Merge remote-tracking branch 'iwlwifi-fixes/master' into iwlwifi-next
[deliverable/linux.git] / drivers / md / dm-cache-policy-mq.c
1 /*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-cache-policy.h"
8 #include "dm.h"
9
10 #include <linux/hash.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15
16 #define DM_MSG_PREFIX "cache-policy-mq"
17
18 static struct kmem_cache *mq_entry_cache;
19
20 /*----------------------------------------------------------------*/
21
22 static unsigned next_power(unsigned n, unsigned min)
23 {
24 return roundup_pow_of_two(max(n, min));
25 }
26
27 /*----------------------------------------------------------------*/
28
29 /*
30 * Large, sequential ios are probably better left on the origin device since
31 * spindles tend to have good bandwidth.
32 *
33 * The io_tracker tries to spot when the io is in one of these sequential
34 * modes.
35 *
36 * Two thresholds to switch between random and sequential io mode are defaulting
37 * as follows and can be adjusted via the constructor and message interfaces.
38 */
39 #define RANDOM_THRESHOLD_DEFAULT 4
40 #define SEQUENTIAL_THRESHOLD_DEFAULT 512
41
42 enum io_pattern {
43 PATTERN_SEQUENTIAL,
44 PATTERN_RANDOM
45 };
46
47 struct io_tracker {
48 enum io_pattern pattern;
49
50 unsigned nr_seq_samples;
51 unsigned nr_rand_samples;
52 unsigned thresholds[2];
53
54 dm_oblock_t last_end_oblock;
55 };
56
57 static void iot_init(struct io_tracker *t,
58 int sequential_threshold, int random_threshold)
59 {
60 t->pattern = PATTERN_RANDOM;
61 t->nr_seq_samples = 0;
62 t->nr_rand_samples = 0;
63 t->last_end_oblock = 0;
64 t->thresholds[PATTERN_RANDOM] = random_threshold;
65 t->thresholds[PATTERN_SEQUENTIAL] = sequential_threshold;
66 }
67
68 static enum io_pattern iot_pattern(struct io_tracker *t)
69 {
70 return t->pattern;
71 }
72
73 static void iot_update_stats(struct io_tracker *t, struct bio *bio)
74 {
75 if (bio->bi_iter.bi_sector == from_oblock(t->last_end_oblock) + 1)
76 t->nr_seq_samples++;
77 else {
78 /*
79 * Just one non-sequential IO is enough to reset the
80 * counters.
81 */
82 if (t->nr_seq_samples) {
83 t->nr_seq_samples = 0;
84 t->nr_rand_samples = 0;
85 }
86
87 t->nr_rand_samples++;
88 }
89
90 t->last_end_oblock = to_oblock(bio_end_sector(bio) - 1);
91 }
92
93 static void iot_check_for_pattern_switch(struct io_tracker *t)
94 {
95 switch (t->pattern) {
96 case PATTERN_SEQUENTIAL:
97 if (t->nr_rand_samples >= t->thresholds[PATTERN_RANDOM]) {
98 t->pattern = PATTERN_RANDOM;
99 t->nr_seq_samples = t->nr_rand_samples = 0;
100 }
101 break;
102
103 case PATTERN_RANDOM:
104 if (t->nr_seq_samples >= t->thresholds[PATTERN_SEQUENTIAL]) {
105 t->pattern = PATTERN_SEQUENTIAL;
106 t->nr_seq_samples = t->nr_rand_samples = 0;
107 }
108 break;
109 }
110 }
111
112 static void iot_examine_bio(struct io_tracker *t, struct bio *bio)
113 {
114 iot_update_stats(t, bio);
115 iot_check_for_pattern_switch(t);
116 }
117
118 /*----------------------------------------------------------------*/
119
120
121 /*
122 * This queue is divided up into different levels. Allowing us to push
123 * entries to the back of any of the levels. Think of it as a partially
124 * sorted queue.
125 */
126 #define NR_QUEUE_LEVELS 16u
127
128 struct queue {
129 struct list_head qs[NR_QUEUE_LEVELS];
130 };
131
132 static void queue_init(struct queue *q)
133 {
134 unsigned i;
135
136 for (i = 0; i < NR_QUEUE_LEVELS; i++)
137 INIT_LIST_HEAD(q->qs + i);
138 }
139
140 /*
141 * Checks to see if the queue is empty.
142 * FIXME: reduce cpu usage.
143 */
144 static bool queue_empty(struct queue *q)
145 {
146 unsigned i;
147
148 for (i = 0; i < NR_QUEUE_LEVELS; i++)
149 if (!list_empty(q->qs + i))
150 return false;
151
152 return true;
153 }
154
155 /*
156 * Insert an entry to the back of the given level.
157 */
158 static void queue_push(struct queue *q, unsigned level, struct list_head *elt)
159 {
160 list_add_tail(elt, q->qs + level);
161 }
162
163 static void queue_remove(struct list_head *elt)
164 {
165 list_del(elt);
166 }
167
168 /*
169 * Shifts all regions down one level. This has no effect on the order of
170 * the queue.
171 */
172 static void queue_shift_down(struct queue *q)
173 {
174 unsigned level;
175
176 for (level = 1; level < NR_QUEUE_LEVELS; level++)
177 list_splice_init(q->qs + level, q->qs + level - 1);
178 }
179
180 /*
181 * Gives us the oldest entry of the lowest popoulated level. If the first
182 * level is emptied then we shift down one level.
