Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / drivers / md / dm-cache-policy-mq.c
1 /*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-cache-policy.h"
8 #include "dm.h"
9
10 #include <linux/hash.h>
11 #include <linux/jiffies.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16
17 #define DM_MSG_PREFIX "cache-policy-mq"
18
19 static struct kmem_cache *mq_entry_cache;
20
21 /*----------------------------------------------------------------*/
22
23 static unsigned next_power(unsigned n, unsigned min)
24 {
25 return roundup_pow_of_two(max(n, min));
26 }
27
28 /*----------------------------------------------------------------*/
29
30 /*
31 * Large, sequential ios are probably better left on the origin device since
32 * spindles tend to have good bandwidth.
33 *
34 * The io_tracker tries to spot when the io is in one of these sequential
35 * modes.
36 *
37 * Two thresholds to switch between random and sequential io mode are defaulting
38 * as follows and can be adjusted via the constructor and message interfaces.
39 */
40 #define RANDOM_THRESHOLD_DEFAULT 4
41 #define SEQUENTIAL_THRESHOLD_DEFAULT 512
42
43 enum io_pattern {
44 PATTERN_SEQUENTIAL,
45 PATTERN_RANDOM
46 };
47
48 struct io_tracker {
49 enum io_pattern pattern;
50
51 unsigned nr_seq_samples;
52 unsigned nr_rand_samples;
53 unsigned thresholds[2];
54
55 dm_oblock_t last_end_oblock;
56 };
57
58 static void iot_init(struct io_tracker *t,
59 int sequential_threshold, int random_threshold)
60 {
61 t->pattern = PATTERN_RANDOM;
62 t->nr_seq_samples = 0;
63 t->nr_rand_samples = 0;
64 t->last_end_oblock = 0;
65 t->thresholds[PATTERN_RANDOM] = random_threshold;
66 t->thresholds[PATTERN_SEQUENTIAL] = sequential_threshold;
67 }
68
69 static enum io_pattern iot_pattern(struct io_tracker *t)
70 {
71 return t->pattern;
72 }
73
74 static void iot_update_stats(struct io_tracker *t, struct bio *bio)
75 {
76 if (bio->bi_iter.bi_sector == from_oblock(t->last_end_oblock) + 1)
77 t->nr_seq_samples++;
78 else {
79 /*
80 * Just one non-sequential IO is enough to reset the
81 * counters.
82 */
83 if (t->nr_seq_samples) {
84 t->nr_seq_samples = 0;
85 t->nr_rand_samples = 0;
86 }
87
88 t->nr_rand_samples++;
89 }
90
91 t->last_end_oblock = to_oblock(bio_end_sector(bio) - 1);
92 }
93
94 static void iot_check_for_pattern_switch(struct io_tracker *t)
95 {
96 switch (t->pattern) {
97 case PATTERN_SEQUENTIAL:
98 if (t->nr_rand_samples >= t->thresholds[PATTERN_RANDOM]) {
99 t->pattern = PATTERN_RANDOM;
100 t->nr_seq_samples = t->nr_rand_samples = 0;
101 }
102 break;
103
104 case PATTERN_RANDOM:
105 if (t->nr_seq_samples >= t->thresholds[PATTERN_SEQUENTIAL]) {
106 t->pattern = PATTERN_SEQUENTIAL;
107 t->nr_seq_samples = t->nr_rand_samples = 0;
108 }
109 break;
110 }
111 }
112
113 static void iot_examine_bio(struct io_tracker *t, struct bio *bio)
114 {
115 iot_update_stats(t, bio);
116 iot_check_for_pattern_switch(t);
117 }
118
119 /*----------------------------------------------------------------*/
120
121
122 /*
123 * This queue is divided up into different levels. Allowing us to push
124 * entries to the back of any of the levels. Think of it as a partially
125 * sorted queue.
126 */
127 #define NR_QUEUE_LEVELS 16u
128 #define NR_SENTINELS NR_QUEUE_LEVELS * 3
129
130 #define WRITEBACK_PERIOD HZ
131
132 struct queue {
133 unsigned nr_elts;
134 bool current_writeback_sentinels;
135 unsigned long next_writeback;
136 struct list_head qs[NR_QUEUE_LEVELS];
137 struct list_head sentinels[NR_SENTINELS];
138 };
139
140 static void queue_init(struct queue *q)
141 {
142 unsigned i;
143
144 q->nr_elts = 0;
145 q->current_writeback_sentinels = false;
146 q->next_writeback = 0;
147 for (i = 0; i < NR_QUEUE_LEVELS; i++) {
148 INIT_LIST_HEAD(q->qs + i);
149 INIT_LIST_HEAD(q->sentinels + i);
150 INIT_LIST_HEAD(q->sentinels + NR_QUEUE_LEVELS + i);
151 INIT_LIST_HEAD(q->sentinels + (2 * NR_QUEUE_LEVELS) + i);
152 }
153 }
154
155 static unsigned queue_size(struct queue *q)
156 {
157 return q->nr_elts;
158 }
159
160 static bool queue_empty(struct queue *q)
161 {
162 return q->nr_elts == 0;
163 }
164
165 /*
166 * Insert an entry to the back of the given level.
167 */
168 static void queue_push(struct queue *q, unsigned level, struct list_head *elt)
169 {
170 q->nr_elts++;
171 list_add_tail(elt, q->qs + level);
172 }
173
174 static void queue_remove(struct queue *q, struct list_head *elt)
175 {
176 q->nr_elts--;
177 list_del(elt);
178 }
179
180 static bool is_sentinel(struct queue *q, struct list_head *h)
181 {
182 return (h >= q->sentinels) && (h < (q->sentinels + NR_SENTINELS));
183 }
184
185 /*
186 * Gives us the oldest entry of the lowest popoulated level. If the first
187 * level is emptied then we shift down one level.
