Merge tag 'microblaze-3.19-rc1' of git://git.monstr.eu/linux-2.6-microblaze
[deliverable/linux.git] / drivers / md / dm-cache-target.c
1 /*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19
20 #define DM_MSG_PREFIX "cache"
21
22 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
23 "A percentage of time allocated for copying to and/or from cache");
24
25 /*----------------------------------------------------------------*/
26
27 /*
28 * Glossary:
29 *
30 * oblock: index of an origin block
31 * cblock: index of a cache block
32 * promotion: movement of a block from origin to cache
33 * demotion: movement of a block from cache to origin
34 * migration: movement of a block between the origin and cache device,
35 * either direction
36 */
37
38 /*----------------------------------------------------------------*/
39
40 static size_t bitset_size_in_bytes(unsigned nr_entries)
41 {
42 return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
43 }
44
45 static unsigned long *alloc_bitset(unsigned nr_entries)
46 {
47 size_t s = bitset_size_in_bytes(nr_entries);
48 return vzalloc(s);
49 }
50
51 static void clear_bitset(void *bitset, unsigned nr_entries)
52 {
53 size_t s = bitset_size_in_bytes(nr_entries);
54 memset(bitset, 0, s);
55 }
56
57 static void free_bitset(unsigned long *bits)
58 {
59 vfree(bits);
60 }
61
62 /*----------------------------------------------------------------*/
63
64 /*
65 * There are a couple of places where we let a bio run, but want to do some
66 * work before calling its endio function. We do this by temporarily
67 * changing the endio fn.
68 */
69 struct dm_hook_info {
70 bio_end_io_t *bi_end_io;
71 void *bi_private;
72 };
73
74 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
75 bio_end_io_t *bi_end_io, void *bi_private)
76 {
77 h->bi_end_io = bio->bi_end_io;
78 h->bi_private = bio->bi_private;
79
80 bio->bi_end_io = bi_end_io;
81 bio->bi_private = bi_private;
82 }
83
84 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
85 {
86 bio->bi_end_io = h->bi_end_io;
87 bio->bi_private = h->bi_private;
88
89 /*
90 * Must bump bi_remaining to allow bio to complete with
91 * restored bi_end_io.
92 */
93 atomic_inc(&bio->bi_remaining);
94 }
95
96 /*----------------------------------------------------------------*/
97
98 #define MIGRATION_POOL_SIZE 128
99 #define COMMIT_PERIOD HZ
100 #define MIGRATION_COUNT_WINDOW 10
101
102 /*
103 * The block size of the device holding cache data must be
104 * between 32KB and 1GB.
105 */
106 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
107 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
108
109 /*
110 * FIXME: the cache is read/write for the time being.
111 */
112 enum cache_metadata_mode {
113 CM_WRITE, /* metadata may be changed */
114 CM_READ_ONLY, /* metadata may not be changed */
115 };
116
117 enum cache_io_mode {
118 /*
119 * Data is written to cached blocks only. These blocks are marked
120 * dirty. If you lose the cache device you will lose data.
121 * Potential performance increase for both reads and writes.
122 */
123 CM_IO_WRITEBACK,
124
125 /*
126 * Data is written to both cache and origin. Blocks are never
127 * dirty. Potential performance benfit for reads only.
128 */
129 CM_IO_WRITETHROUGH,
130
131 /*
132 * A degraded mode useful for various cache coherency situations
133 * (eg, rolling back snapshots). Reads and writes always go to the
134 * origin. If a write goes to a cached oblock, then the cache
135 * block is invalidated.
136 */
137 CM_IO_PASSTHROUGH
138 };
139
140 struct cache_features {
141 enum cache_metadata_mode mode;
142 enum cache_io_mode io_mode;
143 };
144
145 struct cache_stats {
146 atomic_t read_hit;
147 atomic_t read_miss;
148 atomic_t write_hit;
149 atomic_t write_miss;
150 atomic_t demotion;
151 atomic_t promotion;
152 atomic_t copies_avoided;
153 atomic_t cache_cell_clash;
154 atomic_t commit_count;
155 atomic_t discard_count;
156 };
157
158 /*
159 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
160 * the one-past-the-end value.
161 */
162 struct cblock_range {
163 dm_cblock_t begin;
164 dm_cblock_t end;
165 };
166
167 struct invalidation_request {
168 struct list_head list;
169 struct cblock_range *cblocks;
170
171 atomic_t complete;
172 int err;
173
174 wait_queue_head_t result_wait;
175 };
176
177 struct cache {
178 struct dm_target *ti;
179 struct dm_target_callbacks callbacks;
180
181 struct dm_cache_metadata *cmd;
182
183 /*
184 * Metadata is written to this device.
185 */
186 struct dm_dev *metadata_dev;
187
188 /*
189 * The slower of the two data devices. Typically a spindle.
190 */
191 struct dm_dev *origin_dev;
192
193 /*
194 * The faster of the two data devices. Typically an SSD.
195 */
196 struct dm_dev *cache_dev;
197
198 /*
199 * Size of the origin device in _complete_ blocks and native sectors.
200 */
201 dm_oblock_t origin_blocks;
202 sector_t origin_sectors;
203
204 /*
205 * Size of the cache device in blocks.
206 */
207 dm_cblock_t cache_size;
208
209 /*
210 * Fields for converting from sectors to blocks.
211 */
212 uint32_t sectors_per_block;
213 int sectors_per_block_shift;
214
215 spinlock_t lock;
216 struct bio_list deferred_bios;
217 struct bio_list deferred_flush_bios;
218 struct bio_list deferred_writethrough_bios;
219 struct list_head quiesced_migrations;
220 struct list_head completed_migrations;
221 struct list_head need_commit_migrations;
222 sector_t migration_threshold;
223 wait_queue_head_t migration_wait;
224 atomic_t nr_migrations;
225
226 wait_queue_head_t quiescing_wait;
227 atomic_t quiescing;
228 atomic_t quiescing_ack;
229
230 /*
231 * cache_size entries, dirty if set
232 */
233 atomic_t nr_dirty;
234 unsigned long *dirty_bitset;
235
236 /*
237 * origin_blocks entries, discarded if set.
238 */
239 dm_dblock_t discard_nr_blocks;
240 unsigned long *discard_bitset;
241 uint32_t discard_block_size; /* a power of 2 times sectors per block */
242
243 /*
244 * Rather than reconstructing the table line for the status we just
245 * save it and regurgitate.
246 */
247 unsigned nr_ctr_args;
248 const char **ctr_args;
249
250 struct dm_kcopyd_client *copier;
251 struct workqueue_struct *wq;
252 struct work_struct worker;
253
254 struct delayed_work waker;
255 unsigned long last_commit_jiffies;
256
257 struct dm_bio_prison *prison;
258 struct dm_deferred_set *all_io_ds;
259
260 mempool_t *migration_pool;
261 struct dm_cache_migration *next_migration;
262
263 struct dm_cache_policy *policy;
264 unsigned policy_nr_args;
265
266 bool need_tick_bio:1;
267 bool sized:1;
268 bool invalidate:1;
269 bool commit_requested:1;
270 bool loaded_mappings:1;
271 bool loaded_discards:1;
272
273 /*
274 * Cache features such as write-through.
275 */
276 struct cache_features features;
277
278 struct cache_stats stats;
279
280 /*
281 * Invalidation fields.
282 */
283 spinlock_t invalidation_lock;
284 struct list_head invalidation_requests;
285 };
286
287 struct per_bio_data {
288 bool tick:1;
289 unsigned req_nr:2;
290 struct dm_deferred_entry *all_io_entry;
291 struct dm_hook_info hook_info;
292
293 /*
294 * writethrough fields. These MUST remain at the end of this
295 * structure and the 'cache' member must be the first as it
296 * is used to determine the offset of the writethrough fields.
297 */
298 struct cache *cache;
299 dm_cblock_t cblock;
300 struct dm_bio_details bio_details;
301 };
302
303 struct dm_cache_migration {
304 struct list_head list;
305 struct cache *cache;
306
307 unsigned long start_jiffies;
308 dm_oblock_t old_oblock;
309 dm_oblock_t new_oblock;
310 dm_cblock_t cblock;
311
312 bool err:1;
313 bool discard:1;
314 bool writeback:1;
315 bool demote:1;
316 bool promote:1;
317 bool requeue_holder:1;
318 bool invalidate:1;
319
320 struct dm_bio_prison_cell *old_ocell;
321 struct dm_bio_prison_cell *new_ocell;
322 };
323
324 /*
325 * Processing a bio in the worker thread may require these memory
326 * allocations. We prealloc to avoid deadlocks (the same worker thread
327 * frees them back to the mempool).
328 */
329 struct prealloc {
330 struct dm_cache_migration *mg;
331 struct dm_bio_prison_cell *cell1;
332 struct dm_bio_prison_cell *cell2;
333 };
334
335 static void wake_worker(struct cache *cache)
336 {
337 queue_work(cache->wq, &cache->worker);
338 }
339
340 /*----------------------------------------------------------------*/
341
342 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
343 {
344 /* FIXME: change to use a local slab. */
345 return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
346 }
347
348 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
349 {
350 dm_bio_prison_free_cell(cache->prison, cell);
351 }
352
353 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
354 {
355 if (!p->mg) {
356 p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
357 if (!p->mg)
358 return -ENOMEM;
359 }
360
361 if (!p->cell1) {
362 p->cell1 = alloc_prison_cell(cache);
363 if (!p->cell1)
364 return -ENOMEM;
365 }
366
367 if (!p->cell2) {
368 p->cell2 = alloc_prison_cell(cache);
369 if (!p->cell2)
370 return -ENOMEM;
371 }
372
373 return 0;
374 }
375
376 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
377 {
378 if (p->cell2)
379 free_prison_cell(cache, p->cell2);
380
381 if (p->cell1)
382 free_prison_cell(cache, p->cell1);
383
384 if (p->mg)
385 mempool_free(p->mg, cache->migration_pool);
386 }
387
388 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
389 {
390 struct dm_cache_migration *mg = p->mg;
391
392 BUG_ON(!mg);
393 p->mg = NULL;
394
395 return mg;
396 }
397
398 /*
399 * You must have a cell within the prealloc struct to return. If not this
400 * function will BUG() rather than returning NULL.
401 */
402 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
403 {
404 struct dm_bio_prison_cell *r = NULL;
405
406 if (p->cell1) {
407 r = p->cell1;
408 p->cell1 = NULL;
409
410 } else if (p->cell2) {
411 r = p->cell2;
412 p->cell2 = NULL;
413 } else
414 BUG();
415
416 return r;
417 }
418
419 /*
420 * You can't have more than two cells in a prealloc struct. BUG() will be
421 * called if you try and overfill.
422 */
423 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
424 {
425 if (!p->cell2)
426 p->cell2 = cell;
427
428 else if (!p->cell1)
429 p->cell1 = cell;
430
431 else
432 BUG();
433 }
434
435 /*----------------------------------------------------------------*/
436
437 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
438 {
439 key->virtual = 0;
440 key->dev = 0;
441 key->block_begin = from_oblock(begin);
442 key->block_end = from_oblock(end);
443 }
444
445 /*
446 * The caller hands in a preallocated cell, and a free function for it.
447 * The cell will be freed if there's an error, or if it wasn't used because
448 * a cell with that key already exists.