183 */
184 static struct list_head *queue_pop(struct queue *q)
185 {
186 unsigned level;
187 struct list_head *r;
188
189 for (level = 0; level < NR_QUEUE_LEVELS; level++)
190 if (!list_empty(q->qs + level)) {
191 r = q->qs[level].next;
192 list_del(r);
193
194 /* have we just emptied the bottom level? */
195 if (level == 0 && list_empty(q->qs))
196 queue_shift_down(q);
197
198 return r;
199 }
200
201 return NULL;
202 }
203
204 static struct list_head *list_pop(struct list_head *lh)
205 {
206 struct list_head *r = lh->next;
207
208 BUG_ON(!r);
209 list_del_init(r);
210
211 return r;
212 }
213
214 /*----------------------------------------------------------------*/
215
216 /*
217 * Describes a cache entry. Used in both the cache and the pre_cache.
218 */
219 struct entry {
220 struct hlist_node hlist;
221 struct list_head list;
222 dm_oblock_t oblock;
223
224 /*
225 * FIXME: pack these better
226 */
227 bool dirty:1;
228 unsigned hit_count;
229 unsigned generation;
230 unsigned tick;
231 };
232
233 /*
234 * Rather than storing the cblock in an entry, we allocate all entries in
235 * an array, and infer the cblock from the entry position.
236 *
237 * Free entries are linked together into a list.
238 */
239 struct entry_pool {
240 struct entry *entries, *entries_end;
241 struct list_head free;
242 unsigned nr_allocated;
243 };
244
245 static int epool_init(struct entry_pool *ep, unsigned nr_entries)
246 {
247 unsigned i;
248
249 ep->entries = vzalloc(sizeof(struct entry) * nr_entries);
250 if (!ep->entries)
251 return -ENOMEM;
252
253 ep->entries_end = ep->entries + nr_entries;
254
255 INIT_LIST_HEAD(&ep->free);
256 for (i = 0; i < nr_entries; i++)
257 list_add(&ep->entries[i].list, &ep->free);
258
259 ep->nr_allocated = 0;
260
261 return 0;
262 }
263
264 static void epool_exit(struct entry_pool *ep)
265 {
266 vfree(ep->entries);
267 }
268
269 static struct entry *alloc_entry(struct entry_pool *ep)
270 {
271 struct entry *e;
272
273 if (list_empty(&ep->free))
274 return NULL;
275
276 e = list_entry(list_pop(&ep->free), struct entry, list);
277 INIT_LIST_HEAD(&e->list);
278 INIT_HLIST_NODE(&e->hlist);
279 ep->nr_allocated++;
280
281 return e;
282 }
283
284 /*
285 * This assumes the cblock hasn't already been allocated.
286 */
287 static struct entry *alloc_particular_entry(struct entry_pool *ep, dm_cblock_t cblock)
288 {
289 struct entry *e = ep->entries + from_cblock(cblock);
290
291 list_del_init(&e->list);
292 INIT_HLIST_NODE(&e->hlist);
293 ep->nr_allocated++;
294
295 return e;
296 }
297
298 static void free_entry(struct entry_pool *ep, struct entry *e)
299 {
300 BUG_ON(!ep->nr_allocated);
301 ep->nr_allocated--;
302 INIT_HLIST_NODE(&e->hlist);
303 list_add(&e->list, &ep->free);
304 }
305
306 /*
307 * Returns NULL if the entry is free.
308 */
309 static struct entry *epool_find(struct entry_pool *ep, dm_cblock_t cblock)
310 {
311 struct entry *e = ep->entries + from_cblock(cblock);
312 return !hlist_unhashed(&e->hlist) ? e : NULL;
313 }
314
315 static bool epool_empty(struct entry_pool *ep)
316 {
317 return list_empty(&ep->free);
318 }
319
320 static bool in_pool(struct entry_pool *ep, struct entry *e)
321 {
322 return e >= ep->entries && e < ep->entries_end;
323 }
324
325 static dm_cblock_t infer_cblock(struct entry_pool *ep, struct entry *e)
326 {
327 return to_cblock(e - ep->entries);
328 }
329
330 /*----------------------------------------------------------------*/
331
332 struct mq_policy {
333 struct dm_cache_policy policy;
334
335 /* protects everything */
336 struct mutex lock;
337 dm_cblock_t cache_size;
338 struct io_tracker tracker;
339
340 /*
341 * Entries come from two pools, one of pre-cache entries, and one
342 * for the cache proper.
343 */
344 struct entry_pool pre_cache_pool;
345 struct entry_pool cache_pool;
346
347 /*
348 * We maintain three queues of entries. The cache proper,
349 * consisting of a clean and dirty queue, contains the currently
350 * active mappings. Whereas the pre_cache tracks blocks that
351 * are being hit frequently and potential candidates for promotion
352 * to the cache.
353 */
354 struct queue pre_cache;
355 struct queue cache_clean;
356 struct queue cache_dirty;
357
358 /*
359 * Keeps track of time, incremented by the core. We use this to
360 * avoid attributing multiple hits within the same tick.
361 *
362 * Access to tick_protected should be done with the spin lock held.
363 * It's copied to tick at the start of the map function (within the
364 * mutex).
