen = d->gen;
599 }
600 }
601
602 /* Bcache device */
603
604 static int open_dev(struct block_device *b, fmode_t mode)
605 {
606 struct bcache_device *d = b->bd_disk->private_data;
607 if (atomic_read(&d->closing))
608 return -ENXIO;
609
610 closure_get(&d->cl);
611 return 0;
612 }
613
614 static int release_dev(struct gendisk *b, fmode_t mode)
615 {
616 struct bcache_device *d = b->private_data;
617 closure_put(&d->cl);
618 return 0;
619 }
620
621 static int ioctl_dev(struct block_device *b, fmode_t mode,
622 unsigned int cmd, unsigned long arg)
623 {
624 struct bcache_device *d = b->bd_disk->private_data;
625 return d->ioctl(d, mode, cmd, arg);
626 }
627
628 static const struct block_device_operations bcache_ops = {
629 .open = open_dev,
630 .release = release_dev,
631 .ioctl = ioctl_dev,
632 .owner = THIS_MODULE,
633 };
634
635 void bcache_device_stop(struct bcache_device *d)
636 {
637 if (!atomic_xchg(&d->closing, 1))
638 closure_queue(&d->cl);
639 }
640
641 static void bcache_device_detach(struct bcache_device *d)
642 {
643 lockdep_assert_held(&bch_register_lock);
644
645 if (atomic_read(&d->detaching)) {
646 struct uuid_entry *u = d->c->uuids + d->id;
647
648 SET_UUID_FLASH_ONLY(u, 0);
649 memcpy(u->uuid, invalid_uuid, 16);
650 u->invalidated = cpu_to_le32(get_seconds());
651 bch_uuid_write(d->c);
652
653 atomic_set(&d->detaching, 0);
654 }
655
656 d->c->devices[d->id] = NULL;
657 closure_put(&d->c->caching);
658 d->c = NULL;
659 }
660
661 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
662 unsigned id)
663 {
664 BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags));
665
666 d->id = id;
667 d->c = c;
668 c->devices[id] = d;
669
670 closure_get(&c->caching);
671 }
672
673 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
674 const char *name)
675 {
676 snprintf(d->name, BCACHEDEVNAME_SIZE,
677 "%s%u", name, d->id);
678
679 WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
680 sysfs_create_link(&c->kobj, &d->kobj, d->name),
681 "Couldn't create device <-> cache set symlinks");
682 }
683
684 static void bcache_device_free(struct bcache_device *d)
685 {
686 lockdep_assert_held(&bch_register_lock);
687
688 pr_info("%s stopped", d->disk->disk_name);
689
690 if (d->c)
691 bcache_device_detach(d);
692
693 if (d->disk)
694 del_gendisk(d->disk);
695 if (d->disk && d->disk->queue)
696 blk_cleanup_queue(d->disk->queue);
697 if (d->disk)
698 put_disk(d->disk);
699
700 bio_split_pool_free(&d->bio_split_hook);
701 if (d->unaligned_bvec)
702 mempool_destroy(d->unaligned_bvec);
703 if (d->bio_split)
704 bioset_free(d->bio_split);
705
706 closure_debug_destroy(&d->cl);
707 }
708
709 static int bcache_device_init(struct bcache_device *d, unsigned block_size)
710 {
711 struct request_queue *q;
712
713 if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
714 !(d->unaligned_bvec = mempool_create_kmalloc_pool(1,
715 sizeof(struct bio_vec) * BIO_MAX_PAGES)) ||
716 bio_split_pool_init(&d->bio_split_hook))
717
718 return -ENOMEM;
719
720 d->disk = alloc_disk(1);
721 if (!d->disk)
722 return -ENOMEM;
723
724 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", bcache_minor);
725
726 d->disk->major = bcache_major;
727 d->disk->first_minor = bcache_minor++;
728 d->disk->fops = &bcache_ops;
729 d->disk->private_data = d;
730
731 q = blk_alloc_queue(GFP_KERNEL);
732 if (!q)
733 return -ENOMEM;
734
735 blk_queue_make_request(q, NULL);
736 d->disk->queue = q;
737 q->queuedata = d;
738 q->backing_dev_info.congested_data = d;
739 q->limits.max_hw_sectors = UINT_MAX;
740 q->limits.max_sectors = UINT_MAX;
741 q->limits.max_segment_size = UINT_MAX;
742 q->limits.max_segments = BIO_MAX_PAGES;
743 q->limits.max_discard_sectors = UINT_MAX;
744 q->limits.io_min = block_size;
745 q->limits.logical_block_size = block_size;
746 q->limits.physical_block_size = block_size;
747 set_bit(QUEUE_FLAG_NONROT, &d->disk->queue->queue_flags);
748 set_bit(QUEUE_FLAG_DISCARD, &d->disk->queue->queue_flags);
749
750 return 0;
751 }
752
753 /* Cached device */
754
755 static void calc_cached_dev_sectors(struct cache_set *c)
756 {
757 uint64_t sectors = 0;
758 struct cached_dev *dc;
759
760 list_for_each_entry(dc, &c->cached_devs, list)
761 sectors += bdev_sectors(dc->bdev);
762
763 c->cached_dev_sectors = sectors;
764 }
765
766 void bch_cached_dev_run(struct cached_dev *dc)
767 {
768 struct bcache_device *d = &dc->disk;
769
770 if (atomic_xchg(&dc->running, 1))
771 return;
772
773 if (!d->c &&
774 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
775 struct closure cl;
776 closure_init_stack(&cl);
777
778 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
779 bch_write_bdev_super(dc, &cl);