449 */
450 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
451
452 static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
453 struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
454 cell_free_fn free_fn, void *free_context,
455 struct dm_bio_prison_cell **cell_result)
456 {
457 int r;
458 struct dm_cell_key key;
459
460 build_key(oblock_begin, oblock_end, &key);
461 r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
462 if (r)
463 free_fn(free_context, cell_prealloc);
464
465 return r;
466 }
467
468 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
469 struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
470 cell_free_fn free_fn, void *free_context,
471 struct dm_bio_prison_cell **cell_result)
472 {
473 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
474 return bio_detain_range(cache, oblock, end, bio,
475 cell_prealloc, free_fn, free_context, cell_result);
476 }
477
478 static int get_cell(struct cache *cache,
479 dm_oblock_t oblock,
480 struct prealloc *structs,
481 struct dm_bio_prison_cell **cell_result)
482 {
483 int r;
484 struct dm_cell_key key;
485 struct dm_bio_prison_cell *cell_prealloc;
486
487 cell_prealloc = prealloc_get_cell(structs);
488
489 build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
490 r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
491 if (r)
492 prealloc_put_cell(structs, cell_prealloc);
493
494 return r;
495 }
496
497 /*----------------------------------------------------------------*/
498
499 static bool is_dirty(struct cache *cache, dm_cblock_t b)
500 {
501 return test_bit(from_cblock(b), cache->dirty_bitset);
502 }
503
504 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
505 {
506 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
507 atomic_inc(&cache->nr_dirty);
508 policy_set_dirty(cache->policy, oblock);
509 }
510 }
511
512 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
513 {
514 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
515 policy_clear_dirty(cache->policy, oblock);
516 if (atomic_dec_return(&cache->nr_dirty) == 0)
517 dm_table_event(cache->ti->table);
518 }
519 }
520
521 /*----------------------------------------------------------------*/
522
523 static bool block_size_is_power_of_two(struct cache *cache)
524 {
525 return cache->sectors_per_block_shift >= 0;
526 }
527
528 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
529 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
530 __always_inline
531 #endif
532 static dm_block_t block_div(dm_block_t b, uint32_t n)
533 {
534 do_div(b, n);
535
536 return b;
537 }
538
539 static dm_block_t oblocks_per_dblock(struct cache *cache)
540 {
541 dm_block_t oblocks = cache->discard_block_size;
542
543 if (block_size_is_power_of_two(cache))
544 oblocks >>= cache->sectors_per_block_shift;
545 else
546 oblocks = block_div(oblocks, cache->sectors_per_block);
547
548 return oblocks;
549 }
550
551 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
552 {
553 return to_dblock(block_div(from_oblock(oblock),
554 oblocks_per_dblock(cache)));
555 }
556
557 static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
558 {
559 return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
560 }
561
562 static void set_discard(struct cache *cache, dm_dblock_t b)
563 {
564 unsigned long flags;
565
566 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
567 atomic_inc(&cache->stats.discard_count);
568
569 spin_lock_irqsave(&cache->lock, flags);
570 set_bit(from_dblock(b), cache->discard_bitset);
571 spin_unlock_irqrestore(&cache->lock, flags);
572 }
573
574 static void clear_discard(struct cache *cache, dm_dblock_t b)
575 {
576 unsigned long flags;
577
578 spin_lock_irqsave(&cache->lock, flags);
579 clear_bit(from_dblock(b), cache->discard_bitset);
580 spin_unlock_irqrestore(&cache->lock, flags);
581 }
582
583 static bool is_discarded(struct cache *cache, dm_dblock_t b)
584 {
585 int r;
586 unsigned long flags;
587
588 spin_lock_irqsave(&cache->lock, flags);
589 r = test_bit(from_dblock(b), cache->discard_bitset);
590 spin_unlock_irqrestore(&cache->lock, flags);
591
592 return r;
593 }
594
595 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
596 {
597 int r;
598 unsigned long flags;
599
600 spin_lock_irqsave(&cache->lock, flags);
601 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
602 cache->discard_bitset);
603 spin_unlock_irqrestore(&cache->lock, flags);
604
605 return r;
606 }
607
608 /*----------------------------------------------------------------*/
609
610 static void load_stats(struct cache *cache)
611 {
612 struct dm_cache_statistics stats;
613
614 dm_cache_metadata_get_stats(cache->cmd, &stats);
615 atomic_set(&cache->stats.read_hit, stats.read_hits);
616 atomic_set(&cache->stats.read_miss, stats.read_misses);
617 atomic_set(&cache->stats.write_hit, stats.write_hits);
618 atomic_set(&cache->stats.write_miss, stats.write_misses);
619 }
620
621 static void save_stats(struct cache *cache)
622 {
623 struct dm_cache_statistics stats;
624
625 stats.read_hits = atomic_read(&cache->stats.read_hit);
626 stats.read_misses = atomic_read(&cache->stats.read_miss);
627 stats.write_hits = atomic_read(&cache->stats.write_hit);
628 stats.write_misses = atomic_read(&cache->stats.write_miss);
629
630 dm_cache_metadata_set_stats(cache->cmd, &stats);
631 }
632
633 /*----------------------------------------------------------------
634 * Per bio data
635 *--------------------------------------------------------------*/
636
637 /*
638 * If using writeback, leave out struct per_bio_data's writethrough fields.
639 */
640 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
641 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
642
643 static bool writethrough_mode(struct cache_features *f)
644 {
645 return f->io_mode == CM_IO_WRITETHROUGH;
646 }
647
648 static bool writeback_mode(struct cache_features *f)
649 {
650 return f->io_mode == CM_IO_WRITEBACK;
651 }
652
653 static bool passthrough_mode(struct cache_features *f)
654 {
655 return f->io_mode == CM_IO_PASSTHROUGH;
656 }
657
658 static size_t get_per_bio_data_size(struct cache *cache)
659 {
660 return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
661 }
662
663 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
664 {
665 struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
666 BUG_ON(!pb);
667 return pb;
668 }
669
670 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
671 {
672 struct per_bio_data *pb = get_per_bio_data(bio, data_size);
673
674 pb->tick = false;
675 pb->req_nr = dm_bio_get_target_bio_nr(bio);
676 pb->all_io_entry = NULL;
677
678 return pb;
679 }
680
681 /*----------------------------------------------------------------
682 * Remapping
683 *--------------------------------------------------------------*/
684 static void remap_to_origin(struct cache *cache, struct bio *bio)
685 {
686 bio->bi_bdev = cache->origin_dev->bdev;
687 }
688
689 static void remap_to_cache(struct cache *cache, struct bio *bio,
690 dm_cblock_t cblock)
691 {
692 sector_t bi_sector = bio->bi_iter.bi_sector;
693 sector_t block = from_cblock(cblock);
694
695 bio->bi_bdev = cache->cache_dev->bdev;
696 if (!block_size_is_power_of_two(cache))
697 bio->bi_iter.bi_sector =
698 (block * cache->sectors_per_block) +
699 sector_div(bi_sector, cache->sectors_per_block);
700 else
701 bio->bi_iter.bi_sector =
702 (block << cache->sectors_per_block_shift) |
703 (bi_sector & (cache->sectors_per_block - 1));
704 }
705
706 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
707 {
708 unsigned long flags;
709 size_t pb_data_size = get_per_bio_data_size(cache);
710 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
711
712 spin_lock_irqsave(&cache->lock, flags);
713 if (cache->need_tick_bio &&
714 !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
715 pb->tick = true;
716 cache->need_tick_bio = false;
717 }
718 spin_unlock_irqrestore(&cache->lock, flags);
719 }
720
721 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
722 dm_oblock_t oblock)
723 {
724 check_if_tick_bio_needed(cache, bio);
725 remap_to_origin(cache, bio);
726 if (bio_data_dir(bio) == WRITE)
727 clear_discard(cache, oblock_to_dblock(cache, oblock));
728 }
729
730 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
731 dm_oblock_t oblock, dm_cblock_t cblock)
732 {
733 check_if_tick_bio_needed(cache, bio);
734 remap_to_cache(cache, bio, cblock);
735 if (bio_data_dir(bio) == WRITE) {
736 set_dirty(cache, oblock, cblock);
737 clear_discard(cache, oblock_to_dblock(cache, oblock));
738 }
739 }
740
741 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
742 {
743 sector_t block_nr = bio->bi_iter.bi_sector;
744
745 if (!block_size_is_power_of_two(cache))
746 (void) sector_div(block_nr, cache->sectors_per_block);
747 else
748 block_nr >>= cache->sectors_per_block_shift;
749
750 return to_oblock(block_nr);
751 }
752
753 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
754 {
755 return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
756 }
757
758 /*
759 * You must increment the deferred set whilst the prison cell is held. To
760 * encourage this, we ask for 'cell' to be passed in.
761 */
762 static void inc_ds(struct cache *cache, struct bio *bio,
763 struct dm_bio_prison_cell *cell)
764 {
765 size_t pb_data_size = get_per_bio_data_size(cache);
766 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
767
768 BUG_ON(!cell);
769 BUG_ON(pb->all_io_entry);
770
771 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
772 }
773
774 static void issue(struct cache *cache, struct bio *bio)
775 {
776 unsigned long flags;
777
778 if (!bio_triggers_commit(cache, bio)) {
779 generic_make_request(bio);
780 return;
781 }
782
783 /*
784 * Batch together any bios that trigger commits and then issue a
785 * single commit for them in do_worker().
786 */
787 spin_lock_irqsave(&cache->lock, flags);
788 cache->commit_requested = true;
789 bio_list_add(&cache->deferred_flush_bios, bio);
790 spin_unlock_irqrestore(&cache->lock, flags);
791 }
792
793 static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
794 {
795 inc_ds(cache, bio, cell);
796 issue(cache, bio);
797 }
798
799 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
800 {
801 unsigned long flags;
802
803 spin_lock_irqsave(&cache->lock, flags);
804 bio_list_add(&cache->deferred_writethrough_bios, bio);
805 spin_unlock_irqrestore(&cache->lock, flags);
806
807 wake_worker(cache);
808 }
809
810 static void writethrough_endio(struct bio *bio, int err)
811 {
812 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
813
814 dm_unhook_bio(&pb->hook_info, bio);
815
816 if (err) {
817 bio_endio(bio, err);
818 return;
819 }
820
821 dm_bio_restore(&pb->bio_details, bio);
822 remap_to_cache(pb->cache, bio, pb->cblock);
823
824 /*
825 * We can't issue this bio directly, since we're in interrupt
826 * context. So it gets put on a bio list for processing by the
827 * worker thread.
828 */
829 defer_writethrough_bio(pb->cache, bio);
830 }
831
832 /*
833 * When running in writethrough mode we need to send writes to clean blocks
834 * to both the cache and origin devices. In future we'd like to clone the
835 * bio and send them in parallel, but for now we're doing them in
836 * series as this is easier.
837 */
838 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
839 dm_oblock_t oblock, dm_cblock_t cblock)
840 {
841 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
842
843 pb->cache = cache;
844 pb->cblock = cblock;
845 dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
846 dm_bio_record(&pb->bio_details, bio);
847
848 remap_to_origin_clear_discard(pb->cache, bio, oblock);
849 }
850
851 /*----------------------------------------------------------------
852 * Migration processing
853 *
854 * Migration covers moving data from the origin device to the cache, or
855 * vice versa.
856 *--------------------------------------------------------------*/
857 static void free_migration(struct dm_cache_migration *mg)
858 {
859 mempool_free(mg, mg->cache->migration_pool);
860 }
861
862 static void inc_nr_migrations(struct cache *cache)
863 {
864 atomic_inc(&cache->nr_migrations);
865 }
866
867 static void dec_nr_migrations(struct cache *cache)
868 {
869 atomic_dec(&cache->nr_migrations);
870
871 /*
872 * Wake the worker in case we're suspending the target.