188 */
189 static struct list_head *queue_peek(struct queue *q)
190 {
191 unsigned level;
192 struct list_head *h;
193
194 for (level = 0; level < NR_QUEUE_LEVELS; level++)
195 list_for_each(h, q->qs + level)
196 if (!is_sentinel(q, h))
197 return h;
198
199 return NULL;
200 }
201
202 static struct list_head *queue_pop(struct queue *q)
203 {
204 struct list_head *r = queue_peek(q);
205
206 if (r) {
207 q->nr_elts--;
208 list_del(r);
209 }
210
211 return r;
212 }
213
214 /*
215 * Pops an entry from a level that is not past a sentinel.
216 */
217 static struct list_head *queue_pop_old(struct queue *q)
218 {
219 unsigned level;
220 struct list_head *h;
221
222 for (level = 0; level < NR_QUEUE_LEVELS; level++)
223 list_for_each(h, q->qs + level) {
224 if (is_sentinel(q, h))
225 break;
226
227 q->nr_elts--;
228 list_del(h);
229 return h;
230 }
231
232 return NULL;
233 }
234
235 static struct list_head *list_pop(struct list_head *lh)
236 {
237 struct list_head *r = lh->next;
238
239 BUG_ON(!r);
240 list_del_init(r);
241
242 return r;
243 }
244
245 static struct list_head *writeback_sentinel(struct queue *q, unsigned level)
246 {
247 if (q->current_writeback_sentinels)
248 return q->sentinels + NR_QUEUE_LEVELS + level;
249 else
250 return q->sentinels + 2 * NR_QUEUE_LEVELS + level;
251 }
252
253 static void queue_update_writeback_sentinels(struct queue *q)
254 {
255 unsigned i;
256 struct list_head *h;
257
258 if (time_after(jiffies, q->next_writeback)) {
259 for (i = 0; i < NR_QUEUE_LEVELS; i++) {
260 h = writeback_sentinel(q, i);
261 list_del(h);
262 list_add_tail(h, q->qs + i);
263 }
264
265 q->next_writeback = jiffies + WRITEBACK_PERIOD;
266 q->current_writeback_sentinels = !q->current_writeback_sentinels;
267 }
268 }
269
270 /*
271 * Sometimes we want to iterate through entries that have been pushed since
272 * a certain event. We use sentinel entries on the queues to delimit these
273 * 'tick' events.
274 */
275 static void queue_tick(struct queue *q)
276 {
277 unsigned i;
278
279 for (i = 0; i < NR_QUEUE_LEVELS; i++) {
280 list_del(q->sentinels + i);
281 list_add_tail(q->sentinels + i, q->qs + i);
282 }
283 }
284
285 typedef void (*iter_fn)(struct list_head *, void *);
286 static void queue_iterate_tick(struct queue *q, iter_fn fn, void *context)
287 {
288 unsigned i;
289 struct list_head *h;
290
291 for (i = 0; i < NR_QUEUE_LEVELS; i++) {
292 list_for_each_prev(h, q->qs + i) {
293 if (is_sentinel(q, h))
294 break;
295
296 fn(h, context);
297 }
298 }
299 }
300
301 /*----------------------------------------------------------------*/
302
303 /*
304 * Describes a cache entry. Used in both the cache and the pre_cache.
305 */
306 struct entry {
307 struct hlist_node hlist;
308 struct list_head list;
309 dm_oblock_t oblock;
310
311 /*
312 * FIXME: pack these better
313 */
314 bool dirty:1;
315 unsigned hit_count;
316 };
317
318 /*
319 * Rather than storing the cblock in an entry, we allocate all entries in
320 * an array, and infer the cblock from the entry position.
321 *
322 * Free entries are linked together into a list.
323 */
324 struct entry_pool {
325 struct entry *entries, *entries_end;
326 struct list_head free;
327 unsigned nr_allocated;
328 };
329
330 static int epool_init(struct entry_pool *ep, unsigned nr_entries)
331 {
332 unsigned i;
333
334 ep->entries = vzalloc(sizeof(struct entry) * nr_entries);
335 if (!ep->entries)
336 return -ENOMEM;
337
338 ep->entries_end = ep->entries + nr_entries;
339
340 INIT_LIST_HEAD(&ep->free);
341 for (i = 0; i < nr_entries; i++)
342 list_add(&ep->entries[i].list, &ep->free);
343
344 ep->nr_allocated = 0;
345
346 return 0;
347 }
348
349 static void epool_exit(struct entry_pool *ep)
350 {
351 vfree(ep->entries);
352 }
353
354 static struct entry *alloc_entry(struct entry_pool *ep)
355 {
356 struct entry *e;
357
358 if (list_empty(&ep->free))
359 return NULL;
360
361 e = list_entry(list_pop(&ep->free), struct entry, list);
362 INIT_LIST_HEAD(&e->list);
363 INIT_HLIST_NODE(&e->hlist);
364 ep->nr_allocated++;
365
366 return e;
367 }
368
369 /*
370 * This assumes the cblock hasn't already been allocated.
371 */
372 static struct entry *alloc_particular_entry(struct entry_pool *ep, dm_cblock_t cblock)
373 {
374 struct entry *e = ep->entries + from_cblock(cblock);
375
376 list_del_init(&e->list);
377 INIT_HLIST_NODE(&e->hlist);
378 ep->nr_allocated++;
379
380 return e;
381 }
382
383 static void free_entry(struct entry_pool *ep, struct entry *e)
384 {
385 BUG_ON(!ep->nr_allocated);
386 ep->nr_allocated--;
387 INIT_HLIST_NODE(&e->hlist);
388 list_add(&e->list, &ep->free);
389 }
390
391 /*
392 * Returns NULL if the entry is free.