780 closure_sync(&cl);
781 }
782
783 add_disk(d->disk);
784 #if 0
785 char *env[] = { "SYMLINK=label" , NULL };
786 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
787 #endif
788 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
789 sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
790 pr_debug("error creating sysfs link");
791 }
792
793 static void cached_dev_detach_finish(struct work_struct *w)
794 {
795 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
796 char buf[BDEVNAME_SIZE];
797 struct closure cl;
798 closure_init_stack(&cl);
799
800 BUG_ON(!atomic_read(&dc->disk.detaching));
801 BUG_ON(atomic_read(&dc->count));
802
803 sysfs_remove_link(&dc->disk.c->kobj, dc->disk.name);
804 sysfs_remove_link(&dc->disk.kobj, "cache");
805
806 mutex_lock(&bch_register_lock);
807
808 memset(&dc->sb.set_uuid, 0, 16);
809 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
810
811 bch_write_bdev_super(dc, &cl);
812 closure_sync(&cl);
813
814 bcache_device_detach(&dc->disk);
815 list_move(&dc->list, &uncached_devices);
816
817 mutex_unlock(&bch_register_lock);
818
819 pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
820
821 /* Drop ref we took in cached_dev_detach() */
822 closure_put(&dc->disk.cl);
823 }
824
825 void bch_cached_dev_detach(struct cached_dev *dc)
826 {
827 lockdep_assert_held(&bch_register_lock);
828
829 if (atomic_read(&dc->disk.closing))
830 return;
831
832 if (atomic_xchg(&dc->disk.detaching, 1))
833 return;
834
835 /*
836 * Block the device from being closed and freed until we're finished
837 * detaching
838 */
839 closure_get(&dc->disk.cl);
840
841 bch_writeback_queue(dc);
842 cached_dev_put(dc);
843 }
844
845 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
846 {
847 uint32_t rtime = cpu_to_le32(get_seconds());
848 struct uuid_entry *u;
849 char buf[BDEVNAME_SIZE];
850
851 bdevname(dc->bdev, buf);
852
853 if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
854 return -ENOENT;
855
856 if (dc->disk.c) {
857 pr_err("Can't attach %s: already attached", buf);
858 return -EINVAL;
859 }
860
861 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
862 pr_err("Can't attach %s: shutting down", buf);
863 return -EINVAL;
864 }
865
866 if (dc->sb.block_size < c->sb.block_size) {
867 /* Will die */
868 pr_err("Couldn't attach %s: block size "
869 "less than set's block size", buf);
870 return -EINVAL;
871 }
872
873 u = uuid_find(c, dc->sb.uuid);
874
875 if (u &&
876 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
877 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
878 memcpy(u->uuid, invalid_uuid, 16);
879 u->invalidated = cpu_to_le32(get_seconds());
880 u = NULL;
881 }
882
883 if (!u) {
884 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
885 pr_err("Couldn't find uuid for %s in set", buf);
886 return -ENOENT;
887 }
888
889 u = uuid_find_empty(c);
890 if (!u) {
891 pr_err("Not caching %s, no room for UUID", buf);
892 return -EINVAL;
893 }
894 }
895
896 /* Deadlocks since we're called via sysfs...
897 sysfs_remove_file(&dc->kobj, &sysfs_attach);
898 */
899
900 if (is_zero(u->uuid, 16)) {
901 struct closure cl;
902 closure_init_stack(&cl);
903
904 memcpy(u->uuid, dc->sb.uuid, 16);
905 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
906 u->first_reg = u->last_reg = rtime;
907 bch_uuid_write(c);
908
909 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
910 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
911
912 bch_write_bdev_super(dc, &cl);
913 closure_sync(&cl);
914 } else {
915 u->last_reg = rtime;
916 bch_uuid_write(c);
917 }
918
919 bcache_device_attach(&dc->disk, c, u - c->uuids);
920 bcache_device_link(&dc->disk, c, "bdev");
921 list_move(&dc->list, &c->cached_devs);
922 calc_cached_dev_sectors(c);
923
924 smp_wmb();
925 /*
926 * dc->c must be set before dc->count != 0 - paired with the mb in
927 * cached_dev_get()
928 */
929 atomic_set(&dc->count, 1);
930
931 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
932 atomic_set(&dc->has_dirty, 1);
933 atomic_inc(&dc->count);
934 bch_writeback_queue(dc);
935 }
936
937 bch_cached_dev_run(dc);
938
939 pr_info("Caching %s as %s on set %pU",
940 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
941 dc->disk.c->sb.set_uuid);
942 return 0;
943 }
944
945 void bch_cached_dev_release(struct kobject *kobj)
946 {
947 struct cached_dev *dc = container_of(kobj, struct cached_dev,
948 disk.kobj);
949 kfree(dc);
950 module_put(THIS_MODULE);
951 }
952
953 static void cached_dev_free(struct closure *cl)
954 {
955 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
956
957 cancel_delayed_work_sync(&dc->writeback_rate_update);
958