873 */
874 wake_up(&cache->migration_wait);
875 }
876
877 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
878 bool holder)
879 {
880 (holder ? dm_cell_release : dm_cell_release_no_holder)
881 (cache->prison, cell, &cache->deferred_bios);
882 free_prison_cell(cache, cell);
883 }
884
885 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
886 bool holder)
887 {
888 unsigned long flags;
889
890 spin_lock_irqsave(&cache->lock, flags);
891 __cell_defer(cache, cell, holder);
892 spin_unlock_irqrestore(&cache->lock, flags);
893
894 wake_worker(cache);
895 }
896
897 static void cleanup_migration(struct dm_cache_migration *mg)
898 {
899 struct cache *cache = mg->cache;
900 free_migration(mg);
901 dec_nr_migrations(cache);
902 }
903
904 static void migration_failure(struct dm_cache_migration *mg)
905 {
906 struct cache *cache = mg->cache;
907
908 if (mg->writeback) {
909 DMWARN_LIMIT("writeback failed; couldn't copy block");
910 set_dirty(cache, mg->old_oblock, mg->cblock);
911 cell_defer(cache, mg->old_ocell, false);
912
913 } else if (mg->demote) {
914 DMWARN_LIMIT("demotion failed; couldn't copy block");
915 policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
916
917 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
918 if (mg->promote)
919 cell_defer(cache, mg->new_ocell, true);
920 } else {
921 DMWARN_LIMIT("promotion failed; couldn't copy block");
922 policy_remove_mapping(cache->policy, mg->new_oblock);
923 cell_defer(cache, mg->new_ocell, true);
924 }
925
926 cleanup_migration(mg);
927 }
928
929 static void migration_success_pre_commit(struct dm_cache_migration *mg)
930 {
931 unsigned long flags;
932 struct cache *cache = mg->cache;
933
934 if (mg->writeback) {
935 clear_dirty(cache, mg->old_oblock, mg->cblock);
936 cell_defer(cache, mg->old_ocell, false);
937 cleanup_migration(mg);
938 return;
939
940 } else if (mg->demote) {
941 if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
942 DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
943 policy_force_mapping(cache->policy, mg->new_oblock,
944 mg->old_oblock);
945 if (mg->promote)
946 cell_defer(cache, mg->new_ocell, true);
947 cleanup_migration(mg);
948 return;
949 }
950 } else {
951 if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
952 DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
953 policy_remove_mapping(cache->policy, mg->new_oblock);
954 cleanup_migration(mg);
955 return;
956 }
957 }
958
959 spin_lock_irqsave(&cache->lock, flags);
960 list_add_tail(&mg->list, &cache->need_commit_migrations);
961 cache->commit_requested = true;
962 spin_unlock_irqrestore(&cache->lock, flags);
963 }
964
965 static void migration_success_post_commit(struct dm_cache_migration *mg)
966 {
967 unsigned long flags;
968 struct cache *cache = mg->cache;
969
970 if (mg->writeback) {
971 DMWARN("writeback unexpectedly triggered commit");
972 return;
973
974 } else if (mg->demote) {
975 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
976
977 if (mg->promote) {
978 mg->demote = false;
979
980 spin_lock_irqsave(&cache->lock, flags);
981 list_add_tail(&mg->list, &cache->quiesced_migrations);
982 spin_unlock_irqrestore(&cache->lock, flags);
983
984 } else {
985 if (mg->invalidate)
986 policy_remove_mapping(cache->policy, mg->old_oblock);
987 cleanup_migration(mg);
988 }
989
990 } else {
991 if (mg->requeue_holder) {
992 clear_dirty(cache, mg->new_oblock, mg->cblock);
993 cell_defer(cache, mg->new_ocell, true);
994 } else {
995 /*
996 * The block was promoted via an overwrite, so it's dirty.
997 */
998 set_dirty(cache, mg->new_oblock, mg->cblock);
999 bio_endio(mg->new_ocell->holder, 0);
1000 cell_defer(cache, mg->new_ocell, false);
1001 }
1002 cleanup_migration(mg);
1003 }
1004 }
1005
1006 static void copy_complete(int read_err, unsigned long write_err, void *context)
1007 {
1008 unsigned long flags;
1009 struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1010 struct cache *cache = mg->cache;
1011
1012 if (read_err || write_err)
1013 mg->err = true;
1014
1015 spin_lock_irqsave(&cache->lock, flags);
1016 list_add_tail(&mg->list, &cache->completed_migrations);
1017 spin_unlock_irqrestore(&cache->lock, flags);
1018
1019 wake_worker(cache);
1020 }
1021
1022 static void issue_copy(struct dm_cache_migration *mg)
1023 {
1024 int r;
1025 struct dm_io_region o_region, c_region;
1026 struct cache *cache = mg->cache;
1027 sector_t cblock = from_cblock(mg->cblock);
1028
1029 o_region.bdev = cache->origin_dev->bdev;
1030 o_region.count = cache->sectors_per_block;
1031
1032 c_region.bdev = cache->cache_dev->bdev;
1033 c_region.sector = cblock * cache->sectors_per_block;
1034 c_region.count = cache->sectors_per_block;
1035
1036 if (mg->writeback || mg->demote) {
1037 /* demote */
1038 o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1039 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1040 } else {
1041 /* promote */
1042 o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1043 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1044 }
1045
1046 if (r < 0) {
1047 DMERR_LIMIT("issuing migration failed");
1048 migration_failure(mg);
1049 }
1050 }
1051
1052 static void overwrite_endio(struct bio *bio, int err)
1053 {
1054 struct dm_cache_migration *mg = bio->bi_private;
1055 struct cache *cache = mg->cache;
1056 size_t pb_data_size = get_per_bio_data_size(cache);
1057 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1058 unsigned long flags;
1059
1060 dm_unhook_bio(&pb->hook_info, bio);
1061
1062 if (err)
1063 mg->err = true;
1064
1065 mg->requeue_holder = false;
1066
1067 spin_lock_irqsave(&cache->lock, flags);
1068 list_add_tail(&mg->list, &cache->completed_migrations);
1069 spin_unlock_irqrestore(&cache->lock, flags);
1070
1071 wake_worker(cache);
1072 }
1073
1074 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1075 {
1076 size_t pb_data_size = get_per_bio_data_size(mg->cache);
1077 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1078
1079 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1080 remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1081
1082 /*
1083 * No need to inc_ds() here, since the cell will be held for the
1084 * duration of the io.
1085 */
1086 generic_make_request(bio);
1087 }
1088
1089 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1090 {
1091 return (bio_data_dir(bio) == WRITE) &&
1092 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1093 }
1094
1095 static void avoid_copy(struct dm_cache_migration *mg)
1096 {
1097 atomic_inc(&mg->cache->stats.copies_avoided);
1098 migration_success_pre_commit(mg);
1099 }
1100
1101 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1102 dm_dblock_t *b, dm_dblock_t *e)
1103 {
1104 sector_t sb = bio->bi_iter.bi_sector;
1105 sector_t se = bio_end_sector(bio);
1106
1107 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1108
1109 if (se - sb < cache->discard_block_size)
1110 *e = *b;
1111 else
1112 *e = to_dblock(block_div(se, cache->discard_block_size));
1113 }
1114
1115 static void issue_discard(struct dm_cache_migration *mg)
1116 {
1117 dm_dblock_t b, e;
1118 struct bio *bio = mg->new_ocell->holder;
1119
1120 calc_discard_block_range(mg->cache, bio, &b, &e);
1121 while (b != e) {
1122 set_discard(mg->cache, b);
1123 b = to_dblock(from_dblock(b) + 1);
1124 }
1125
1126 bio_endio(bio, 0);
1127 cell_defer(mg->cache, mg->new_ocell, false);
1128 free_migration(mg);
1129 }
1130
1131 static void issue_copy_or_discard(struct dm_cache_migration *mg)
1132 {
1133 bool avoid;
1134 struct cache *cache = mg->cache;
1135
1136 if (mg->discard) {
1137 issue_discard(mg);
1138 return;
1139 }
1140
1141 if (mg->writeback || mg->demote)
1142 avoid = !is_dirty(cache, mg->cblock) ||
1143 is_discarded_oblock(cache, mg->old_oblock);
1144 else {
1145 struct bio *bio = mg->new_ocell->holder;
1146
1147 avoid = is_discarded_oblock(cache, mg->new_oblock);
1148
1149 if (writeback_mode(&cache->features) &&
1150 !avoid && bio_writes_complete_block(cache, bio)) {
1151 issue_overwrite(mg, bio);
1152 return;
1153 }
1154 }
1155
1156 avoid ? avoid_copy(mg) : issue_copy(mg);
1157 }
1158
1159 static void complete_migration(struct dm_cache_migration *mg)
1160 {
1161 if (mg->err)
1162 migration_failure(mg);
1163 else
1164 migration_success_pre_commit(mg);
1165 }
1166
1167 static void process_migrations(struct cache *cache, struct list_head *head,
1168 void (*fn)(struct dm_cache_migration *))
1169 {
1170 unsigned long flags;
1171 struct list_head list;
1172 struct dm_cache_migration *mg, *tmp;
1173
1174 INIT_LIST_HEAD(&list);
1175 spin_lock_irqsave(&cache->lock, flags);
1176 list_splice_init(head, &list);
1177 spin_unlock_irqrestore(&cache->lock, flags);
1178
1179 list_for_each_entry_safe(mg, tmp, &list, list)
1180 fn(mg);
1181 }
1182
1183 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1184 {
1185 list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1186 }
1187
1188 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1189 {
1190 unsigned long flags;
1191 struct cache *cache = mg->cache;
1192
1193 spin_lock_irqsave(&cache->lock, flags);
1194 __queue_quiesced_migration(mg);
1195 spin_unlock_irqrestore(&cache->lock, flags);
1196
1197 wake_worker(cache);
1198 }
1199
1200 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1201 {
1202 unsigned long flags;
1203 struct dm_cache_migration *mg, *tmp;
1204
1205 spin_lock_irqsave(&cache->lock, flags);
1206 list_for_each_entry_safe(mg, tmp, work, list)
1207 __queue_quiesced_migration(mg);
1208 spin_unlock_irqrestore(&cache->lock, flags);
1209
1210 wake_worker(cache);
1211 }
1212
1213 static void check_for_quiesced_migrations(struct cache *cache,
1214 struct per_bio_data *pb)
1215 {
1216 struct list_head work;
1217
1218 if (!pb->all_io_entry)
1219 return;
1220
1221 INIT_LIST_HEAD(&work);
1222 dm_deferred_entry_dec(pb->all_io_entry, &work);
1223
1224 if (!list_empty(&work))
1225 queue_quiesced_migrations(cache, &work);
1226 }
1227
1228 static void quiesce_migration(struct dm_cache_migration *mg)
1229 {
1230 if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1231 queue_quiesced_migration(mg);
1232 }
1233
1234 static void promote(struct cache *cache, struct prealloc *structs,
1235 dm_oblock_t oblock, dm_cblock_t cblock,
1236 struct dm_bio_prison_cell *cell)
1237 {
1238 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1239
1240 mg->err = false;
1241 mg->discard = false;
1242 mg->writeback = false;
1243 mg->demote = false;
1244 mg->promote = true;
1245 mg->requeue_holder = true;
1246 mg->invalidate = false;
1247 mg->cache = cache;
1248 mg->new_oblock = oblock;
1249 mg->cblock = cblock;
1250 mg->old_ocell = NULL;
1251 mg->new_ocell = cell;
1252 mg->start_jiffies = jiffies;
1253
1254 inc_nr_migrations(cache);
1255 quiesce_migration(mg);
1256 }
1257
1258 static void writeback(struct cache *cache, struct prealloc *structs,
1259 dm_oblock_t oblock, dm_cblock_t cblock,
1260 struct dm_bio_prison_cell *cell)
1261 {
1262 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1263
1264 mg->err = false;
1265 mg->discard = false;
1266 mg->writeback = true;
1267 mg->demote = false;
1268 mg->promote = false;
1269 mg->requeue_holder = true;
1270 mg->invalidate = false;
1271 mg->cache = cache;
1272 mg->old_oblock = oblock;
1273 mg->cblock = cblock;
1274 mg->old_ocell = cell;
1275 mg->new_ocell = NULL;
1276 mg->start_jiffies = jiffies;
1277
1278 inc_nr_migrations(cache);
1279 quiesce_migration(mg);
1280 }
1281
1282 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1283 dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1284 dm_cblock_t cblock,
1285 struct dm_bio_prison_cell *old_ocell,
1286 struct dm_bio_prison_cell *new_ocell)
1287 {
1288 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1289
1290 mg->err = false;
1291 mg->discard = false;
1292 mg->writeback = false;
1293 mg->demote = true;
1294 mg->promote = true;
1295 mg->requeue_holder = true;
1296 mg->invalidate = false;
1297 mg->cache = cache;
1298 mg->old_oblock = old_oblock;
1299 mg->new_oblock = new_oblock;
1300 mg->cblock = cblock;
1301 mg->old_ocell = old_ocell;
1302 mg->new_ocell = new_ocell;
1303 mg->start_jiffies = jiffies;
1304
1305 inc_nr_migrations(cache);
1306 quiesce_migration(mg);
1307 }
1308
1309 /*
1310 * Invalidate a cache entry. No writeback occurs; any changes in the cache
1311 * block are thrown away.