365 */
366 spinlock_t tick_lock;
367 unsigned tick_protected;
368 unsigned tick;
369
370 /*
371 * A count of the number of times the map function has been called
372 * and found an entry in the pre_cache or cache. Currently used to
373 * calculate the generation.
374 */
375 unsigned hit_count;
376
377 /*
378 * A generation is a longish period that is used to trigger some
379 * book keeping effects. eg, decrementing hit counts on entries.
380 * This is needed to allow the cache to evolve as io patterns
381 * change.
382 */
383 unsigned generation;
384 unsigned generation_period; /* in lookups (will probably change) */
385
386 /*
387 * Entries in the pre_cache whose hit count passes the promotion
388 * threshold move to the cache proper. Working out the correct
389 * value for the promotion_threshold is crucial to this policy.
390 */
391 unsigned promote_threshold;
392
393 unsigned discard_promote_adjustment;
394 unsigned read_promote_adjustment;
395 unsigned write_promote_adjustment;
396
397 /*
398 * The hash table allows us to quickly find an entry by origin
399 * block. Both pre_cache and cache entries are in here.
400 */
401 unsigned nr_buckets;
402 dm_block_t hash_bits;
403 struct hlist_head *table;
404 };
405
406 #define DEFAULT_DISCARD_PROMOTE_ADJUSTMENT 1
407 #define DEFAULT_READ_PROMOTE_ADJUSTMENT 4
408 #define DEFAULT_WRITE_PROMOTE_ADJUSTMENT 8
409
410 /*----------------------------------------------------------------*/
411
412 /*
413 * Simple hash table implementation. Should replace with the standard hash
414 * table that's making its way upstream.
415 */
416 static void hash_insert(struct mq_policy *mq, struct entry *e)
417 {
418 unsigned h = hash_64(from_oblock(e->oblock), mq->hash_bits);
419
420 hlist_add_head(&e->hlist, mq->table + h);
421 }
422
423 static struct entry *hash_lookup(struct mq_policy *mq, dm_oblock_t oblock)
424 {
425 unsigned h = hash_64(from_oblock(oblock), mq->hash_bits);
426 struct hlist_head *bucket = mq->table + h;
427 struct entry *e;
428
429 hlist_for_each_entry(e, bucket, hlist)
430 if (e->oblock == oblock) {
431 hlist_del(&e->hlist);
432 hlist_add_head(&e->hlist, bucket);
433 return e;
434 }
435
436 return NULL;
437 }
438
439 static void hash_remove(struct entry *e)
440 {
441 hlist_del(&e->hlist);
442 }
443
444 /*----------------------------------------------------------------*/
445
446 static bool any_free_cblocks(struct mq_policy *mq)
447 {
448 return !epool_empty(&mq->cache_pool);
449 }
450
451 static bool any_clean_cblocks(struct mq_policy *mq)
452 {
453 return !queue_empty(&mq->cache_clean);
454 }
455
456 /*----------------------------------------------------------------*/
457
458 /*
459 * Now we get to the meat of the policy. This section deals with deciding
460 * when to to add entries to the pre_cache and cache, and move between
461 * them.
462 */
463
464 /*
465 * The queue level is based on the log2 of the hit count.
466 */
467 static unsigned queue_level(struct entry *e)
468 {
469 return min((unsigned) ilog2(e->hit_count), NR_QUEUE_LEVELS - 1u);
470 }
471
472 static bool in_cache(struct mq_policy *mq, struct entry *e)
473 {
474 return in_pool(&mq->cache_pool, e);
475 }
476
477 /*
478 * Inserts the entry into the pre_cache or the cache. Ensures the cache
479 * block is marked as allocated if necc. Inserts into the hash table.
480 * Sets the tick which records when the entry was last moved about.
481 */
482 static void push(struct mq_policy *mq, struct entry *e)
483 {
484 e->tick = mq->tick;
485 hash_insert(mq, e);
486
487 if (in_cache(mq, e))
488 queue_push(e->dirty ? &mq->cache_dirty : &mq->cache_clean,
489 queue_level(e), &e->list);
490 else
491 queue_push(&mq->pre_cache, queue_level(e), &e->list);
492 }
493
494 /*
495 * Removes an entry from pre_cache or cache. Removes from the hash table.
496 */
497 static void del(struct mq_policy *mq, struct entry *e)
498 {
499 queue_remove(&e->list);
500 hash_remove(e);
501 }
502
503 /*
504 * Like del, except it removes the first entry in the queue (ie. the least
505 * recently used).
506 */
507 static struct entry *pop(struct mq_policy *mq, struct queue *q)
508 {
509 struct entry *e;
510 struct list_head *h = queue_pop(q);
511
512 if (!h)
513 return NULL;
514
515 e = container_of(h, struct entry, list);
516 hash_remove(e);
517
518 return e;
519 }
520
521 /*
522 * Has this entry already been updated?
523 */
524 static bool updated_this_tick(struct mq_policy *mq, struct entry *e)
525 {
526 return mq->tick == e->tick;
527 }
528
529 /*
530 * The promotion threshold is adjusted every generation. As are the counts
531 * of the entries.
532 *
533 * At the moment the threshold is taken by averaging the hit counts of some
534 * of the entries in the cache (the first 20 entries across all levels in
535 * ascending order, giving preference to the clean entries at each level).
