staging: rtl8192u: Remove commented header.
[deliverable/linux.git] / drivers / md / dm-raid.c
1 /*
2 * Copyright (C) 2010-2011 Neil Brown
3 * Copyright (C) 2010-2014 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16
17 #include <linux/device-mapper.h>
18
19 #define DM_MSG_PREFIX "raid"
20
21 static bool devices_handle_discard_safely = false;
22
23 /*
24 * The following flags are used by dm-raid.c to set up the array state.
25 * They must be cleared before md_run is called.
26 */
27 #define FirstUse 10 /* rdev flag */
28
29 struct raid_dev {
30 /*
31 * Two DM devices, one to hold metadata and one to hold the
32 * actual data/parity. The reason for this is to not confuse
33 * ti->len and give more flexibility in altering size and
34 * characteristics.
35 *
36 * While it is possible for this device to be associated
37 * with a different physical device than the data_dev, it
38 * is intended for it to be the same.
39 * |--------- Physical Device ---------|
40 * |- meta_dev -|------ data_dev ------|
41 */
42 struct dm_dev *meta_dev;
43 struct dm_dev *data_dev;
44 struct md_rdev rdev;
45 };
46
47 /*
48 * Flags for rs->print_flags field.
49 */
50 #define DMPF_SYNC 0x1
51 #define DMPF_NOSYNC 0x2
52 #define DMPF_REBUILD 0x4
53 #define DMPF_DAEMON_SLEEP 0x8
54 #define DMPF_MIN_RECOVERY_RATE 0x10
55 #define DMPF_MAX_RECOVERY_RATE 0x20
56 #define DMPF_MAX_WRITE_BEHIND 0x40
57 #define DMPF_STRIPE_CACHE 0x80
58 #define DMPF_REGION_SIZE 0x100
59 #define DMPF_RAID10_COPIES 0x200
60 #define DMPF_RAID10_FORMAT 0x400
61
62 struct raid_set {
63 struct dm_target *ti;
64
65 uint32_t bitmap_loaded;
66 uint32_t print_flags;
67
68 struct mddev md;
69 struct raid_type *raid_type;
70 struct dm_target_callbacks callbacks;
71
72 struct raid_dev dev[0];
73 };
74
75 /* Supported raid types and properties. */
76 static struct raid_type {
77 const char *name; /* RAID algorithm. */
78 const char *descr; /* Descriptor text for logging. */
79 const unsigned parity_devs; /* # of parity devices. */
80 const unsigned minimal_devs; /* minimal # of devices in set. */
81 const unsigned level; /* RAID level. */
82 const unsigned algorithm; /* RAID algorithm. */
83 } raid_types[] = {
84 {"raid1", "RAID1 (mirroring)", 0, 2, 1, 0 /* NONE */},
85 {"raid10", "RAID10 (striped mirrors)", 0, 2, 10, UINT_MAX /* Varies */},
86 {"raid4", "RAID4 (dedicated parity disk)", 1, 2, 5, ALGORITHM_PARITY_0},
87 {"raid5_la", "RAID5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
88 {"raid5_ra", "RAID5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
89 {"raid5_ls", "RAID5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
90 {"raid5_rs", "RAID5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
91 {"raid6_zr", "RAID6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
92 {"raid6_nr", "RAID6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
93 {"raid6_nc", "RAID6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
94 };
95
96 static char *raid10_md_layout_to_format(int layout)
97 {
98 /*
99 * Bit 16 and 17 stand for "offset" and "use_far_sets"
100 * Refer to MD's raid10.c for details
101 */
102 if ((layout & 0x10000) && (layout & 0x20000))
103 return "offset";
104
105 if ((layout & 0xFF) > 1)
106 return "near";
107
108 return "far";
109 }
110
111 static unsigned raid10_md_layout_to_copies(int layout)
112 {
113 if ((layout & 0xFF) > 1)
114 return layout & 0xFF;
115 return (layout >> 8) & 0xFF;
116 }
117
118 static int raid10_format_to_md_layout(char *format, unsigned copies)
119 {
120 unsigned n = 1, f = 1;
121
122 if (!strcmp("near", format))
123 n = copies;
124 else
125 f = copies;
126
127 if (!strcmp("offset", format))
128 return 0x30000 | (f << 8) | n;
129
130 if (!strcmp("far", format))
131 return 0x20000 | (f << 8) | n;
132
133 return (f << 8) | n;
134 }
135
136 static struct raid_type *get_raid_type(char *name)
137 {
138 int i;
139
140 for (i = 0; i < ARRAY_SIZE(raid_types); i++)
141 if (!strcmp(raid_types[i].name, name))