1312 */
1313 static void invalidate(struct cache *cache, struct prealloc *structs,
1314 dm_oblock_t oblock, dm_cblock_t cblock,
1315 struct dm_bio_prison_cell *cell)
1316 {
1317 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1318
1319 mg->err = false;
1320 mg->discard = false;
1321 mg->writeback = false;
1322 mg->demote = true;
1323 mg->promote = false;
1324 mg->requeue_holder = true;
1325 mg->invalidate = true;
1326 mg->cache = cache;
1327 mg->old_oblock = oblock;
1328 mg->cblock = cblock;
1329 mg->old_ocell = cell;
1330 mg->new_ocell = NULL;
1331 mg->start_jiffies = jiffies;
1332
1333 inc_nr_migrations(cache);
1334 quiesce_migration(mg);
1335 }
1336
1337 static void discard(struct cache *cache, struct prealloc *structs,
1338 struct dm_bio_prison_cell *cell)
1339 {
1340 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1341
1342 mg->err = false;
1343 mg->discard = true;
1344 mg->writeback = false;
1345 mg->demote = false;
1346 mg->promote = false;
1347 mg->requeue_holder = false;
1348 mg->invalidate = false;
1349 mg->cache = cache;
1350 mg->old_ocell = NULL;
1351 mg->new_ocell = cell;
1352 mg->start_jiffies = jiffies;
1353
1354 quiesce_migration(mg);
1355 }
1356
1357 /*----------------------------------------------------------------
1358 * bio processing
1359 *--------------------------------------------------------------*/
1360 static void defer_bio(struct cache *cache, struct bio *bio)
1361 {
1362 unsigned long flags;
1363
1364 spin_lock_irqsave(&cache->lock, flags);
1365 bio_list_add(&cache->deferred_bios, bio);
1366 spin_unlock_irqrestore(&cache->lock, flags);
1367
1368 wake_worker(cache);
1369 }
1370
1371 static void process_flush_bio(struct cache *cache, struct bio *bio)
1372 {
1373 size_t pb_data_size = get_per_bio_data_size(cache);
1374 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1375
1376 BUG_ON(bio->bi_iter.bi_size);
1377 if (!pb->req_nr)
1378 remap_to_origin(cache, bio);
1379 else
1380 remap_to_cache(cache, bio, 0);
1381
1382 /*
1383 * REQ_FLUSH is not directed at any particular block so we don't
1384 * need to inc_ds(). REQ_FUA's are split into a write + REQ_FLUSH
1385 * by dm-core.
1386 */
1387 issue(cache, bio);
1388 }
1389
1390 static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1391 struct bio *bio)
1392 {
1393 int r;
1394 dm_dblock_t b, e;
1395 struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1396
1397 calc_discard_block_range(cache, bio, &b, &e);
1398 if (b == e) {
1399 bio_endio(bio, 0);
1400 return;
1401 }
1402
1403 cell_prealloc = prealloc_get_cell(structs);
1404 r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1405 (cell_free_fn) prealloc_put_cell,
1406 structs, &new_ocell);
1407 if (r > 0)
1408 return;
1409
1410 discard(cache, structs, new_ocell);
1411 }
1412
1413 static bool spare_migration_bandwidth(struct cache *cache)
1414 {
1415 sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) *
1416 cache->sectors_per_block;
1417 return current_volume < cache->migration_threshold;
1418 }
1419
1420 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1421 {
1422 atomic_inc(bio_data_dir(bio) == READ ?
1423 &cache->stats.read_hit : &cache->stats.write_hit);
1424 }
1425
1426 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1427 {
1428 atomic_inc(bio_data_dir(bio) == READ ?
1429 &cache->stats.read_miss : &cache->stats.write_miss);
1430 }
1431
1432 static void process_bio(struct cache *cache, struct prealloc *structs,
1433 struct bio *bio)
1434 {
1435 int r;
1436 bool release_cell = true;
1437 dm_oblock_t block = get_bio_block(cache, bio);
1438 struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell;
1439 struct policy_result lookup_result;
1440 bool passthrough = passthrough_mode(&cache->features);
1441 bool discarded_block, can_migrate;
1442
1443 /*
1444 * Check to see if that block is currently migrating.
1445 */
1446 cell_prealloc = prealloc_get_cell(structs);
1447 r = bio_detain(cache, block, bio, cell_prealloc,
1448 (cell_free_fn) prealloc_put_cell,
1449 structs, &new_ocell);
1450 if (r > 0)
1451 return;
1452
1453 discarded_block = is_discarded_oblock(cache, block);
1454 can_migrate = !passthrough && (discarded_block || spare_migration_bandwidth(cache));
1455
1456 r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
1457 bio, &lookup_result);
1458
1459 if (r == -EWOULDBLOCK)
1460 /* migration has been denied */
1461 lookup_result.op = POLICY_MISS;
1462
1463 switch (lookup_result.op) {
1464 case POLICY_HIT:
1465 if (passthrough) {
1466 inc_miss_counter(cache, bio);
1467
1468 /*
1469 * Passthrough always maps to the origin,
1470 * invalidating any cache blocks that are written
1471 * to.
1472 */
1473
1474 if (bio_data_dir(bio) == WRITE) {
1475 atomic_inc(&cache->stats.demotion);
1476 invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1477 release_cell = false;
1478
1479 } else {
1480 /* FIXME: factor out issue_origin() */
1481 remap_to_origin_clear_discard(cache, bio, block);
1482 inc_and_issue(cache, bio, new_ocell);
1483 }
1484 } else {
1485 inc_hit_counter(cache, bio);
1486
1487 if (bio_data_dir(bio) == WRITE &&
1488 writethrough_mode(&cache->features) &&
1489 !is_dirty(cache, lookup_result.cblock)) {
1490 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1491 inc_and_issue(cache, bio, new_ocell);
1492
1493 } else {
1494 remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
1495 inc_and_issue(cache, bio, new_ocell);
1496 }
1497 }
1498
1499 break;
1500
1501 case POLICY_MISS:
1502 inc_miss_counter(cache, bio);
1503 remap_to_origin_clear_discard(cache, bio, block);
1504 inc_and_issue(cache, bio, new_ocell);
1505 break;
1506
1507 case POLICY_NEW:
1508 atomic_inc(&cache->stats.promotion);
1509 promote(cache, structs, block, lookup_result.cblock, new_ocell);
1510 release_cell = false;
1511 break;
1512
1513 case POLICY_REPLACE:
1514 cell_prealloc = prealloc_get_cell(structs);
1515 r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc,
1516 (cell_free_fn) prealloc_put_cell,
1517 structs, &old_ocell);
1518 if (r > 0) {
1519 /*
1520 * We have to be careful to avoid lock inversion of
1521 * the cells. So we back off, and wait for the
1522 * old_ocell to become free.
1523 */
1524 policy_force_mapping(cache->policy, block,
1525 lookup_result.old_oblock);
1526 atomic_inc(&cache->stats.cache_cell_clash);
1527 break;
1528 }
1529 atomic_inc(&cache->stats.demotion);
1530 atomic_inc(&cache->stats.promotion);
1531
1532 demote_then_promote(cache, structs, lookup_result.old_oblock,
1533 block, lookup_result.cblock,
1534 old_ocell, new_ocell);
1535 release_cell = false;
1536 break;
1537
1538 default:
1539 DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
1540 (unsigned) lookup_result.op);
1541 bio_io_error(bio);
1542 }
1543
1544 if (release_cell)
1545 cell_defer(cache, new_ocell, false);
1546 }
1547
1548 static int need_commit_due_to_time(struct cache *cache)
1549 {
1550 return jiffies < cache->last_commit_jiffies ||
1551 jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1552 }
1553
1554 static int commit_if_needed(struct cache *cache)
1555 {
1556 int r = 0;
1557
1558 if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1559 dm_cache_changed_this_transaction(cache->cmd)) {
1560 atomic_inc(&cache->stats.commit_count);
1561 cache->commit_requested = false;
1562 r = dm_cache_commit(cache->cmd, false);
1563 cache->last_commit_jiffies = jiffies;
1564 }
1565
1566 return r;
1567 }
1568
1569 static void process_deferred_bios(struct cache *cache)
1570 {
1571 unsigned long flags;
1572 struct bio_list bios;
1573 struct bio *bio;
1574 struct prealloc structs;
1575
1576 memset(&structs, 0, sizeof(structs));
1577 bio_list_init(&bios);
1578
1579 spin_lock_irqsave(&cache->lock, flags);
1580 bio_list_merge(&bios, &cache->deferred_bios);
1581 bio_list_init(&cache->deferred_bios);
1582 spin_unlock_irqrestore(&cache->lock, flags);
1583
1584 while (!bio_list_empty(&bios)) {
1585 /*
1586 * If we've got no free migration structs, and processing
1587 * this bio might require one, we pause until there are some
1588 * prepared mappings to process.
1589 */
1590 if (prealloc_data_structs(cache, &structs)) {
1591 spin_lock_irqsave(&cache->lock, flags);
1592 bio_list_merge(&cache->deferred_bios, &bios);
1593 spin_unlock_irqrestore(&cache->lock, flags);
1594 break;
1595 }
1596
1597 bio = bio_list_pop(&bios);
1598
1599 if (bio->bi_rw & REQ_FLUSH)
1600 process_flush_bio(cache, bio);
1601 else if (bio->bi_rw & REQ_DISCARD)
1602 process_discard_bio(cache, &structs, bio);
1603 else
1604 process_bio(cache, &structs, bio);
1605 }
1606
1607 prealloc_free_structs(cache, &structs);
1608 }
1609
1610 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
1611 {
1612 unsigned long flags;
1613 struct bio_list bios;
1614 struct bio *bio;
1615
1616 bio_list_init(&bios);
1617
1618 spin_lock_irqsave(&cache->lock, flags);
1619 bio_list_merge(&bios, &cache->deferred_flush_bios);
1620 bio_list_init(&cache->deferred_flush_bios);
1621 spin_unlock_irqrestore(&cache->lock, flags);
1622
1623 /*
1624 * These bios have already been through inc_ds()
1625 */
1626 while ((bio = bio_list_pop(&bios)))
1627 submit_bios ? generic_make_request(bio) : bio_io_error(bio);
1628 }
1629
1630 static void process_deferred_writethrough_bios(struct cache *cache)
1631 {
1632 unsigned long flags;
1633 struct bio_list bios;
1634 struct bio *bio;
1635
1636 bio_list_init(&bios);
1637
1638 spin_lock_irqsave(&cache->lock, flags);
1639 bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1640 bio_list_init(&cache->deferred_writethrough_bios);
1641 spin_unlock_irqrestore(&cache->lock, flags);
1642
1643 /*
1644 * These bios have already been through inc_ds()
1645 */
1646 while ((bio = bio_list_pop(&bios)))
1647 generic_make_request(bio);
1648 }
1649
1650 static void writeback_some_dirty_blocks(struct cache *cache)
1651 {
1652 int r = 0;
1653 dm_oblock_t oblock;
1654 dm_cblock_t cblock;
1655 struct prealloc structs;
1656 struct dm_bio_prison_cell *old_ocell;
1657
1658 memset(&structs, 0, sizeof(structs));
1659
1660 while (spare_migration_bandwidth(cache)) {
1661 if (prealloc_data_structs(cache, &structs))
1662 break;
1663
1664 r = policy_writeback_work(cache->policy, &oblock, &cblock);
1665 if (r)
1666 break;
1667
1668 r = get_cell(cache, oblock, &structs, &old_ocell);
1669 if (r) {
1670 policy_set_dirty(cache->policy, oblock);
1671 break;
1672 }
1673
1674 writeback(cache, &structs, oblock, cblock, old_ocell);
1675 }
1676
1677 prealloc_free_structs(cache, &structs);
1678 }
1679
1680 /*----------------------------------------------------------------
1681 * Invalidations.