393 */
394 static struct entry *epool_find(struct entry_pool *ep, dm_cblock_t cblock)
395 {
396 struct entry *e = ep->entries + from_cblock(cblock);
397 return !hlist_unhashed(&e->hlist) ? e : NULL;
398 }
399
400 static bool epool_empty(struct entry_pool *ep)
401 {
402 return list_empty(&ep->free);
403 }
404
405 static bool in_pool(struct entry_pool *ep, struct entry *e)
406 {
407 return e >= ep->entries && e < ep->entries_end;
408 }
409
410 static dm_cblock_t infer_cblock(struct entry_pool *ep, struct entry *e)
411 {
412 return to_cblock(e - ep->entries);
413 }
414
415 /*----------------------------------------------------------------*/
416
417 struct mq_policy {
418 struct dm_cache_policy policy;
419
420 /* protects everything */
421 struct mutex lock;
422 dm_cblock_t cache_size;
423 struct io_tracker tracker;
424
425 /*
426 * Entries come from two pools, one of pre-cache entries, and one
427 * for the cache proper.
428 */
429 struct entry_pool pre_cache_pool;
430 struct entry_pool cache_pool;
431
432 /*
433 * We maintain three queues of entries. The cache proper,
434 * consisting of a clean and dirty queue, contains the currently
435 * active mappings. Whereas the pre_cache tracks blocks that
436 * are being hit frequently and potential candidates for promotion
437 * to the cache.
438 */
439 struct queue pre_cache;
440 struct queue cache_clean;
441 struct queue cache_dirty;
442
443 /*
444 * Keeps track of time, incremented by the core. We use this to
445 * avoid attributing multiple hits within the same tick.
446 *
447 * Access to tick_protected should be done with the spin lock held.
448 * It's copied to tick at the start of the map function (within the
449 * mutex).
450 */
451 spinlock_t tick_lock;
452 unsigned tick_protected;
453 unsigned tick;
454
455 /*
456 * A count of the number of times the map function has been called
457 * and found an entry in the pre_cache or cache. Currently used to
458 * calculate the generation.
459 */
460 unsigned hit_count;
461
462 /*
463 * A generation is a longish period that is used to trigger some
464 * book keeping effects. eg, decrementing hit counts on entries.
465 * This is needed to allow the cache to evolve as io patterns
466 * change.
467 */
468 unsigned generation;
469 unsigned generation_period; /* in lookups (will probably change) */
470
471 unsigned discard_promote_adjustment;
472 unsigned read_promote_adjustment;
473 unsigned write_promote_adjustment;
474
475 /*
476 * The hash table allows us to quickly find an entry by origin
477 * block. Both pre_cache and cache entries are in here.
478 */
479 unsigned nr_buckets;
480 dm_block_t hash_bits;
481 struct hlist_head *table;
482 };
483
484 #define DEFAULT_DISCARD_PROMOTE_ADJUSTMENT 1
485 #define DEFAULT_READ_PROMOTE_ADJUSTMENT 4
486 #define DEFAULT_WRITE_PROMOTE_ADJUSTMENT 8
487 #define DISCOURAGE_DEMOTING_DIRTY_THRESHOLD 128
488
489 /*----------------------------------------------------------------*/
490
491 /*
492 * Simple hash table implementation. Should replace with the standard hash
493 * table that's making its way upstream.
494 */
495 static void hash_insert(struct mq_policy *mq, struct entry *e)
496 {
497 unsigned h = hash_64(from_oblock(e->oblock), mq->hash_bits);
498
499 hlist_add_head(&e->hlist, mq->table + h);
500 }
501
502 static struct entry *hash_lookup(struct mq_policy *mq, dm_oblock_t oblock)
503 {
504 unsigned h = hash_64(from_oblock(oblock), mq->hash_bits);
505 struct hlist_head *bucket = mq->table + h;
506 struct entry *e;
507
508 hlist_for_each_entry(e, bucket, hlist)
509 if (e->oblock == oblock) {
510 hlist_del(&e->hlist);
511 hlist_add_head(&e->hlist, bucket);
512 return e;
513 }
514
515 return NULL;
516 }
517
518 static void hash_remove(struct entry *e)
519 {
520 hlist_del(&e->hlist);
521 }
522
523 /*----------------------------------------------------------------*/
524
525 static bool any_free_cblocks(struct mq_policy *mq)
526 {
527 return !epool_empty(&mq->cache_pool);
528 }
529
530 static bool any_clean_cblocks(struct mq_policy *mq)
531 {
532 return !queue_empty(&mq->cache_clean);
533 }
534
535 /*----------------------------------------------------------------*/
536
537 /*
538 * Now we get to the meat of the policy. This section deals with deciding
539 * when to to add entries to the pre_cache and cache, and move between
540 * them.
541 */
542
543 /*
544 * The queue level is based on the log2 of the hit count.
545 */
546 static unsigned queue_level(struct entry *e)
547 {
548 return min((unsigned) ilog2(e->hit_count), NR_QUEUE_LEVELS - 1u);
549 }
550
551 static bool in_cache(struct mq_policy *mq, struct entry *e)
552 {
553 return in_pool(&mq->cache_pool, e);
554 }
555
556 /*
557 * Inserts the entry into the pre_cache or the cache. Ensures the cache
558 * block is marked as allocated if necc. Inserts into the hash table.
559 * Sets the tick which records when the entry was last moved about.
560 */
561 static void push(struct mq_policy *mq, struct entry *e)
562 {
563 hash_insert(mq, e);
564
565 if (in_cache(mq, e))
566 queue_push(e->dirty ? &mq->cache_dirty : &mq->cache_clean,
567 queue_level(e), &e->list);
568 else
569 queue_push(&mq->pre_cache, queue_level(e), &e->list);
570 }
571
572 /*
573 * Removes an entry from pre_cache or cache. Removes from the hash table.
574 */
575 static void del(struct mq_policy *mq, struct entry *e)
576 {
577 if (in_cache(mq, e))
578 queue_remove(e->dirty ? &mq->cache_dirty : &mq->cache_clean, &e->list);
579 else
580 queue_remove(&mq->pre_cache, &e->list);
581
582 hash_remove(e);
583 }
584
585 /*
586 * Like del, except it removes the first entry in the queue (ie. the least
587 * recently used).
