Merge branch 'dmapool' of git://git.kernel.org/pub/scm/linux/kernel/git/willy/misc
[deliverable/linux.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/crypto.h>
18 #include <linux/workqueue.h>
19 #include <linux/backing-dev.h>
20 #include <asm/atomic.h>
21 #include <linux/scatterlist.h>
22 #include <asm/page.h>
23 #include <asm/unaligned.h>
24
25 #include "dm.h"
26
27 #define DM_MSG_PREFIX "crypt"
28 #define MESG_STR(x) x, sizeof(x)
29
30 /*
31 * per bio private data
32 */
33 struct dm_crypt_io {
34 struct dm_target *target;
35 struct bio *base_bio;
36 struct work_struct work;
37 atomic_t pending;
38 int error;
39 };
40
41 /*
42 * context holding the current state of a multi-part conversion
43 */
44 struct convert_context {
45 struct bio *bio_in;
46 struct bio *bio_out;
47 unsigned int offset_in;
48 unsigned int offset_out;
49 unsigned int idx_in;
50 unsigned int idx_out;
51 sector_t sector;
52 int write;
53 };
54
55 struct crypt_config;
56
57 struct crypt_iv_operations {
58 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
59 const char *opts);
60 void (*dtr)(struct crypt_config *cc);
61 const char *(*status)(struct crypt_config *cc);
62 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
63 };
64
65 /*
66 * Crypt: maps a linear range of a block device
67 * and encrypts / decrypts at the same time.
68 */
69 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
70 struct crypt_config {
71 struct dm_dev *dev;
72 sector_t start;
73
74 /*
75 * pool for per bio private data and
76 * for encryption buffer pages
77 */
78 mempool_t *io_pool;
79 mempool_t *page_pool;
80 struct bio_set *bs;
81
82 struct workqueue_struct *io_queue;
83 struct workqueue_struct *crypt_queue;
84 /*
85 * crypto related data
86 */
87 struct crypt_iv_operations *iv_gen_ops;
88 char *iv_mode;
89 union {
90 struct crypto_cipher *essiv_tfm;
91 int benbi_shift;
92 } iv_gen_private;
93 sector_t iv_offset;
94 unsigned int iv_size;
95
96 char cipher[CRYPTO_MAX_ALG_NAME];
97 char chainmode[CRYPTO_MAX_ALG_NAME];
98 struct crypto_blkcipher *tfm;
99 unsigned long flags;
100 unsigned int key_size;
101 u8 key[0];
102 };
103
104 #define MIN_IOS 16
105 #define MIN_POOL_PAGES 32
106 #define MIN_BIO_PAGES 8
107
108 static struct kmem_cache *_crypt_io_pool;
109
110 static void clone_init(struct dm_crypt_io *, struct bio *);
111
112 /*
113 * Different IV generation algorithms:
114 *
115 * plain: the initial vector is the 32-bit little-endian version of the sector
116 * number, padded with zeros if necessary.
117 *
118 * essiv: "encrypted sector|salt initial vector", the sector number is
119 * encrypted with the bulk cipher using a salt as key. The salt
120 * should be derived from the bulk cipher's key via hashing.
121 *
122 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
123 * (needed for LRW-32-AES and possible other narrow block modes)
124 *
125 * null: the initial vector is always zero. Provides compatibility with
126 * obsolete loop_fish2 devices. Do not use for new devices.