142 return &raid_types[i];
143
144 return NULL;
145 }
146
147 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
148 {
149 unsigned i;
150 struct raid_set *rs;
151
152 if (raid_devs <= raid_type->parity_devs) {
153 ti->error = "Insufficient number of devices";
154 return ERR_PTR(-EINVAL);
155 }
156
157 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
158 if (!rs) {
159 ti->error = "Cannot allocate raid context";
160 return ERR_PTR(-ENOMEM);
161 }
162
163 mddev_init(&rs->md);
164
165 rs->ti = ti;
166 rs->raid_type = raid_type;
167 rs->md.raid_disks = raid_devs;
168 rs->md.level = raid_type->level;
169 rs->md.new_level = rs->md.level;
170 rs->md.layout = raid_type->algorithm;
171 rs->md.new_layout = rs->md.layout;
172 rs->md.delta_disks = 0;
173 rs->md.recovery_cp = 0;
174
175 for (i = 0; i < raid_devs; i++)
176 md_rdev_init(&rs->dev[i].rdev);
177
178 /*
179 * Remaining items to be initialized by further RAID params:
180 * rs->md.persistent
181 * rs->md.external
182 * rs->md.chunk_sectors
183 * rs->md.new_chunk_sectors
184 * rs->md.dev_sectors
185 */
186
187 return rs;
188 }
189
190 static void context_free(struct raid_set *rs)
191 {
192 int i;
193
194 for (i = 0; i < rs->md.raid_disks; i++) {
195 if (rs->dev[i].meta_dev)
196 dm_put_device(rs->ti, rs->dev[i].meta_dev);
197 md_rdev_clear(&rs->dev[i].rdev);
198 if (rs->dev[i].data_dev)
199 dm_put_device(rs->ti, rs->dev[i].data_dev);
200 }
201
202 kfree(rs);
203 }
204
205 /*
206 * For every device we have two words
207 * <meta_dev>: meta device name or '-' if missing
208 * <data_dev>: data device name or '-' if missing
209 *
210 * The following are permitted:
211 * - -
212 * - <data_dev>
213 * <meta_dev> <data_dev>
214 *
215 * The following is not allowed:
216 * <meta_dev> -
217 *
218 * This code parses those words. If there is a failure,
219 * the caller must use context_free to unwind the operations.
220 */
221 static int dev_parms(struct raid_set *rs, char **argv)
222 {
223 int i;
224 int rebuild = 0;
225 int metadata_available = 0;
226 int ret = 0;
227
228 for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
229 rs->dev[i].rdev.raid_disk = i;
230
231 rs->dev[i].meta_dev = NULL;
232 rs->dev[i].data_dev = NULL;
233
234 /*
235 * There are no offsets, since there is a separate device
236 * for data and metadata.
237 */
238 rs->dev[i].rdev.data_offset = 0;
239 rs->dev[i].rdev.mddev = &rs->md;
240
241 if (strcmp(argv[0], "-")) {
242 ret = dm_get_device(rs->ti, argv[0],
243 dm_table_get_mode(rs->ti->table),
244 &rs->dev[i].meta_dev);
245 rs->ti->error = "RAID metadata device lookup failure";
246 if (ret)
247 return ret;
248
249 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
250 if (!rs->dev[i].rdev.sb_page)
251 return -ENOMEM;
252 }
253
254 if (!strcmp(argv[1], "-")) {
255 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
256 (!rs->dev[i].rdev.recovery_offset)) {
257 rs->ti->error = "Drive designated for rebuild not specified";
258 return -EINVAL;
259 }
260
261 rs->ti->error = "No data device supplied with metadata device";
262 if (rs->dev[i].meta_dev)
263 return -EINVAL;
264
265 continue;
266 }
267
268 ret = dm_get_device(rs->ti, argv[1],
269 dm_table_get_mode(rs->ti->table),
270 &rs->dev[i].data_dev);
271 if (ret) {
272 rs->ti->error = "RAID device lookup failure";
273 return ret;
274 }
275
276 if (rs->dev[i].meta_dev) {
277 metadata_available = 1;
278 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
279 }
280 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
281 list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
282 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
283 rebuild++;
284 }
285
286 if (metadata_available) {
287 rs->md.external = 0;
288 rs->md.persistent = 1;
289 rs->md.major_version = 2;
290 } else if (rebuild && !rs->md.recovery_cp) {
291 /*
292 * Without metadata, we will not be able to tell if the array
293 * is in-sync or not - we must assume it is not. Therefore,
294 * it is impossible to rebuild a drive.