588 */
589 static struct entry *pop(struct mq_policy *mq, struct queue *q)
590 {
591 struct entry *e;
592 struct list_head *h = queue_pop(q);
593
594 if (!h)
595 return NULL;
596
597 e = container_of(h, struct entry, list);
598 hash_remove(e);
599
600 return e;
601 }
602
603 static struct entry *pop_old(struct mq_policy *mq, struct queue *q)
604 {
605 struct entry *e;
606 struct list_head *h = queue_pop_old(q);
607
608 if (!h)
609 return NULL;
610
611 e = container_of(h, struct entry, list);
612 hash_remove(e);
613
614 return e;
615 }
616
617 static struct entry *peek(struct queue *q)
618 {
619 struct list_head *h = queue_peek(q);
620 return h ? container_of(h, struct entry, list) : NULL;
621 }
622
623 /*
624 * The promotion threshold is adjusted every generation. As are the counts
625 * of the entries.
626 *
627 * At the moment the threshold is taken by averaging the hit counts of some
628 * of the entries in the cache (the first 20 entries across all levels in
629 * ascending order, giving preference to the clean entries at each level).
630 *
631 * We can be much cleverer than this though. For example, each promotion
632 * could bump up the threshold helping to prevent churn. Much more to do
633 * here.
634 */
635
636 #define MAX_TO_AVERAGE 20
637
638 static void check_generation(struct mq_policy *mq)
639 {
640 unsigned total = 0, nr = 0, count = 0, level;
641 struct list_head *head;
642 struct entry *e;
643
644 if ((mq->hit_count >= mq->generation_period) && (epool_empty(&mq->cache_pool))) {
645 mq->hit_count = 0;
646 mq->generation++;
647
648 for (level = 0; level < NR_QUEUE_LEVELS && count < MAX_TO_AVERAGE; level++) {
649 head = mq->cache_clean.qs + level;
650 list_for_each_entry(e, head, list) {
651 nr++;
652 total += e->hit_count;
653
654 if (++count >= MAX_TO_AVERAGE)
655 break;
656 }
657
658 head = mq->cache_dirty.qs + level;
659 list_for_each_entry(e, head, list) {
660 nr++;
661 total += e->hit_count;
662
663 if (++count >= MAX_TO_AVERAGE)
664 break;
665 }
666 }
667 }
668 }
669
670 /*
671 * Whenever we use an entry we bump up it's hit counter, and push it to the
672 * back to it's current level.
673 */
674 static void requeue(struct mq_policy *mq, struct entry *e)
675 {
676 check_generation(mq);
677 del(mq, e);
678 push(mq, e);
679 }
680
681 /*
682 * Demote the least recently used entry from the cache to the pre_cache.
683 * Returns the new cache entry to use, and the old origin block it was
684 * mapped to.
685 *
686 * We drop the hit count on the demoted entry back to 1 to stop it bouncing
687 * straight back into the cache if it's subsequently hit. There are
688 * various options here, and more experimentation would be good:
689 *
690 * - just forget about the demoted entry completely (ie. don't insert it
691 into the pre_cache).
692 * - divide the hit count rather that setting to some hard coded value.
693 * - set the hit count to a hard coded value other than 1, eg, is it better
694 * if it goes in at level 2?
695 */
696 static int demote_cblock(struct mq_policy *mq,
697 struct policy_locker *locker, dm_oblock_t *oblock)
698 {
699 struct entry *demoted = peek(&mq->cache_clean);
700
701 if (!demoted)
702 /*
703 * We could get a block from mq->cache_dirty, but that
704 * would add extra latency to the triggering bio as it
705 * waits for the writeback. Better to not promote this
706 * time and hope there's a clean block next time this block
707 * is hit.
708 */
709 return -ENOSPC;
710
711 if (locker->fn(locker, demoted->oblock))
712 /*
713 * We couldn't lock the demoted block.
714 */
715 return -EBUSY;
716
717 del(mq, demoted);
718 *oblock = demoted->oblock;
719 free_entry(&mq->cache_pool, demoted);
720
721 /*
722 * We used to put the demoted block into the pre-cache, but I think
723 * it's simpler to just let it work it's way up from zero again.
724 * Stops blocks flickering in and out of the cache.
725 */
726
727 return 0;
728 }
729
730 /*
731 * Entries in the pre_cache whose hit count passes the promotion
732 * threshold move to the cache proper. Working out the correct
733 * value for the promotion_threshold is crucial to this policy.
734 */
735 static unsigned promote_threshold(struct mq_policy *mq)
736 {
737 struct entry *e;
738
739 if (any_free_cblocks(mq))
740 return 0;
741
742 e = peek(&mq->cache_clean);
743 if (e)
744 return e->hit_count;
745
746 e = peek(&mq->cache_dirty);
747 if (e)
748 return e->hit_count + DISCOURAGE_DEMOTING_DIRTY_THRESHOLD;
749
750 /* This should never happen */
751 return 0;
752 }
753
754 /*
755 * We modify the basic promotion_threshold depending on the specific io.
756 *
757 * If the origin block has been discarded then there's no cost to copy it
758 * to the cache.
759 *
760 * We bias towards reads, since they can be demoted at no cost if they
761 * haven't been dirtied.
762 */
763 static unsigned adjusted_promote_threshold(struct mq_policy *mq,
764 bool discarded_oblock, int data_dir)
765 {
766 if (data_dir == READ)
767 return promote_threshold(mq) + mq->read_promote_adjustment;
768
769 if (discarded_oblock && (any_free_cblocks(mq) || any_clean_cblocks(mq))) {
770 /*
771 * We don't need to do any copying at all, so give this a
772 * very low threshold.