127 *
128 * plumb: unimplemented, see:
129 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
130 */
131
132 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
133 {
134 memset(iv, 0, cc->iv_size);
135 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
136
137 return 0;
138 }
139
140 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
141 const char *opts)
142 {
143 struct crypto_cipher *essiv_tfm;
144 struct crypto_hash *hash_tfm;
145 struct hash_desc desc;
146 struct scatterlist sg;
147 unsigned int saltsize;
148 u8 *salt;
149 int err;
150
151 if (opts == NULL) {
152 ti->error = "Digest algorithm missing for ESSIV mode";
153 return -EINVAL;
154 }
155
156 /* Hash the cipher key with the given hash algorithm */
157 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
158 if (IS_ERR(hash_tfm)) {
159 ti->error = "Error initializing ESSIV hash";
160 return PTR_ERR(hash_tfm);
161 }
162
163 saltsize = crypto_hash_digestsize(hash_tfm);
164 salt = kmalloc(saltsize, GFP_KERNEL);
165 if (salt == NULL) {
166 ti->error = "Error kmallocing salt storage in ESSIV";
167 crypto_free_hash(hash_tfm);
168 return -ENOMEM;
169 }
170
171 sg_init_one(&sg, cc->key, cc->key_size);
172 desc.tfm = hash_tfm;
173 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
174 err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
175 crypto_free_hash(hash_tfm);
176
177 if (err) {
178 ti->error = "Error calculating hash in ESSIV";
179 kfree(salt);
180 return err;
181 }
182
183 /* Setup the essiv_tfm with the given salt */
184 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
185 if (IS_ERR(essiv_tfm)) {
186 ti->error = "Error allocating crypto tfm for ESSIV";
187 kfree(salt);
188 return PTR_ERR(essiv_tfm);
189 }
190 if (crypto_cipher_blocksize(essiv_tfm) !=
191 crypto_blkcipher_ivsize(cc->tfm)) {
192 ti->error = "Block size of ESSIV cipher does "
193 "not match IV size of block cipher";
194 crypto_free_cipher(essiv_tfm);
195 kfree(salt);
196 return -EINVAL;
197 }
198 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
199 if (err) {
200 ti->error = "Failed to set key for ESSIV cipher";
201 crypto_free_cipher(essiv_tfm);
202 kfree(salt);
203 return err;
204 }
205 kfree(salt);
206
207 cc->iv_gen_private.essiv_tfm = essiv_tfm;
208 return 0;
209 }
210
211 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
212 {
213 crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
214 cc->iv_gen_private.essiv_tfm = NULL;
215 }
216
217 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
218 {
219 memset(iv, 0, cc->iv_size);
220 *(u64 *)iv = cpu_to_le64(sector);
221 crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
222 return 0;
223 }
224
225 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
226 const char *opts)
227 {
228 unsigned int bs = crypto_blkcipher_blocksize(cc->tfm);
229 int log = ilog2(bs);
230
231 /* we need to calculate how far we must shift the sector count
232 * to get the cipher block count, we use this shift in _gen */
233
234 if (1 << log != bs) {
235 ti->error = "cypher blocksize is not a power of 2";
236 return -EINVAL;
237 }
238
239 if (log > 9) {
240 ti->error = "cypher blocksize is > 512";
241 return -EINVAL;
242 }
243
244 cc->iv_gen_private.benbi_shift = 9 - log;
245
246 return 0;
247 }
248
249 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
250 {
251 }
252
253 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
254 {
255 __be64 val;
256
257 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
258
259 val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
260 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
261
262 return 0;
263 }
264
265 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
266 {
267 memset(iv, 0, cc->iv_size);
268
269 return 0;
270 }
271
272 static struct crypt_iv_operations crypt_iv_plain_ops = {
273 .generator = crypt_iv_plain_gen
274 };
275
276 static struct crypt_iv_operations crypt_iv_essiv_ops = {
277 .ctr = crypt_iv_essiv_ctr,
278 .dtr = crypt_iv_essiv_dtr,
279 .generator = crypt_iv_essiv_gen
280 };
281
282 static struct crypt_iv_operations crypt_iv_benbi_ops = {
283 .ctr = crypt_iv_benbi_ctr,
284 .dtr = crypt_iv_benbi_dtr,
285 .generator = crypt_iv_benbi_gen
286 };
287
288 static struct crypt_iv_operations crypt_iv_null_ops = {
289 .generator = crypt_iv_null_gen
290 };
291
292 static int
293 crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
