dm crypt: tidy crypt_endio
[deliverable/linux.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/crypto.h>
18 #include <linux/workqueue.h>
19 #include <linux/backing-dev.h>
20 #include <asm/atomic.h>
21 #include <linux/scatterlist.h>
22 #include <asm/page.h>
23 #include <asm/unaligned.h>
24
25 #include "dm.h"
26
27 #define DM_MSG_PREFIX "crypt"
28 #define MESG_STR(x) x, sizeof(x)
29
30 /*
31 * context holding the current state of a multi-part conversion
32 */
33 struct convert_context {
34 struct bio *bio_in;
35 struct bio *bio_out;
36 unsigned int offset_in;
37 unsigned int offset_out;
38 unsigned int idx_in;
39 unsigned int idx_out;
40 sector_t sector;
41 };
42
43 /*
44 * per bio private data
45 */
46 struct dm_crypt_io {
47 struct dm_target *target;
48 struct bio *base_bio;
49 struct work_struct work;
50
51 struct convert_context ctx;
52
53 atomic_t pending;
54 int error;
55 };
56
57 struct crypt_config;
58
59 struct crypt_iv_operations {
60 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
61 const char *opts);
62 void (*dtr)(struct crypt_config *cc);
63 const char *(*status)(struct crypt_config *cc);
64 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
65 };
66
67 /*
68 * Crypt: maps a linear range of a block device
69 * and encrypts / decrypts at the same time.
70 */
71 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
72 struct crypt_config {
73 struct dm_dev *dev;
74 sector_t start;
75
76 /*
77 * pool for per bio private data and
78 * for encryption buffer pages
79 */
80 mempool_t *io_pool;
81 mempool_t *page_pool;
82 struct bio_set *bs;
83
84 struct workqueue_struct *io_queue;
85 struct workqueue_struct *crypt_queue;
86 /*
87 * crypto related data
88 */
89 struct crypt_iv_operations *iv_gen_ops;
90 char *iv_mode;
91 union {
92 struct crypto_cipher *essiv_tfm;
93 int benbi_shift;
94 } iv_gen_private;
95 sector_t iv_offset;
96 unsigned int iv_size;
97
98 char cipher[CRYPTO_MAX_ALG_NAME];
99 char chainmode[CRYPTO_MAX_ALG_NAME];
100 struct crypto_blkcipher *tfm;
101 unsigned long flags;
102 unsigned int key_size;
103 u8 key[0];
104 };
105
106 #define MIN_IOS 16
107 #define MIN_POOL_PAGES 32
108 #define MIN_BIO_PAGES 8
109
110 static struct kmem_cache *_crypt_io_pool;
111
112 static void clone_init(struct dm_crypt_io *, struct bio *);
113
114 /*
115 * Different IV generation algorithms:
116 *
117 * plain: the initial vector is the 32-bit little-endian version of the sector
118 * number, padded with zeros if necessary.
119 *
120 * essiv: "encrypted sector|salt initial vector", the sector number is
121 * encrypted with the bulk cipher using a salt as key. The salt
122 * should be derived from the bulk cipher's key via hashing.
123 *
124 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
125 * (needed for LRW-32-AES and possible other narrow block modes)
126 *
127 * null: the initial vector is always zero. Provides compatibility with
128 * obsolete loop_fish2 devices. Do not use for new devices.