959 mutex_lock(&bch_register_lock);
960
961 bcache_device_free(&dc->disk);
962 list_del(&dc->list);
963
964 mutex_unlock(&bch_register_lock);
965
966 if (!IS_ERR_OR_NULL(dc->bdev)) {
967 blk_sync_queue(bdev_get_queue(dc->bdev));
968 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
969 }
970
971 wake_up(&unregister_wait);
972
973 kobject_put(&dc->disk.kobj);
974 }
975
976 static void cached_dev_flush(struct closure *cl)
977 {
978 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
979 struct bcache_device *d = &dc->disk;
980
981 bch_cache_accounting_destroy(&dc->accounting);
982 kobject_del(&d->kobj);
983
984 continue_at(cl, cached_dev_free, system_wq);
985 }
986
987 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
988 {
989 int err;
990 struct io *io;
991
992 closure_init(&dc->disk.cl, NULL);
993 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
994
995 __module_get(THIS_MODULE);
996 INIT_LIST_HEAD(&dc->list);
997 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
998
999 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1000
1001 err = bcache_device_init(&dc->disk, block_size);
1002 if (err)
1003 goto err;
1004
1005 spin_lock_init(&dc->io_lock);
1006 closure_init_unlocked(&dc->sb_write);
1007 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1008
1009 dc->sequential_merge = true;
1010 dc->sequential_cutoff = 4 << 20;
1011
1012 INIT_LIST_HEAD(&dc->io_lru);
1013 dc->sb_bio.bi_max_vecs = 1;
1014 dc->sb_bio.bi_io_vec = dc->sb_bio.bi_inline_vecs;
1015
1016 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1017 list_add(&io->lru, &dc->io_lru);
1018 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1019 }
1020
1021 bch_writeback_init_cached_dev(dc);
1022 return 0;
1023 err:
1024 bcache_device_stop(&dc->disk);
1025 return err;
1026 }
1027
1028 /* Cached device - bcache superblock */
1029
1030 static const char *register_bdev(struct cache_sb *sb, struct page *sb_page,
1031 struct block_device *bdev,
1032 struct cached_dev *dc)
1033 {
1034 char name[BDEVNAME_SIZE];
1035 const char *err = "cannot allocate memory";
1036 struct gendisk *g;
1037 struct cache_set *c;
1038
1039 if (!dc || cached_dev_init(dc, sb->block_size << 9) != 0)
1040 return err;
1041
1042 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1043 dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1044 dc->bdev = bdev;
1045 dc->bdev->bd_holder = dc;
1046
1047 g = dc->disk.disk;
1048
1049 set_capacity(g, dc->bdev->bd_part->nr_sects - 16);
1050
1051 bch_cached_dev_request_init(dc);
1052
1053 err = "error creating kobject";
1054 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1055 "bcache"))
1056 goto err;
1057 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1058 goto err;
1059
1060 list_add(&dc->list, &uncached_devices);
1061 list_for_each_entry(c, &bch_cache_sets, list)
1062 bch_cached_dev_attach(dc, c);
1063
1064 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1065 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1066 bch_cached_dev_run(dc);
1067
1068 return NULL;
1069 err:
1070 kobject_put(&dc->disk.kobj);
1071 pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1072 /*
1073 * Return NULL instead of an error because kobject_put() cleans
1074 * everything up
1075 */
1076 return NULL;
1077 }
1078
1079 /* Flash only volumes */
1080
1081 void bch_flash_dev_release(struct kobject *kobj)
1082 {
1083 struct bcache_device *d = container_of(kobj, struct bcache_device,
1084 kobj);
1085 kfree(d);
1086 }
1087
1088 static void flash_dev_free(struct closure *cl)
1089 {
1090 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1091 bcache_device_free(d);
1092 kobject_put(&d->kobj);
1093 }
1094
1095 static void flash_dev_flush(struct closure *cl)
1096 {
1097 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1098
1099 sysfs_remove_link(&d->c->kobj, d->name);
1100 sysfs_remove_link(&d->kobj, "cache");
1101 kobject_del(&d->kobj);
1102 continue_at(cl, flash_dev_free, system_wq);
1103 }
1104
1105 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1106 {
1107 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1108 GFP_KERNEL);
1109 if (!d)
1110 return -ENOMEM;
1111
1112 closure_init(&d->cl, NULL);
1113 set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1114
1115 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1116
1117 if (bcache_device_init(d, block_bytes(c)))
1118 goto err;
1119
1120 bcache_device_attach(d, c, u - c->uuids);
1121 set_capacity(d->disk, u->sectors);
1122 bch_flash_dev_request_init(d);
1123 add_disk(d->disk);
1124
1125 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1126 goto err;
1127
1128 bcache_device_link(d, c, "volume");
1129
1130 return 0;