1682 * Dropping something from the cache *without* writing back.
1683 *--------------------------------------------------------------*/
1684
1685 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
1686 {
1687 int r = 0;
1688 uint64_t begin = from_cblock(req->cblocks->begin);
1689 uint64_t end = from_cblock(req->cblocks->end);
1690
1691 while (begin != end) {
1692 r = policy_remove_cblock(cache->policy, to_cblock(begin));
1693 if (!r) {
1694 r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
1695 if (r)
1696 break;
1697
1698 } else if (r == -ENODATA) {
1699 /* harmless, already unmapped */
1700 r = 0;
1701
1702 } else {
1703 DMERR("policy_remove_cblock failed");
1704 break;
1705 }
1706
1707 begin++;
1708 }
1709
1710 cache->commit_requested = true;
1711
1712 req->err = r;
1713 atomic_set(&req->complete, 1);
1714
1715 wake_up(&req->result_wait);
1716 }
1717
1718 static void process_invalidation_requests(struct cache *cache)
1719 {
1720 struct list_head list;
1721 struct invalidation_request *req, *tmp;
1722
1723 INIT_LIST_HEAD(&list);
1724 spin_lock(&cache->invalidation_lock);
1725 list_splice_init(&cache->invalidation_requests, &list);
1726 spin_unlock(&cache->invalidation_lock);
1727
1728 list_for_each_entry_safe (req, tmp, &list, list)
1729 process_invalidation_request(cache, req);
1730 }
1731
1732 /*----------------------------------------------------------------
1733 * Main worker loop
1734 *--------------------------------------------------------------*/
1735 static bool is_quiescing(struct cache *cache)
1736 {
1737 return atomic_read(&cache->quiescing);
1738 }
1739
1740 static void ack_quiescing(struct cache *cache)
1741 {
1742 if (is_quiescing(cache)) {
1743 atomic_inc(&cache->quiescing_ack);
1744 wake_up(&cache->quiescing_wait);
1745 }
1746 }
1747
1748 static void wait_for_quiescing_ack(struct cache *cache)
1749 {
1750 wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
1751 }
1752
1753 static void start_quiescing(struct cache *cache)
1754 {
1755 atomic_inc(&cache->quiescing);
1756 wait_for_quiescing_ack(cache);
1757 }
1758
1759 static void stop_quiescing(struct cache *cache)
1760 {
1761 atomic_set(&cache->quiescing, 0);
1762 atomic_set(&cache->quiescing_ack, 0);
1763 }
1764
1765 static void wait_for_migrations(struct cache *cache)
1766 {
1767 wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations));
1768 }
1769
1770 static void stop_worker(struct cache *cache)
1771 {
1772 cancel_delayed_work(&cache->waker);
1773 flush_workqueue(cache->wq);
1774 }
1775
1776 static void requeue_deferred_io(struct cache *cache)
1777 {
1778 struct bio *bio;
1779 struct bio_list bios;
1780
1781 bio_list_init(&bios);
1782 bio_list_merge(&bios, &cache->deferred_bios);
1783 bio_list_init(&cache->deferred_bios);
1784
1785 while ((bio = bio_list_pop(&bios)))
1786 bio_endio(bio, DM_ENDIO_REQUEUE);
1787 }
1788
1789 static int more_work(struct cache *cache)
1790 {
1791 if (is_quiescing(cache))
1792 return !list_empty(&cache->quiesced_migrations) ||
1793 !list_empty(&cache->completed_migrations) ||
1794 !list_empty(&cache->need_commit_migrations);
1795 else
1796 return !bio_list_empty(&cache->deferred_bios) ||
1797 !bio_list_empty(&cache->deferred_flush_bios) ||
1798 !bio_list_empty(&cache->deferred_writethrough_bios) ||
1799 !list_empty(&cache->quiesced_migrations) ||
1800 !list_empty(&cache->completed_migrations) ||
1801 !list_empty(&cache->need_commit_migrations) ||
1802 cache->invalidate;
1803 }
1804
1805 static void do_worker(struct work_struct *ws)
1806 {
1807 struct cache *cache = container_of(ws, struct cache, worker);
1808
1809 do {
1810 if (!is_quiescing(cache)) {
1811 writeback_some_dirty_blocks(cache);
1812 process_deferred_writethrough_bios(cache);
1813 process_deferred_bios(cache);
1814 process_invalidation_requests(cache);
1815 }
1816
1817 process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
1818 process_migrations(cache, &cache->completed_migrations, complete_migration);
1819
1820 if (commit_if_needed(cache)) {
1821 process_deferred_flush_bios(cache, false);
1822 process_migrations(cache, &cache->need_commit_migrations, migration_failure);
1823
1824 /*
1825 * FIXME: rollback metadata or just go into a
1826 * failure mode and error everything
1827 */
1828 } else {
1829 process_deferred_flush_bios(cache, true);
1830 process_migrations(cache, &cache->need_commit_migrations,
1831 migration_success_post_commit);
1832 }
1833
1834 ack_quiescing(cache);
1835
1836 } while (more_work(cache));
1837 }
1838
1839 /*
1840 * We want to commit periodically so that not too much
1841 * unwritten metadata builds up.
1842 */
1843 static void do_waker(struct work_struct *ws)
1844 {
1845 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1846 policy_tick(cache->policy);
1847 wake_worker(cache);
1848 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1849 }
1850
1851 /*----------------------------------------------------------------*/
1852
1853 static int is_congested(struct dm_dev *dev, int bdi_bits)
1854 {
1855 struct request_queue *q = bdev_get_queue(dev->bdev);
1856 return bdi_congested(&q->backing_dev_info, bdi_bits);
1857 }
1858
1859 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1860 {
1861 struct cache *cache = container_of(cb, struct cache, callbacks);
1862
1863 return is_congested(cache->origin_dev, bdi_bits) ||
1864 is_congested(cache->cache_dev, bdi_bits);
1865 }
1866
1867 /*----------------------------------------------------------------
1868 * Target methods
1869 *--------------------------------------------------------------*/
1870
1871 /*
1872 * This function gets called on the error paths of the constructor, so we
1873 * have to cope with a partially initialised struct.
1874 */
1875 static void destroy(struct cache *cache)
1876 {
1877 unsigned i;
1878
1879 if (cache->next_migration)
1880 mempool_free(cache->next_migration, cache->migration_pool);
1881
1882 if (cache->migration_pool)
1883 mempool_destroy(cache->migration_pool);
1884
1885 if (cache->all_io_ds)
1886 dm_deferred_set_destroy(cache->all_io_ds);
1887
1888 if (cache->prison)
1889 dm_bio_prison_destroy(cache->prison);
1890
1891 if (cache->wq)
1892 destroy_workqueue(cache->wq);
1893
1894 if (cache->dirty_bitset)
1895 free_bitset(cache->dirty_bitset);
1896
1897 if (cache->discard_bitset)
1898 free_bitset(cache->discard_bitset);
1899
1900 if (cache->copier)
1901 dm_kcopyd_client_destroy(cache->copier);
1902
1903 if (cache->cmd)
1904 dm_cache_metadata_close(cache->cmd);
1905
1906 if (cache->metadata_dev)
1907 dm_put_device(cache->ti, cache->metadata_dev);
1908
1909 if (cache->origin_dev)
1910 dm_put_device(cache->ti, cache->origin_dev);
1911
1912 if (cache->cache_dev)
1913 dm_put_device(cache->ti, cache->cache_dev);
1914
1915 if (cache->policy)
1916 dm_cache_policy_destroy(cache->policy);
1917
1918 for (i = 0; i < cache->nr_ctr_args ; i++)
1919 kfree(cache->ctr_args[i]);
1920 kfree(cache->ctr_args);
1921
1922 kfree(cache);
1923 }
1924
1925 static void cache_dtr(struct dm_target *ti)
1926 {
1927 struct cache *cache = ti->private;
1928
1929 destroy(cache);
1930 }
1931
1932 static sector_t get_dev_size(struct dm_dev *dev)
1933 {
1934 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1935 }
1936
1937 /*----------------------------------------------------------------*/
1938
1939 /*
1940 * Construct a cache device mapping.
1941 *
1942 * cache <metadata dev> <cache dev> <origin dev> <block size>
1943 * <#feature args> [<feature arg>]*
1944 * <policy> <#policy args> [<policy arg>]*
1945 *
1946 * metadata dev : fast device holding the persistent metadata
1947 * cache dev : fast device holding cached data blocks
1948 * origin dev : slow device holding original data blocks
1949 * block size : cache unit size in sectors
1950 *
1951 * #feature args : number of feature arguments passed
1952 * feature args : writethrough. (The default is writeback.)
1953 *
1954 * policy : the replacement policy to use
1955 * #policy args : an even number of policy arguments corresponding
1956 * to key/value pairs passed to the policy
1957 * policy args : key/value pairs passed to the policy
1958 * E.g. 'sequential_threshold 1024'
1959 * See cache-policies.txt for details.
1960 *
1961 * Optional feature arguments are:
1962 * writethrough : write through caching that prohibits cache block
1963 * content from being different from origin block content.
1964 * Without this argument, the default behaviour is to write
1965 * back cache block contents later for performance reasons,
1966 * so they may differ from the corresponding origin blocks.