129 *
130 * plumb: unimplemented, see:
131 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
132 */
133
134 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
135 {
136 memset(iv, 0, cc->iv_size);
137 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
138
139 return 0;
140 }
141
142 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
143 const char *opts)
144 {
145 struct crypto_cipher *essiv_tfm;
146 struct crypto_hash *hash_tfm;
147 struct hash_desc desc;
148 struct scatterlist sg;
149 unsigned int saltsize;
150 u8 *salt;
151 int err;
152
153 if (opts == NULL) {
154 ti->error = "Digest algorithm missing for ESSIV mode";
155 return -EINVAL;
156 }
157
158 /* Hash the cipher key with the given hash algorithm */
159 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
160 if (IS_ERR(hash_tfm)) {
161 ti->error = "Error initializing ESSIV hash";
162 return PTR_ERR(hash_tfm);
163 }
164
165 saltsize = crypto_hash_digestsize(hash_tfm);
166 salt = kmalloc(saltsize, GFP_KERNEL);
167 if (salt == NULL) {
168 ti->error = "Error kmallocing salt storage in ESSIV";
169 crypto_free_hash(hash_tfm);
170 return -ENOMEM;
171 }
172
173 sg_init_one(&sg, cc->key, cc->key_size);
174 desc.tfm = hash_tfm;
175 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
176 err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
177 crypto_free_hash(hash_tfm);
178
179 if (err) {
180 ti->error = "Error calculating hash in ESSIV";
181 kfree(salt);
182 return err;
183 }
184
185 /* Setup the essiv_tfm with the given salt */
186 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
187 if (IS_ERR(essiv_tfm)) {
188 ti->error = "Error allocating crypto tfm for ESSIV";
189 kfree(salt);
190 return PTR_ERR(essiv_tfm);
191 }
192 if (crypto_cipher_blocksize(essiv_tfm) !=
193 crypto_blkcipher_ivsize(cc->tfm)) {
194 ti->error = "Block size of ESSIV cipher does "
195 "not match IV size of block cipher";
196 crypto_free_cipher(essiv_tfm);
197 kfree(salt);
198 return -EINVAL;
199 }
200 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
201 if (err) {
202 ti->error = "Failed to set key for ESSIV cipher";
203 crypto_free_cipher(essiv_tfm);
204 kfree(salt);
205 return err;
206 }
207 kfree(salt);
208
209 cc->iv_gen_private.essiv_tfm = essiv_tfm;
210 return 0;
211 }
212
213 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
214 {
215 crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
216 cc->iv_gen_private.essiv_tfm = NULL;
217 }
218
219 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
220 {
221 memset(iv, 0, cc->iv_size);
222 *(u64 *)iv = cpu_to_le64(sector);
223 crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
224 return 0;
225 }
226
227 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
228 const char *opts)
229 {
230 unsigned int bs = crypto_blkcipher_blocksize(cc->tfm);
231 int log = ilog2(bs);
232
233 /* we need to calculate how far we must shift the sector count
234 * to get the cipher block count, we use this shift in _gen */
235
236 if (1 << log != bs) {
237 ti->error = "cypher blocksize is not a power of 2";
238 return -EINVAL;
239 }
240
241 if (log > 9) {
242 ti->error = "cypher blocksize is > 512";
243 return -EINVAL;
244 }
245
246 cc->iv_gen_private.benbi_shift = 9 - log;
247
248 return 0;
249 }
250
251 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
252 {
253 }
254
255 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
256 {
257 __be64 val;
258
259 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
260
261 val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
262 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
263
264 return 0;
265 }
266
267 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
268 {
269 memset(iv, 0, cc->iv_size);
270
271 return 0;
272 }
273
274 static struct crypt_iv_operations crypt_iv_plain_ops = {
275 .generator = crypt_iv_plain_gen
276 };
277
278 static struct crypt_iv_operations crypt_iv_essiv_ops = {
279 .ctr = crypt_iv_essiv_ctr,
280 .dtr = crypt_iv_essiv_dtr,
281 .generator = crypt_iv_essiv_gen
282 };
283
284 static struct crypt_iv_operations crypt_iv_benbi_ops = {
285 .ctr = crypt_iv_benbi_ctr,
286 .dtr = crypt_iv_benbi_dtr,
287 .generator = crypt_iv_benbi_gen
288 };
289
290 static struct crypt_iv_operations crypt_iv_null_ops = {
291 .generator = crypt_iv_null_gen
292 };
293
294 static int
295 crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