295 *
296 * Even if there is metadata, the on-disk information may
297 * indicate that the array is not in-sync and it will then
298 * fail at that time.
299 *
300 * User could specify 'nosync' option if desperate.
301 */
302 DMERR("Unable to rebuild drive while array is not in-sync");
303 rs->ti->error = "RAID device lookup failure";
304 return -EINVAL;
305 }
306
307 return 0;
308 }
309
310 /*
311 * validate_region_size
312 * @rs
313 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
314 *
315 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
316 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
317 *
318 * Returns: 0 on success, -EINVAL on failure.
319 */
320 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
321 {
322 unsigned long min_region_size = rs->ti->len / (1 << 21);
323
324 if (!region_size) {
325 /*
326 * Choose a reasonable default. All figures in sectors.
327 */
328 if (min_region_size > (1 << 13)) {
329 /* If not a power of 2, make it the next power of 2 */
330 if (min_region_size & (min_region_size - 1))
331 region_size = 1 << fls(region_size);
332 DMINFO("Choosing default region size of %lu sectors",
333 region_size);
334 } else {
335 DMINFO("Choosing default region size of 4MiB");
336 region_size = 1 << 13; /* sectors */
337 }
338 } else {
339 /*
340 * Validate user-supplied value.
341 */
342 if (region_size > rs->ti->len) {
343 rs->ti->error = "Supplied region size is too large";
344 return -EINVAL;
345 }
346
347 if (region_size < min_region_size) {
348 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
349 region_size, min_region_size);
350 rs->ti->error = "Supplied region size is too small";
351 return -EINVAL;
352 }
353
354 if (!is_power_of_2(region_size)) {
355 rs->ti->error = "Region size is not a power of 2";
356 return -EINVAL;
357 }
358
359 if (region_size < rs->md.chunk_sectors) {
360 rs->ti->error = "Region size is smaller than the chunk size";
361 return -EINVAL;
362 }
363 }
364
365 /*
366 * Convert sectors to bytes.
367 */
368 rs->md.bitmap_info.chunksize = (region_size << 9);
369
370 return 0;
371 }
372
373 /*
374 * validate_raid_redundancy
375 * @rs
376 *
377 * Determine if there are enough devices in the array that haven't
378 * failed (or are being rebuilt) to form a usable array.
379 *
380 * Returns: 0 on success, -EINVAL on failure.
381 */
382 static int validate_raid_redundancy(struct raid_set *rs)
383 {
384 unsigned i, rebuild_cnt = 0;
385 unsigned rebuilds_per_group = 0, copies, d;
386 unsigned group_size, last_group_start;
387
388 for (i = 0; i < rs->md.raid_disks; i++)
389 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
390 !rs->dev[i].rdev.sb_page)
391 rebuild_cnt++;
392
393 switch (rs->raid_type->level) {
394 case 1:
395 if (rebuild_cnt >= rs->md.raid_disks)
396 goto too_many;
397 break;
398 case 4:
399 case 5:
400 case 6:
401 if (rebuild_cnt > rs->raid_type->parity_devs)
402 goto too_many;
403 break;
404 case 10:
405 copies = raid10_md_layout_to_copies(rs->md.layout);
406 if (rebuild_cnt < copies)
407 break;
408
409 /*
410 * It is possible to have a higher rebuild count for RAID10,
411 * as long as the failed devices occur in different mirror
412 * groups (i.e. different stripes).
413 *
414 * When checking "near" format, make sure no adjacent devices
415 * have failed beyond what can be handled. In addition to the
416 * simple case where the number of devices is a multiple of the
417 * number of copies, we must also handle cases where the number
418 * of devices is not a multiple of the number of copies.
