Merge branch 'drm-fixes' of git://people.freedesktop.org/~airlied/linux
[deliverable/linux.git] / drivers / md / dm-cache-policy-smq.c
1 /*
2 * Copyright (C) 2015 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-cache-policy.h"
8 #include "dm-cache-policy-internal.h"
9 #include "dm.h"
10
11 #include <linux/hash.h>
12 #include <linux/jiffies.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/vmalloc.h>
16 #include <linux/math64.h>
17
18 #define DM_MSG_PREFIX "cache-policy-smq"
19
20 /*----------------------------------------------------------------*/
21
22 /*
23 * Safe division functions that return zero on divide by zero.
24 */
25 static unsigned safe_div(unsigned n, unsigned d)
26 {
27 return d ? n / d : 0u;
28 }
29
30 static unsigned safe_mod(unsigned n, unsigned d)
31 {
32 return d ? n % d : 0u;
33 }
34
35 /*----------------------------------------------------------------*/
36
37 struct entry {
38 unsigned hash_next:28;
39 unsigned prev:28;
40 unsigned next:28;
41 unsigned level:7;
42 bool dirty:1;
43 bool allocated:1;
44 bool sentinel:1;
45
46 dm_oblock_t oblock;
47 };
48
49 /*----------------------------------------------------------------*/
50
51 #define INDEXER_NULL ((1u << 28u) - 1u)
52
53 /*
54 * An entry_space manages a set of entries that we use for the queues.
55 * The clean and dirty queues share entries, so this object is separate
56 * from the queue itself.
57 */
58 struct entry_space {
59 struct entry *begin;
60 struct entry *end;
61 };
62
63 static int space_init(struct entry_space *es, unsigned nr_entries)
64 {
65 if (!nr_entries) {
66 es->begin = es->end = NULL;
67 return 0;
68 }
69
70 es->begin = vzalloc(sizeof(struct entry) * nr_entries);
71 if (!es->begin)
72 return -ENOMEM;
73
74 es->end = es->begin + nr_entries;
75 return 0;
76 }
77
78 static void space_exit(struct entry_space *es)
79 {
80 vfree(es->begin);
81 }
82
83 static struct entry *__get_entry(struct entry_space *es, unsigned block)
84 {
85 struct entry *e;
86
87 e = es->begin + block;
88 BUG_ON(e >= es->end);
89
90 return e;
91 }
92
93 static unsigned to_index(struct entry_space *es, struct entry *e)
94 {
95 BUG_ON(e < es->begin || e >= es->end);
96 return e - es->begin;
97 }
98
99 static struct entry *to_entry(struct entry_space *es, unsigned block)
100 {
101 if (block == INDEXER_NULL)
102 return NULL;
103
104 return __get_entry(es, block);
105 }
106
107 /*----------------------------------------------------------------*/
108
109 struct ilist {
110 unsigned nr_elts; /* excluding sentinel entries */
111 unsigned head, tail;
112 };
113
114 static void l_init(struct ilist *l)
115 {
116 l->nr_elts = 0;
117 l->head = l->tail = INDEXER_NULL;
118 }
119
120 static struct entry *l_head(struct entry_space *es, struct ilist *l)
121 {
122 return to_entry(es, l->head);
123 }
124
125 static struct entry *l_tail(struct entry_space *es, struct ilist *l)
126 {
127 return to_entry(es, l->tail);
128 }
129
130 static struct entry *l_next(struct entry_space *es, struct entry *e)
131 {
132 return to_entry(es, e->next);
133 }
134
135 static struct entry *l_prev(struct entry_space *es, struct entry *e)
136 {
137 return to_entry(es, e->prev);
138 }
139
140 static bool l_empty(struct ilist *l)
141 {
142 return l->head == INDEXER_NULL;
143 }
144
145 static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e)
146 {
147 struct entry *head = l_head(es, l);
148
149 e->next = l->head;
150 e->prev = INDEXER_NULL;
151
152 if (head)
153 head->prev = l->head = to_index(es, e);
154 else
155 l->head = l->tail = to_index(es, e);
156
157 if (!e->sentinel)
158 l->nr_elts++;
159 }
160
161 static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e)
162 {
163 struct entry *tail = l_tail(es, l);
164
165 e->next = INDEXER_NULL;
166 e->prev = l->tail;
167
168 if (tail)
169 tail->next = l->tail = to_index(es, e);
170 else
171 l->head = l->tail = to_index(es, e);
172
173 if (!e->sentinel)
174 l->nr_elts++;
175 }
176
177 static void l_add_before(struct entry_space *es, struct ilist *l,
178 struct entry *old, struct entry *e)
179 {
180 struct entry *prev = l_prev(es, old);
181
182 if (!prev)
183 l_add_head(es, l, e);
184
185 else {
186 e->prev = old->prev;
187 e->next = to_index(es, old);
188 prev->next = old->prev = to_index(es, e);
189
190 if (!e->sentinel)
191 l->nr_elts++;
192 }
193 }
194
195 static void l_del(struct entry_space *es, struct ilist *l, struct entry *e)
196 {
197 struct entry *prev = l_prev(es, e);
198 struct entry *next = l_next(es, e);
199
200 if (prev)
201 prev->next = e->next;
202 else
203 l->head = e->next;
204
205 if (next)
206 next->prev = e->prev;
207 else
208 l->tail = e->prev;
209
210 if (!e->sentinel)
211 l->nr_elts--;
212 }
213
214 static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l)
215 {
216 struct entry *e;
217
218 for (e = l_tail(es, l); e; e = l_prev(es, e))
219 if (!e->sentinel) {
220 l_del(es, l, e);
221 return e;
222 }
223
224 return NULL;
225 }
226
227 /*----------------------------------------------------------------*/
228
229 /*
230 * The stochastic-multi-queue is a set of lru lists stacked into levels.
231 * Entries are moved up levels when they are used, which loosely orders the
232 * most accessed entries in the top levels and least in the bottom. This
233 * structure is *much* better than a single lru list.
234 */
235 #define MAX_LEVELS 64u
236
237 struct queue {
238 struct entry_space *es;
239
240 unsigned nr_elts;
241 unsigned nr_levels;
242 struct ilist qs[MAX_LEVELS];
243
244 /*
245 * We maintain a count of the number of entries we would like in each
246 * level.