294 struct scatterlist *in, unsigned int length,
295 int write, sector_t sector)
296 {
297 u8 iv[cc->iv_size] __attribute__ ((aligned(__alignof__(u64))));
298 struct blkcipher_desc desc = {
299 .tfm = cc->tfm,
300 .info = iv,
301 .flags = CRYPTO_TFM_REQ_MAY_SLEEP,
302 };
303 int r;
304
305 if (cc->iv_gen_ops) {
306 r = cc->iv_gen_ops->generator(cc, iv, sector);
307 if (r < 0)
308 return r;
309
310 if (write)
311 r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
312 else
313 r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
314 } else {
315 if (write)
316 r = crypto_blkcipher_encrypt(&desc, out, in, length);
317 else
318 r = crypto_blkcipher_decrypt(&desc, out, in, length);
319 }
320
321 return r;
322 }
323
324 static void crypt_convert_init(struct crypt_config *cc,
325 struct convert_context *ctx,
326 struct bio *bio_out, struct bio *bio_in,
327 sector_t sector, int write)
328 {
329 ctx->bio_in = bio_in;
330 ctx->bio_out = bio_out;
331 ctx->offset_in = 0;
332 ctx->offset_out = 0;
333 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
334 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
335 ctx->sector = sector + cc->iv_offset;
336 ctx->write = write;
337 }
338
339 /*
340 * Encrypt / decrypt data from one bio to another one (can be the same one)
341 */
342 static int crypt_convert(struct crypt_config *cc,
343 struct convert_context *ctx)
344 {
345 int r = 0;
346
347 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
348 ctx->idx_out < ctx->bio_out->bi_vcnt) {
349 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
350 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
351 struct scatterlist sg_in, sg_out;
352
353 sg_init_table(&sg_in, 1);
354 sg_set_page(&sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT, bv_in->bv_offset + ctx->offset_in);
355
356 sg_init_table(&sg_out, 1);
357 sg_set_page(&sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT, bv_out->bv_offset + ctx->offset_out);
358
359 ctx->offset_in += sg_in.length;
360 if (ctx->offset_in >= bv_in->bv_len) {
361 ctx->offset_in = 0;
362 ctx->idx_in++;
363 }
364
365 ctx->offset_out += sg_out.length;
366 if (ctx->offset_out >= bv_out->bv_len) {
367 ctx->offset_out = 0;
368 ctx->idx_out++;
369 }
370
371 r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
372 ctx->write, ctx->sector);
373 if (r < 0)
374 break;
375
376 ctx->sector++;
377 }
378
379 return r;
380 }
381
382 static void dm_crypt_bio_destructor(struct bio *bio)
383 {
384 struct dm_crypt_io *io = bio->bi_private;
385 struct crypt_config *cc = io->target->private;
386
387 bio_free(bio, cc->bs);
388 }
389
390 /*
391 * Generate a new unfragmented bio with the given size
392 * This should never violate the device limitations
393 * May return a smaller bio when running out of pages
394 */
395 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
396 {
397 struct crypt_config *cc = io->target->private;
398 struct bio *clone;
399 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
400 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
401 unsigned i, len;
402 struct page *page;
403
404 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
405 if (!clone)
406 return NULL;
407
408 clone_init(io, clone);
409
410 for (i = 0; i < nr_iovecs; i++) {
411 page = mempool_alloc(cc->page_pool, gfp_mask);
412 if (!page)
413 break;
414
415 /*
416 * if additional pages cannot be allocated without waiting,
417 * return a partially allocated bio, the caller will then try
418 * to allocate additional bios while submitting this partial bio
419 */
420 if (i == (MIN_BIO_PAGES - 1))
421 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
422
423 len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
424
425 if (!bio_add_page(clone, page, len, 0)) {
426 mempool_free(page, cc->page_pool);
427 break;
428 }
429
430 size -= len;
431 }
432
433 if (!clone->bi_size) {
434 bio_put(clone);
435 return NULL;
436 }
437
438 return clone;
439 }
440
441 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
442 {
443 unsigned int i;
444 struct bio_vec *bv;
445
446 for (i = 0; i < clone->bi_vcnt; i++) {
447 bv = bio_iovec_idx(clone, i);
448 BUG_ON(!bv->bv_page);
449 mempool_free(bv->bv_page, cc->page_pool);
450 bv->bv_page = NULL;
451 }
452 }
453
454 /*
455 * One of the bios was finished. Check for completion of
456 * the whole request and correctly clean up the buffer.