419 * E.g. dev1 dev2 dev3 dev4 dev5
420 * A A B B C
421 * C D D E E
422 */
423 if (!strcmp("near", raid10_md_layout_to_format(rs->md.layout))) {
424 for (i = 0; i < rs->md.raid_disks * copies; i++) {
425 if (!(i % copies))
426 rebuilds_per_group = 0;
427 d = i % rs->md.raid_disks;
428 if ((!rs->dev[d].rdev.sb_page ||
429 !test_bit(In_sync, &rs->dev[d].rdev.flags)) &&
430 (++rebuilds_per_group >= copies))
431 goto too_many;
432 }
433 break;
434 }
435
436 /*
437 * When checking "far" and "offset" formats, we need to ensure
438 * that the device that holds its copy is not also dead or
439 * being rebuilt. (Note that "far" and "offset" formats only
440 * support two copies right now. These formats also only ever
441 * use the 'use_far_sets' variant.)
442 *
443 * This check is somewhat complicated by the need to account
444 * for arrays that are not a multiple of (far) copies. This
445 * results in the need to treat the last (potentially larger)
446 * set differently.
447 */
448 group_size = (rs->md.raid_disks / copies);
449 last_group_start = (rs->md.raid_disks / group_size) - 1;
450 last_group_start *= group_size;
451 for (i = 0; i < rs->md.raid_disks; i++) {
452 if (!(i % copies) && !(i > last_group_start))
453 rebuilds_per_group = 0;
454 if ((!rs->dev[i].rdev.sb_page ||
455 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
456 (++rebuilds_per_group >= copies))
457 goto too_many;
458 }
459 break;
460 default:
461 if (rebuild_cnt)
462 return -EINVAL;
463 }
464
465 return 0;
466
467 too_many:
468 return -EINVAL;
469 }
470
471 /*
472 * Possible arguments are...
473 * <chunk_size> [optional_args]
474 *
475 * Argument definitions
476 * <chunk_size> The number of sectors per disk that
477 * will form the "stripe"
478 * [[no]sync] Force or prevent recovery of the
479 * entire array
480 * [devices_handle_discard_safely] Allow discards on RAID4/5/6; useful if RAID
481 * member device(s) properly support TRIM/UNMAP
482 * [rebuild <idx>] Rebuild the drive indicated by the index
483 * [daemon_sleep <ms>] Time between bitmap daemon work to
484 * clear bits
485 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
486 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
487 * [write_mostly <idx>] Indicate a write mostly drive via index
488 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
489 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
490 * [region_size <sectors>] Defines granularity of bitmap
491 *
492 * RAID10-only options:
493 * [raid10_copies <# copies>] Number of copies. (Default: 2)
494 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
495 */
496 static int parse_raid_params(struct raid_set *rs, char **argv,
497 unsigned num_raid_params)
498 {
499 char *raid10_format = "near";
500 unsigned raid10_copies = 2;
501 unsigned i;
502 unsigned long value, region_size = 0;
503 sector_t sectors_per_dev = rs->ti->len;
504 sector_t max_io_len;
505 char *key;
506
507 /*
508 * First, parse the in-order required arguments
509 * "chunk_size" is the only argument of this type.
510 */
511 if ((kstrtoul(argv[0], 10, &value) < 0)) {
512 rs->ti->error = "Bad chunk size";
513 return -EINVAL;
514 } else if (rs->raid_type->level == 1) {
515 if (value)
516 DMERR("Ignoring chunk size parameter for RAID 1");
517 value = 0;
518 } else if (!is_power_of_2(value)) {
519 rs->ti->error = "Chunk size must be a power of 2";
520 return -EINVAL;
521 } else if (value < 8) {
522 rs->ti->error = "Chunk size value is too small";
523 return -EINVAL;
524 }
525
526 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
527 argv++;
528 num_raid_params--;
529
530 /*
531 * We set each individual device as In_sync with a completed
532 * 'recovery_offset'. If there has been a device failure or
533 * replacement then one of the following cases applies:
534 *
535 * 1) User specifies 'rebuild'.
536 * - Device is reset when param is read.
537 * 2) A new device is supplied.
538 * - No matching superblock found, resets device.
539 * 3) Device failure was transient and returns on reload.
540 * - Failure noticed, resets device for bitmap replay.
541 * 4) Device hadn't completed recovery after previous failure.