247 */
248 unsigned last_target_nr_elts;
249 unsigned nr_top_levels;
250 unsigned nr_in_top_levels;
251 unsigned target_count[MAX_LEVELS];
252 };
253
254 static void q_init(struct queue *q, struct entry_space *es, unsigned nr_levels)
255 {
256 unsigned i;
257
258 q->es = es;
259 q->nr_elts = 0;
260 q->nr_levels = nr_levels;
261
262 for (i = 0; i < q->nr_levels; i++) {
263 l_init(q->qs + i);
264 q->target_count[i] = 0u;
265 }
266
267 q->last_target_nr_elts = 0u;
268 q->nr_top_levels = 0u;
269 q->nr_in_top_levels = 0u;
270 }
271
272 static unsigned q_size(struct queue *q)
273 {
274 return q->nr_elts;
275 }
276
277 /*
278 * Insert an entry to the back of the given level.
279 */
280 static void q_push(struct queue *q, struct entry *e)
281 {
282 if (!e->sentinel)
283 q->nr_elts++;
284
285 l_add_tail(q->es, q->qs + e->level, e);
286 }
287
288 static void q_push_before(struct queue *q, struct entry *old, struct entry *e)
289 {
290 if (!e->sentinel)
291 q->nr_elts++;
292
293 l_add_before(q->es, q->qs + e->level, old, e);
294 }
295
296 static void q_del(struct queue *q, struct entry *e)
297 {
298 l_del(q->es, q->qs + e->level, e);
299 if (!e->sentinel)
300 q->nr_elts--;
301 }
302
303 /*
304 * Return the oldest entry of the lowest populated level.
305 */
306 static struct entry *q_peek(struct queue *q, unsigned max_level, bool can_cross_sentinel)
307 {
308 unsigned level;
309 struct entry *e;
310
311 max_level = min(max_level, q->nr_levels);
312
313 for (level = 0; level < max_level; level++)
314 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) {
315 if (e->sentinel) {
316 if (can_cross_sentinel)
317 continue;
318 else
319 break;
320 }
321
322 return e;
323 }
324
325 return NULL;
326 }
327
328 static struct entry *q_pop(struct queue *q)
329 {
330 struct entry *e = q_peek(q, q->nr_levels, true);
331
332 if (e)
333 q_del(q, e);
334
335 return e;
336 }
337
338 /*
339 * Pops an entry from a level that is not past a sentinel.
340 */
341 static struct entry *q_pop_old(struct queue *q, unsigned max_level)
342 {
343 struct entry *e = q_peek(q, max_level, false);
344
345 if (e)
346 q_del(q, e);
347
348 return e;
349 }
350
351 /*
352 * This function assumes there is a non-sentinel entry to pop. It's only
353 * used by redistribute, so we know this is true. It also doesn't adjust
354 * the q->nr_elts count.
355 */
356 static struct entry *__redist_pop_from(struct queue *q, unsigned level)
357 {
358 struct entry *e;
359
360 for (; level < q->nr_levels; level++)
361 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e))
362 if (!e->sentinel) {
363 l_del(q->es, q->qs + e->level, e);
364 return e;
365 }
366
367 return NULL;
368 }
369
370 static void q_set_targets_subrange_(struct queue *q, unsigned nr_elts, unsigned lbegin, unsigned lend)
371 {
372 unsigned level, nr_levels, entries_per_level, remainder;
373
374 BUG_ON(lbegin > lend);
375 BUG_ON(lend > q->nr_levels);
376 nr_levels = lend - lbegin;
377 entries_per_level = safe_div(nr_elts, nr_levels);
378 remainder = safe_mod(nr_elts, nr_levels);
379
380 for (level = lbegin; level < lend; level++)
381 q->target_count[level] =
382 (level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level;
383 }
384
385 /*
386 * Typically we have fewer elements in the top few levels which allows us
387 * to adjust the promote threshold nicely.
388 */
389 static void q_set_targets(struct queue *q)
390 {
391 if (q->last_target_nr_elts == q->nr_elts)
392 return;
393
394 q->last_target_nr_elts = q->nr_elts;
395
396 if (q->nr_top_levels > q->nr_levels)
397 q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels);
398
399 else {
400 q_set_targets_subrange_(q, q->nr_in_top_levels,
401 q->nr_levels - q->nr_top_levels, q->nr_levels);
402
403 if (q->nr_in_top_levels < q->nr_elts)
404 q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels,
405 0, q->nr_levels - q->nr_top_levels);
406 else
407 q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels);
408 }
409 }
410
411 static void q_redistribute(struct queue *q)
412 {
413 unsigned target, level;
414 struct ilist *l, *l_above;
415 struct entry *e;
416
417 q_set_targets(q);
418
419 for (level = 0u; level < q->nr_levels - 1u; level++) {
420 l = q->qs + level;
421 target = q->target_count[level];
422
423 /*
424 * Pull down some entries from the level above.
425 */
426 while (l->nr_elts < target) {
427 e = __redist_pop_from(q, level + 1u);
428 if (!e) {
429 /* bug in nr_elts */
430 break;
431 }
432
433 e->level = level;
434 l_add_tail(q->es, l, e);
435 }
436
437 /*
438 * Push some entries up.
439 */
440 l_above = q->qs + level + 1u;
441 while (l->nr_elts > target) {
442 e = l_pop_tail(q->es, l);
443
444 if (!e)
445 /* bug in nr_elts */
446 break;
447
448 e->level = level + 1u;
449 l_add_head(q->es, l_above, e);
450 }
451 }
452 }
453
454 static void q_requeue_before(struct queue *q, struct entry *dest, struct entry *e, unsigned extra_levels)
455 {
456 struct entry *de;
457 unsigned new_level;
458
459 q_del(q, e);
460
461 if (extra_levels && (e->level < q->nr_levels - 1u)) {
462 new_level = min(q->nr_levels - 1u, e->level + extra_levels);
463 for (de = l_head(q->es, q->qs + new_level); de; de = l_next(q->es, de)) {
464 if (de->sentinel)
465 continue;
466
467 q_del(q, de);
468 de->level = e->level;
469
470 if (dest)
471 q_push_before(q, dest, de);
472 else
473 q_push(q, de);
474 break;
475 }
476
477 e->level = new_level;
478 }
479
480 q_push(q, e);
481 }
482
483 static void q_requeue(struct queue *q, struct entry *e, unsigned extra_levels)
484 {
485 q_requeue_before(q, NULL, e, extra_levels);
486 }
487
488 /*----------------------------------------------------------------*/
489
490 #define FP_SHIFT 8
491 #define SIXTEENTH (1u << (FP_SHIFT - 4u))
492 #define EIGHTH (1u << (FP_SHIFT - 3u))
493
494 struct stats {
495 unsigned hit_threshold;
496 unsigned hits;
497 unsigned misses;
498 };
499
500 enum performance {
501 Q_POOR,
502 Q_FAIR,
503 Q_WELL
504 };
505
506 static void stats_init(struct stats *s, unsigned nr_levels)
507 {
508 s->hit_threshold = (nr_levels * 3u) / 4u;
509 s->hits = 0u;
510 s->misses = 0u;
511 }
512
513 static void stats_reset(struct stats *s)
514 {
515 s->hits = s->misses = 0u;
516 }
517
518 static void stats_level_accessed(struct stats *s, unsigned level)
519 {
520 if (level >= s->hit_threshold)
521 s->hits++;
522 else
523 s->misses++;
524 }
525
526 static void stats_miss(struct stats *s)
527 {
528 s->misses++;
529 }
530
531 /*
532 * There are times when we don't have any confidence in the hotspot queue.