773 */
774 return mq->discard_promote_adjustment;
775 }
776
777 return promote_threshold(mq) + mq->write_promote_adjustment;
778 }
779
780 static bool should_promote(struct mq_policy *mq, struct entry *e,
781 bool discarded_oblock, int data_dir)
782 {
783 return e->hit_count >=
784 adjusted_promote_threshold(mq, discarded_oblock, data_dir);
785 }
786
787 static int cache_entry_found(struct mq_policy *mq,
788 struct entry *e,
789 struct policy_result *result)
790 {
791 requeue(mq, e);
792
793 if (in_cache(mq, e)) {
794 result->op = POLICY_HIT;
795 result->cblock = infer_cblock(&mq->cache_pool, e);
796 }
797
798 return 0;
799 }
800
801 /*
802 * Moves an entry from the pre_cache to the cache. The main work is
803 * finding which cache block to use.
804 */
805 static int pre_cache_to_cache(struct mq_policy *mq, struct entry *e,
806 struct policy_locker *locker,
807 struct policy_result *result)
808 {
809 int r;
810 struct entry *new_e;
811
812 /* Ensure there's a free cblock in the cache */
813 if (epool_empty(&mq->cache_pool)) {
814 result->op = POLICY_REPLACE;
815 r = demote_cblock(mq, locker, &result->old_oblock);
816 if (r) {
817 result->op = POLICY_MISS;
818 return 0;
819 }
820
821 } else
822 result->op = POLICY_NEW;
823
824 new_e = alloc_entry(&mq->cache_pool);
825 BUG_ON(!new_e);
826
827 new_e->oblock = e->oblock;
828 new_e->dirty = false;
829 new_e->hit_count = e->hit_count;
830
831 del(mq, e);
832 free_entry(&mq->pre_cache_pool, e);
833 push(mq, new_e);
834
835 result->cblock = infer_cblock(&mq->cache_pool, new_e);
836
837 return 0;
838 }
839
840 static int pre_cache_entry_found(struct mq_policy *mq, struct entry *e,
841 bool can_migrate, bool discarded_oblock,
842 int data_dir, struct policy_locker *locker,
843 struct policy_result *result)
844 {
845 int r = 0;
846
847 if (!should_promote(mq, e, discarded_oblock, data_dir)) {
848 requeue(mq, e);
849 result->op = POLICY_MISS;
850
851 } else if (!can_migrate)
852 r = -EWOULDBLOCK;
853
854 else {
855 requeue(mq, e);
856 r = pre_cache_to_cache(mq, e, locker, result);
857 }
858
859 return r;
860 }
861
862 static void insert_in_pre_cache(struct mq_policy *mq,
863 dm_oblock_t oblock)
864 {
865 struct entry *e = alloc_entry(&mq->pre_cache_pool);
866
867 if (!e)
868 /*
869 * There's no spare entry structure, so we grab the least
870 * used one from the pre_cache.
871 */
872 e = pop(mq, &mq->pre_cache);
873
874 if (unlikely(!e)) {
875 DMWARN("couldn't pop from pre cache");
876 return;
877 }
878
879 e->dirty = false;
880 e->oblock = oblock;
881 e->hit_count = 1;
882 push(mq, e);
883 }
884
885 static void insert_in_cache(struct mq_policy *mq, dm_oblock_t oblock,
886 struct policy_locker *locker,
887 struct policy_result *result)
888 {
889 int r;
890 struct entry *e;
891
892 if (epool_empty(&mq->cache_pool)) {
893 result->op = POLICY_REPLACE;
894 r = demote_cblock(mq, locker, &result->old_oblock);
895 if (unlikely(r)) {
896 result->op = POLICY_MISS;
897 insert_in_pre_cache(mq, oblock);
898 return;
899 }
900
901 /*
902 * This will always succeed, since we've just demoted.
903 */
904 e = alloc_entry(&mq->cache_pool);
905 BUG_ON(!e);
906
907 } else {
908 e = alloc_entry(&mq->cache_pool);
909 result->op = POLICY_NEW;
910 }
911
912 e->oblock = oblock;
913 e->dirty = false;
914 e->hit_count = 1;
915 push(mq, e);
916
917 result->cblock = infer_cblock(&mq->cache_pool, e);
918 }
919
920 static int no_entry_found(struct mq_policy *mq, dm_oblock_t oblock,
921 bool can_migrate, bool discarded_oblock,
922 int data_dir, struct policy_locker *locker,
923 struct policy_result *result)
924 {
925 if (adjusted_promote_threshold(mq, discarded_oblock, data_dir) <= 1) {
926 if (can_migrate)
927 insert_in_cache(mq, oblock, locker, result);
928 else
929 return -EWOULDBLOCK;
930 } else {
931 insert_in_pre_cache(mq, oblock);
932 result->op = POLICY_MISS;
933 }
934
935 return 0;
936 }
937
938 /*
939 * Looks the oblock up in the hash table, then decides whether to put in
940 * pre_cache, or cache etc.
941 */
942 static int map(struct mq_policy *mq, dm_oblock_t oblock,
943 bool can_migrate, bool discarded_oblock,
944 int data_dir, struct policy_locker *locker,
945 struct policy_result *result)
946 {
947 int r = 0;
948 struct entry *e = hash_lookup(mq, oblock);
949
950 if (e && in_cache(mq, e))
951 r = cache_entry_found(mq, e, result);
952
953 else if (mq->tracker.thresholds[PATTERN_SEQUENTIAL] &&
954 iot_pattern(&mq->tracker) == PATTERN_SEQUENTIAL)
955 result->op = POLICY_MISS;
956
957 else if (e)
958 r = pre_cache_entry_found(mq, e, can_migrate, discarded_oblock,
959 data_dir, locker, result);
960
961 else
962 r = no_entry_found(mq, oblock, can_migrate, discarded_oblock,
963 data_dir, locker, result);
964
965 if (r == -EWOULDBLOCK)
966 result->op = POLICY_MISS;
967
968 return r;
969 }
970
971 /*----------------------------------------------------------------*/
972
973 /*
974 * Public interface, via the policy struct. See dm-cache-policy.h for a
975 * description of these.