542 * - Superblock is read and overrides recovery_offset.
543 *
544 * What is found in the superblocks of the devices is always
545 * authoritative, unless 'rebuild' or '[no]sync' was specified.
546 */
547 for (i = 0; i < rs->md.raid_disks; i++) {
548 set_bit(In_sync, &rs->dev[i].rdev.flags);
549 rs->dev[i].rdev.recovery_offset = MaxSector;
550 }
551
552 /*
553 * Second, parse the unordered optional arguments
554 */
555 for (i = 0; i < num_raid_params; i++) {
556 if (!strcasecmp(argv[i], "nosync")) {
557 rs->md.recovery_cp = MaxSector;
558 rs->print_flags |= DMPF_NOSYNC;
559 continue;
560 }
561 if (!strcasecmp(argv[i], "sync")) {
562 rs->md.recovery_cp = 0;
563 rs->print_flags |= DMPF_SYNC;
564 continue;
565 }
566
567 /* The rest of the optional arguments come in key/value pairs */
568 if ((i + 1) >= num_raid_params) {
569 rs->ti->error = "Wrong number of raid parameters given";
570 return -EINVAL;
571 }
572
573 key = argv[i++];
574
575 /* Parameters that take a string value are checked here. */
576 if (!strcasecmp(key, "raid10_format")) {
577 if (rs->raid_type->level != 10) {
578 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
579 return -EINVAL;
580 }
581 if (strcmp("near", argv[i]) &&
582 strcmp("far", argv[i]) &&
583 strcmp("offset", argv[i])) {
584 rs->ti->error = "Invalid 'raid10_format' value given";
585 return -EINVAL;
586 }
587 raid10_format = argv[i];
588 rs->print_flags |= DMPF_RAID10_FORMAT;
589 continue;
590 }
591
592 if (kstrtoul(argv[i], 10, &value) < 0) {
593 rs->ti->error = "Bad numerical argument given in raid params";
594 return -EINVAL;
595 }
596
597 /* Parameters that take a numeric value are checked here */
598 if (!strcasecmp(key, "rebuild")) {
599 if (value >= rs->md.raid_disks) {
600 rs->ti->error = "Invalid rebuild index given";
601 return -EINVAL;
602 }
603 clear_bit(In_sync, &rs->dev[value].rdev.flags);
604 rs->dev[value].rdev.recovery_offset = 0;
605 rs->print_flags |= DMPF_REBUILD;
606 } else if (!strcasecmp(key, "write_mostly")) {
607 if (rs->raid_type->level != 1) {
608 rs->ti->error = "write_mostly option is only valid for RAID1";
609 return -EINVAL;
610 }
611 if (value >= rs->md.raid_disks) {
612 rs->ti->error = "Invalid write_mostly drive index given";
613 return -EINVAL;
614 }
615 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
616 } else if (!strcasecmp(key, "max_write_behind")) {
617 if (rs->raid_type->level != 1) {
618 rs->ti->error = "max_write_behind option is only valid for RAID1";
619 return -EINVAL;
620 }
621 rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
622
623 /*
624 * In device-mapper, we specify things in sectors, but
625 * MD records this value in kB
626 */
627 value /= 2;
628 if (value > COUNTER_MAX) {
629 rs->ti->error = "Max write-behind limit out of range";
630 return -EINVAL;
631 }
632 rs->md.bitmap_info.max_write_behind = value;
633 } else if (!strcasecmp(key, "daemon_sleep")) {
634 rs->print_flags |= DMPF_DAEMON_SLEEP;
635 if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
636 rs->ti->error = "daemon sleep period out of range";
637 return -EINVAL;
638 }
639 rs->md.bitmap_info.daemon_sleep = value;
640 } else if (!strcasecmp(key, "stripe_cache")) {
641 rs->print_flags |= DMPF_STRIPE_CACHE;
642
643 /*
644 * In device-mapper, we specify things in sectors, but
645 * MD records this value in kB
646 */
647 value /= 2;
648
649 if ((rs->raid_type->level != 5) &&
650 (rs->raid_type->level != 6)) {
651 rs->ti->error = "Inappropriate argument: stripe_cache";
652 return -EINVAL;
653 }
654 if (raid5_set_cache_size(&rs->md, (int)value)) {
655 rs->ti->error = "Bad stripe_cache size";
656 return -EINVAL;
657 }
658 } else if (!strcasecmp(key, "min_recovery_rate")) {
659 rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