296 struct scatterlist *in, unsigned int length,
297 int write, sector_t sector)
298 {
299 u8 iv[cc->iv_size] __attribute__ ((aligned(__alignof__(u64))));
300 struct blkcipher_desc desc = {
301 .tfm = cc->tfm,
302 .info = iv,
303 .flags = CRYPTO_TFM_REQ_MAY_SLEEP,
304 };
305 int r;
306
307 if (cc->iv_gen_ops) {
308 r = cc->iv_gen_ops->generator(cc, iv, sector);
309 if (r < 0)
310 return r;
311
312 if (write)
313 r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
314 else
315 r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
316 } else {
317 if (write)
318 r = crypto_blkcipher_encrypt(&desc, out, in, length);
319 else
320 r = crypto_blkcipher_decrypt(&desc, out, in, length);
321 }
322
323 return r;
324 }
325
326 static void crypt_convert_init(struct crypt_config *cc,
327 struct convert_context *ctx,
328 struct bio *bio_out, struct bio *bio_in,
329 sector_t sector)
330 {
331 ctx->bio_in = bio_in;
332 ctx->bio_out = bio_out;
333 ctx->offset_in = 0;
334 ctx->offset_out = 0;
335 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
336 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
337 ctx->sector = sector + cc->iv_offset;
338 }
339
340 /*
341 * Encrypt / decrypt data from one bio to another one (can be the same one)
342 */
343 static int crypt_convert(struct crypt_config *cc,
344 struct convert_context *ctx)
345 {
346 int r = 0;
347
348 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
349 ctx->idx_out < ctx->bio_out->bi_vcnt) {
350 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
351 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
352 struct scatterlist sg_in, sg_out;
353
354 sg_init_table(&sg_in, 1);
355 sg_set_page(&sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT, bv_in->bv_offset + ctx->offset_in);
356
357 sg_init_table(&sg_out, 1);
358 sg_set_page(&sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT, bv_out->bv_offset + ctx->offset_out);
359
360 ctx->offset_in += sg_in.length;
361 if (ctx->offset_in >= bv_in->bv_len) {
362 ctx->offset_in = 0;
363 ctx->idx_in++;
364 }
365
366 ctx->offset_out += sg_out.length;
367 if (ctx->offset_out >= bv_out->bv_len) {
368 ctx->offset_out = 0;
369 ctx->idx_out++;
370 }
371
372 r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
373 bio_data_dir(ctx->bio_in) == WRITE, ctx->sector);
374 if (r < 0)
375 break;
376
377 ctx->sector++;
378 }
379
380 return r;
381 }
382
383 static void dm_crypt_bio_destructor(struct bio *bio)
384 {
385 struct dm_crypt_io *io = bio->bi_private;
386 struct crypt_config *cc = io->target->private;
387
388 bio_free(bio, cc->bs);
389 }
390
391 /*
392 * Generate a new unfragmented bio with the given size
393 * This should never violate the device limitations
394 * May return a smaller bio when running out of pages
395 */
396 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
397 {
398 struct crypt_config *cc = io->target->private;
399 struct bio *clone;
400 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
401 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
402 unsigned i, len;
403 struct page *page;
404
405 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
406 if (!clone)
407 return NULL;
408
409 clone_init(io, clone);
410
411 for (i = 0; i < nr_iovecs; i++) {
412 page = mempool_alloc(cc->page_pool, gfp_mask);
413 if (!page)
414 break;
415
416 /*
417 * if additional pages cannot be allocated without waiting,
418 * return a partially allocated bio, the caller will then try
419 * to allocate additional bios while submitting this partial bio
420 */
421 if (i == (MIN_BIO_PAGES - 1))
422 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
423
424 len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
425
426 if (!bio_add_page(clone, page, len, 0)) {
427 mempool_free(page, cc->page_pool);
428 break;
429 }
430
431 size -= len;
432 }
433
434 if (!clone->bi_size) {
435 bio_put(clone);
436 return NULL;
437 }
438
439 return clone;
440 }
441
442 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
443 {
444 unsigned int i;
445 struct bio_vec *bv;
446
447 for (i = 0; i < clone->bi_vcnt; i++) {
448 bv = bio_iovec_idx(clone, i);
449 BUG_ON(!bv->bv_page);
450 mempool_free(bv->bv_page, cc->page_pool);
451 bv->bv_page = NULL;
452 }
453 }
454
455 /*
456 * One of the bios was finished. Check for completion of
457 * the whole request and correctly clean up the buffer.