536 *
537 * We can be much cleverer than this though. For example, each promotion
538 * could bump up the threshold helping to prevent churn. Much more to do
539 * here.
540 */
541
542 #define MAX_TO_AVERAGE 20
543
544 static void check_generation(struct mq_policy *mq)
545 {
546 unsigned total = 0, nr = 0, count = 0, level;
547 struct list_head *head;
548 struct entry *e;
549
550 if ((mq->hit_count >= mq->generation_period) && (epool_empty(&mq->cache_pool))) {
551 mq->hit_count = 0;
552 mq->generation++;
553
554 for (level = 0; level < NR_QUEUE_LEVELS && count < MAX_TO_AVERAGE; level++) {
555 head = mq->cache_clean.qs + level;
556 list_for_each_entry(e, head, list) {
557 nr++;
558 total += e->hit_count;
559
560 if (++count >= MAX_TO_AVERAGE)
561 break;
562 }
563
564 head = mq->cache_dirty.qs + level;
565 list_for_each_entry(e, head, list) {
566 nr++;
567 total += e->hit_count;
568
569 if (++count >= MAX_TO_AVERAGE)
570 break;
571 }
572 }
573
574 mq->promote_threshold = nr ? total / nr : 1;
575 if (mq->promote_threshold * nr < total)
576 mq->promote_threshold++;
577 }
578 }
579
580 /*
581 * Whenever we use an entry we bump up it's hit counter, and push it to the
582 * back to it's current level.
583 */
584 static void requeue_and_update_tick(struct mq_policy *mq, struct entry *e)
585 {
586 if (updated_this_tick(mq, e))
587 return;
588
589 e->hit_count++;
590 mq->hit_count++;
591 check_generation(mq);
592
593 /* generation adjustment, to stop the counts increasing forever. */
594 /* FIXME: divide? */
595 /* e->hit_count -= min(e->hit_count - 1, mq->generation - e->generation); */
596 e->generation = mq->generation;
597
598 del(mq, e);
599 push(mq, e);
600 }
601
602 /*
603 * Demote the least recently used entry from the cache to the pre_cache.
604 * Returns the new cache entry to use, and the old origin block it was
605 * mapped to.
606 *
607 * We drop the hit count on the demoted entry back to 1 to stop it bouncing
608 * straight back into the cache if it's subsequently hit. There are
609 * various options here, and more experimentation would be good:
610 *
611 * - just forget about the demoted entry completely (ie. don't insert it
612 into the pre_cache).
613 * - divide the hit count rather that setting to some hard coded value.
614 * - set the hit count to a hard coded value other than 1, eg, is it better
615 * if it goes in at level 2?
616 */
617 static int demote_cblock(struct mq_policy *mq, dm_oblock_t *oblock)
618 {
619 struct entry *demoted = pop(mq, &mq->cache_clean);
620
621 if (!demoted)
622 /*
623 * We could get a block from mq->cache_dirty, but that
624 * would add extra latency to the triggering bio as it
625 * waits for the writeback. Better to not promote this
626 * time and hope there's a clean block next time this block
627 * is hit.
628 */
629 return -ENOSPC;
630
631 *oblock = demoted->oblock;
632 free_entry(&mq->cache_pool, demoted);
633
634 /*
635 * We used to put the demoted block into the pre-cache, but I think
636 * it's simpler to just let it work it's way up from zero again.
637 * Stops blocks flickering in and out of the cache.
638 */
639
640 return 0;
641 }
642
643 /*
644 * We modify the basic promotion_threshold depending on the specific io.
645 *
646 * If the origin block has been discarded then there's no cost to copy it
647 * to the cache.
648 *
649 * We bias towards reads, since they can be demoted at no cost if they
650 * haven't been dirtied.
651 */
652 static unsigned adjusted_promote_threshold(struct mq_policy *mq,
653 bool discarded_oblock, int data_dir)
654 {
655 if (data_dir == READ)
656 return mq->promote_threshold + mq->read_promote_adjustment;
657
658 if (discarded_oblock && (any_free_cblocks(mq) || any_clean_cblocks(mq))) {
659 /*
660 * We don't need to do any copying at all, so give this a
661 * very low threshold.
662 */
663 return mq->discard_promote_adjustment;
664 }
665
666 return mq->promote_threshold + mq->write_promote_adjustment;
667 }
668
669 static bool should_promote(struct mq_policy *mq, struct entry *e,
670 bool discarded_oblock, int data_dir)
671 {
672 return e->hit_count >=
673 adjusted_promote_threshold(mq, discarded_oblock, data_dir);
674 }
675
676 static int cache_entry_found(struct mq_policy *mq,
677 struct entry *e,
678 struct policy_result *result)
679 {
680 requeue_and_update_tick(mq, e);
681
682 if (in_cache(mq, e)) {
683 result->op = POLICY_HIT;
684 result->cblock = infer_cblock(&mq->cache_pool, e);
685 }
686
687 return 0;
688 }
689
690 /*
691 * Moves an entry from the pre_cache to the cache. The main work is
692 * finding which cache block to use.