1131 err:
1132 kobject_put(&d->kobj);
1133 return -ENOMEM;
1134 }
1135
1136 static int flash_devs_run(struct cache_set *c)
1137 {
1138 int ret = 0;
1139 struct uuid_entry *u;
1140
1141 for (u = c->uuids;
1142 u < c->uuids + c->nr_uuids && !ret;
1143 u++)
1144 if (UUID_FLASH_ONLY(u))
1145 ret = flash_dev_run(c, u);
1146
1147 return ret;
1148 }
1149
1150 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1151 {
1152 struct uuid_entry *u;
1153
1154 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1155 return -EINTR;
1156
1157 u = uuid_find_empty(c);
1158 if (!u) {
1159 pr_err("Can't create volume, no room for UUID");
1160 return -EINVAL;
1161 }
1162
1163 get_random_bytes(u->uuid, 16);
1164 memset(u->label, 0, 32);
1165 u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1166
1167 SET_UUID_FLASH_ONLY(u, 1);
1168 u->sectors = size >> 9;
1169
1170 bch_uuid_write(c);
1171
1172 return flash_dev_run(c, u);
1173 }
1174
1175 /* Cache set */
1176
1177 __printf(2, 3)
1178 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1179 {
1180 va_list args;
1181
1182 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1183 return false;
1184
1185 /* XXX: we can be called from atomic context
1186 acquire_console_sem();
1187 */
1188
1189 printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1190
1191 va_start(args, fmt);
1192 vprintk(fmt, args);
1193 va_end(args);
1194
1195 printk(", disabling caching\n");
1196
1197 bch_cache_set_unregister(c);
1198 return true;
1199 }
1200
1201 void bch_cache_set_release(struct kobject *kobj)
1202 {
1203 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1204 kfree(c);
1205 module_put(THIS_MODULE);
1206 }
1207
1208 static void cache_set_free(struct closure *cl)
1209 {
1210 struct cache_set *c = container_of(cl, struct cache_set, cl);
1211 struct cache *ca;
1212 unsigned i;
1213
1214 if (!IS_ERR_OR_NULL(c->debug))
1215 debugfs_remove(c->debug);
1216
1217 bch_open_buckets_free(c);
1218 bch_btree_cache_free(c);
1219 bch_journal_free(c);
1220
1221 for_each_cache(ca, c, i)
1222 if (ca)
1223 kobject_put(&ca->kobj);
1224
1225 free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1226 free_pages((unsigned long) c->sort, ilog2(bucket_pages(c)));
1227
1228 kfree(c->fill_iter);
1229 if (c->bio_split)
1230 bioset_free(c->bio_split);
1231 if (c->bio_meta)
1232 mempool_destroy(c->bio_meta);
1233 if (c->search)
1234 mempool_destroy(c->search);
1235 kfree(c->devices);
1236
1237 mutex_lock(&bch_register_lock);
1238 list_del(&c->list);
1239 mutex_unlock(&bch_register_lock);
1240
1241 pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1242 wake_up(&unregister_wait);
1243
1244 closure_debug_destroy(&c->cl);
1245 kobject_put(&c->kobj);
1246 }
1247
1248 static void cache_set_flush(struct closure *cl)
1249 {
1250 struct cache_set *c = container_of(cl, struct cache_set, caching);
1251 struct btree *b;
1252
1253 /* Shut down allocator threads */
1254 set_bit(CACHE_SET_STOPPING_2, &c->flags);
1255 wake_up(&c->alloc_wait);
1256
1257 bch_cache_accounting_destroy(&c->accounting);
1258
1259 kobject_put(&c->internal);
1260 kobject_del(&c->kobj);
1261
1262 if (!IS_ERR_OR_NULL(c->root))
1263 list_add(&c->root->list, &c->btree_cache);
1264
1265 /* Should skip this if we're unregistering because of an error */
1266 list_for_each_entry(b, &c->btree_cache, list)
1267 if (btree_node_dirty(b))
1268 bch_btree_write(b, true, NULL);
1269
1270 closure_return(cl);
1271 }
1272
1273 static void __cache_set_unregister(struct closure *cl)
1274 {
1275 struct cache_set *c = container_of(cl, struct cache_set, caching);
1276 struct cached_dev *dc, *t;
1277 size_t i;
1278
1279 mutex_lock(&bch_register_lock);
1280
1281 if (test_bit(CACHE_SET_UNREGISTERING, &c->flags))
1282 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1283 bch_cached_dev_detach(dc);
1284
1285 for (i = 0; i < c->nr_uuids; i++)
1286 if (c->devices[i] && UUID_FLASH_ONLY(&c->uuids[i]))
1287 bcache_device_stop(c->devices[i]);
1288
1289 mutex_unlock(&bch_register_lock);
1290
1291 continue_at(cl, cache_set_flush, system_wq);
1292 }
1293
1294 void bch_cache_set_stop(struct cache_set *c)
1295 {
1296 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1297 closure_queue(&c->caching);
1298 }
1299
1300 void bch_cache_set_unregister(struct cache_set *c)
1301 {
1302 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1303 bch_cache_set_stop(c);
1304 }
1305
1306 #define alloc_bucket_pages(gfp, c) \
1307 ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1308
1309 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1310 {
1311 int iter_size;
1312 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1313 if (!c)