533 * Such as when a fresh cache is created and the blocks have been spread
534 * out across the levels, or if an io load changes. We detect this by
535 * seeing how often a lookup is in the top levels of the hotspot queue.
536 */
537 static enum performance stats_assess(struct stats *s)
538 {
539 unsigned confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses);
540
541 if (confidence < SIXTEENTH)
542 return Q_POOR;
543
544 else if (confidence < EIGHTH)
545 return Q_FAIR;
546
547 else
548 return Q_WELL;
549 }
550
551 /*----------------------------------------------------------------*/
552
553 struct hash_table {
554 struct entry_space *es;
555 unsigned long long hash_bits;
556 unsigned *buckets;
557 };
558
559 /*
560 * All cache entries are stored in a chained hash table. To save space we
561 * use indexing again, and only store indexes to the next entry.
562 */
563 static int h_init(struct hash_table *ht, struct entry_space *es, unsigned nr_entries)
564 {
565 unsigned i, nr_buckets;
566
567 ht->es = es;
568 nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u));
569 ht->hash_bits = ffs(nr_buckets) - 1;
570
571 ht->buckets = vmalloc(sizeof(*ht->buckets) * nr_buckets);
572 if (!ht->buckets)
573 return -ENOMEM;
574
575 for (i = 0; i < nr_buckets; i++)
576 ht->buckets[i] = INDEXER_NULL;
577
578 return 0;
579 }
580
581 static void h_exit(struct hash_table *ht)
582 {
583 vfree(ht->buckets);
584 }
585
586 static struct entry *h_head(struct hash_table *ht, unsigned bucket)
587 {
588 return to_entry(ht->es, ht->buckets[bucket]);
589 }
590
591 static struct entry *h_next(struct hash_table *ht, struct entry *e)
592 {
593 return to_entry(ht->es, e->hash_next);
594 }
595
596 static void __h_insert(struct hash_table *ht, unsigned bucket, struct entry *e)
597 {
598 e->hash_next = ht->buckets[bucket];
599 ht->buckets[bucket] = to_index(ht->es, e);
600 }
601
602 static void h_insert(struct hash_table *ht, struct entry *e)
603 {
604 unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
605 __h_insert(ht, h, e);
606 }
607
608 static struct entry *__h_lookup(struct hash_table *ht, unsigned h, dm_oblock_t oblock,
609 struct entry **prev)
610 {
611 struct entry *e;
612
613 *prev = NULL;
614 for (e = h_head(ht, h); e; e = h_next(ht, e)) {
615 if (e->oblock == oblock)
616 return e;
617
618 *prev = e;
619 }
620
621 return NULL;
622 }
623
624 static void __h_unlink(struct hash_table *ht, unsigned h,
625 struct entry *e, struct entry *prev)
626 {
627 if (prev)
628 prev->hash_next = e->hash_next;
629 else
630 ht->buckets[h] = e->hash_next;
631 }
632
633 /*
634 * Also moves each entry to the front of the bucket.
635 */
636 static struct entry *h_lookup(struct hash_table *ht, dm_oblock_t oblock)
637 {
638 struct entry *e, *prev;
639 unsigned h = hash_64(from_oblock(oblock), ht->hash_bits);
640
641 e = __h_lookup(ht, h, oblock, &prev);
642 if (e && prev) {
643 /*
644 * Move to the front because this entry is likely
645 * to be hit again.
646 */
647 __h_unlink(ht, h, e, prev);
648 __h_insert(ht, h, e);
649 }
650
651 return e;
652 }
653
654 static void h_remove(struct hash_table *ht, struct entry *e)
655 {
656 unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
657 struct entry *prev;
658
659 /*
660 * The down side of using a singly linked list is we have to
661 * iterate the bucket to remove an item.
662 */
663 e = __h_lookup(ht, h, e->oblock, &prev);
664 if (e)
665 __h_unlink(ht, h, e, prev);
666 }
667
668 /*----------------------------------------------------------------*/
669
670 struct entry_alloc {
671 struct entry_space *es;
672 unsigned begin;
673
674 unsigned nr_allocated;
675 struct ilist free;
676 };
677
678 static void init_allocator(struct entry_alloc *ea, struct entry_space *es,
679 unsigned begin, unsigned end)
680 {
681 unsigned i;
682
683 ea->es = es;
684 ea->nr_allocated = 0u;
685 ea->begin = begin;
686
687 l_init(&ea->free);
688 for (i = begin; i != end; i++)
689 l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i));
690 }
691
692 static void init_entry(struct entry *e)
693 {
694 /*
695 * We can't memset because that would clear the hotspot and
696 * sentinel bits which remain constant.
697 */
698 e->hash_next = INDEXER_NULL;
699 e->next = INDEXER_NULL;
700 e->prev = INDEXER_NULL;
701 e->level = 0u;
702 e->allocated = true;
703 }
704
705 static struct entry *alloc_entry(struct entry_alloc *ea)
706 {
707 struct entry *e;
708
709 if (l_empty(&ea->free))
710 return NULL;
711
712 e = l_pop_tail(ea->es, &ea->free);
713 init_entry(e);
714 ea->nr_allocated++;
715
716 return e;
717 }
718
719 /*
720 * This assumes the cblock hasn't already been allocated.