693 */
694 static int pre_cache_to_cache(struct mq_policy *mq, struct entry *e,
695 struct policy_result *result)
696 {
697 int r;
698 struct entry *new_e;
699
700 /* Ensure there's a free cblock in the cache */
701 if (epool_empty(&mq->cache_pool)) {
702 result->op = POLICY_REPLACE;
703 r = demote_cblock(mq, &result->old_oblock);
704 if (r) {
705 result->op = POLICY_MISS;
706 return 0;
707 }
708 } else
709 result->op = POLICY_NEW;
710
711 new_e = alloc_entry(&mq->cache_pool);
712 BUG_ON(!new_e);
713
714 new_e->oblock = e->oblock;
715 new_e->dirty = false;
716 new_e->hit_count = e->hit_count;
717 new_e->generation = e->generation;
718 new_e->tick = e->tick;
719
720 del(mq, e);
721 free_entry(&mq->pre_cache_pool, e);
722 push(mq, new_e);
723
724 result->cblock = infer_cblock(&mq->cache_pool, new_e);
725
726 return 0;
727 }
728
729 static int pre_cache_entry_found(struct mq_policy *mq, struct entry *e,
730 bool can_migrate, bool discarded_oblock,
731 int data_dir, struct policy_result *result)
732 {
733 int r = 0;
734 bool updated = updated_this_tick(mq, e);
735
736 if ((!discarded_oblock && updated) ||
737 !should_promote(mq, e, discarded_oblock, data_dir)) {
738 requeue_and_update_tick(mq, e);
739 result->op = POLICY_MISS;
740
741 } else if (!can_migrate)
742 r = -EWOULDBLOCK;
743
744 else {
745 requeue_and_update_tick(mq, e);
746 r = pre_cache_to_cache(mq, e, result);
747 }
748
749 return r;
750 }
751
752 static void insert_in_pre_cache(struct mq_policy *mq,
753 dm_oblock_t oblock)
754 {
755 struct entry *e = alloc_entry(&mq->pre_cache_pool);
756
757 if (!e)
758 /*
759 * There's no spare entry structure, so we grab the least
760 * used one from the pre_cache.
761 */
762 e = pop(mq, &mq->pre_cache);
763
764 if (unlikely(!e)) {
765 DMWARN("couldn't pop from pre cache");
766 return;
767 }
768
769 e->dirty = false;
770 e->oblock = oblock;
771 e->hit_count = 1;
772 e->generation = mq->generation;
773 push(mq, e);
774 }
775
776 static void insert_in_cache(struct mq_policy *mq, dm_oblock_t oblock,
777 struct policy_result *result)
778 {
779 int r;
780 struct entry *e;
781
782 if (epool_empty(&mq->cache_pool)) {
783 result->op = POLICY_REPLACE;
784 r = demote_cblock(mq, &result->old_oblock);
785 if (unlikely(r)) {
786 result->op = POLICY_MISS;
787 insert_in_pre_cache(mq, oblock);
788 return;
789 }
790
791 /*
792 * This will always succeed, since we've just demoted.
793 */
794 e = alloc_entry(&mq->cache_pool);
795 BUG_ON(!e);
796
797 } else {
798 e = alloc_entry(&mq->cache_pool);
799 result->op = POLICY_NEW;
800 }
801
802 e->oblock = oblock;
803 e->dirty = false;
804 e->hit_count = 1;
805 e->generation = mq->generation;
806 push(mq, e);
807
808 result->cblock = infer_cblock(&mq->cache_pool, e);
809 }
810
811 static int no_entry_found(struct mq_policy *mq, dm_oblock_t oblock,
812 bool can_migrate, bool discarded_oblock,
813 int data_dir, struct policy_result *result)
814 {
815 if (adjusted_promote_threshold(mq, discarded_oblock, data_dir) <= 1) {
816 if (can_migrate)
817 insert_in_cache(mq, oblock, result);
818 else
819 return -EWOULDBLOCK;
820 } else {
821 insert_in_pre_cache(mq, oblock);
822 result->op = POLICY_MISS;
823 }
824
825 return 0;
826 }
827
828 /*
829 * Looks the oblock up in the hash table, then decides whether to put in
830 * pre_cache, or cache etc.
831 */
832 static int map(struct mq_policy *mq, dm_oblock_t oblock,
833 bool can_migrate, bool discarded_oblock,
834 int data_dir, struct policy_result *result)
835 {
836 int r = 0;
837 struct entry *e = hash_lookup(mq, oblock);
838
839 if (e && in_cache(mq, e))
840 r = cache_entry_found(mq, e, result);
841
842 else if (iot_pattern(&mq->tracker) == PATTERN_SEQUENTIAL)
843 result->op = POLICY_MISS;
844
845 else if (e)
846 r = pre_cache_entry_found(mq, e, can_migrate, discarded_oblock,
847 data_dir, result);
848
849 else
850 r = no_entry_found(mq, oblock, can_migrate, discarded_oblock,
851 data_dir, result);
852
853 if (r == -EWOULDBLOCK)
854 result->op = POLICY_MISS;
855
856 return r;
857 }
858
859 /*----------------------------------------------------------------*/
860
861 /*
862 * Public interface, via the policy struct. See dm-cache-policy.h for a
863 * description of these.