976 */
977
978 static struct mq_policy *to_mq_policy(struct dm_cache_policy *p)
979 {
980 return container_of(p, struct mq_policy, policy);
981 }
982
983 static void mq_destroy(struct dm_cache_policy *p)
984 {
985 struct mq_policy *mq = to_mq_policy(p);
986
987 vfree(mq->table);
988 epool_exit(&mq->cache_pool);
989 epool_exit(&mq->pre_cache_pool);
990 kfree(mq);
991 }
992
993 static void update_pre_cache_hits(struct list_head *h, void *context)
994 {
995 struct entry *e = container_of(h, struct entry, list);
996 e->hit_count++;
997 }
998
999 static void update_cache_hits(struct list_head *h, void *context)
1000 {
1001 struct mq_policy *mq = context;
1002 struct entry *e = container_of(h, struct entry, list);
1003 e->hit_count++;
1004 mq->hit_count++;
1005 }
1006
1007 static void copy_tick(struct mq_policy *mq)
1008 {
1009 unsigned long flags, tick;
1010
1011 spin_lock_irqsave(&mq->tick_lock, flags);
1012 tick = mq->tick_protected;
1013 if (tick != mq->tick) {
1014 queue_iterate_tick(&mq->pre_cache, update_pre_cache_hits, mq);
1015 queue_iterate_tick(&mq->cache_dirty, update_cache_hits, mq);
1016 queue_iterate_tick(&mq->cache_clean, update_cache_hits, mq);
1017 mq->tick = tick;
1018 }
1019
1020 queue_tick(&mq->pre_cache);
1021 queue_tick(&mq->cache_dirty);
1022 queue_tick(&mq->cache_clean);
1023 queue_update_writeback_sentinels(&mq->cache_dirty);
1024 spin_unlock_irqrestore(&mq->tick_lock, flags);
1025 }
1026
1027 static int mq_map(struct dm_cache_policy *p, dm_oblock_t oblock,
1028 bool can_block, bool can_migrate, bool discarded_oblock,
1029 struct bio *bio, struct policy_locker *locker,
1030 struct policy_result *result)
1031 {
1032 int r;
1033 struct mq_policy *mq = to_mq_policy(p);
1034
1035 result->op = POLICY_MISS;
1036
1037 if (can_block)
1038 mutex_lock(&mq->lock);
1039 else if (!mutex_trylock(&mq->lock))
1040 return -EWOULDBLOCK;
1041
1042 copy_tick(mq);
1043
1044 iot_examine_bio(&mq->tracker, bio);
1045 r = map(mq, oblock, can_migrate, discarded_oblock,
1046 bio_data_dir(bio), locker, result);
1047
1048 mutex_unlock(&mq->lock);
1049
1050 return r;
1051 }
1052
1053 static int mq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock)
1054 {
1055 int r;
1056 struct mq_policy *mq = to_mq_policy(p);
1057 struct entry *e;
1058
1059 if (!mutex_trylock(&mq->lock))
1060 return -EWOULDBLOCK;
1061
1062 e = hash_lookup(mq, oblock);
1063 if (e && in_cache(mq, e)) {
1064 *cblock = infer_cblock(&mq->cache_pool, e);
1065 r = 0;
1066 } else
1067 r = -ENOENT;
1068
1069 mutex_unlock(&mq->lock);
1070
1071 return r;
1072 }
1073
1074 static void __mq_set_clear_dirty(struct mq_policy *mq, dm_oblock_t oblock, bool set)
1075 {
1076 struct entry *e;
1077
1078 e = hash_lookup(mq, oblock);
1079 BUG_ON(!e || !in_cache(mq, e));
1080
1081 del(mq, e);
1082 e->dirty = set;
1083 push(mq, e);
1084 }
1085
1086 static void mq_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
1087 {
1088 struct mq_policy *mq = to_mq_policy(p);
1089
1090 mutex_lock(&mq->lock);
1091 __mq_set_clear_dirty(mq, oblock, true);
1092 mutex_unlock(&mq->lock);
1093 }
1094
1095 static void mq_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
1096 {
1097 struct mq_policy *mq = to_mq_policy(p);
1098
1099 mutex_lock(&mq->lock);
1100 __mq_set_clear_dirty(mq, oblock, false);
1101 mutex_unlock(&mq->lock);
1102 }
1103
1104 static int mq_load_mapping(struct dm_cache_policy *p,
1105 dm_oblock_t oblock, dm_cblock_t cblock,
1106 uint32_t hint, bool hint_valid)
1107 {
1108 struct mq_policy *mq = to_mq_policy(p);
1109 struct entry *e;
1110
1111 e = alloc_particular_entry(&mq->cache_pool, cblock);
1112 e->oblock = oblock;
1113 e->dirty = false; /* this gets corrected in a minute */
1114 e->hit_count = hint_valid ? hint : 1;
1115 push(mq, e);
1116
1117 return 0;
1118 }
1119
1120 static int mq_save_hints(struct mq_policy *mq, struct queue *q,
1121 policy_walk_fn fn, void *context)
1122 {
1123 int r;
1124 unsigned level;
1125 struct list_head *h;
1126 struct entry *e;
1127
1128 for (level = 0; level < NR_QUEUE_LEVELS; level++)
1129 list_for_each(h, q->qs + level) {
1130 if (is_sentinel(q, h))
1131 continue;
1132
1133 e = container_of(h, struct entry, list);
1134 r = fn(context, infer_cblock(&mq->cache_pool, e),
1135 e->oblock, e->hit_count);
1136 if (r)
1137 return r;
1138 }
1139
1140 return 0;
1141 }
1142
1143 static int mq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn,
1144 void *context)
1145 {
1146 struct mq_policy *mq = to_mq_policy(p);
1147 int r = 0;
1148
1149 mutex_lock(&mq->lock);