721 */
722 static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned i)
723 {
724 struct entry *e = __get_entry(ea->es, ea->begin + i);
725
726 BUG_ON(e->allocated);
727
728 l_del(ea->es, &ea->free, e);
729 init_entry(e);
730 ea->nr_allocated++;
731
732 return e;
733 }
734
735 static void free_entry(struct entry_alloc *ea, struct entry *e)
736 {
737 BUG_ON(!ea->nr_allocated);
738 BUG_ON(!e->allocated);
739
740 ea->nr_allocated--;
741 e->allocated = false;
742 l_add_tail(ea->es, &ea->free, e);
743 }
744
745 static bool allocator_empty(struct entry_alloc *ea)
746 {
747 return l_empty(&ea->free);
748 }
749
750 static unsigned get_index(struct entry_alloc *ea, struct entry *e)
751 {
752 return to_index(ea->es, e) - ea->begin;
753 }
754
755 static struct entry *get_entry(struct entry_alloc *ea, unsigned index)
756 {
757 return __get_entry(ea->es, ea->begin + index);
758 }
759
760 /*----------------------------------------------------------------*/
761
762 #define NR_HOTSPOT_LEVELS 64u
763 #define NR_CACHE_LEVELS 64u
764
765 #define WRITEBACK_PERIOD (10 * HZ)
766 #define DEMOTE_PERIOD (60 * HZ)
767
768 #define HOTSPOT_UPDATE_PERIOD (HZ)
769 #define CACHE_UPDATE_PERIOD (10u * HZ)
770
771 struct smq_policy {
772 struct dm_cache_policy policy;
773
774 /* protects everything */
775 struct mutex lock;
776 dm_cblock_t cache_size;
777 sector_t cache_block_size;
778
779 sector_t hotspot_block_size;
780 unsigned nr_hotspot_blocks;
781 unsigned cache_blocks_per_hotspot_block;
782 unsigned hotspot_level_jump;
783
784 struct entry_space es;
785 struct entry_alloc writeback_sentinel_alloc;
786 struct entry_alloc demote_sentinel_alloc;
787 struct entry_alloc hotspot_alloc;
788 struct entry_alloc cache_alloc;
789
790 unsigned long *hotspot_hit_bits;
791 unsigned long *cache_hit_bits;
792
793 /*
794 * We maintain three queues of entries. The cache proper,
795 * consisting of a clean and dirty queue, containing the currently
796 * active mappings. The hotspot queue uses a larger block size to
797 * track blocks that are being hit frequently and potential
798 * candidates for promotion to the cache.
799 */
800 struct queue hotspot;
801 struct queue clean;
802 struct queue dirty;
803
804 struct stats hotspot_stats;
805 struct stats cache_stats;
806
807 /*
808 * Keeps track of time, incremented by the core. We use this to
809 * avoid attributing multiple hits within the same tick.
810 *
811 * Access to tick_protected should be done with the spin lock held.
812 * It's copied to tick at the start of the map function (within the
813 * mutex).
814 */
815 spinlock_t tick_lock;
816 unsigned tick_protected;
817 unsigned tick;
818
819 /*
820 * The hash tables allows us to quickly find an entry by origin
821 * block.
822 */
823 struct hash_table table;
824 struct hash_table hotspot_table;
825
826 bool current_writeback_sentinels;
827 unsigned long next_writeback_period;
828
829 bool current_demote_sentinels;
830 unsigned long next_demote_period;
831
832 unsigned write_promote_level;
833 unsigned read_promote_level;
834
835 unsigned long next_hotspot_period;
836 unsigned long next_cache_period;
837 };
838
839 /*----------------------------------------------------------------*/
840
841 static struct entry *get_sentinel(struct entry_alloc *ea, unsigned level, bool which)
842 {
843 return get_entry(ea, which ? level : NR_CACHE_LEVELS + level);
844 }
845
846 static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned level)
847 {
848 return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels);
849 }
850
851 static struct entry *demote_sentinel(struct smq_policy *mq, unsigned level)
852 {
853 return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels);
854 }
855
856 static void __update_writeback_sentinels(struct smq_policy *mq)
857 {
858 unsigned level;
859 struct queue *q = &mq->dirty;
860 struct entry *sentinel;
861
862 for (level = 0; level < q->nr_levels; level++) {
863 sentinel = writeback_sentinel(mq, level);
864 q_del(q, sentinel);
865 q_push(q, sentinel);
866 }
867 }
868
869 static void __update_demote_sentinels(struct smq_policy *mq)
870 {
871 unsigned level;
872 struct queue *q = &mq->clean;
873 struct entry *sentinel;
874
875 for (level = 0; level < q->nr_levels; level++) {
876 sentinel = demote_sentinel(mq, level);
877 q_del(q, sentinel);
878 q_push(q, sentinel);
879 }
880 }
881
882 static void update_sentinels(struct smq_policy *mq)
883 {
884 if (time_after(jiffies, mq->next_writeback_period)) {
885 __update_writeback_sentinels(mq);
886 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
887 mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
888 }
889
890 if (time_after(jiffies, mq->next_demote_period)) {
891 __update_demote_sentinels(mq);
892 mq->next_demote_period = jiffies + DEMOTE_PERIOD;
893 mq->current_demote_sentinels = !mq->current_demote_sentinels;
894 }
895 }
896
897 static void __sentinels_init(struct smq_policy *mq)
898 {
899 unsigned level;
900 struct entry *sentinel;
901
902 for (level = 0; level < NR_CACHE_LEVELS; level++) {
903 sentinel = writeback_sentinel(mq, level);
904 sentinel->level = level;
905 q_push(&mq->dirty, sentinel);
906
907 sentinel = demote_sentinel(mq, level);
908 sentinel->level = level;
909 q_push(&mq->clean, sentinel);
910 }
911 }
912
913 static void sentinels_init(struct smq_policy *mq)
914 {
915 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
916 mq->next_demote_period = jiffies + DEMOTE_PERIOD;
917
918 mq->current_writeback_sentinels = false;
919 mq->current_demote_sentinels = false;
920 __sentinels_init(mq);
921
922 mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
923 mq->current_demote_sentinels = !mq->current_demote_sentinels;
924 __sentinels_init(mq);
925 }
926
927 /*----------------------------------------------------------------*/
928
929 /*
930 * These methods tie together the dirty queue, clean queue and hash table.
931 */
932 static void push_new(struct smq_policy *mq, struct entry *e)
933 {
934 struct queue *q = e->dirty ? &mq->dirty : &mq->clean;
935 h_insert(&mq->table, e);
936 q_push(q, e);
937 }
938
939 static void push(struct smq_policy *mq, struct entry *e)
940 {
941 struct entry *sentinel;
942
943 h_insert(&mq->table, e);
944
945 /*
946 * Punch this into the queue just in front of the sentinel, to
947 * ensure it's cleaned straight away.
948 */
949 if (e->dirty) {
950 sentinel = writeback_sentinel(mq, e->level);
951 q_push_before(&mq->dirty, sentinel, e);
952 } else {
953 sentinel = demote_sentinel(mq, e->level);
954 q_push_before(&mq->clean, sentinel, e);
955 }
956 }
957
958 /*
959 * Removes an entry from cache. Removes from the hash table.