458 */
459 static void crypt_dec_pending(struct dm_crypt_io *io)
460 {
461 struct crypt_config *cc = io->target->private;
462
463 if (!atomic_dec_and_test(&io->pending))
464 return;
465
466 bio_endio(io->base_bio, io->error);
467 mempool_free(io, cc->io_pool);
468 }
469
470 /*
471 * kcryptd/kcryptd_io:
472 *
473 * Needed because it would be very unwise to do decryption in an
474 * interrupt context.
475 *
476 * kcryptd performs the actual encryption or decryption.
477 *
478 * kcryptd_io performs the IO submission.
479 *
480 * They must be separated as otherwise the final stages could be
481 * starved by new requests which can block in the first stages due
482 * to memory allocation.
483 */
484 static void kcryptd_do_work(struct work_struct *work);
485 static void kcryptd_do_crypt(struct work_struct *work);
486
487 static void kcryptd_queue_io(struct dm_crypt_io *io)
488 {
489 struct crypt_config *cc = io->target->private;
490
491 INIT_WORK(&io->work, kcryptd_do_work);
492 queue_work(cc->io_queue, &io->work);
493 }
494
495 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
496 {
497 struct crypt_config *cc = io->target->private;
498
499 INIT_WORK(&io->work, kcryptd_do_crypt);
500 queue_work(cc->crypt_queue, &io->work);
501 }
502
503 static void crypt_endio(struct bio *clone, int error)
504 {
505 struct dm_crypt_io *io = clone->bi_private;
506 struct crypt_config *cc = io->target->private;
507 unsigned rw = bio_data_dir(clone);
508
509 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
510 error = -EIO;
511
512 /*
513 * free the processed pages
514 */
515 if (rw == WRITE)
516 crypt_free_buffer_pages(cc, clone);
517
518 bio_put(clone);
519
520 if (rw == READ && !error) {
521 kcryptd_queue_crypt(io);
522 return;
523 }
524
525 if (unlikely(error))
526 io->error = error;
527
528 crypt_dec_pending(io);
529 }
530
531 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
532 {
533 struct crypt_config *cc = io->target->private;
534
535 clone->bi_private = io;
536 clone->bi_end_io = crypt_endio;
537 clone->bi_bdev = cc->dev->bdev;
538 clone->bi_rw = io->base_bio->bi_rw;
539 clone->bi_destructor = dm_crypt_bio_destructor;
540 }
541
542 static void process_read(struct dm_crypt_io *io)
543 {
544 struct crypt_config *cc = io->target->private;
545 struct bio *base_bio = io->base_bio;
546 struct bio *clone;
547 sector_t sector = base_bio->bi_sector - io->target->begin;
548
549 atomic_inc(&io->pending);
550
551 /*
552 * The block layer might modify the bvec array, so always
553 * copy the required bvecs because we need the original
554 * one in order to decrypt the whole bio data *afterwards*.