864 */
865
866 static struct mq_policy *to_mq_policy(struct dm_cache_policy *p)
867 {
868 return container_of(p, struct mq_policy, policy);
869 }
870
871 static void mq_destroy(struct dm_cache_policy *p)
872 {
873 struct mq_policy *mq = to_mq_policy(p);
874
875 vfree(mq->table);
876 epool_exit(&mq->cache_pool);
877 epool_exit(&mq->pre_cache_pool);
878 kfree(mq);
879 }
880
881 static void copy_tick(struct mq_policy *mq)
882 {
883 unsigned long flags;
884
885 spin_lock_irqsave(&mq->tick_lock, flags);
886 mq->tick = mq->tick_protected;
887 spin_unlock_irqrestore(&mq->tick_lock, flags);
888 }
889
890 static int mq_map(struct dm_cache_policy *p, dm_oblock_t oblock,
891 bool can_block, bool can_migrate, bool discarded_oblock,
892 struct bio *bio, struct policy_result *result)
893 {
894 int r;
895 struct mq_policy *mq = to_mq_policy(p);
896
897 result->op = POLICY_MISS;
898
899 if (can_block)
900 mutex_lock(&mq->lock);
901 else if (!mutex_trylock(&mq->lock))
902 return -EWOULDBLOCK;
903
904 copy_tick(mq);
905
906 iot_examine_bio(&mq->tracker, bio);
907 r = map(mq, oblock, can_migrate, discarded_oblock,
908 bio_data_dir(bio), result);
909
910 mutex_unlock(&mq->lock);
911
912 return r;
913 }
914
915 static int mq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock)
916 {
917 int r;
918 struct mq_policy *mq = to_mq_policy(p);
919 struct entry *e;
920
921 if (!mutex_trylock(&mq->lock))
922 return -EWOULDBLOCK;
923
924 e = hash_lookup(mq, oblock);
925 if (e && in_cache(mq, e)) {
926 *cblock = infer_cblock(&mq->cache_pool, e);
927 r = 0;
928 } else
929 r = -ENOENT;
930
931 mutex_unlock(&mq->lock);
932
933 return r;
934 }
935
936 static void __mq_set_clear_dirty(struct mq_policy *mq, dm_oblock_t oblock, bool set)
937 {
938 struct entry *e;
939
940 e = hash_lookup(mq, oblock);
941 BUG_ON(!e || !in_cache(mq, e));
942
943 del(mq, e);
944 e->dirty = set;
945 push(mq, e);
946 }
947
948 static void mq_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
949 {
950 struct mq_policy *mq = to_mq_policy(p);
951
952 mutex_lock(&mq->lock);
953 __mq_set_clear_dirty(mq, oblock, true);
954 mutex_unlock(&mq->lock);
955 }
956
957 static void mq_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
958 {
959 struct mq_policy *mq = to_mq_policy(p);
960
961 mutex_lock(&mq->lock);
962 __mq_set_clear_dirty(mq, oblock, false);
963 mutex_unlock(&mq->lock);
964 }
965
966 static int mq_load_mapping(struct dm_cache_policy *p,
967 dm_oblock_t oblock, dm_cblock_t cblock,
968 uint32_t hint, bool hint_valid)
969 {
970 struct mq_policy *mq = to_mq_policy(p);
971 struct entry *e;
972
973 e = alloc_particular_entry(&mq->cache_pool, cblock);
974 e->oblock = oblock;
975 e->dirty = false; /* this gets corrected in a minute */
976 e->hit_count = hint_valid ? hint : 1;
977 e->generation = mq->generation;
978 push(mq, e);
979
980 return 0;
981 }
982
983 static int mq_save_hints(struct mq_policy *mq, struct queue *q,
984 policy_walk_fn fn, void *context)
985 {
986 int r;
987 unsigned level;
988 struct entry *e;
989
990 for (level = 0; level < NR_QUEUE_LEVELS; level++)
991 list_for_each_entry(e, q->qs + level, list) {
992 r = fn(context, infer_cblock(&mq->cache_pool, e),
993 e->oblock, e->hit_count);
994 if (r)
995 return r;
996 }
997
998 return 0;
999 }
1000
1001 static int mq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn,
1002 void *context)
1003 {
1004 struct mq_policy *mq = to_mq_policy(p);
1005 int r = 0;
1006
1007 mutex_lock(&mq->lock);
1008
1009 r = mq_save_hints(mq, &mq->cache_clean, fn, context);
1010 if (!r)
1011 r = mq_save_hints(mq, &mq->cache_dirty, fn, context);
1012
1013 mutex_unlock(&mq->lock);
1014
1015 return r;
1016 }
1017
1018 static void __remove_mapping(struct mq_policy *mq, dm_oblock_t oblock)
1019 {
1020 struct entry *e;
1021
1022 e = hash_lookup(mq, oblock);
1023 BUG_ON(!e || !in_cache(mq, e));
1024
1025 del(mq, e);
1026 free_entry(&mq->cache_pool, e);
1027 }
1028
1029 static void mq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock)
1030 {
1031 struct mq_policy *mq = to_mq_policy(p);
1032
1033 mutex_lock(&mq->lock);
1034 __remove_mapping(mq, oblock);
1035 mutex_unlock(&mq->lock);