960 */
961 static void __del(struct smq_policy *mq, struct queue *q, struct entry *e)
962 {
963 q_del(q, e);
964 h_remove(&mq->table, e);
965 }
966
967 static void del(struct smq_policy *mq, struct entry *e)
968 {
969 __del(mq, e->dirty ? &mq->dirty : &mq->clean, e);
970 }
971
972 static struct entry *pop_old(struct smq_policy *mq, struct queue *q, unsigned max_level)
973 {
974 struct entry *e = q_pop_old(q, max_level);
975 if (e)
976 h_remove(&mq->table, e);
977 return e;
978 }
979
980 static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e)
981 {
982 return to_cblock(get_index(&mq->cache_alloc, e));
983 }
984
985 static void requeue(struct smq_policy *mq, struct entry *e)
986 {
987 struct entry *sentinel;
988
989 if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) {
990 if (e->dirty) {
991 sentinel = writeback_sentinel(mq, e->level);
992 q_requeue_before(&mq->dirty, sentinel, e, 1u);
993 } else {
994 sentinel = demote_sentinel(mq, e->level);
995 q_requeue_before(&mq->clean, sentinel, e, 1u);
996 }
997 }
998 }
999
1000 static unsigned default_promote_level(struct smq_policy *mq)
1001 {
1002 /*
1003 * The promote level depends on the current performance of the
1004 * cache.
1005 *
1006 * If the cache is performing badly, then we can't afford
1007 * to promote much without causing performance to drop below that
1008 * of the origin device.
1009 *
1010 * If the cache is performing well, then we don't need to promote
1011 * much. If it isn't broken, don't fix it.
1012 *
1013 * If the cache is middling then we promote more.
1014 *
1015 * This scheme reminds me of a graph of entropy vs probability of a
1016 * binary variable.
1017 */
1018 static unsigned table[] = {1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1};
1019
1020 unsigned hits = mq->cache_stats.hits;
1021 unsigned misses = mq->cache_stats.misses;
1022 unsigned index = safe_div(hits << 4u, hits + misses);
1023 return table[index];
1024 }
1025
1026 static void update_promote_levels(struct smq_policy *mq)
1027 {
1028 /*
1029 * If there are unused cache entries then we want to be really
1030 * eager to promote.
1031 */
1032 unsigned threshold_level = allocator_empty(&mq->cache_alloc) ?
1033 default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u);
1034
1035 /*
1036 * If the hotspot queue is performing badly then we have little
1037 * confidence that we know which blocks to promote. So we cut down
1038 * the amount of promotions.
1039 */
1040 switch (stats_assess(&mq->hotspot_stats)) {
1041 case Q_POOR:
1042 threshold_level /= 4u;
1043 break;
1044
1045 case Q_FAIR:
1046 threshold_level /= 2u;
1047 break;
1048
1049 case Q_WELL:
1050 break;
1051 }
1052
1053 mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level;
1054 mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level) + 2u;
1055 }
1056
1057 /*
1058 * If the hotspot queue is performing badly, then we try and move entries
1059 * around more quickly.
1060 */
1061 static void update_level_jump(struct smq_policy *mq)
1062 {
1063 switch (stats_assess(&mq->hotspot_stats)) {
1064 case Q_POOR:
1065 mq->hotspot_level_jump = 4u;
1066 break;
1067
1068 case Q_FAIR:
1069 mq->hotspot_level_jump = 2u;
1070 break;
1071
1072 case Q_WELL:
1073 mq->hotspot_level_jump = 1u;
1074 break;
1075 }
1076 }
1077
1078 static void end_hotspot_period(struct smq_policy *mq)
1079 {
1080 clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1081 update_promote_levels(mq);
1082
1083 if (time_after(jiffies, mq->next_hotspot_period)) {
1084 update_level_jump(mq);
1085 q_redistribute(&mq->hotspot);
1086 stats_reset(&mq->hotspot_stats);
1087 mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD;
1088 }
1089 }
1090
1091 static void end_cache_period(struct smq_policy *mq)
1092 {
1093 if (time_after(jiffies, mq->next_cache_period)) {
1094 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1095
1096 q_redistribute(&mq->dirty);
1097 q_redistribute(&mq->clean);
1098 stats_reset(&mq->cache_stats);
1099
1100 mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD;
1101 }
1102 }
1103
1104 static int demote_cblock(struct smq_policy *mq,
1105 struct policy_locker *locker,
1106 dm_oblock_t *oblock)
1107 {
1108 struct entry *demoted = q_peek(&mq->clean, mq->clean.nr_levels, false);
1109 if (!demoted)
1110 /*
1111 * We could get a block from mq->dirty, but that
1112 * would add extra latency to the triggering bio as it
1113 * waits for the writeback. Better to not promote this
1114 * time and hope there's a clean block next time this block
1115 * is hit.
1116 */
1117 return -ENOSPC;
1118
1119 if (locker->fn(locker, demoted->oblock))
1120 /*
1121 * We couldn't lock this block.
1122 */
1123 return -EBUSY;
1124
1125 del(mq, demoted);
1126 *oblock = demoted->oblock;
1127 free_entry(&mq->cache_alloc, demoted);
1128
1129 return 0;
1130 }
1131
1132 enum promote_result {
1133 PROMOTE_NOT,
1134 PROMOTE_TEMPORARY,
1135 PROMOTE_PERMANENT
1136 };
1137
1138 /*
1139 * Converts a boolean into a promote result.
1140 */
1141 static enum promote_result maybe_promote(bool promote)
1142 {
1143 return promote ? PROMOTE_PERMANENT : PROMOTE_NOT;
1144 }
1145
1146 static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e, struct bio *bio,
1147 bool fast_promote)
1148 {
1149 if (bio_data_dir(bio) == WRITE) {
1150 if (!allocator_empty(&mq->cache_alloc) && fast_promote)
1151 return PROMOTE_TEMPORARY;
1152
1153 else
1154 return maybe_promote(hs_e->level >= mq->write_promote_level);
1155 } else
1156 return maybe_promote(hs_e->level >= mq->read_promote_level);
1157 }
1158
1159 static void insert_in_cache(struct smq_policy *mq, dm_oblock_t oblock,
1160 struct policy_locker *locker,
1161 struct policy_result *result, enum promote_result pr)
1162 {
1163 int r;
1164 struct entry *e;
1165
1166 if (allocator_empty(&mq->cache_alloc)) {
1167 result->op = POLICY_REPLACE;
1168 r = demote_cblock(mq, locker, &result->old_oblock);
1169 if (r) {
1170 result->op = POLICY_MISS;
1171 return;
1172 }
1173
1174 } else
1175 result->op = POLICY_NEW;
1176
1177 e = alloc_entry(&mq->cache_alloc);
1178 BUG_ON(!e);
1179 e->oblock = oblock;
1180
1181 if (pr == PROMOTE_TEMPORARY)
1182 push(mq, e);
1183 else
1184 push_new(mq, e);
1185
1186 result->cblock = infer_cblock(mq, e);
1187 }
1188
1189 static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b)
1190 {
1191 sector_t r = from_oblock(b);
1192 (void) sector_div(r, mq->cache_blocks_per_hotspot_block);
1193 return to_oblock(r);
1194 }
1195
1196 static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b, struct bio *bio)
1197 {
1198 unsigned hi;
1199 dm_oblock_t hb = to_hblock(mq, b);
1200 struct entry *e = h_lookup(&mq->hotspot_table, hb);
1201
1202 if (e) {
1203 stats_level_accessed(&mq->hotspot_stats, e->level);
1204
1205 hi = get_index(&mq->hotspot_alloc, e);
1206 q_requeue(&mq->hotspot, e,
1207 test_and_set_bit(hi, mq->hotspot_hit_bits) ?