555 */
556 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
557 if (unlikely(!clone)) {
558 io->error = -ENOMEM;
559 crypt_dec_pending(io);
560 return;
561 }
562
563 clone_init(io, clone);
564 clone->bi_idx = 0;
565 clone->bi_vcnt = bio_segments(base_bio);
566 clone->bi_size = base_bio->bi_size;
567 clone->bi_sector = cc->start + sector;
568 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
569 sizeof(struct bio_vec) * clone->bi_vcnt);
570
571 generic_make_request(clone);
572 }
573
574 static void process_write(struct dm_crypt_io *io)
575 {
576 struct crypt_config *cc = io->target->private;
577 struct bio *base_bio = io->base_bio;
578 struct bio *clone;
579 unsigned remaining = base_bio->bi_size;
580 sector_t sector = base_bio->bi_sector - io->target->begin;
581
582 atomic_inc(&io->pending);
583
584 crypt_convert_init(cc, &io->ctx, NULL, base_bio, sector);
585
586 /*
587 * The allocated buffers can be smaller than the whole bio,
588 * so repeat the whole process until all the data can be handled.
589 */
590 while (remaining) {
591 clone = crypt_alloc_buffer(io, remaining);
592 if (unlikely(!clone)) {
593 io->error = -ENOMEM;
594 crypt_dec_pending(io);
595 return;
596 }
597
598 io->ctx.bio_out = clone;
599 io->ctx.idx_out = 0;
600
601 if (unlikely(crypt_convert(cc, &io->ctx) < 0)) {
602 crypt_free_buffer_pages(cc, clone);
603 bio_put(clone);
604 io->error = -EIO;
605 crypt_dec_pending(io);
606 return;
607 }
608
609 /* crypt_convert should have filled the clone bio */
610 BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
611
612 clone->bi_sector = cc->start + sector;
613 remaining -= clone->bi_size;
614 sector += bio_sectors(clone);
615
616 /* Grab another reference to the io struct
617 * before we kick off the request */
618 if (remaining)
619 atomic_inc(&io->pending);
620
621 generic_make_request(clone);
622
623 /* Do not reference clone after this - it
624 * may be gone already. */
625
626 /* out of memory -> run queues */
627 if (remaining)
628 congestion_wait(WRITE, HZ/100);
629 }
630 }
631
632 static void crypt_read_done(struct dm_crypt_io *io, int error)
633 {
634 if (unlikely(error < 0))
635 io->error = -EIO;
636
637 crypt_dec_pending(io);
638 }
639
640 static void process_read_endio(struct dm_crypt_io *io)
641 {
642 struct crypt_config *cc = io->target->private;
643 int r = 0;
644
645 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
646 io->base_bio->bi_sector - io->target->begin);
647
648 r = crypt_convert(cc, &io->ctx);
649
650 crypt_read_done(io, r);
651 }
652
653 static void kcryptd_do_work(struct work_struct *work)
654 {
655 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
656
657 if (bio_data_dir(io->base_bio) == READ)
658 process_read(io);
659 }
660
661 static void kcryptd_do_crypt(struct work_struct *work)
662 {
663 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
664
665 if (bio_data_dir(io->base_bio) == READ)
666 process_read_endio(io);
667 else
668 process_write(io);
669 }
670
671 /*
672 * Decode key from its hex representation
673 */
674 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
675 {
676 char buffer[3];
677 char *endp;
678 unsigned int i;
679
680 buffer[2] = '\0';
681
682 for (i = 0; i < size; i++) {
683 buffer[0] = *hex++;
684 buffer[1] = *hex++;
685
686 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
687
688 if (endp != &buffer[2])
689 return -EINVAL;
690 }
691
692 if (*hex != '\0')
693 return -EINVAL;
694
695 return 0;
696 }
697
698 /*
699 * Encode key into its hex representation
700 */
701 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