457 */
458 static void crypt_dec_pending(struct dm_crypt_io *io, int error)
459 {
460 struct crypt_config *cc = (struct crypt_config *) io->target->private;
461
462 if (error < 0)
463 io->error = error;
464
465 if (!atomic_dec_and_test(&io->pending))
466 return;
467
468 bio_endio(io->base_bio, io->error);
469
470 mempool_free(io, cc->io_pool);
471 }
472
473 /*
474 * kcryptd/kcryptd_io:
475 *
476 * Needed because it would be very unwise to do decryption in an
477 * interrupt context.
478 *
479 * kcryptd performs the actual encryption or decryption.
480 *
481 * kcryptd_io performs the IO submission.
482 *
483 * They must be separated as otherwise the final stages could be
484 * starved by new requests which can block in the first stages due
485 * to memory allocation.
486 */
487 static void kcryptd_do_work(struct work_struct *work);
488 static void kcryptd_do_crypt(struct work_struct *work);
489
490 static void kcryptd_queue_io(struct dm_crypt_io *io)
491 {
492 struct crypt_config *cc = io->target->private;
493
494 INIT_WORK(&io->work, kcryptd_do_work);
495 queue_work(cc->io_queue, &io->work);
496 }
497
498 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
499 {
500 struct crypt_config *cc = io->target->private;
501
502 INIT_WORK(&io->work, kcryptd_do_crypt);
503 queue_work(cc->crypt_queue, &io->work);
504 }
505
506 static void crypt_endio(struct bio *clone, int error)
507 {
508 struct dm_crypt_io *io = clone->bi_private;
509 struct crypt_config *cc = io->target->private;
510 unsigned read_io = bio_data_dir(clone) == READ;
511
512 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
513 error = -EIO;
514
515 /*
516 * free the processed pages
517 */
518 if (!read_io) {
519 crypt_free_buffer_pages(cc, clone);
520 goto out;
521 }
522
523 if (unlikely(error))
524 goto out;
525
526 bio_put(clone);
527 kcryptd_queue_crypt(io);
528 return;
529
530 out:
531 bio_put(clone);
532 crypt_dec_pending(io, error);
533 }
534
535 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
536 {
537 struct crypt_config *cc = io->target->private;
538
539 clone->bi_private = io;
540 clone->bi_end_io = crypt_endio;
541 clone->bi_bdev = cc->dev->bdev;
542 clone->bi_rw = io->base_bio->bi_rw;
543 clone->bi_destructor = dm_crypt_bio_destructor;
544 }
545
546 static void process_read(struct dm_crypt_io *io)
547 {
548 struct crypt_config *cc = io->target->private;
549 struct bio *base_bio = io->base_bio;
550 struct bio *clone;
551 sector_t sector = base_bio->bi_sector - io->target->begin;
552
553 atomic_inc(&io->pending);
554
555 /*
556 * The block layer might modify the bvec array, so always
557 * copy the required bvecs because we need the original
558 * one in order to decrypt the whole bio data *afterwards*.