1208 0u : mq->hotspot_level_jump);
1209
1210 } else {
1211 stats_miss(&mq->hotspot_stats);
1212
1213 e = alloc_entry(&mq->hotspot_alloc);
1214 if (!e) {
1215 e = q_pop(&mq->hotspot);
1216 if (e) {
1217 h_remove(&mq->hotspot_table, e);
1218 hi = get_index(&mq->hotspot_alloc, e);
1219 clear_bit(hi, mq->hotspot_hit_bits);
1220 }
1221
1222 }
1223
1224 if (e) {
1225 e->oblock = hb;
1226 q_push(&mq->hotspot, e);
1227 h_insert(&mq->hotspot_table, e);
1228 }
1229 }
1230
1231 return e;
1232 }
1233
1234 /*
1235 * Looks the oblock up in the hash table, then decides whether to put in
1236 * pre_cache, or cache etc.
1237 */
1238 static int map(struct smq_policy *mq, struct bio *bio, dm_oblock_t oblock,
1239 bool can_migrate, bool fast_promote,
1240 struct policy_locker *locker, struct policy_result *result)
1241 {
1242 struct entry *e, *hs_e;
1243 enum promote_result pr;
1244
1245 hs_e = update_hotspot_queue(mq, oblock, bio);
1246
1247 e = h_lookup(&mq->table, oblock);
1248 if (e) {
1249 stats_level_accessed(&mq->cache_stats, e->level);
1250
1251 requeue(mq, e);
1252 result->op = POLICY_HIT;
1253 result->cblock = infer_cblock(mq, e);
1254
1255 } else {
1256 stats_miss(&mq->cache_stats);
1257
1258 pr = should_promote(mq, hs_e, bio, fast_promote);
1259 if (pr == PROMOTE_NOT)
1260 result->op = POLICY_MISS;
1261
1262 else {
1263 if (!can_migrate) {
1264 result->op = POLICY_MISS;
1265 return -EWOULDBLOCK;
1266 }
1267
1268 insert_in_cache(mq, oblock, locker, result, pr);
1269 }
1270 }
1271
1272 return 0;
1273 }
1274
1275 /*----------------------------------------------------------------*/
1276
1277 /*
1278 * Public interface, via the policy struct. See dm-cache-policy.h for a
1279 * description of these.
1280 */
1281
1282 static struct smq_policy *to_smq_policy(struct dm_cache_policy *p)
1283 {
1284 return container_of(p, struct smq_policy, policy);
1285 }
1286
1287 static void smq_destroy(struct dm_cache_policy *p)
1288 {
1289 struct smq_policy *mq = to_smq_policy(p);
1290
1291 h_exit(&mq->hotspot_table);
1292 h_exit(&mq->table);
1293 free_bitset(mq->hotspot_hit_bits);
1294 free_bitset(mq->cache_hit_bits);
1295 space_exit(&mq->es);
1296 kfree(mq);
1297 }
1298
1299 static void copy_tick(struct smq_policy *mq)
1300 {
1301 unsigned long flags, tick;
1302
1303 spin_lock_irqsave(&mq->tick_lock, flags);
1304 tick = mq->tick_protected;
1305 if (tick != mq->tick) {
1306 update_sentinels(mq);
1307 end_hotspot_period(mq);
1308 end_cache_period(mq);
1309 mq->tick = tick;
1310 }
1311 spin_unlock_irqrestore(&mq->tick_lock, flags);
1312 }
1313
1314 static bool maybe_lock(struct smq_policy *mq, bool can_block)
1315 {
1316 if (can_block) {
1317 mutex_lock(&mq->lock);
1318 return true;
1319 } else
1320 return mutex_trylock(&mq->lock);
1321 }
1322
1323 static int smq_map(struct dm_cache_policy *p, dm_oblock_t oblock,
1324 bool can_block, bool can_migrate, bool fast_promote,
1325 struct bio *bio, struct policy_locker *locker,
1326 struct policy_result *result)
1327 {
1328 int r;
1329 struct smq_policy *mq = to_smq_policy(p);
1330
1331 result->op = POLICY_MISS;
1332
1333 if (!maybe_lock(mq, can_block))
1334 return -EWOULDBLOCK;
1335
1336 copy_tick(mq);
1337 r = map(mq, bio, oblock, can_migrate, fast_promote, locker, result);
1338 mutex_unlock(&mq->lock);
1339
1340 return r;
1341 }
1342
1343 static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock)
1344 {
1345 int r;
1346 struct smq_policy *mq = to_smq_policy(p);
1347 struct entry *e;
1348
1349 if (!mutex_trylock(&mq->lock))
1350 return -EWOULDBLOCK;
1351
1352 e = h_lookup(&mq->table, oblock);
1353 if (e) {
1354 *cblock = infer_cblock(mq, e);
1355 r = 0;
1356 } else
1357 r = -ENOENT;
1358
1359 mutex_unlock(&mq->lock);
1360
1361 return r;
1362 }
1363
1364 static void __smq_set_clear_dirty(struct smq_policy *mq, dm_oblock_t oblock, bool set)
1365 {
1366 struct entry *e;
1367
1368 e = h_lookup(&mq->table, oblock);
1369 BUG_ON(!e);
1370
1371 del(mq, e);
1372 e->dirty = set;
1373 push(mq, e);
1374 }
1375
1376 static void smq_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
1377 {
1378 struct smq_policy *mq = to_smq_policy(p);
1379
1380 mutex_lock(&mq->lock);
1381 __smq_set_clear_dirty(mq, oblock, true);
1382 mutex_unlock(&mq->lock);
1383 }
1384
1385 static void smq_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
1386 {
1387 struct smq_policy *mq = to_smq_policy(p);
1388
1389 mutex_lock(&mq->lock);
1390 __smq_set_clear_dirty(mq, oblock, false);
1391 mutex_unlock(&mq->lock);
1392 }
1393
1394 static int smq_load_mapping(struct dm_cache_policy *p,
1395 dm_oblock_t oblock, dm_cblock_t cblock,
1396 uint32_t hint, bool hint_valid)
1397 {
1398 struct smq_policy *mq = to_smq_policy(p);
1399 struct entry *e;
1400
1401 e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock));
1402 e->oblock = oblock;
1403 e->dirty = false; /* this gets corrected in a minute */
1404 e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : 1;
1405 push(mq, e);
1406
1407 return 0;
1408 }
1409
1410 static int smq_save_hints(struct smq_policy *mq, struct queue *q,
1411 policy_walk_fn fn, void *context)
1412 {
1413 int r;
1414 unsigned level;
1415 struct entry *e;
1416
1417 for (level = 0; level < q->nr_levels; level++)
1418 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) {
1419 if (!e->sentinel) {