1314 return NULL;
1315
1316 __module_get(THIS_MODULE);
1317 closure_init(&c->cl, NULL);
1318 set_closure_fn(&c->cl, cache_set_free, system_wq);
1319
1320 closure_init(&c->caching, &c->cl);
1321 set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1322
1323 /* Maybe create continue_at_noreturn() and use it here? */
1324 closure_set_stopped(&c->cl);
1325 closure_put(&c->cl);
1326
1327 kobject_init(&c->kobj, &bch_cache_set_ktype);
1328 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1329
1330 bch_cache_accounting_init(&c->accounting, &c->cl);
1331
1332 memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1333 c->sb.block_size = sb->block_size;
1334 c->sb.bucket_size = sb->bucket_size;
1335 c->sb.nr_in_set = sb->nr_in_set;
1336 c->sb.last_mount = sb->last_mount;
1337 c->bucket_bits = ilog2(sb->bucket_size);
1338 c->block_bits = ilog2(sb->block_size);
1339 c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry);
1340
1341 c->btree_pages = c->sb.bucket_size / PAGE_SECTORS;
1342 if (c->btree_pages > BTREE_MAX_PAGES)
1343 c->btree_pages = max_t(int, c->btree_pages / 4,
1344 BTREE_MAX_PAGES);
1345
1346 init_waitqueue_head(&c->alloc_wait);
1347 mutex_init(&c->bucket_lock);
1348 mutex_init(&c->fill_lock);
1349 mutex_init(&c->sort_lock);
1350 spin_lock_init(&c->sort_time_lock);
1351 closure_init_unlocked(&c->sb_write);
1352 closure_init_unlocked(&c->uuid_write);
1353 spin_lock_init(&c->btree_read_time_lock);
1354 bch_moving_init_cache_set(c);
1355
1356 INIT_LIST_HEAD(&c->list);
1357 INIT_LIST_HEAD(&c->cached_devs);
1358 INIT_LIST_HEAD(&c->btree_cache);
1359 INIT_LIST_HEAD(&c->btree_cache_freeable);
1360 INIT_LIST_HEAD(&c->btree_cache_freed);
1361 INIT_LIST_HEAD(&c->data_buckets);
1362
1363 c->search = mempool_create_slab_pool(32, bch_search_cache);
1364 if (!c->search)
1365 goto err;
1366
1367 iter_size = (sb->bucket_size / sb->block_size + 1) *
1368 sizeof(struct btree_iter_set);
1369
1370 if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1371 !(c->bio_meta = mempool_create_kmalloc_pool(2,
1372 sizeof(struct bbio) + sizeof(struct bio_vec) *
1373 bucket_pages(c))) ||
1374 !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1375 !(c->fill_iter = kmalloc(iter_size, GFP_KERNEL)) ||
1376 !(c->sort = alloc_bucket_pages(GFP_KERNEL, c)) ||
1377 !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1378 bch_journal_alloc(c) ||
1379 bch_btree_cache_alloc(c) ||
1380 bch_open_buckets_alloc(c))
1381 goto err;
1382
1383 c->fill_iter->size = sb->bucket_size / sb->block_size;
1384
1385 c->congested_read_threshold_us = 2000;
1386 c->congested_write_threshold_us = 20000;
1387 c->error_limit = 8 << IO_ERROR_SHIFT;
1388
1389 return c;
1390 err:
1391 bch_cache_set_unregister(c);
1392 return NULL;
1393 }
1394
1395 static void run_cache_set(struct cache_set *c)
1396 {
1397 const char *err = "cannot allocate memory";
1398 struct cached_dev *dc, *t;
1399 struct cache *ca;
1400 unsigned i;
1401
1402 struct btree_op op;
1403 bch_btree_op_init_stack(&op);
1404 op.lock = SHRT_MAX;
1405
1406 for_each_cache(ca, c, i)
1407 c->nbuckets += ca->sb.nbuckets;
1408
1409 if (CACHE_SYNC(&c->sb)) {
1410 LIST_HEAD(journal);
1411 struct bkey *k;
1412 struct jset *j;
1413
1414 err = "cannot allocate memory for journal";
1415 if (bch_journal_read(c, &journal, &op))
1416 goto err;
1417
1418 pr_debug("btree_journal_read() done");
1419
1420 err = "no journal entries found";
1421 if (list_empty(&journal))
1422 goto err;
1423
1424 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1425
1426 err = "IO error reading priorities";
1427 for_each_cache(ca, c, i)
1428 prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1429
1430 /*
1431 * If prio_read() fails it'll call cache_set_error and we'll
1432 * tear everything down right away, but if we perhaps checked
1433 * sooner we could avoid journal replay.
1434 */
1435
1436 k = &j->btree_root;
1437
1438 err = "bad btree root";
1439 if (__bch_ptr_invalid(c, j->btree_level + 1, k))
1440 goto err;
1441
1442 err = "error reading btree root";
1443 c->root = bch_btree_node_get(c, k, j->btree_level, &op);
1444 if (IS_ERR_OR_NULL(c->root))
1445 goto err;
1446
1447 list_del_init(&c->root->list);
1448 rw_unlock(true, c->root);
1449
1450 err = uuid_read(c, j, &op.cl);
1451 if (err)
1452 goto err;
1453
1454 err = "error in recovery";
1455 if (bch_btree_check(c, &op))
1456 goto err;
1457
1458 bch_journal_mark(c, &journal);
1459 bch_btree_gc_finish(c);
1460 pr_debug("btree_check() done");
1461
1462 /*
1463 * bcache_journal_next() can't happen sooner, or
1464 * btree_gc_finish() will give spurious errors about last_gc >
1465 * gc_gen - this is a hack but oh well.