559 */
560 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
561 if (unlikely(!clone)) {
562 crypt_dec_pending(io, -ENOMEM);
563 return;
564 }
565
566 clone_init(io, clone);
567 clone->bi_idx = 0;
568 clone->bi_vcnt = bio_segments(base_bio);
569 clone->bi_size = base_bio->bi_size;
570 clone->bi_sector = cc->start + sector;
571 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
572 sizeof(struct bio_vec) * clone->bi_vcnt);
573
574 generic_make_request(clone);
575 }
576
577 static void process_write(struct dm_crypt_io *io)
578 {
579 struct crypt_config *cc = io->target->private;
580 struct bio *base_bio = io->base_bio;
581 struct bio *clone;
582 struct convert_context ctx;
583 unsigned remaining = base_bio->bi_size;
584 sector_t sector = base_bio->bi_sector - io->target->begin;
585
586 atomic_inc(&io->pending);
587
588 crypt_convert_init(cc, &ctx, NULL, base_bio, sector, 1);
589
590 /*
591 * The allocated buffers can be smaller than the whole bio,
592 * so repeat the whole process until all the data can be handled.
593 */
594 while (remaining) {
595 clone = crypt_alloc_buffer(io, remaining);
596 if (unlikely(!clone)) {
597 crypt_dec_pending(io, -ENOMEM);
598 return;
599 }
600
601 ctx.bio_out = clone;
602 ctx.idx_out = 0;
603
604 if (unlikely(crypt_convert(cc, &ctx) < 0)) {
605 crypt_free_buffer_pages(cc, clone);
606 bio_put(clone);
607 crypt_dec_pending(io, -EIO);
608 return;
609 }
610
611 /* crypt_convert should have filled the clone bio */
612 BUG_ON(ctx.idx_out < clone->bi_vcnt);
613
614 clone->bi_sector = cc->start + sector;
615 remaining -= clone->bi_size;
616 sector += bio_sectors(clone);
617
618 /* Grab another reference to the io struct
619 * before we kick off the request */
620 if (remaining)
621 atomic_inc(&io->pending);
622
623 generic_make_request(clone);
624
625 /* Do not reference clone after this - it
626 * may be gone already. */
627
628 /* out of memory -> run queues */
629 if (remaining)
630 congestion_wait(WRITE, HZ/100);
631 }
632 }
633
634 static void process_read_endio(struct dm_crypt_io *io)
635 {
636 struct crypt_config *cc = io->target->private;
637 struct convert_context ctx;
638
639 crypt_convert_init(cc, &ctx, io->base_bio, io->base_bio,
640 io->base_bio->bi_sector - io->target->begin, 0);
641
642 crypt_dec_pending(io, crypt_convert(cc, &ctx));
643 }
644
645 static void kcryptd_do_work(struct work_struct *work)
646 {
647 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
648
649 if (bio_data_dir(io->base_bio) == READ)
650 process_read(io);
651 }
652
653 static void kcryptd_do_crypt(struct work_struct *work)
654 {
655 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
656
657 if (bio_data_dir(io->base_bio) == READ)
658 process_read_endio(io);
659 else
660 process_write(io);
661 }
662
663 /*
664 * Decode key from its hex representation
665 */
666 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
667 {
668 char buffer[3];
669 char *endp;
670 unsigned int i;
671
672 buffer[2] = '\0';
673
674 for (i = 0; i < size; i++) {
675 buffer[0] = *hex++;
676 buffer[1] = *hex++;
677
678 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
679
680 if (endp != &buffer[2])
681 return -EINVAL;
682 }
683
684 if (*hex != '\0')
685 return -EINVAL;
686
687 return 0;
688 }
689
690 /*
691 * Encode key into its hex representation
692 */
693 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
694 {
695 unsigned int i;
696
697 for (i = 0; i < size; i++) {
698 sprintf(hex, "%02x", *key);
699 hex += 2;
700 key++;
701 }
702 }
703