1967 */
1968 struct cache_args {
1969 struct dm_target *ti;
1970
1971 struct dm_dev *metadata_dev;
1972
1973 struct dm_dev *cache_dev;
1974 sector_t cache_sectors;
1975
1976 struct dm_dev *origin_dev;
1977 sector_t origin_sectors;
1978
1979 uint32_t block_size;
1980
1981 const char *policy_name;
1982 int policy_argc;
1983 const char **policy_argv;
1984
1985 struct cache_features features;
1986 };
1987
1988 static void destroy_cache_args(struct cache_args *ca)
1989 {
1990 if (ca->metadata_dev)
1991 dm_put_device(ca->ti, ca->metadata_dev);
1992
1993 if (ca->cache_dev)
1994 dm_put_device(ca->ti, ca->cache_dev);
1995
1996 if (ca->origin_dev)
1997 dm_put_device(ca->ti, ca->origin_dev);
1998
1999 kfree(ca);
2000 }
2001
2002 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2003 {
2004 if (!as->argc) {
2005 *error = "Insufficient args";
2006 return false;
2007 }
2008
2009 return true;
2010 }
2011
2012 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2013 char **error)
2014 {
2015 int r;
2016 sector_t metadata_dev_size;
2017 char b[BDEVNAME_SIZE];
2018
2019 if (!at_least_one_arg(as, error))
2020 return -EINVAL;
2021
2022 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2023 &ca->metadata_dev);
2024 if (r) {
2025 *error = "Error opening metadata device";
2026 return r;
2027 }
2028
2029 metadata_dev_size = get_dev_size(ca->metadata_dev);
2030 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2031 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2032 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2033
2034 return 0;
2035 }
2036
2037 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2038 char **error)
2039 {
2040 int r;
2041
2042 if (!at_least_one_arg(as, error))
2043 return -EINVAL;
2044
2045 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2046 &ca->cache_dev);
2047 if (r) {
2048 *error = "Error opening cache device";
2049 return r;
2050 }
2051 ca->cache_sectors = get_dev_size(ca->cache_dev);
2052
2053 return 0;
2054 }
2055
2056 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2057 char **error)
2058 {
2059 int r;
2060
2061 if (!at_least_one_arg(as, error))
2062 return -EINVAL;
2063
2064 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2065 &ca->origin_dev);
2066 if (r) {
2067 *error = "Error opening origin device";
2068 return r;
2069 }
2070
2071 ca->origin_sectors = get_dev_size(ca->origin_dev);
2072 if (ca->ti->len > ca->origin_sectors) {
2073 *error = "Device size larger than cached device";
2074 return -EINVAL;
2075 }
2076
2077 return 0;
2078 }
2079
2080 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2081 char **error)
2082 {
2083 unsigned long block_size;
2084
2085 if (!at_least_one_arg(as, error))
2086 return -EINVAL;
2087
2088 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2089 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2090 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2091 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2092 *error = "Invalid data block size";
2093 return -EINVAL;
2094 }
2095
2096 if (block_size > ca->cache_sectors) {
2097 *error = "Data block size is larger than the cache device";
2098 return -EINVAL;
2099 }
2100
2101 ca->block_size = block_size;
2102
2103 return 0;
2104 }
2105
2106 static void init_features(struct cache_features *cf)
2107 {
2108 cf->mode = CM_WRITE;
2109 cf->io_mode = CM_IO_WRITEBACK;
2110 }
2111
2112 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2113 char **error)
2114 {
2115 static struct dm_arg _args[] = {
2116 {0, 1, "Invalid number of cache feature arguments"},
2117 };
2118
2119 int r;
2120 unsigned argc;
2121 const char *arg;
2122 struct cache_features *cf = &ca->features;
2123
2124 init_features(cf);
2125
2126 r = dm_read_arg_group(_args, as, &argc, error);
2127 if (r)
2128 return -EINVAL;
2129
2130 while (argc--) {
2131 arg = dm_shift_arg(as);
2132
2133 if (!strcasecmp(arg, "writeback"))
2134 cf->io_mode = CM_IO_WRITEBACK;
2135
2136 else if (!strcasecmp(arg, "writethrough"))
2137 cf->io_mode = CM_IO_WRITETHROUGH;
2138
2139 else if (!strcasecmp(arg, "passthrough"))
2140 cf->io_mode = CM_IO_PASSTHROUGH;
2141
2142 else {
2143 *error = "Unrecognised cache feature requested";
2144 return -EINVAL;
2145 }
2146 }
2147
2148 return 0;
2149 }
2150
2151 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2152 char **error)
2153 {
2154 static struct dm_arg _args[] = {
2155 {0, 1024, "Invalid number of policy arguments"},
2156 };
2157
2158 int r;
2159
2160 if (!at_least_one_arg(as, error))
2161 return -EINVAL;
2162
2163 ca->policy_name = dm_shift_arg(as);
2164
2165 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2166 if (r)
2167 return -EINVAL;
2168
2169 ca->policy_argv = (const char **)as->argv;
2170 dm_consume_args(as, ca->policy_argc);
2171
2172 return 0;
2173 }
2174
2175 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2176 char **error)
2177 {
2178 int r;
2179 struct dm_arg_set as;
2180
2181 as.argc = argc;
2182 as.argv = argv;
2183
2184 r = parse_metadata_dev(ca, &as, error);
2185 if (r)
2186 return r;
2187
2188 r = parse_cache_dev(ca, &as, error);
2189 if (r)
2190 return r;
2191
2192 r = parse_origin_dev(ca, &as, error);
2193 if (r)
2194 return r;
2195
2196 r = parse_block_size(ca, &as, error);
2197 if (r)
2198 return r;
2199
2200 r = parse_features(ca, &as, error);
2201 if (r)
2202 return r;
2203
2204 r = parse_policy(ca, &as, error);
2205 if (r)
2206 return r;
2207
2208 return 0;
2209 }
2210
2211 /*----------------------------------------------------------------*/
2212
2213 static struct kmem_cache *migration_cache;
2214
2215 #define NOT_CORE_OPTION 1
2216
2217 static int process_config_option(struct cache *cache, const char *key, const char *value)
2218 {
2219 unsigned long tmp;
2220
2221 if (!strcasecmp(key, "migration_threshold")) {
2222 if (kstrtoul(value, 10, &tmp))
2223 return -EINVAL;
2224
2225 cache->migration_threshold = tmp;
2226 return 0;
2227 }
2228
2229 return NOT_CORE_OPTION;
2230 }
2231
2232 static int set_config_value(struct cache *cache, const char *key, const char *value)
2233 {
2234 int r = process_config_option(cache, key, value);
2235
2236 if (r == NOT_CORE_OPTION)
2237 r = policy_set_config_value(cache->policy, key, value);
2238
2239 if (r)
2240 DMWARN("bad config value for %s: %s", key, value);
2241
2242 return r;
2243 }
2244
2245 static int set_config_values(struct cache *cache, int argc, const char **argv)
2246 {
2247 int r = 0;
2248
2249 if (argc & 1) {
2250 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2251 return -EINVAL;
2252 }
2253
2254 while (argc) {
2255 r = set_config_value(cache, argv[0], argv[1]);
2256 if (r)
2257 break;
2258
2259 argc -= 2;
2260 argv += 2;
2261 }
2262
2263 return r;
2264 }
2265
2266 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2267 char **error)
2268 {
2269 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2270 cache->cache_size,
2271 cache->origin_sectors,
2272 cache->sectors_per_block);
2273 if (IS_ERR(p)) {
2274 *error = "Error creating cache's policy";
2275 return PTR_ERR(p);
2276 }
2277 cache->policy = p;
2278
2279 return 0;
2280 }
2281
2282 /*
2283 * We want the discard block size to be at least the size of the cache
2284 * block size and have no more than 2^14 discard blocks across the origin.
2285 */
2286 #define MAX_DISCARD_BLOCKS (1 << 14)
2287
2288 static bool too_many_discard_blocks(sector_t discard_block_size,
2289 sector_t origin_size)
2290 {
2291 (void) sector_div(origin_size, discard_block_size);
2292
2293 return origin_size > MAX_DISCARD_BLOCKS;
2294 }
2295
2296 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2297 sector_t origin_size)
2298 {
2299 sector_t discard_block_size = cache_block_size;
2300
2301 if (origin_size)
2302 while (too_many_discard_blocks(discard_block_size, origin_size))
2303 discard_block_size *= 2;
2304
2305 return discard_block_size;
2306 }
2307
2308 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2309 {
2310 dm_block_t nr_blocks = from_cblock(size);
2311
2312 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2313 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2314 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2315 "Please consider increasing the cache block size to reduce the overall cache block count.",
2316 (unsigned long long) nr_blocks);
2317
2318 cache->cache_size = size;
2319 }
2320
2321 #define DEFAULT_MIGRATION_THRESHOLD 2048
2322
2323 static int cache_create(struct cache_args *ca, struct cache **result)
2324 {
2325 int r = 0;
2326 char **error = &ca->ti->error;
2327 struct cache *cache;
2328 struct dm_target *ti = ca->ti;
2329 dm_block_t origin_blocks;
2330 struct dm_cache_metadata *cmd;
2331 bool may_format = ca->features.mode == CM_WRITE;
2332
2333 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2334 if (!cache)
2335 return -ENOMEM;
2336
2337 cache->ti = ca->ti;
2338 ti->private = cache;
2339 ti->num_flush_bios = 2;
2340 ti->flush_supported = true;
2341
2342 ti->num_discard_bios = 1;
2343 ti->discards_supported = true;
2344 ti->discard_zeroes_data_unsupported = true;
2345 ti->split_discard_bios = false;
2346
2347 cache->features = ca->features;
2348 ti->per_bio_data_size = get_per_bio_data_size(cache);
2349
2350 cache->callbacks.congested_fn = cache_is_congested;
2351 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2352
2353 cache->metadata_dev = ca->metadata_dev;
2354 cache->origin_dev = ca->origin_dev;
2355 cache->cache_dev = ca->cache_dev;
2356
2357 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2358
2359 /* FIXME: factor out this whole section */
2360 origin_blocks = cache->origin_sectors = ca->origin_sectors;
2361 origin_blocks = block_div(origin_blocks, ca->block_size);
2362 cache->origin_blocks = to_oblock(origin_blocks);
2363
2364 cache->sectors_per_block = ca->block_size;
2365 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2366 r = -EINVAL;
2367 goto bad;
2368 }
2369
2370 if (ca->block_size & (ca->block_size - 1)) {
2371 dm_block_t cache_size = ca->cache_sectors;
2372
2373 cache->sectors_per_block_shift = -1;
2374 cache_size = block_div(cache_size, ca->block_size);
2375 set_cache_size(cache, to_cblock(cache_size));
2376 } else {
2377 cache->sectors_per_block_shift = __ffs(ca->block_size);
2378 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2379 }
2380
2381 r = create_cache_policy(cache, ca, error);
2382 if (r)
2383 goto bad;
2384
2385 cache->policy_nr_args = ca->policy_argc;
2386 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2387
2388 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2389 if (r) {
2390 *error = "Error setting cache policy's config values";
2391 goto bad;
2392 }
2393
2394 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2395 ca->block_size, may_format,
2396 dm_cache_policy_get_hint_size(cache->policy));
2397 if (IS_ERR(cmd)) {
2398 *error = "Error creating metadata object";
2399 r = PTR_ERR(cmd);
2400 goto bad;
2401 }
2402 cache->cmd = cmd;
2403
2404 if (passthrough_mode(&cache->features)) {
2405 bool all_clean;
2406
2407 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2408 if (r) {
2409 *error = "dm_cache_metadata_all_clean() failed";
2410 goto bad;
2411 }
2412
2413 if (!all_clean) {
2414 *error = "Cannot enter passthrough mode unless all blocks are clean";
2415 r = -EINVAL;
2416 goto bad;
2417 }
2418 }
2419
2420 spin_lock_init(&cache->lock);
2421 bio_list_init(&cache->deferred_bios);
2422 bio_list_init(&cache->deferred_flush_bios);
2423 bio_list_init(&cache->deferred_writethrough_bios);
2424 INIT_LIST_HEAD(&cache->quiesced_migrations);
2425 INIT_LIST_HEAD(&cache->completed_migrations);
2426 INIT_LIST_HEAD(&cache->need_commit_migrations);
2427 atomic_set(&cache->nr_migrations, 0);
2428 init_waitqueue_head(&cache->migration_wait);
2429
2430 init_waitqueue_head(&cache->quiescing_wait);
2431 atomic_set(&cache->quiescing, 0);
2432 atomic_set(&cache->quiescing_ack, 0);
2433
2434 r = -ENOMEM;
2435 atomic_set(&cache->nr_dirty, 0);
2436 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2437 if (!cache->dirty_bitset) {
2438 *error = "could not allocate dirty bitset";
2439 goto bad;
2440 }
2441 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2442
2443 cache->discard_block_size =
2444 calculate_discard_block_size(cache->sectors_per_block,
2445 cache->origin_sectors);
2446 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2447 cache->discard_block_size));
2448 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2449 if (!cache->discard_bitset) {
2450 *error = "could not allocate discard bitset";
2451 goto bad;
2452 }
2453 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2454
2455 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2456 if (IS_ERR(cache->copier)) {
2457 *error = "could not create kcopyd client";
2458 r = PTR_ERR(cache->copier);
2459 goto bad;
2460 }
2461
2462 cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2463 if (!cache->wq) {
2464 *error = "could not create workqueue for metadata object";
2465 goto bad;
2466 }
2467 INIT_WORK(&cache->worker, do_worker);
2468 INIT_DELAYED_WORK(&cache->waker, do_waker);
2469 cache->last_commit_jiffies = jiffies;
2470
2471 cache->prison = dm_bio_prison_create();
2472 if (!cache->prison) {
2473 *error = "could not create bio prison";
2474 goto bad;
2475 }
2476
2477 cache->all_io_ds = dm_deferred_set_create();
2478 if (!cache->all_io_ds) {
2479 *error = "could not create all_io deferred set";
2480 goto bad;
2481 }
2482
2483 cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2484 migration_cache);
2485 if (!cache->migration_pool) {
2486 *error = "Error creating cache's migration mempool";
2487 goto bad;
2488 }
2489
2490 cache->next_migration = NULL;
2491
2492 cache->need_tick_bio = true;
2493 cache->sized = false;
2494 cache->invalidate = false;
2495 cache->commit_requested = false;
2496 cache->loaded_mappings = false;
2497 cache->loaded_discards = false;
2498
2499 load_stats(cache);
2500
2501 atomic_set(&cache->stats.demotion, 0);
2502 atomic_set(&cache->stats.promotion, 0);
2503 atomic_set(&cache->stats.copies_avoided, 0);
2504 atomic_set(&cache->stats.cache_cell_clash, 0);
2505 atomic_set(&cache->stats.commit_count, 0);
2506 atomic_set(&cache->stats.discard_count, 0);
2507
2508 spin_lock_init(&cache->invalidation_lock);
2509 INIT_LIST_HEAD(&cache->invalidation_requests);
2510
2511 *result = cache;
2512 return 0;
2513
2514 bad:
2515 destroy(cache);
2516 return r;
2517 }
2518
2519 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2520 {
2521 unsigned i;
2522 const char **copy;
2523
2524 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2525 if (!copy)
2526 return -ENOMEM;
2527 for (i = 0; i < argc; i++) {
2528 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2529 if (!copy[i]) {
2530 while (i--)
2531 kfree(copy[i]);
2532 kfree(copy);
2533 return -ENOMEM;
2534 }
2535 }
2536
2537 cache->nr_ctr_args = argc;
2538 cache->ctr_args = copy;
2539
2540 return 0;
2541 }
2542
2543 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2544 {
2545 int r = -EINVAL;
2546 struct cache_args *ca;
2547 struct cache *cache = NULL;
2548
2549 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2550 if (!ca) {
2551 ti->error = "Error allocating memory for cache";
2552 return -ENOMEM;
2553 }
2554 ca->ti = ti;
2555
2556 r = parse_cache_args(ca, argc, argv, &ti->error);
2557 if (r)
2558 goto out;
2559
2560 r = cache_create(ca, &cache);
2561 if (r)
2562 goto out;
2563
2564 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2565 if (r) {
2566 destroy(cache);
2567 goto out;
2568 }
2569
2570 ti->private = cache;
2571
2572 out:
2573 destroy_cache_args(ca);
2574 return r;
2575 }
2576
2577 static int __cache_map(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell **cell)
2578 {
2579 int r;
2580 dm_oblock_t block = get_bio_block(cache, bio);
2581 size_t pb_data_size = get_per_bio_data_size(cache);
2582 bool can_migrate = false;
2583 bool discarded_block;
2584 struct policy_result lookup_result;
2585 struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
2586
2587 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2588 /*
2589 * This can only occur if the io goes to a partial block at
2590 * the end of the origin device. We don't cache these.