702 {
703 unsigned int i;
704
705 for (i = 0; i < size; i++) {
706 sprintf(hex, "%02x", *key);
707 hex += 2;
708 key++;
709 }
710 }
711
712 static int crypt_set_key(struct crypt_config *cc, char *key)
713 {
714 unsigned key_size = strlen(key) >> 1;
715
716 if (cc->key_size && cc->key_size != key_size)
717 return -EINVAL;
718
719 cc->key_size = key_size; /* initial settings */
720
721 if ((!key_size && strcmp(key, "-")) ||
722 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
723 return -EINVAL;
724
725 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
726
727 return 0;
728 }
729
730 static int crypt_wipe_key(struct crypt_config *cc)
731 {
732 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
733 memset(&cc->key, 0, cc->key_size * sizeof(u8));
734 return 0;
735 }
736
737 /*
738 * Construct an encryption mapping:
739 * <cipher> <key> <iv_offset> <dev_path> <start>
740 */
741 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
742 {
743 struct crypt_config *cc;
744 struct crypto_blkcipher *tfm;
745 char *tmp;
746 char *cipher;
747 char *chainmode;
748 char *ivmode;
749 char *ivopts;
750 unsigned int key_size;
751 unsigned long long tmpll;
752
753 if (argc != 5) {
754 ti->error = "Not enough arguments";
755 return -EINVAL;
756 }
757
758 tmp = argv[0];
759 cipher = strsep(&tmp, "-");
760 chainmode = strsep(&tmp, "-");
761 ivopts = strsep(&tmp, "-");
762 ivmode = strsep(&ivopts, ":");
763
764 if (tmp)
765 DMWARN("Unexpected additional cipher options");
766
767 key_size = strlen(argv[1]) >> 1;
768
769 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
770 if (cc == NULL) {
771 ti->error =
772 "Cannot allocate transparent encryption context";
773 return -ENOMEM;
774 }
775
776 if (crypt_set_key(cc, argv[1])) {
777 ti->error = "Error decoding key";
778 goto bad_cipher;
779 }
780
781 /* Compatiblity mode for old dm-crypt cipher strings */
782 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
783 chainmode = "cbc";
784 ivmode = "plain";
785 }
786
787 if (strcmp(chainmode, "ecb") && !ivmode) {
788 ti->error = "This chaining mode requires an IV mechanism";
789 goto bad_cipher;
790 }
791
792 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
793 chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
794 ti->error = "Chain mode + cipher name is too long";
795 goto bad_cipher;
796 }
797
798 tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
799 if (IS_ERR(tfm)) {
800 ti->error = "Error allocating crypto tfm";
801 goto bad_cipher;
802 }
803
804 strcpy(cc->cipher, cipher);
805 strcpy(cc->chainmode, chainmode);
806 cc->tfm = tfm;
807
808 /*
809 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
810 * See comments at iv code
811 */
812
813 if (ivmode == NULL)
814 cc->iv_gen_ops = NULL;
815 else if (strcmp(ivmode, "plain") == 0)
816 cc->iv_gen_ops = &crypt_iv_plain_ops;
817 else if (strcmp(ivmode, "essiv") == 0)
818 cc->iv_gen_ops = &crypt_iv_essiv_ops;
819 else if (strcmp(ivmode, "benbi") == 0)
820 cc->iv_gen_ops = &crypt_iv_benbi_ops;
821 else if (strcmp(ivmode, "null") == 0)
822 cc->iv_gen_ops = &crypt_iv_null_ops;
823 else {
824 ti->error = "Invalid IV mode";
825 goto bad_ivmode;
826 }
827
828 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
829 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
830 goto bad_ivmode;
831
832 cc->iv_size = crypto_blkcipher_ivsize(tfm);
833 if (cc->iv_size)
834 /* at least a 64 bit sector number should fit in our buffer */
835 cc->iv_size = max(cc->iv_size,
836 (unsigned int)(sizeof(u64) / sizeof(u8)));
837 else {
838 if (cc->iv_gen_ops) {