1420 r = fn(context, infer_cblock(mq, e),
1421 e->oblock, e->level);
1422 if (r)
1423 return r;
1424 }
1425 }
1426
1427 return 0;
1428 }
1429
1430 static int smq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn,
1431 void *context)
1432 {
1433 struct smq_policy *mq = to_smq_policy(p);
1434 int r = 0;
1435
1436 mutex_lock(&mq->lock);
1437
1438 r = smq_save_hints(mq, &mq->clean, fn, context);
1439 if (!r)
1440 r = smq_save_hints(mq, &mq->dirty, fn, context);
1441
1442 mutex_unlock(&mq->lock);
1443
1444 return r;
1445 }
1446
1447 static void __remove_mapping(struct smq_policy *mq, dm_oblock_t oblock)
1448 {
1449 struct entry *e;
1450
1451 e = h_lookup(&mq->table, oblock);
1452 BUG_ON(!e);
1453
1454 del(mq, e);
1455 free_entry(&mq->cache_alloc, e);
1456 }
1457
1458 static void smq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock)
1459 {
1460 struct smq_policy *mq = to_smq_policy(p);
1461
1462 mutex_lock(&mq->lock);
1463 __remove_mapping(mq, oblock);
1464 mutex_unlock(&mq->lock);
1465 }
1466
1467 static int __remove_cblock(struct smq_policy *mq, dm_cblock_t cblock)
1468 {
1469 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1470
1471 if (!e || !e->allocated)
1472 return -ENODATA;
1473
1474 del(mq, e);
1475 free_entry(&mq->cache_alloc, e);
1476
1477 return 0;
1478 }
1479
1480 static int smq_remove_cblock(struct dm_cache_policy *p, dm_cblock_t cblock)
1481 {
1482 int r;
1483 struct smq_policy *mq = to_smq_policy(p);
1484
1485 mutex_lock(&mq->lock);
1486 r = __remove_cblock(mq, cblock);
1487 mutex_unlock(&mq->lock);
1488
1489 return r;
1490 }
1491
1492
1493 #define CLEAN_TARGET_CRITICAL 5u /* percent */
1494
1495 static bool clean_target_met(struct smq_policy *mq, bool critical)
1496 {
1497 if (critical) {
1498 /*
1499 * Cache entries may not be populated. So we're cannot rely on the
1500 * size of the clean queue.
1501 */
1502 unsigned nr_clean = from_cblock(mq->cache_size) - q_size(&mq->dirty);
1503 unsigned target = from_cblock(mq->cache_size) * CLEAN_TARGET_CRITICAL / 100u;
1504
1505 return nr_clean >= target;
1506 } else
1507 return !q_size(&mq->dirty);
1508 }
1509
1510 static int __smq_writeback_work(struct smq_policy *mq, dm_oblock_t *oblock,
1511 dm_cblock_t *cblock, bool critical_only)
1512 {
1513 struct entry *e = NULL;
1514 bool target_met = clean_target_met(mq, critical_only);
1515
1516 if (critical_only)
1517 /*
1518 * Always try and keep the bottom level clean.
1519 */
1520 e = pop_old(mq, &mq->dirty, target_met ? 1u : mq->dirty.nr_levels);
1521
1522 else
1523 e = pop_old(mq, &mq->dirty, mq->dirty.nr_levels);
1524
1525 if (!e)
1526 return -ENODATA;
1527
1528 *oblock = e->oblock;
1529 *cblock = infer_cblock(mq, e);
1530 e->dirty = false;
1531 push_new(mq, e);
1532
1533 return 0;
1534 }
1535
1536 static int smq_writeback_work(struct dm_cache_policy *p, dm_oblock_t *oblock,
1537 dm_cblock_t *cblock, bool critical_only)
1538 {
1539 int r;
1540 struct smq_policy *mq = to_smq_policy(p);
1541
1542 mutex_lock(&mq->lock);
1543 r = __smq_writeback_work(mq, oblock, cblock, critical_only);
1544 mutex_unlock(&mq->lock);
1545
1546 return r;
1547 }
1548
1549 static void __force_mapping(struct smq_policy *mq,
1550 dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1551 {
1552 struct entry *e = h_lookup(&mq->table, current_oblock);
1553
1554 if (e) {
1555 del(mq, e);
1556 e->oblock = new_oblock;
1557 e->dirty = true;
1558 push(mq, e);
1559 }
1560 }
1561
1562 static void smq_force_mapping(struct dm_cache_policy *p,
1563 dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1564 {
1565 struct smq_policy *mq = to_smq_policy(p);
1566
1567 mutex_lock(&mq->lock);
1568 __force_mapping(mq, current_oblock, new_oblock);
1569 mutex_unlock(&mq->lock);
1570 }
1571
1572 static dm_cblock_t smq_residency(struct dm_cache_policy *p)
1573 {
1574 dm_cblock_t r;
1575 struct smq_policy *mq = to_smq_policy(p);
1576
1577 mutex_lock(&mq->lock);
1578 r = to_cblock(mq->cache_alloc.nr_allocated);
1579 mutex_unlock(&mq->lock);
1580
1581 return r;
1582 }
1583
1584 static void smq_tick(struct dm_cache_policy *p, bool can_block)
1585 {
1586 struct smq_policy *mq = to_smq_policy(p);
1587 unsigned long flags;
1588
1589 spin_lock_irqsave(&mq->tick_lock, flags);
1590 mq->tick_protected++;
1591 spin_unlock_irqrestore(&mq->tick_lock, flags);
1592
1593 if (can_block) {
1594 mutex_lock(&mq->lock);
1595 copy_tick(mq);
1596 mutex_unlock(&mq->lock);
1597 }
1598 }
1599
1600 /* Init the policy plugin interface function pointers. */
1601 static void init_policy_functions(struct smq_policy *mq)
1602 {
1603 mq->policy.destroy = smq_destroy;
1604 mq->policy.map = smq_map;
1605 mq->policy.lookup = smq_lookup;
1606 mq->policy.set_dirty = smq_set_dirty;
1607 mq->policy.clear_dirty = smq_clear_dirty;
1608 mq->policy.load_mapping = smq_load_mapping;
1609 mq->policy.walk_mappings = smq_walk_mappings;
1610 mq->policy.remove_mapping = smq_remove_mapping;
1611 mq->policy.remove_cblock = smq_remove_cblock;
1612 mq->policy.writeback_work = smq_writeback_work;
1613 mq->policy.force_mapping = smq_force_mapping;
1614 mq->policy.residency = smq_residency;
1615 mq->policy.tick = smq_tick;
1616 }
1617
1618 static bool too_many_hotspot_blocks(sector_t origin_size,
1619 sector_t hotspot_block_size,
1620 unsigned nr_hotspot_blocks)
1621 {
1622 return (hotspot_block_size * nr_hotspot_blocks) > origin_size;