1150
1151 r = mq_save_hints(mq, &mq->cache_clean, fn, context);
1152 if (!r)
1153 r = mq_save_hints(mq, &mq->cache_dirty, fn, context);
1154
1155 mutex_unlock(&mq->lock);
1156
1157 return r;
1158 }
1159
1160 static void __remove_mapping(struct mq_policy *mq, dm_oblock_t oblock)
1161 {
1162 struct entry *e;
1163
1164 e = hash_lookup(mq, oblock);
1165 BUG_ON(!e || !in_cache(mq, e));
1166
1167 del(mq, e);
1168 free_entry(&mq->cache_pool, e);
1169 }
1170
1171 static void mq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock)
1172 {
1173 struct mq_policy *mq = to_mq_policy(p);
1174
1175 mutex_lock(&mq->lock);
1176 __remove_mapping(mq, oblock);
1177 mutex_unlock(&mq->lock);
1178 }
1179
1180 static int __remove_cblock(struct mq_policy *mq, dm_cblock_t cblock)
1181 {
1182 struct entry *e = epool_find(&mq->cache_pool, cblock);
1183
1184 if (!e)
1185 return -ENODATA;
1186
1187 del(mq, e);
1188 free_entry(&mq->cache_pool, e);
1189
1190 return 0;
1191 }
1192
1193 static int mq_remove_cblock(struct dm_cache_policy *p, dm_cblock_t cblock)
1194 {
1195 int r;
1196 struct mq_policy *mq = to_mq_policy(p);
1197
1198 mutex_lock(&mq->lock);
1199 r = __remove_cblock(mq, cblock);
1200 mutex_unlock(&mq->lock);
1201
1202 return r;
1203 }
1204
1205 #define CLEAN_TARGET_PERCENTAGE 25
1206
1207 static bool clean_target_met(struct mq_policy *mq)
1208 {
1209 /*
1210 * Cache entries may not be populated. So we're cannot rely on the
1211 * size of the clean queue.
1212 */
1213 unsigned nr_clean = from_cblock(mq->cache_size) - queue_size(&mq->cache_dirty);
1214 unsigned target = from_cblock(mq->cache_size) * CLEAN_TARGET_PERCENTAGE / 100;
1215
1216 return nr_clean >= target;
1217 }
1218
1219 static int __mq_writeback_work(struct mq_policy *mq, dm_oblock_t *oblock,
1220 dm_cblock_t *cblock)
1221 {
1222 struct entry *e = pop_old(mq, &mq->cache_dirty);
1223
1224 if (!e && !clean_target_met(mq))
1225 e = pop(mq, &mq->cache_dirty);
1226
1227 if (!e)
1228 return -ENODATA;
1229
1230 *oblock = e->oblock;
1231 *cblock = infer_cblock(&mq->cache_pool, e);
1232 e->dirty = false;
1233 push(mq, e);
1234
1235 return 0;
1236 }
1237
1238 static int mq_writeback_work(struct dm_cache_policy *p, dm_oblock_t *oblock,
1239 dm_cblock_t *cblock, bool critical_only)
1240 {
1241 int r;
1242 struct mq_policy *mq = to_mq_policy(p);
1243
1244 mutex_lock(&mq->lock);
1245 r = __mq_writeback_work(mq, oblock, cblock);
1246 mutex_unlock(&mq->lock);
1247
1248 return r;
1249 }
1250
1251 static void __force_mapping(struct mq_policy *mq,
1252 dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1253 {
1254 struct entry *e = hash_lookup(mq, current_oblock);
1255
1256 if (e && in_cache(mq, e)) {
1257 del(mq, e);
1258 e->oblock = new_oblock;
1259 e->dirty = true;
1260 push(mq, e);
1261 }
1262 }
1263
1264 static void mq_force_mapping(struct dm_cache_policy *p,
1265 dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1266 {
1267 struct mq_policy *mq = to_mq_policy(p);
1268
1269 mutex_lock(&mq->lock);
1270 __force_mapping(mq, current_oblock, new_oblock);
1271 mutex_unlock(&mq->lock);
1272 }
1273
1274 static dm_cblock_t mq_residency(struct dm_cache_policy *p)
1275 {
1276 dm_cblock_t r;
1277 struct mq_policy *mq = to_mq_policy(p);
1278
1279 mutex_lock(&mq->lock);
1280 r = to_cblock(mq->cache_pool.nr_allocated);
1281 mutex_unlock(&mq->lock);
1282
1283 return r;
1284 }
1285
1286 static void mq_tick(struct dm_cache_policy *p, bool can_block)
1287 {
1288 struct mq_policy *mq = to_mq_policy(p);
1289 unsigned long flags;
1290
1291 spin_lock_irqsave(&mq->tick_lock, flags);
1292 mq->tick_protected++;
1293 spin_unlock_irqrestore(&mq->tick_lock, flags);
1294
1295 if (can_block) {
1296 mutex_lock(&mq->lock);
1297 copy_tick(mq);
1298 mutex_unlock(&mq->lock);
1299 }
1300 }
1301
1302 static int mq_set_config_value(struct dm_cache_policy *p,
1303 const char *key, const char *value)
1304 {
1305 struct mq_policy *mq = to_mq_policy(p);
1306 unsigned long tmp;
1307
1308 if (kstrtoul(value, 10, &tmp))
1309 return -EINVAL;
1310
1311 if (!strcasecmp(key, "random_threshold")) {
1312 mq->tracker.thresholds[PATTERN_RANDOM] = tmp;
1313
1314 } else if (!strcasecmp(key, "sequential_threshold")) {
1315 mq->tracker.thresholds[PATTERN_SEQUENTIAL] = tmp;
1316
1317 } else if (!strcasecmp(key, "discard_promote_adjustment"))
1318 mq->discard_promote_adjustment = tmp;
1319
1320 else if (!strcasecmp(key, "read_promote_adjustment"))
1321 mq->read_promote_adjustment = tmp;
1322
1323 else if (!strcasecmp(key, "write_promote_adjustment"))