704 static int crypt_set_key(struct crypt_config *cc, char *key)
705 {
706 unsigned key_size = strlen(key) >> 1;
707
708 if (cc->key_size && cc->key_size != key_size)
709 return -EINVAL;
710
711 cc->key_size = key_size; /* initial settings */
712
713 if ((!key_size && strcmp(key, "-")) ||
714 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
715 return -EINVAL;
716
717 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
718
719 return 0;
720 }
721
722 static int crypt_wipe_key(struct crypt_config *cc)
723 {
724 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
725 memset(&cc->key, 0, cc->key_size * sizeof(u8));
726 return 0;
727 }
728
729 /*
730 * Construct an encryption mapping:
731 * <cipher> <key> <iv_offset> <dev_path> <start>
732 */
733 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
734 {
735 struct crypt_config *cc;
736 struct crypto_blkcipher *tfm;
737 char *tmp;
738 char *cipher;
739 char *chainmode;
740 char *ivmode;
741 char *ivopts;
742 unsigned int key_size;
743 unsigned long long tmpll;
744
745 if (argc != 5) {
746 ti->error = "Not enough arguments";
747 return -EINVAL;
748 }
749
750 tmp = argv[0];
751 cipher = strsep(&tmp, "-");
752 chainmode = strsep(&tmp, "-");
753 ivopts = strsep(&tmp, "-");
754 ivmode = strsep(&ivopts, ":");
755
756 if (tmp)
757 DMWARN("Unexpected additional cipher options");
758
759 key_size = strlen(argv[1]) >> 1;
760
761 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
762 if (cc == NULL) {
763 ti->error =
764 "Cannot allocate transparent encryption context";
765 return -ENOMEM;
766 }
767
768 if (crypt_set_key(cc, argv[1])) {
769 ti->error = "Error decoding key";
770 goto bad_cipher;
771 }
772
773 /* Compatiblity mode for old dm-crypt cipher strings */
774 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
775 chainmode = "cbc";
776 ivmode = "plain";
777 }
778
779 if (strcmp(chainmode, "ecb") && !ivmode) {
780 ti->error = "This chaining mode requires an IV mechanism";
781 goto bad_cipher;
782 }
783
784 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
785 chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
786 ti->error = "Chain mode + cipher name is too long";
787 goto bad_cipher;
788 }
789
790 tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
791 if (IS_ERR(tfm)) {
792 ti->error = "Error allocating crypto tfm";
793 goto bad_cipher;
794 }
795
796 strcpy(cc->cipher, cipher);
797 strcpy(cc->chainmode, chainmode);
798 cc->tfm = tfm;
799
800 /*
801 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
802 * See comments at iv code
803 */
804
805 if (ivmode == NULL)
806 cc->iv_gen_ops = NULL;
807 else if (strcmp(ivmode, "plain") == 0)
808 cc->iv_gen_ops = &crypt_iv_plain_ops;
809 else if (strcmp(ivmode, "essiv") == 0)
810 cc->iv_gen_ops = &crypt_iv_essiv_ops;
811 else if (strcmp(ivmode, "benbi") == 0)
812 cc->iv_gen_ops = &crypt_iv_benbi_ops;
813 else if (strcmp(ivmode, "null") == 0)
814 cc->iv_gen_ops = &crypt_iv_null_ops;
815 else {
816 ti->error = "Invalid IV mode";
817 goto bad_ivmode;
818 }
819
820 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
821 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
822 goto bad_ivmode;
823
824 cc->iv_size = crypto_blkcipher_ivsize(tfm);
825 if (cc->iv_size)
826 /* at least a 64 bit sector number should fit in our buffer */
827 cc->iv_size = max(cc->iv_size,
828 (unsigned int)(sizeof(u64) / sizeof(u8)));
829 else {
830 if (cc->iv_gen_ops) {
831 DMWARN("Selected cipher does not support IVs");
832 if (cc->iv_gen_ops->dtr)
833 cc->iv_gen_ops->dtr(cc);