1036 }
1037
1038 static int __remove_cblock(struct mq_policy *mq, dm_cblock_t cblock)
1039 {
1040 struct entry *e = epool_find(&mq->cache_pool, cblock);
1041
1042 if (!e)
1043 return -ENODATA;
1044
1045 del(mq, e);
1046 free_entry(&mq->cache_pool, e);
1047
1048 return 0;
1049 }
1050
1051 static int mq_remove_cblock(struct dm_cache_policy *p, dm_cblock_t cblock)
1052 {
1053 int r;
1054 struct mq_policy *mq = to_mq_policy(p);
1055
1056 mutex_lock(&mq->lock);
1057 r = __remove_cblock(mq, cblock);
1058 mutex_unlock(&mq->lock);
1059
1060 return r;
1061 }
1062
1063 static int __mq_writeback_work(struct mq_policy *mq, dm_oblock_t *oblock,
1064 dm_cblock_t *cblock)
1065 {
1066 struct entry *e = pop(mq, &mq->cache_dirty);
1067
1068 if (!e)
1069 return -ENODATA;
1070
1071 *oblock = e->oblock;
1072 *cblock = infer_cblock(&mq->cache_pool, e);
1073 e->dirty = false;
1074 push(mq, e);
1075
1076 return 0;
1077 }
1078
1079 static int mq_writeback_work(struct dm_cache_policy *p, dm_oblock_t *oblock,
1080 dm_cblock_t *cblock)
1081 {
1082 int r;
1083 struct mq_policy *mq = to_mq_policy(p);
1084
1085 mutex_lock(&mq->lock);
1086 r = __mq_writeback_work(mq, oblock, cblock);
1087 mutex_unlock(&mq->lock);
1088
1089 return r;
1090 }
1091
1092 static void __force_mapping(struct mq_policy *mq,
1093 dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1094 {
1095 struct entry *e = hash_lookup(mq, current_oblock);
1096
1097 if (e && in_cache(mq, e)) {
1098 del(mq, e);
1099 e->oblock = new_oblock;
1100 e->dirty = true;
1101 push(mq, e);
1102 }
1103 }
1104
1105 static void mq_force_mapping(struct dm_cache_policy *p,
1106 dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1107 {
1108 struct mq_policy *mq = to_mq_policy(p);
1109
1110 mutex_lock(&mq->lock);
1111 __force_mapping(mq, current_oblock, new_oblock);
1112 mutex_unlock(&mq->lock);
1113 }
1114
1115 static dm_cblock_t mq_residency(struct dm_cache_policy *p)
1116 {
1117 dm_cblock_t r;
1118 struct mq_policy *mq = to_mq_policy(p);
1119
1120 mutex_lock(&mq->lock);
1121 r = to_cblock(mq->cache_pool.nr_allocated);
1122 mutex_unlock(&mq->lock);
1123
1124 return r;
1125 }
1126
1127 static void mq_tick(struct dm_cache_policy *p)
1128 {
1129 struct mq_policy *mq = to_mq_policy(p);
1130 unsigned long flags;
1131
1132 spin_lock_irqsave(&mq->tick_lock, flags);
1133 mq->tick_protected++;
1134 spin_unlock_irqrestore(&mq->tick_lock, flags);
1135 }
1136
1137 static int mq_set_config_value(struct dm_cache_policy *p,
1138 const char *key, const char *value)
1139 {
1140 struct mq_policy *mq = to_mq_policy(p);
1141 unsigned long tmp;
1142
1143 if (kstrtoul(value, 10, &tmp))
1144 return -EINVAL;
1145
1146 if (!strcasecmp(key, "random_threshold")) {
1147 mq->tracker.thresholds[PATTERN_RANDOM] = tmp;
1148
1149 } else if (!strcasecmp(key, "sequential_threshold")) {
1150 mq->tracker.thresholds[PATTERN_SEQUENTIAL] = tmp;
1151
1152 } else if (!strcasecmp(key, "discard_promote_adjustment"))
1153 mq->discard_promote_adjustment = tmp;
1154
1155 else if (!strcasecmp(key, "read_promote_adjustment"))
1156 mq->read_promote_adjustment = tmp;
1157
1158 else if (!strcasecmp(key, "write_promote_adjustment"))
1159 mq->write_promote_adjustment = tmp;
1160
1161 else
1162 return -EINVAL;
1163
1164 return 0;
1165 }
1166
1167 static int mq_emit_config_values(struct dm_cache_policy *p, char *result, unsigned maxlen)
1168 {
1169 ssize_t sz = 0;
1170 struct mq_policy *mq = to_mq_policy(p);
1171
1172 DMEMIT("10 random_threshold %u "
1173 "sequential_threshold %u "
1174 "discard_promote_adjustment %u "
1175 "read_promote_adjustment %u "
1176 "write_promote_adjustment %u",
1177 mq->tracker.thresholds[PATTERN_RANDOM],
1178 mq->tracker.thresholds[PATTERN_SEQUENTIAL],
1179 mq->discard_promote_adjustment,
1180 mq->read_promote_adjustment,
1181 mq->write_promote_adjustment);
1182
1183 return 0;
1184 }
1185
1186 /* Init the policy plugin interface function pointers. */
1187 static void init_policy_functions(struct mq_policy *mq)
1188 {
1189 mq->policy.destroy = mq_destroy;
1190 mq->policy.map = mq_map;
1191 mq->policy.lookup = mq_lookup;
1192 mq->policy.set_dirty = mq_set_dirty;
1193 mq->policy.clear_dirty = mq_clear_dirty;