1623 }
1624
1625 static void calc_hotspot_params(sector_t origin_size,
1626 sector_t cache_block_size,
1627 unsigned nr_cache_blocks,
1628 sector_t *hotspot_block_size,
1629 unsigned *nr_hotspot_blocks)
1630 {
1631 *hotspot_block_size = cache_block_size * 16u;
1632 *nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u);
1633
1634 while ((*hotspot_block_size > cache_block_size) &&
1635 too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks))
1636 *hotspot_block_size /= 2u;
1637 }
1638
1639 static struct dm_cache_policy *smq_create(dm_cblock_t cache_size,
1640 sector_t origin_size,
1641 sector_t cache_block_size)
1642 {
1643 unsigned i;
1644 unsigned nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS;
1645 unsigned total_sentinels = 2u * nr_sentinels_per_queue;
1646 struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
1647
1648 if (!mq)
1649 return NULL;
1650
1651 init_policy_functions(mq);
1652 mq->cache_size = cache_size;
1653 mq->cache_block_size = cache_block_size;
1654
1655 calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size),
1656 &mq->hotspot_block_size, &mq->nr_hotspot_blocks);
1657
1658 mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size);
1659 mq->hotspot_level_jump = 1u;
1660 if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) {
1661 DMERR("couldn't initialize entry space");
1662 goto bad_pool_init;
1663 }
1664
1665 init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue);
1666 for (i = 0; i < nr_sentinels_per_queue; i++)
1667 get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true;
1668
1669 init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels);
1670 for (i = 0; i < nr_sentinels_per_queue; i++)
1671 get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true;
1672
1673 init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels,
1674 total_sentinels + mq->nr_hotspot_blocks);
1675
1676 init_allocator(&mq->cache_alloc, &mq->es,
1677 total_sentinels + mq->nr_hotspot_blocks,
1678 total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size));
1679
1680 mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks);
1681 if (!mq->hotspot_hit_bits) {
1682 DMERR("couldn't allocate hotspot hit bitset");
1683 goto bad_hotspot_hit_bits;
1684 }
1685 clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1686
1687 if (from_cblock(cache_size)) {
1688 mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size));
1689 if (!mq->cache_hit_bits) {
1690 DMERR("couldn't allocate cache hit bitset");
1691 goto bad_cache_hit_bits;
1692 }
1693 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1694 } else
1695 mq->cache_hit_bits = NULL;
1696
1697 mq->tick_protected = 0;
1698 mq->tick = 0;
1699 mutex_init(&mq->lock);
1700 spin_lock_init(&mq->tick_lock);
1701
1702 q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS);
1703 mq->hotspot.nr_top_levels = 8;
1704 mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS,
1705 from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block);
1706
1707 q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS);
1708 q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS);
1709
1710 stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS);
1711 stats_init(&mq->cache_stats, NR_CACHE_LEVELS);
1712
1713 if (h_init(&mq->table, &mq->es, from_cblock(cache_size)))
1714 goto bad_alloc_table;
1715
1716 if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks))
1717 goto bad_alloc_hotspot_table;
1718
1719 sentinels_init(mq);
1720 mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS;
1721
1722 mq->next_hotspot_period = jiffies;
1723 mq->next_cache_period = jiffies;
1724
1725 return &mq->policy;
1726
1727 bad_alloc_hotspot_table:
1728 h_exit(&mq->table);
1729 bad_alloc_table:
1730 free_bitset(mq->cache_hit_bits);
1731 bad_cache_hit_bits:
1732 free_bitset(mq->hotspot_hit_bits);
1733 bad_hotspot_hit_bits:
1734 space_exit(&mq->es);
1735 bad_pool_init:
1736 kfree(mq);
1737
1738 return NULL;
1739 }
1740
1741 /*----------------------------------------------------------------*/
1742
1743 static struct dm_cache_policy_type smq_policy_type = {
1744 .name = "smq",
1745 .version = {1, 0, 0},
1746 .hint_size = 4,
1747 .owner = THIS_MODULE,
1748 .create = smq_create
1749 };
1750
1751 static struct dm_cache_policy_type default_policy_type = {
1752 .name = "default",
1753 .version = {1, 4, 0},
1754 .hint_size = 4,
1755 .owner = THIS_MODULE,
1756 .create = smq_create,
1757 .real = &smq_policy_type
1758 };
1759
1760 static int __init smq_init(void)
1761 {
1762 int r;
1763
1764 r = dm_cache_policy_register(&smq_policy_type);
1765 if (r) {
1766 DMERR("register failed %d", r);
1767 return -ENOMEM;
1768 }
1769
1770 r = dm_cache_policy_register(&default_policy_type);
1771 if (r) {
1772 DMERR("register failed (as default) %d", r);
1773 dm_cache_policy_unregister(&smq_policy_type);
1774 return -ENOMEM;
1775 }
1776
1777 return 0;
1778 }
1779
1780 static void __exit smq_exit(void)
1781 {
1782 dm_cache_policy_unregister(&smq_policy_type);
1783 dm_cache_policy_unregister(&default_policy_type);
1784 }
1785
1786 module_init(smq_init);
1787 module_exit(smq_exit);
1788
1789 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1790 MODULE_LICENSE("GPL");
1791 MODULE_DESCRIPTION("smq cache policy");
This page took 0.105565 seconds and 5 git commands to generate.