839 DMWARN("Selected cipher does not support IVs");
840 if (cc->iv_gen_ops->dtr)
841 cc->iv_gen_ops->dtr(cc);
842 cc->iv_gen_ops = NULL;
843 }
844 }
845
846 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
847 if (!cc->io_pool) {
848 ti->error = "Cannot allocate crypt io mempool";
849 goto bad_slab_pool;
850 }
851
852 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
853 if (!cc->page_pool) {
854 ti->error = "Cannot allocate page mempool";
855 goto bad_page_pool;
856 }
857
858 cc->bs = bioset_create(MIN_IOS, MIN_IOS);
859 if (!cc->bs) {
860 ti->error = "Cannot allocate crypt bioset";
861 goto bad_bs;
862 }
863
864 if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
865 ti->error = "Error setting key";
866 goto bad_device;
867 }
868
869 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
870 ti->error = "Invalid iv_offset sector";
871 goto bad_device;
872 }
873 cc->iv_offset = tmpll;
874
875 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
876 ti->error = "Invalid device sector";
877 goto bad_device;
878 }
879 cc->start = tmpll;
880
881 if (dm_get_device(ti, argv[3], cc->start, ti->len,
882 dm_table_get_mode(ti->table), &cc->dev)) {
883 ti->error = "Device lookup failed";
884 goto bad_device;
885 }
886
887 if (ivmode && cc->iv_gen_ops) {
888 if (ivopts)
889 *(ivopts - 1) = ':';
890 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
891 if (!cc->iv_mode) {
892 ti->error = "Error kmallocing iv_mode string";
893 goto bad_ivmode_string;
894 }
895 strcpy(cc->iv_mode, ivmode);
896 } else
897 cc->iv_mode = NULL;
898
899 cc->io_queue = create_singlethread_workqueue("kcryptd_io");
900 if (!cc->io_queue) {
901 ti->error = "Couldn't create kcryptd io queue";
902 goto bad_io_queue;
903 }
904
905 cc->crypt_queue = create_singlethread_workqueue("kcryptd");
906 if (!cc->crypt_queue) {
907 ti->error = "Couldn't create kcryptd queue";
908 goto bad_crypt_queue;
909 }
910
911 ti->private = cc;
912 return 0;
913
914 bad_crypt_queue:
915 destroy_workqueue(cc->io_queue);
916 bad_io_queue:
917 kfree(cc->iv_mode);
918 bad_ivmode_string:
919 dm_put_device(ti, cc->dev);
920 bad_device:
921 bioset_free(cc->bs);
922 bad_bs:
923 mempool_destroy(cc->page_pool);
924 bad_page_pool:
925 mempool_destroy(cc->io_pool);
926 bad_slab_pool:
927 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
928 cc->iv_gen_ops->dtr(cc);
929 bad_ivmode:
930 crypto_free_blkcipher(tfm);
931 bad_cipher:
932 /* Must zero key material before freeing */
933 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
934 kfree(cc);
935 return -EINVAL;
936 }
937
938 static void crypt_dtr(struct dm_target *ti)
939 {
940 struct crypt_config *cc = (struct crypt_config *) ti->private;
941
942 destroy_workqueue(cc->io_queue);
943 destroy_workqueue(cc->crypt_queue);
944
945 bioset_free(cc->bs);
946 mempool_destroy(cc->page_pool);
947 mempool_destroy(cc->io_pool);
948
949 kfree(cc->iv_mode);
950 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
951 cc->iv_gen_ops->dtr(cc);
952 crypto_free_blkcipher(cc->tfm);
953 dm_put_device(ti, cc->dev);
954
955 /* Must zero key material before freeing */
956 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
957 kfree(cc);
958 }
959
960 static int crypt_map(struct dm_target *ti, struct bio *bio,
961 union map_info *map_context)
962 {
963 struct crypt_config *cc = ti->private;
964 struct dm_crypt_io *io;
965
966 io = mempool_alloc(cc->io_pool, GFP_NOIO);
967 io->target = ti;
968 io->base_bio = bio;
969 io->error = 0;
970 atomic_set(&io->pending, 0);
971
972 if (bio_data_dir(io->base_bio) == READ)
973 kcryptd_queue_io(io);
974 else