834 cc->iv_gen_ops = NULL;
835 }
836 }
837
838 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
839 if (!cc->io_pool) {
840 ti->error = "Cannot allocate crypt io mempool";
841 goto bad_slab_pool;
842 }
843
844 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
845 if (!cc->page_pool) {
846 ti->error = "Cannot allocate page mempool";
847 goto bad_page_pool;
848 }
849
850 cc->bs = bioset_create(MIN_IOS, MIN_IOS);
851 if (!cc->bs) {
852 ti->error = "Cannot allocate crypt bioset";
853 goto bad_bs;
854 }
855
856 if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
857 ti->error = "Error setting key";
858 goto bad_device;
859 }
860
861 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
862 ti->error = "Invalid iv_offset sector";
863 goto bad_device;
864 }
865 cc->iv_offset = tmpll;
866
867 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
868 ti->error = "Invalid device sector";
869 goto bad_device;
870 }
871 cc->start = tmpll;
872
873 if (dm_get_device(ti, argv[3], cc->start, ti->len,
874 dm_table_get_mode(ti->table), &cc->dev)) {
875 ti->error = "Device lookup failed";
876 goto bad_device;
877 }
878
879 if (ivmode && cc->iv_gen_ops) {
880 if (ivopts)
881 *(ivopts - 1) = ':';
882 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
883 if (!cc->iv_mode) {
884 ti->error = "Error kmallocing iv_mode string";
885 goto bad_ivmode_string;
886 }
887 strcpy(cc->iv_mode, ivmode);
888 } else
889 cc->iv_mode = NULL;
890
891 cc->io_queue = create_singlethread_workqueue("kcryptd_io");
892 if (!cc->io_queue) {
893 ti->error = "Couldn't create kcryptd io queue";
894 goto bad_io_queue;
895 }
896
897 cc->crypt_queue = create_singlethread_workqueue("kcryptd");
898 if (!cc->crypt_queue) {
899 ti->error = "Couldn't create kcryptd queue";
900 goto bad_crypt_queue;
901 }
902
903 ti->private = cc;
904 return 0;
905
906 bad_crypt_queue:
907 destroy_workqueue(cc->io_queue);
908 bad_io_queue:
909 kfree(cc->iv_mode);
910 bad_ivmode_string:
911 dm_put_device(ti, cc->dev);
912 bad_device:
913 bioset_free(cc->bs);
914 bad_bs:
915 mempool_destroy(cc->page_pool);
916 bad_page_pool:
917 mempool_destroy(cc->io_pool);
918 bad_slab_pool:
919 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
920 cc->iv_gen_ops->dtr(cc);
921 bad_ivmode:
922 crypto_free_blkcipher(tfm);
923 bad_cipher:
924 /* Must zero key material before freeing */
925 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
926 kfree(cc);
927 return -EINVAL;
928 }
929
930 static void crypt_dtr(struct dm_target *ti)
931 {
932 struct crypt_config *cc = (struct crypt_config *) ti->private;
933
934 destroy_workqueue(cc->io_queue);
935 destroy_workqueue(cc->crypt_queue);
936
937 bioset_free(cc->bs);
938 mempool_destroy(cc->page_pool);
939 mempool_destroy(cc->io_pool);
940
941 kfree(cc->iv_mode);
942 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
943 cc->iv_gen_ops->dtr(cc);
944 crypto_free_blkcipher(cc->tfm);
945 dm_put_device(ti, cc->dev);
946
947 /* Must zero key material before freeing */
948 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
949 kfree(cc);
950 }
951
952 static int crypt_map(struct dm_target *ti, struct bio *bio,
953 union map_info *map_context)
954 {
955 struct crypt_config *cc = ti->private;
956 struct dm_crypt_io *io;
957
958 io = mempool_alloc(cc->io_pool, GFP_NOIO);
959 io->target = ti;
960 io->base_bio = bio;
961 io->error = 0;
962 atomic_set(&io->pending, 0);
963
964 if (bio_data_dir(io->base_bio) == READ)
965 kcryptd_queue_io(io);
966 else
967 kcryptd_queue_crypt(io);
968
969 return DM_MAPIO_SUBMITTED;