1466 */
1467 bch_journal_next(&c->journal);
1468
1469 for_each_cache(ca, c, i)
1470 closure_call(&ca->alloc, bch_allocator_thread,
1471 system_wq, &c->cl);
1472
1473 /*
1474 * First place it's safe to allocate: btree_check() and
1475 * btree_gc_finish() have to run before we have buckets to
1476 * allocate, and bch_bucket_alloc_set() might cause a journal
1477 * entry to be written so bcache_journal_next() has to be called
1478 * first.
1479 *
1480 * If the uuids were in the old format we have to rewrite them
1481 * before the next journal entry is written:
1482 */
1483 if (j->version < BCACHE_JSET_VERSION_UUID)
1484 __uuid_write(c);
1485
1486 bch_journal_replay(c, &journal, &op);
1487 } else {
1488 pr_notice("invalidating existing data");
1489 /* Don't want invalidate_buckets() to queue a gc yet */
1490 closure_lock(&c->gc, NULL);
1491
1492 for_each_cache(ca, c, i) {
1493 unsigned j;
1494
1495 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1496 2, SB_JOURNAL_BUCKETS);
1497
1498 for (j = 0; j < ca->sb.keys; j++)
1499 ca->sb.d[j] = ca->sb.first_bucket + j;
1500 }
1501
1502 bch_btree_gc_finish(c);
1503
1504 for_each_cache(ca, c, i)
1505 closure_call(&ca->alloc, bch_allocator_thread,
1506 ca->alloc_workqueue, &c->cl);
1507
1508 mutex_lock(&c->bucket_lock);
1509 for_each_cache(ca, c, i)
1510 bch_prio_write(ca);
1511 mutex_unlock(&c->bucket_lock);
1512
1513 wake_up(&c->alloc_wait);
1514
1515 err = "cannot allocate new UUID bucket";
1516 if (__uuid_write(c))
1517 goto err_unlock_gc;
1518
1519 err = "cannot allocate new btree root";
1520 c->root = bch_btree_node_alloc(c, 0, &op.cl);
1521 if (IS_ERR_OR_NULL(c->root))
1522 goto err_unlock_gc;
1523
1524 bkey_copy_key(&c->root->key, &MAX_KEY);
1525 bch_btree_write(c->root, true, &op);
1526
1527 bch_btree_set_root(c->root);
1528 rw_unlock(true, c->root);
1529
1530 /*
1531 * We don't want to write the first journal entry until
1532 * everything is set up - fortunately journal entries won't be
1533 * written until the SET_CACHE_SYNC() here:
1534 */
1535 SET_CACHE_SYNC(&c->sb, true);
1536
1537 bch_journal_next(&c->journal);
1538 bch_journal_meta(c, &op.cl);
1539
1540 /* Unlock */
1541 closure_set_stopped(&c->gc.cl);
1542 closure_put(&c->gc.cl);
1543 }
1544
1545 closure_sync(&op.cl);
1546 c->sb.last_mount = get_seconds();
1547 bcache_write_super(c);
1548
1549 list_for_each_entry_safe(dc, t, &uncached_devices, list)
1550 bch_cached_dev_attach(dc, c);
1551
1552 flash_devs_run(c);
1553
1554 return;
1555 err_unlock_gc:
1556 closure_set_stopped(&c->gc.cl);
1557 closure_put(&c->gc.cl);
1558 err:
1559 closure_sync(&op.cl);
1560 /* XXX: test this, it's broken */
1561 bch_cache_set_error(c, err);
1562 }
1563
1564 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1565 {
1566 return ca->sb.block_size == c->sb.block_size &&
1567 ca->sb.bucket_size == c->sb.block_size &&
1568 ca->sb.nr_in_set == c->sb.nr_in_set;
1569 }
1570
1571 static const char *register_cache_set(struct cache *ca)
1572 {
1573 char buf[12];
1574 const char *err = "cannot allocate memory";
1575 struct cache_set *c;
1576
1577 list_for_each_entry(c, &bch_cache_sets, list)
1578 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1579 if (c->cache[ca->sb.nr_this_dev])
1580 return "duplicate cache set member";
1581
1582 if (!can_attach_cache(ca, c))
1583 return "cache sb does not match set";
1584
1585 if (!CACHE_SYNC(&ca->sb))
1586 SET_CACHE_SYNC(&c->sb, false);
1587
1588 goto found;
1589 }
1590
1591 c = bch_cache_set_alloc(&ca->sb);
1592 if (!c)
1593 return err;
1594
1595 err = "error creating kobject";
1596 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1597 kobject_add(&c->internal, &c->kobj, "internal"))
1598 goto err;
1599
1600 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1601 goto err;
1602
1603 bch_debug_init_cache_set(c);
1604
1605 list_add(&c->list, &bch_cache_sets);
1606 found:
1607 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1608 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1609 sysfs_create_link(&c->kobj, &ca->kobj, buf))
1610 goto err;
1611
1612 if (ca->sb.seq > c->sb.seq) {
1613 c->sb.version = ca->sb.version;
1614 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1615 c->sb.flags = ca->sb.flags;
1616 c->sb.seq = ca->sb.seq;
1617 pr_debug("set version = %llu", c->sb.version);
1618 }
1619
1620 ca->set = c;
1621 ca->set->cache[ca->sb.nr_this_dev] = ca;
1622 c->cache_by_alloc[c->caches_loaded++] = ca;
1623
1624 if (c->caches_loaded == c->sb.nr_in_set)
1625 run_cache_set(c);
1626
1627 return NULL;
1628 err:
1629 bch_cache_set_unregister(c);
1630 return err;
1631 }
1632
1633 /* Cache device */
1634
1635 void bch_cache_release(struct kobject *kobj)
1636 {
1637 struct cache *ca = container_of(kobj, struct cache, kobj);
1638
1639 if (ca->set)
1640 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1641
1642 bch_cache_allocator_exit(ca);
1643
1644 bio_split_pool_free(&ca->bio_split_hook);
1645
1646 if (ca->alloc_workqueue)