2591 * Just remap to the origin and carry on.
2592 */
2593 remap_to_origin(cache, bio);
2594 return DM_MAPIO_REMAPPED;
2595 }
2596
2597 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) {
2598 defer_bio(cache, bio);
2599 return DM_MAPIO_SUBMITTED;
2600 }
2601
2602 /*
2603 * Check to see if that block is currently migrating.
2604 */
2605 *cell = alloc_prison_cell(cache);
2606 if (!*cell) {
2607 defer_bio(cache, bio);
2608 return DM_MAPIO_SUBMITTED;
2609 }
2610
2611 r = bio_detain(cache, block, bio, *cell,
2612 (cell_free_fn) free_prison_cell,
2613 cache, cell);
2614 if (r) {
2615 if (r < 0)
2616 defer_bio(cache, bio);
2617
2618 return DM_MAPIO_SUBMITTED;
2619 }
2620
2621 discarded_block = is_discarded_oblock(cache, block);
2622
2623 r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
2624 bio, &lookup_result);
2625 if (r == -EWOULDBLOCK) {
2626 cell_defer(cache, *cell, true);
2627 return DM_MAPIO_SUBMITTED;
2628
2629 } else if (r) {
2630 DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
2631 cell_defer(cache, *cell, false);
2632 bio_io_error(bio);
2633 return DM_MAPIO_SUBMITTED;
2634 }
2635
2636 r = DM_MAPIO_REMAPPED;
2637 switch (lookup_result.op) {
2638 case POLICY_HIT:
2639 if (passthrough_mode(&cache->features)) {
2640 if (bio_data_dir(bio) == WRITE) {
2641 /*
2642 * We need to invalidate this block, so
2643 * defer for the worker thread.
2644 */
2645 cell_defer(cache, *cell, true);
2646 r = DM_MAPIO_SUBMITTED;
2647
2648 } else {
2649 inc_miss_counter(cache, bio);
2650 remap_to_origin_clear_discard(cache, bio, block);
2651 }
2652
2653 } else {
2654 inc_hit_counter(cache, bio);
2655 if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
2656 !is_dirty(cache, lookup_result.cblock))
2657 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
2658 else
2659 remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
2660 }
2661 break;
2662
2663 case POLICY_MISS:
2664 inc_miss_counter(cache, bio);
2665 if (pb->req_nr != 0) {
2666 /*
2667 * This is a duplicate writethrough io that is no
2668 * longer needed because the block has been demoted.
2669 */
2670 bio_endio(bio, 0);
2671 cell_defer(cache, *cell, false);
2672 r = DM_MAPIO_SUBMITTED;
2673
2674 } else
2675 remap_to_origin_clear_discard(cache, bio, block);
2676
2677 break;
2678
2679 default:
2680 DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
2681 (unsigned) lookup_result.op);
2682 cell_defer(cache, *cell, false);
2683 bio_io_error(bio);
2684 r = DM_MAPIO_SUBMITTED;
2685 }
2686
2687 return r;
2688 }
2689
2690 static int cache_map(struct dm_target *ti, struct bio *bio)
2691 {
2692 int r;
2693 struct dm_bio_prison_cell *cell = NULL;
2694 struct cache *cache = ti->private;
2695
2696 r = __cache_map(cache, bio, &cell);
2697 if (r == DM_MAPIO_REMAPPED && cell) {
2698 inc_ds(cache, bio, cell);
2699 cell_defer(cache, cell, false);
2700 }
2701
2702 return r;
2703 }
2704
2705 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2706 {
2707 struct cache *cache = ti->private;
2708 unsigned long flags;
2709 size_t pb_data_size = get_per_bio_data_size(cache);
2710 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2711
2712 if (pb->tick) {
2713 policy_tick(cache->policy);
2714
2715 spin_lock_irqsave(&cache->lock, flags);
2716 cache->need_tick_bio = true;
2717 spin_unlock_irqrestore(&cache->lock, flags);
2718 }
2719
2720 check_for_quiesced_migrations(cache, pb);
2721
2722 return 0;
2723 }
2724
2725 static int write_dirty_bitset(struct cache *cache)
2726 {
2727 unsigned i, r;
2728
2729 for (i = 0; i < from_cblock(cache->cache_size); i++) {
2730 r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
2731 is_dirty(cache, to_cblock(i)));
2732 if (r)
2733 return r;
2734 }
2735
2736 return 0;
2737 }
2738
2739 static int write_discard_bitset(struct cache *cache)
2740 {
2741 unsigned i, r;
2742
2743 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2744 cache->discard_nr_blocks);
2745 if (r) {
2746 DMERR("could not resize on-disk discard bitset");
2747 return r;
2748 }
2749
2750 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2751 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2752 is_discarded(cache, to_dblock(i)));
2753 if (r)
2754 return r;
2755 }
2756
2757 return 0;
2758 }
2759
2760 /*
2761 * returns true on success
2762 */
2763 static bool sync_metadata(struct cache *cache)
2764 {
2765 int r1, r2, r3, r4;
2766
2767 r1 = write_dirty_bitset(cache);
2768 if (r1)
2769 DMERR("could not write dirty bitset");
2770
2771 r2 = write_discard_bitset(cache);
2772 if (r2)
2773 DMERR("could not write discard bitset");
2774
2775 save_stats(cache);
2776
2777 r3 = dm_cache_write_hints(cache->cmd, cache->policy);
2778 if (r3)
2779 DMERR("could not write hints");
2780
2781 /*
2782 * If writing the above metadata failed, we still commit, but don't
2783 * set the clean shutdown flag. This will effectively force every
2784 * dirty bit to be set on reload.
2785 */
2786 r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
2787 if (r4)
2788 DMERR("could not write cache metadata. Data loss may occur.");
2789
2790 return !r1 && !r2 && !r3 && !r4;
2791 }
2792
2793 static void cache_postsuspend(struct dm_target *ti)
2794 {
2795 struct cache *cache = ti->private;
2796
2797 start_quiescing(cache);
2798 wait_for_migrations(cache);
2799 stop_worker(cache);
2800 requeue_deferred_io(cache);
2801 stop_quiescing(cache);
2802
2803 (void) sync_metadata(cache);
2804 }
2805
2806 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2807 bool dirty, uint32_t hint, bool hint_valid)
2808 {
2809 int r;
2810 struct cache *cache = context;
2811
2812 r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
2813 if (r)
2814 return r;
2815
2816 if (dirty)
2817 set_dirty(cache, oblock, cblock);
2818 else
2819 clear_dirty(cache, oblock, cblock);
2820
2821 return 0;
2822 }
2823
2824 /*
2825 * The discard block size in the on disk metadata is not
2826 * neccessarily the same as we're currently using. So we have to
2827 * be careful to only set the discarded attribute if we know it
2828 * covers a complete block of the new size.
2829 */
2830 struct discard_load_info {
2831 struct cache *cache;
2832
2833 /*
2834 * These blocks are sized using the on disk dblock size, rather
2835 * than the current one.
2836 */
2837 dm_block_t block_size;
2838 dm_block_t discard_begin, discard_end;
2839 };
2840
2841 static void discard_load_info_init(struct cache *cache,
2842 struct discard_load_info *li)
2843 {
2844 li->cache = cache;
2845 li->discard_begin = li->discard_end = 0;
2846 }
2847
2848 static void set_discard_range(struct discard_load_info *li)
2849 {
2850 sector_t b, e;
2851
2852 if (li->discard_begin == li->discard_end)
2853 return;
2854
2855 /*
2856 * Convert to sectors.
2857 */
2858 b = li->discard_begin * li->block_size;
2859 e = li->discard_end * li->block_size;
2860
2861 /*
2862 * Then convert back to the current dblock size.
2863 */
2864 b = dm_sector_div_up(b, li->cache->discard_block_size);
2865 sector_div(e, li->cache->discard_block_size);
2866
2867 /*
2868 * The origin may have shrunk, so we need to check we're still in
2869 * bounds.
2870 */
2871 if (e > from_dblock(li->cache->discard_nr_blocks))
2872 e = from_dblock(li->cache->discard_nr_blocks);
2873
2874 for (; b < e; b++)
2875 set_discard(li->cache, to_dblock(b));
2876 }
2877
2878 static int load_discard(void *context, sector_t discard_block_size,
2879 dm_dblock_t dblock, bool discard)
2880 {
2881 struct discard_load_info *li = context;
2882
2883 li->block_size = discard_block_size;
2884
2885 if (discard) {
2886 if (from_dblock(dblock) == li->discard_end)
2887 /*
2888 * We're already in a discard range, just extend it.
2889 */
2890 li->discard_end = li->discard_end + 1ULL;
2891
2892 else {
2893 /*
2894 * Emit the old range and start a new one.
2895 */
2896 set_discard_range(li);
2897 li->discard_begin = from_dblock(dblock);
2898 li->discard_end = li->discard_begin + 1ULL;
2899 }
2900 } else {
2901 set_discard_range(li);
2902 li->discard_begin = li->discard_end = 0;
2903 }
2904
2905 return 0;
2906 }
2907
2908 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2909 {
2910 sector_t size = get_dev_size(cache->cache_dev);
2911 (void) sector_div(size, cache->sectors_per_block);
2912 return to_cblock(size);
2913 }
2914
2915 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2916 {
2917 if (from_cblock(new_size) > from_cblock(cache->cache_size))
2918 return true;
2919
2920 /*
2921 * We can't drop a dirty block when shrinking the cache.
2922 */
2923 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2924 new_size = to_cblock(from_cblock(new_size) + 1);
2925 if (is_dirty(cache, new_size)) {
2926 DMERR("unable to shrink cache; cache block %llu is dirty",
2927 (unsigned long long) from_cblock(new_size));
2928 return false;
2929 }
2930 }
2931
2932 return true;
2933 }
2934
2935 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2936 {
2937 int r;
2938
2939 r = dm_cache_resize(cache->cmd, new_size);
2940 if (r) {
2941 DMERR("could not resize cache metadata");
2942 return r;
2943 }
2944
2945 set_cache_size(cache, new_size);
2946
2947 return 0;
2948 }
2949
2950 static int cache_preresume(struct dm_target *ti)
2951 {
2952 int r = 0;
2953 struct cache *cache = ti->private;
2954 dm_cblock_t csize = get_cache_dev_size(cache);
2955
2956 /*
2957 * Check to see if the cache has resized.