970 }
971
972 static int crypt_status(struct dm_target *ti, status_type_t type,
973 char *result, unsigned int maxlen)
974 {
975 struct crypt_config *cc = (struct crypt_config *) ti->private;
976 unsigned int sz = 0;
977
978 switch (type) {
979 case STATUSTYPE_INFO:
980 result[0] = '\0';
981 break;
982
983 case STATUSTYPE_TABLE:
984 if (cc->iv_mode)
985 DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
986 cc->iv_mode);
987 else
988 DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
989
990 if (cc->key_size > 0) {
991 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
992 return -ENOMEM;
993
994 crypt_encode_key(result + sz, cc->key, cc->key_size);
995 sz += cc->key_size << 1;
996 } else {
997 if (sz >= maxlen)
998 return -ENOMEM;
999 result[sz++] = '-';
1000 }
1001
1002 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1003 cc->dev->name, (unsigned long long)cc->start);
1004 break;
1005 }
1006 return 0;
1007 }
1008
1009 static void crypt_postsuspend(struct dm_target *ti)
1010 {
1011 struct crypt_config *cc = ti->private;
1012
1013 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1014 }
1015
1016 static int crypt_preresume(struct dm_target *ti)
1017 {
1018 struct crypt_config *cc = ti->private;
1019
1020 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1021 DMERR("aborting resume - crypt key is not set.");
1022 return -EAGAIN;
1023 }
1024
1025 return 0;
1026 }
1027
1028 static void crypt_resume(struct dm_target *ti)
1029 {
1030 struct crypt_config *cc = ti->private;
1031
1032 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1033 }
1034
1035 /* Message interface
1036 * key set <key>
1037 * key wipe
1038 */
1039 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1040 {
1041 struct crypt_config *cc = ti->private;
1042
1043 if (argc < 2)
1044 goto error;
1045
1046 if (!strnicmp(argv[0], MESG_STR("key"))) {
1047 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1048 DMWARN("not suspended during key manipulation.");
1049 return -EINVAL;
1050 }
1051 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1052 return crypt_set_key(cc, argv[2]);
1053 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1054 return crypt_wipe_key(cc);
1055 }
1056
1057 error:
1058 DMWARN("unrecognised message received.");
1059 return -EINVAL;
1060 }
1061
1062 static struct target_type crypt_target = {
1063 .name = "crypt",
1064 .version= {1, 5, 0},
1065 .module = THIS_MODULE,
1066 .ctr = crypt_ctr,
1067 .dtr = crypt_dtr,
1068 .map = crypt_map,
1069 .status = crypt_status,
1070 .postsuspend = crypt_postsuspend,
1071 .preresume = crypt_preresume,
1072 .resume = crypt_resume,
1073 .message = crypt_message,
1074 };
1075
1076 static int __init dm_crypt_init(void)
1077 {
1078 int r;
1079
1080 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1081 if (!_crypt_io_pool)
1082 return -ENOMEM;
1083
1084 r = dm_register_target(&crypt_target);
1085 if (r < 0) {
1086 DMERR("register failed %d", r);
1087 kmem_cache_destroy(_crypt_io_pool);
1088 }
1089
1090 return r;
1091 }
1092
1093 static void __exit dm_crypt_exit(void)
1094 {
1095 int r = dm_unregister_target(&crypt_target);
1096
1097 if (r < 0)
1098 DMERR("unregister failed %d", r);
1099
1100 kmem_cache_destroy(_crypt_io_pool);
1101 }
1102
1103 module_init(dm_crypt_init);
1104 module_exit(dm_crypt_exit);
1105
1106 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1107 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1108 MODULE_LICENSE("GPL");
This page took 0.054165 seconds and 6 git commands to generate.