1324 mq->write_promote_adjustment = tmp;
1325
1326 else
1327 return -EINVAL;
1328
1329 return 0;
1330 }
1331
1332 static int mq_emit_config_values(struct dm_cache_policy *p, char *result,
1333 unsigned maxlen, ssize_t *sz_ptr)
1334 {
1335 ssize_t sz = *sz_ptr;
1336 struct mq_policy *mq = to_mq_policy(p);
1337
1338 DMEMIT("10 random_threshold %u "
1339 "sequential_threshold %u "
1340 "discard_promote_adjustment %u "
1341 "read_promote_adjustment %u "
1342 "write_promote_adjustment %u ",
1343 mq->tracker.thresholds[PATTERN_RANDOM],
1344 mq->tracker.thresholds[PATTERN_SEQUENTIAL],
1345 mq->discard_promote_adjustment,
1346 mq->read_promote_adjustment,
1347 mq->write_promote_adjustment);
1348
1349 *sz_ptr = sz;
1350 return 0;
1351 }
1352
1353 /* Init the policy plugin interface function pointers. */
1354 static void init_policy_functions(struct mq_policy *mq)
1355 {
1356 mq->policy.destroy = mq_destroy;
1357 mq->policy.map = mq_map;
1358 mq->policy.lookup = mq_lookup;
1359 mq->policy.set_dirty = mq_set_dirty;
1360 mq->policy.clear_dirty = mq_clear_dirty;
1361 mq->policy.load_mapping = mq_load_mapping;
1362 mq->policy.walk_mappings = mq_walk_mappings;
1363 mq->policy.remove_mapping = mq_remove_mapping;
1364 mq->policy.remove_cblock = mq_remove_cblock;
1365 mq->policy.writeback_work = mq_writeback_work;
1366 mq->policy.force_mapping = mq_force_mapping;
1367 mq->policy.residency = mq_residency;
1368 mq->policy.tick = mq_tick;
1369 mq->policy.emit_config_values = mq_emit_config_values;
1370 mq->policy.set_config_value = mq_set_config_value;
1371 }
1372
1373 static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
1374 sector_t origin_size,
1375 sector_t cache_block_size)
1376 {
1377 struct mq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
1378
1379 if (!mq)
1380 return NULL;
1381
1382 init_policy_functions(mq);
1383 iot_init(&mq->tracker, SEQUENTIAL_THRESHOLD_DEFAULT, RANDOM_THRESHOLD_DEFAULT);
1384 mq->cache_size = cache_size;
1385
1386 if (epool_init(&mq->pre_cache_pool, from_cblock(cache_size))) {
1387 DMERR("couldn't initialize pool of pre-cache entries");
1388 goto bad_pre_cache_init;
1389 }
1390
1391 if (epool_init(&mq->cache_pool, from_cblock(cache_size))) {
1392 DMERR("couldn't initialize pool of cache entries");
1393 goto bad_cache_init;
1394 }
1395
1396 mq->tick_protected = 0;
1397 mq->tick = 0;
1398 mq->hit_count = 0;
1399 mq->generation = 0;
1400 mq->discard_promote_adjustment = DEFAULT_DISCARD_PROMOTE_ADJUSTMENT;
1401 mq->read_promote_adjustment = DEFAULT_READ_PROMOTE_ADJUSTMENT;
1402 mq->write_promote_adjustment = DEFAULT_WRITE_PROMOTE_ADJUSTMENT;
1403 mutex_init(&mq->lock);
1404 spin_lock_init(&mq->tick_lock);
1405
1406 queue_init(&mq->pre_cache);
1407 queue_init(&mq->cache_clean);
1408 queue_init(&mq->cache_dirty);
1409
1410 mq->generation_period = max((unsigned) from_cblock(cache_size), 1024U);
1411
1412 mq->nr_buckets = next_power(from_cblock(cache_size) / 2, 16);
1413 mq->hash_bits = ffs(mq->nr_buckets) - 1;
1414 mq->table = vzalloc(sizeof(*mq->table) * mq->nr_buckets);
1415 if (!mq->table)
1416 goto bad_alloc_table;
1417
1418 return &mq->policy;
1419
1420 bad_alloc_table:
1421 epool_exit(&mq->cache_pool);
1422 bad_cache_init:
1423 epool_exit(&mq->pre_cache_pool);
1424 bad_pre_cache_init:
1425 kfree(mq);
1426
1427 return NULL;
1428 }
1429
1430 /*----------------------------------------------------------------*/
1431
1432 static struct dm_cache_policy_type mq_policy_type = {
1433 .name = "mq",
1434 .version = {1, 4, 0},
1435 .hint_size = 4,
1436 .owner = THIS_MODULE,
1437 .create = mq_create
1438 };
1439
1440 static int __init mq_init(void)
1441 {
1442 int r;
1443
1444 mq_entry_cache = kmem_cache_create("dm_mq_policy_cache_entry",
1445 sizeof(struct entry),
1446 __alignof__(struct entry),
1447 0, NULL);
1448 if (!mq_entry_cache)
1449 return -ENOMEM;
1450
1451 r = dm_cache_policy_register(&mq_policy_type);
1452 if (r) {
1453 DMERR("register failed %d", r);
1454 kmem_cache_destroy(mq_entry_cache);
1455 return -ENOMEM;
1456 }
1457
1458 return 0;
1459 }
1460
1461 static void __exit mq_exit(void)
1462 {
1463 dm_cache_policy_unregister(&mq_policy_type);
1464
1465 kmem_cache_destroy(mq_entry_cache);
1466 }
1467
1468 module_init(mq_init);
1469 module_exit(mq_exit);
1470
1471 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1472 MODULE_LICENSE("GPL");
1473 MODULE_DESCRIPTION("mq cache policy");
1474
1475 MODULE_ALIAS("dm-cache-default");
This page took 0.15552 seconds and 6 git commands to generate.