975 kcryptd_queue_crypt(io);
976
977 return DM_MAPIO_SUBMITTED;
978 }
979
980 static int crypt_status(struct dm_target *ti, status_type_t type,
981 char *result, unsigned int maxlen)
982 {
983 struct crypt_config *cc = (struct crypt_config *) ti->private;
984 unsigned int sz = 0;
985
986 switch (type) {
987 case STATUSTYPE_INFO:
988 result[0] = '\0';
989 break;
990
991 case STATUSTYPE_TABLE:
992 if (cc->iv_mode)
993 DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
994 cc->iv_mode);
995 else
996 DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
997
998 if (cc->key_size > 0) {
999 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1000 return -ENOMEM;
1001
1002 crypt_encode_key(result + sz, cc->key, cc->key_size);
1003 sz += cc->key_size << 1;
1004 } else {
1005 if (sz >= maxlen)
1006 return -ENOMEM;
1007 result[sz++] = '-';
1008 }
1009
1010 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1011 cc->dev->name, (unsigned long long)cc->start);
1012 break;
1013 }
1014 return 0;
1015 }
1016
1017 static void crypt_postsuspend(struct dm_target *ti)
1018 {
1019 struct crypt_config *cc = ti->private;
1020
1021 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1022 }
1023
1024 static int crypt_preresume(struct dm_target *ti)
1025 {
1026 struct crypt_config *cc = ti->private;
1027
1028 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1029 DMERR("aborting resume - crypt key is not set.");
1030 return -EAGAIN;
1031 }
1032
1033 return 0;
1034 }
1035
1036 static void crypt_resume(struct dm_target *ti)
1037 {
1038 struct crypt_config *cc = ti->private;
1039
1040 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1041 }
1042
1043 /* Message interface
1044 * key set <key>
1045 * key wipe
1046 */
1047 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1048 {
1049 struct crypt_config *cc = ti->private;
1050
1051 if (argc < 2)
1052 goto error;
1053
1054 if (!strnicmp(argv[0], MESG_STR("key"))) {
1055 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1056 DMWARN("not suspended during key manipulation.");
1057 return -EINVAL;
1058 }
1059 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1060 return crypt_set_key(cc, argv[2]);
1061 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1062 return crypt_wipe_key(cc);
1063 }
1064
1065 error:
1066 DMWARN("unrecognised message received.");
1067 return -EINVAL;
1068 }
1069
1070 static struct target_type crypt_target = {
1071 .name = "crypt",
1072 .version= {1, 5, 0},
1073 .module = THIS_MODULE,
1074 .ctr = crypt_ctr,
1075 .dtr = crypt_dtr,
1076 .map = crypt_map,
1077 .status = crypt_status,
1078 .postsuspend = crypt_postsuspend,
1079 .preresume = crypt_preresume,
1080 .resume = crypt_resume,
1081 .message = crypt_message,
1082 };
1083
1084 static int __init dm_crypt_init(void)
1085 {
1086 int r;
1087
1088 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1089 if (!_crypt_io_pool)
1090 return -ENOMEM;
1091
1092 r = dm_register_target(&crypt_target);
1093 if (r < 0) {
1094 DMERR("register failed %d", r);
1095 kmem_cache_destroy(_crypt_io_pool);
1096 }
1097
1098 return r;
1099 }
1100
1101 static void __exit dm_crypt_exit(void)
1102 {
1103 int r = dm_unregister_target(&crypt_target);
1104
1105 if (r < 0)
1106 DMERR("unregister failed %d", r);
1107
1108 kmem_cache_destroy(_crypt_io_pool);
1109 }
1110
1111 module_init(dm_crypt_init);
1112 module_exit(dm_crypt_exit);
1113
1114 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1115 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1116 MODULE_LICENSE("GPL");
This page took 0.05417 seconds and 6 git commands to generate.