1194 mq->policy.load_mapping = mq_load_mapping;
1195 mq->policy.walk_mappings = mq_walk_mappings;
1196 mq->policy.remove_mapping = mq_remove_mapping;
1197 mq->policy.remove_cblock = mq_remove_cblock;
1198 mq->policy.writeback_work = mq_writeback_work;
1199 mq->policy.force_mapping = mq_force_mapping;
1200 mq->policy.residency = mq_residency;
1201 mq->policy.tick = mq_tick;
1202 mq->policy.emit_config_values = mq_emit_config_values;
1203 mq->policy.set_config_value = mq_set_config_value;
1204 }
1205
1206 static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
1207 sector_t origin_size,
1208 sector_t cache_block_size)
1209 {
1210 struct mq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
1211
1212 if (!mq)
1213 return NULL;
1214
1215 init_policy_functions(mq);
1216 iot_init(&mq->tracker, SEQUENTIAL_THRESHOLD_DEFAULT, RANDOM_THRESHOLD_DEFAULT);
1217 mq->cache_size = cache_size;
1218
1219 if (epool_init(&mq->pre_cache_pool, from_cblock(cache_size))) {
1220 DMERR("couldn't initialize pool of pre-cache entries");
1221 goto bad_pre_cache_init;
1222 }
1223
1224 if (epool_init(&mq->cache_pool, from_cblock(cache_size))) {
1225 DMERR("couldn't initialize pool of cache entries");
1226 goto bad_cache_init;
1227 }
1228
1229 mq->tick_protected = 0;
1230 mq->tick = 0;
1231 mq->hit_count = 0;
1232 mq->generation = 0;
1233 mq->promote_threshold = 0;
1234 mq->discard_promote_adjustment = DEFAULT_DISCARD_PROMOTE_ADJUSTMENT;
1235 mq->read_promote_adjustment = DEFAULT_READ_PROMOTE_ADJUSTMENT;
1236 mq->write_promote_adjustment = DEFAULT_WRITE_PROMOTE_ADJUSTMENT;
1237 mutex_init(&mq->lock);
1238 spin_lock_init(&mq->tick_lock);
1239
1240 queue_init(&mq->pre_cache);
1241 queue_init(&mq->cache_clean);
1242 queue_init(&mq->cache_dirty);
1243
1244 mq->generation_period = max((unsigned) from_cblock(cache_size), 1024U);
1245
1246 mq->nr_buckets = next_power(from_cblock(cache_size) / 2, 16);
1247 mq->hash_bits = ffs(mq->nr_buckets) - 1;
1248 mq->table = vzalloc(sizeof(*mq->table) * mq->nr_buckets);
1249 if (!mq->table)
1250 goto bad_alloc_table;
1251
1252 return &mq->policy;
1253
1254 bad_alloc_table:
1255 epool_exit(&mq->cache_pool);
1256 bad_cache_init:
1257 epool_exit(&mq->pre_cache_pool);
1258 bad_pre_cache_init:
1259 kfree(mq);
1260
1261 return NULL;
1262 }
1263
1264 /*----------------------------------------------------------------*/
1265
1266 static struct dm_cache_policy_type mq_policy_type = {
1267 .name = "mq",
1268 .version = {1, 2, 0},
1269 .hint_size = 4,
1270 .owner = THIS_MODULE,
1271 .create = mq_create
1272 };
1273
1274 static struct dm_cache_policy_type default_policy_type = {
1275 .name = "default",
1276 .version = {1, 2, 0},
1277 .hint_size = 4,
1278 .owner = THIS_MODULE,
1279 .create = mq_create,
1280 .real = &mq_policy_type
1281 };
1282
1283 static int __init mq_init(void)
1284 {
1285 int r;
1286
1287 mq_entry_cache = kmem_cache_create("dm_mq_policy_cache_entry",
1288 sizeof(struct entry),
1289 __alignof__(struct entry),
1290 0, NULL);
1291 if (!mq_entry_cache)
1292 goto bad;
1293
1294 r = dm_cache_policy_register(&mq_policy_type);
1295 if (r) {
1296 DMERR("register failed %d", r);
1297 goto bad_register_mq;
1298 }
1299
1300 r = dm_cache_policy_register(&default_policy_type);
1301 if (!r) {
1302 DMINFO("version %u.%u.%u loaded",
1303 mq_policy_type.version[0],
1304 mq_policy_type.version[1],
1305 mq_policy_type.version[2]);
1306 return 0;
1307 }
1308
1309 DMERR("register failed (as default) %d", r);
1310
1311 dm_cache_policy_unregister(&mq_policy_type);
1312 bad_register_mq:
1313 kmem_cache_destroy(mq_entry_cache);
1314 bad:
1315 return -ENOMEM;
1316 }
1317
1318 static void __exit mq_exit(void)
1319 {
1320 dm_cache_policy_unregister(&mq_policy_type);
1321 dm_cache_policy_unregister(&default_policy_type);
1322
1323 kmem_cache_destroy(mq_entry_cache);
1324 }
1325
1326 module_init(mq_init);
1327 module_exit(mq_exit);
1328
1329 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1330 MODULE_LICENSE("GPL");
1331 MODULE_DESCRIPTION("mq cache policy");
1332
1333 MODULE_ALIAS("dm-cache-default");
This page took 0.076923 seconds and 6 git commands to generate.