1647 destroy_workqueue(ca->alloc_workqueue);
1648
1649 free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1650 kfree(ca->prio_buckets);
1651 vfree(ca->buckets);
1652
1653 free_heap(&ca->heap);
1654 free_fifo(&ca->unused);
1655 free_fifo(&ca->free_inc);
1656 free_fifo(&ca->free);
1657
1658 if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1659 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1660
1661 if (!IS_ERR_OR_NULL(ca->bdev)) {
1662 blk_sync_queue(bdev_get_queue(ca->bdev));
1663 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1664 }
1665
1666 kfree(ca);
1667 module_put(THIS_MODULE);
1668 }
1669
1670 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1671 {
1672 size_t free;
1673 struct bucket *b;
1674
1675 if (!ca)
1676 return -ENOMEM;
1677
1678 __module_get(THIS_MODULE);
1679 kobject_init(&ca->kobj, &bch_cache_ktype);
1680
1681 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1682
1683 INIT_LIST_HEAD(&ca->discards);
1684
1685 bio_init(&ca->sb_bio);
1686 ca->sb_bio.bi_max_vecs = 1;
1687 ca->sb_bio.bi_io_vec = ca->sb_bio.bi_inline_vecs;
1688
1689 bio_init(&ca->journal.bio);
1690 ca->journal.bio.bi_max_vecs = 8;
1691 ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1692
1693 free = roundup_pow_of_two(ca->sb.nbuckets) >> 9;
1694 free = max_t(size_t, free, (prio_buckets(ca) + 8) * 2);
1695
1696 if (!init_fifo(&ca->free, free, GFP_KERNEL) ||
1697 !init_fifo(&ca->free_inc, free << 2, GFP_KERNEL) ||
1698 !init_fifo(&ca->unused, free << 2, GFP_KERNEL) ||
1699 !init_heap(&ca->heap, free << 3, GFP_KERNEL) ||
1700 !(ca->buckets = vmalloc(sizeof(struct bucket) *
1701 ca->sb.nbuckets)) ||
1702 !(ca->prio_buckets = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1703 2, GFP_KERNEL)) ||
1704 !(ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca)) ||
1705 !(ca->alloc_workqueue = alloc_workqueue("bch_allocator", 0, 1)) ||
1706 bio_split_pool_init(&ca->bio_split_hook))
1707 goto err;
1708
1709 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1710
1711 memset(ca->buckets, 0, ca->sb.nbuckets * sizeof(struct bucket));
1712 for_each_bucket(b, ca)
1713 atomic_set(&b->pin, 0);
1714
1715 if (bch_cache_allocator_init(ca))
1716 goto err;
1717
1718 return 0;
1719 err:
1720 kobject_put(&ca->kobj);
1721 return -ENOMEM;
1722 }
1723
1724 static const char *register_cache(struct cache_sb *sb, struct page *sb_page,
1725 struct block_device *bdev, struct cache *ca)
1726 {
1727 char name[BDEVNAME_SIZE];
1728 const char *err = "cannot allocate memory";
1729
1730 if (cache_alloc(sb, ca) != 0)
1731 return err;
1732
1733 ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1734 ca->bdev = bdev;
1735 ca->bdev->bd_holder = ca;
1736
1737 if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1738 ca->discard = CACHE_DISCARD(&ca->sb);
1739
1740 err = "error creating kobject";
1741 if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1742 goto err;
1743
1744 err = register_cache_set(ca);
1745 if (err)
1746 goto err;
1747
1748 pr_info("registered cache device %s", bdevname(bdev, name));
1749
1750 return NULL;
1751 err:
1752 kobject_put(&ca->kobj);
1753 pr_info("error opening %s: %s", bdevname(bdev, name), err);
1754 /* Return NULL instead of an error because kobject_put() cleans
1755 * everything up
1756 */
1757 return NULL;
1758 }
1759
1760 /* Global interfaces/init */
1761
1762 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1763 const char *, size_t);
1764
1765 kobj_attribute_write(register, register_bcache);
1766 kobj_attribute_write(register_quiet, register_bcache);
1767
1768 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1769 const char *buffer, size_t size)
1770 {
1771 ssize_t ret = size;
1772 const char *err = "cannot allocate memory";
1773 char *path = NULL;
1774 struct cache_sb *sb = NULL;
1775 struct block_device *bdev = NULL;
1776 struct page *sb_page = NULL;
1777
1778 if (!try_module_get(THIS_MODULE))
1779 return -EBUSY;
1780
1781 mutex_lock(&bch_register_lock);
1782
1783 if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1784 !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1785 goto err;
1786
1787 err = "failed to open device";
1788 bdev = blkdev_get_by_path(strim(path),
1789 FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1790 sb);
1791 if (bdev == ERR_PTR(-EBUSY))
1792 err = "device busy";
1793
1794 if (IS_ERR(bdev) ||
1795 set_blocksize(bdev, 4096))
1796 goto err;
1797
1798 err = read_super(sb, bdev, &sb_page);
1799 if (err)
1800 goto err_close;
1801
1802 if (sb->version == CACHE_BACKING_DEV) {
1803 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1804
1805 err = register_bdev(sb, sb_page, bdev, dc);
1806 } else {
1807 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1808
1809 err = register_cache(sb, sb_page, bdev, ca);
1810 }
1811
1812 if (err) {
1813 /* register_(bdev|cache) will only return an error if they
1814 * didn't get far enough to create the kobject - if they did,
1815 * the kobject destructor will do this cleanup.