2958 */
2959 if (!cache->sized) {
2960 r = resize_cache_dev(cache, csize);
2961 if (r)
2962 return r;
2963
2964 cache->sized = true;
2965
2966 } else if (csize != cache->cache_size) {
2967 if (!can_resize(cache, csize))
2968 return -EINVAL;
2969
2970 r = resize_cache_dev(cache, csize);
2971 if (r)
2972 return r;
2973 }
2974
2975 if (!cache->loaded_mappings) {
2976 r = dm_cache_load_mappings(cache->cmd, cache->policy,
2977 load_mapping, cache);
2978 if (r) {
2979 DMERR("could not load cache mappings");
2980 return r;
2981 }
2982
2983 cache->loaded_mappings = true;
2984 }
2985
2986 if (!cache->loaded_discards) {
2987 struct discard_load_info li;
2988
2989 /*
2990 * The discard bitset could have been resized, or the
2991 * discard block size changed. To be safe we start by
2992 * setting every dblock to not discarded.
2993 */
2994 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2995
2996 discard_load_info_init(cache, &li);
2997 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
2998 if (r) {
2999 DMERR("could not load origin discards");
3000 return r;
3001 }
3002 set_discard_range(&li);
3003
3004 cache->loaded_discards = true;
3005 }
3006
3007 return r;
3008 }
3009
3010 static void cache_resume(struct dm_target *ti)
3011 {
3012 struct cache *cache = ti->private;
3013
3014 cache->need_tick_bio = true;
3015 do_waker(&cache->waker.work);
3016 }
3017
3018 /*
3019 * Status format:
3020 *
3021 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3022 * <cache block size> <#used cache blocks>/<#total cache blocks>
3023 * <#read hits> <#read misses> <#write hits> <#write misses>
3024 * <#demotions> <#promotions> <#dirty>
3025 * <#features> <features>*
3026 * <#core args> <core args>
3027 * <policy name> <#policy args> <policy args>*
3028 */
3029 static void cache_status(struct dm_target *ti, status_type_t type,
3030 unsigned status_flags, char *result, unsigned maxlen)
3031 {
3032 int r = 0;
3033 unsigned i;
3034 ssize_t sz = 0;
3035 dm_block_t nr_free_blocks_metadata = 0;
3036 dm_block_t nr_blocks_metadata = 0;
3037 char buf[BDEVNAME_SIZE];
3038 struct cache *cache = ti->private;
3039 dm_cblock_t residency;
3040
3041 switch (type) {
3042 case STATUSTYPE_INFO:
3043 /* Commit to ensure statistics aren't out-of-date */
3044 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
3045 r = dm_cache_commit(cache->cmd, false);
3046 if (r)
3047 DMERR("could not commit metadata for accurate status");
3048 }
3049
3050 r = dm_cache_get_free_metadata_block_count(cache->cmd,
3051 &nr_free_blocks_metadata);
3052 if (r) {
3053 DMERR("could not get metadata free block count");
3054 goto err;
3055 }
3056
3057 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3058 if (r) {
3059 DMERR("could not get metadata device size");
3060 goto err;
3061 }
3062
3063 residency = policy_residency(cache->policy);
3064
3065 DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
3066 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3067 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3068 (unsigned long long)nr_blocks_metadata,
3069 cache->sectors_per_block,
3070 (unsigned long long) from_cblock(residency),
3071 (unsigned long long) from_cblock(cache->cache_size),
3072 (unsigned) atomic_read(&cache->stats.read_hit),
3073 (unsigned) atomic_read(&cache->stats.read_miss),
3074 (unsigned) atomic_read(&cache->stats.write_hit),
3075 (unsigned) atomic_read(&cache->stats.write_miss),
3076 (unsigned) atomic_read(&cache->stats.demotion),
3077 (unsigned) atomic_read(&cache->stats.promotion),
3078 (unsigned long) atomic_read(&cache->nr_dirty));
3079
3080 if (writethrough_mode(&cache->features))
3081 DMEMIT("1 writethrough ");
3082
3083 else if (passthrough_mode(&cache->features))
3084 DMEMIT("1 passthrough ");
3085
3086 else if (writeback_mode(&cache->features))
3087 DMEMIT("1 writeback ");
3088
3089 else {
3090 DMERR("internal error: unknown io mode: %d", (int) cache->features.io_mode);
3091 goto err;
3092 }
3093
3094 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3095
3096 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3097 if (sz < maxlen) {
3098 r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
3099 if (r)
3100 DMERR("policy_emit_config_values returned %d", r);
3101 }
3102
3103 break;
3104
3105 case STATUSTYPE_TABLE:
3106 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3107 DMEMIT("%s ", buf);
3108 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3109 DMEMIT("%s ", buf);
3110 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3111 DMEMIT("%s", buf);
3112
3113 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3114 DMEMIT(" %s", cache->ctr_args[i]);
3115 if (cache->nr_ctr_args)
3116 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3117 }
3118
3119 return;
3120
3121 err:
3122 DMEMIT("Error");
3123 }
3124
3125 /*
3126 * A cache block range can take two forms:
3127 *
3128 * i) A single cblock, eg. '3456'
3129 * ii) A begin and end cblock with dots between, eg. 123-234
3130 */
3131 static int parse_cblock_range(struct cache *cache, const char *str,
3132 struct cblock_range *result)
3133 {
3134 char dummy;
3135 uint64_t b, e;
3136 int r;
3137
3138 /*
3139 * Try and parse form (ii) first.
3140 */
3141 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3142 if (r < 0)
3143 return r;
3144
3145 if (r == 2) {
3146 result->begin = to_cblock(b);
3147 result->end = to_cblock(e);
3148 return 0;
3149 }
3150
3151 /*
3152 * That didn't work, try form (i).
3153 */
3154 r = sscanf(str, "%llu%c", &b, &dummy);
3155 if (r < 0)
3156 return r;
3157
3158 if (r == 1) {
3159 result->begin = to_cblock(b);
3160 result->end = to_cblock(from_cblock(result->begin) + 1u);
3161 return 0;
3162 }
3163
3164 DMERR("invalid cblock range '%s'", str);
3165 return -EINVAL;
3166 }
3167
3168 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3169 {
3170 uint64_t b = from_cblock(range->begin);
3171 uint64_t e = from_cblock(range->end);
3172 uint64_t n = from_cblock(cache->cache_size);
3173
3174 if (b >= n) {
3175 DMERR("begin cblock out of range: %llu >= %llu", b, n);
3176 return -EINVAL;
3177 }
3178
3179 if (e > n) {
3180 DMERR("end cblock out of range: %llu > %llu", e, n);
3181 return -EINVAL;
3182 }
3183
3184 if (b >= e) {
3185 DMERR("invalid cblock range: %llu >= %llu", b, e);
3186 return -EINVAL;
3187 }
3188
3189 return 0;
3190 }
3191
3192 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3193 {
3194 struct invalidation_request req;
3195
3196 INIT_LIST_HEAD(&req.list);
3197 req.cblocks = range;
3198 atomic_set(&req.complete, 0);
3199 req.err = 0;
3200 init_waitqueue_head(&req.result_wait);
3201
3202 spin_lock(&cache->invalidation_lock);
3203 list_add(&req.list, &cache->invalidation_requests);
3204 spin_unlock(&cache->invalidation_lock);
3205 wake_worker(cache);
3206
3207 wait_event(req.result_wait, atomic_read(&req.complete));
3208 return req.err;
3209 }
3210
3211 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3212 const char **cblock_ranges)
3213 {
3214 int r = 0;
3215 unsigned i;
3216 struct cblock_range range;
3217
3218 if (!passthrough_mode(&cache->features)) {
3219 DMERR("cache has to be in passthrough mode for invalidation");
3220 return -EPERM;
3221 }
3222
3223 for (i = 0; i < count; i++) {
3224 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3225 if (r)
3226 break;
3227
3228 r = validate_cblock_range(cache, &range);
3229 if (r)
3230 break;
3231
3232 /*
3233 * Pass begin and end origin blocks to the worker and wake it.
3234 */
3235 r = request_invalidation(cache, &range);
3236 if (r)
3237 break;
3238 }
3239
3240 return r;
3241 }
3242
3243 /*
3244 * Supports
3245 * "<key> <value>"
3246 * and
3247 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3248 *
3249 * The key migration_threshold is supported by the cache target core.
3250 */
3251 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3252 {
3253 struct cache *cache = ti->private;
3254
3255 if (!argc)
3256 return -EINVAL;
3257
3258 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3259 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3260
3261 if (argc != 2)
3262 return -EINVAL;
3263
3264 return set_config_value(cache, argv[0], argv[1]);
3265 }
3266
3267 static int cache_iterate_devices(struct dm_target *ti,
3268 iterate_devices_callout_fn fn, void *data)
3269 {
3270 int r = 0;
3271 struct cache *cache = ti->private;
3272
3273 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3274 if (!r)
3275 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3276
3277 return r;
3278 }
3279
3280 /*
3281 * We assume I/O is going to the origin (which is the volume
3282 * more likely to have restrictions e.g. by being striped).
3283 * (Looking up the exact location of the data would be expensive
3284 * and could always be out of date by the time the bio is submitted.)
3285 */
3286 static int cache_bvec_merge(struct dm_target *ti,
3287 struct bvec_merge_data *bvm,
3288 struct bio_vec *biovec, int max_size)
3289 {
3290 struct cache *cache = ti->private;
3291 struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
3292
3293 if (!q->merge_bvec_fn)
3294 return max_size;
3295
3296 bvm->bi_bdev = cache->origin_dev->bdev;
3297 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3298 }
3299
3300 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3301 {
3302 /*
3303 * FIXME: these limits may be incompatible with the cache device
3304 */
3305 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3306 cache->origin_sectors);
3307 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3308 }
3309
3310 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3311 {
3312 struct cache *cache = ti->private;
3313 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3314
3315 /*
3316 * If the system-determined stacked limits are compatible with the
3317 * cache's blocksize (io_opt is a factor) do not override them.
3318 */
3319 if (io_opt_sectors < cache->sectors_per_block ||
3320 do_div(io_opt_sectors, cache->sectors_per_block)) {
3321 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3322 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3323 }
3324 set_discard_limits(cache, limits);
3325 }
3326
3327 /*----------------------------------------------------------------*/
3328
3329 static struct target_type cache_target = {
3330 .name = "cache",
3331 .version = {1, 6, 0},
3332 .module = THIS_MODULE,
3333 .ctr = cache_ctr,
3334 .dtr = cache_dtr,
3335 .map = cache_map,
3336 .end_io = cache_end_io,
3337 .postsuspend = cache_postsuspend,
3338 .preresume = cache_preresume,
3339 .resume = cache_resume,
3340 .status = cache_status,
3341 .message = cache_message,
3342 .iterate_devices = cache_iterate_devices,
3343 .merge = cache_bvec_merge,
3344 .io_hints = cache_io_hints,
3345 };
3346
3347 static int __init dm_cache_init(void)
3348 {
3349 int r;
3350
3351 r = dm_register_target(&cache_target);
3352 if (r) {
3353 DMERR("cache target registration failed: %d", r);
3354 return r;
3355 }
3356
3357 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3358 if (!migration_cache) {
3359 dm_unregister_target(&cache_target);
3360 return -ENOMEM;
3361 }
3362
3363 return 0;
3364 }
3365
3366 static void __exit dm_cache_exit(void)
3367 {
3368 dm_unregister_target(&cache_target);
3369 kmem_cache_destroy(migration_cache);
3370 }
3371
3372 module_init(dm_cache_init);
3373 module_exit(dm_cache_exit);
3374
3375 MODULE_DESCRIPTION(DM_NAME " cache target");
3376 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3377 MODULE_LICENSE("GPL");
This page took 0.155302 seconds and 5 git commands to generate.