1816 */
1817 put_page(sb_page);
1818 err_close:
1819 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1820 err:
1821 if (attr != &ksysfs_register_quiet)
1822 pr_info("error opening %s: %s", path, err);
1823 ret = -EINVAL;
1824 }
1825
1826 kfree(sb);
1827 kfree(path);
1828 mutex_unlock(&bch_register_lock);
1829 module_put(THIS_MODULE);
1830 return ret;
1831 }
1832
1833 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
1834 {
1835 if (code == SYS_DOWN ||
1836 code == SYS_HALT ||
1837 code == SYS_POWER_OFF) {
1838 DEFINE_WAIT(wait);
1839 unsigned long start = jiffies;
1840 bool stopped = false;
1841
1842 struct cache_set *c, *tc;
1843 struct cached_dev *dc, *tdc;
1844
1845 mutex_lock(&bch_register_lock);
1846
1847 if (list_empty(&bch_cache_sets) &&
1848 list_empty(&uncached_devices))
1849 goto out;
1850
1851 pr_info("Stopping all devices:");
1852
1853 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1854 bch_cache_set_stop(c);
1855
1856 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
1857 bcache_device_stop(&dc->disk);
1858
1859 /* What's a condition variable? */
1860 while (1) {
1861 long timeout = start + 2 * HZ - jiffies;
1862
1863 stopped = list_empty(&bch_cache_sets) &&
1864 list_empty(&uncached_devices);
1865
1866 if (timeout < 0 || stopped)
1867 break;
1868
1869 prepare_to_wait(&unregister_wait, &wait,
1870 TASK_UNINTERRUPTIBLE);
1871
1872 mutex_unlock(&bch_register_lock);
1873 schedule_timeout(timeout);
1874 mutex_lock(&bch_register_lock);
1875 }
1876
1877 finish_wait(&unregister_wait, &wait);
1878
1879 if (stopped)
1880 pr_info("All devices stopped");
1881 else
1882 pr_notice("Timeout waiting for devices to be closed");
1883 out:
1884 mutex_unlock(&bch_register_lock);
1885 }
1886
1887 return NOTIFY_DONE;
1888 }
1889
1890 static struct notifier_block reboot = {
1891 .notifier_call = bcache_reboot,
1892 .priority = INT_MAX, /* before any real devices */
1893 };
1894
1895 static void bcache_exit(void)
1896 {
1897 bch_debug_exit();
1898 bch_writeback_exit();
1899 bch_request_exit();
1900 bch_btree_exit();
1901 if (bcache_kobj)
1902 kobject_put(bcache_kobj);
1903 if (bcache_wq)
1904 destroy_workqueue(bcache_wq);
1905 unregister_blkdev(bcache_major, "bcache");
1906 unregister_reboot_notifier(&reboot);
1907 }
1908
1909 static int __init bcache_init(void)
1910 {
1911 static const struct attribute *files[] = {
1912 &ksysfs_register.attr,
1913 &ksysfs_register_quiet.attr,
1914 NULL
1915 };
1916
1917 mutex_init(&bch_register_lock);
1918 init_waitqueue_head(&unregister_wait);
1919 register_reboot_notifier(&reboot);
1920
1921 bcache_major = register_blkdev(0, "bcache");
1922 if (bcache_major < 0)
1923 return bcache_major;
1924
1925 if (!(bcache_wq = create_workqueue("bcache")) ||
1926 !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
1927 sysfs_create_files(bcache_kobj, files) ||
1928 bch_btree_init() ||
1929 bch_request_init() ||
1930 bch_writeback_init() ||
1931 bch_debug_init(bcache_kobj))
1932 goto err;
1933
1934 return 0;
1935 err:
1936 bcache_exit();
1937 return -ENOMEM;
1938 }
1939
1940 module_exit(bcache_exit);
1941 module_init(bcache_init);
This page took 0.071353 seconds and 5 git commands to generate.