660 if (value > INT_MAX) {
661 rs->ti->error = "min_recovery_rate out of range";
662 return -EINVAL;
663 }
664 rs->md.sync_speed_min = (int)value;
665 } else if (!strcasecmp(key, "max_recovery_rate")) {
666 rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
667 if (value > INT_MAX) {
668 rs->ti->error = "max_recovery_rate out of range";
669 return -EINVAL;
670 }
671 rs->md.sync_speed_max = (int)value;
672 } else if (!strcasecmp(key, "region_size")) {
673 rs->print_flags |= DMPF_REGION_SIZE;
674 region_size = value;
675 } else if (!strcasecmp(key, "raid10_copies") &&
676 (rs->raid_type->level == 10)) {
677 if ((value < 2) || (value > 0xFF)) {
678 rs->ti->error = "Bad value for 'raid10_copies'";
679 return -EINVAL;
680 }
681 rs->print_flags |= DMPF_RAID10_COPIES;
682 raid10_copies = value;
683 } else {
684 DMERR("Unable to parse RAID parameter: %s", key);
685 rs->ti->error = "Unable to parse RAID parameters";
686 return -EINVAL;
687 }
688 }
689
690 if (validate_region_size(rs, region_size))
691 return -EINVAL;
692
693 if (rs->md.chunk_sectors)
694 max_io_len = rs->md.chunk_sectors;
695 else
696 max_io_len = region_size;
697
698 if (dm_set_target_max_io_len(rs->ti, max_io_len))
699 return -EINVAL;
700
701 if (rs->raid_type->level == 10) {
702 if (raid10_copies > rs->md.raid_disks) {
703 rs->ti->error = "Not enough devices to satisfy specification";
704 return -EINVAL;
705 }
706
707 /*
708 * If the format is not "near", we only support
709 * two copies at the moment.
710 */
711 if (strcmp("near", raid10_format) && (raid10_copies > 2)) {
712 rs->ti->error = "Too many copies for given RAID10 format.";
713 return -EINVAL;
714 }
715
716 /* (Len * #mirrors) / #devices */
717 sectors_per_dev = rs->ti->len * raid10_copies;
718 sector_div(sectors_per_dev, rs->md.raid_disks);
719
720 rs->md.layout = raid10_format_to_md_layout(raid10_format,
721 raid10_copies);
722 rs->md.new_layout = rs->md.layout;
723 } else if ((rs->raid_type->level > 1) &&
724 sector_div(sectors_per_dev,
725 (rs->md.raid_disks - rs->raid_type->parity_devs))) {
726 rs->ti->error = "Target length not divisible by number of data devices";
727 return -EINVAL;
728 }
729 rs->md.dev_sectors = sectors_per_dev;
730
731 /* Assume there are no metadata devices until the drives are parsed */
732 rs->md.persistent = 0;
733 rs->md.external = 1;
734
735 return 0;
736 }
737
738 static void do_table_event(struct work_struct *ws)
739 {
740 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
741
742 dm_table_event(rs->ti->table);
743 }
744
745 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
746 {
747 struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
748
749 return mddev_congested(&rs->md, bits);
750 }
751
752 /*
753 * This structure is never routinely used by userspace, unlike md superblocks.
754 * Devices with this superblock should only ever be accessed via device-mapper.
755 */
756 #define DM_RAID_MAGIC 0x64526D44
757 struct dm_raid_superblock {
758 __le32 magic; /* "DmRd" */
759 __le32 features; /* Used to indicate possible future changes */
760
761 __le32 num_devices; /* Number of devices in this array. (Max 64) */
762 __le32 array_position; /* The position of this drive in the array */
763
764 __le64 events; /* Incremented by md when superblock updated */
765 __le64 failed_devices; /* Bit field of devices to indicate failures */
766
767 /*
768 * This offset tracks the progress of the repair or replacement of
769 * an individual drive.
770 */
771 __le64 disk_recovery_offset;
772
773 /*
774 * This offset tracks the progress of the initial array
775 * synchronisation/parity calculation.
776 */
777 __le64 array_resync_offset;
778
779 /*
780 * RAID characteristics
781 */
782 __le32 level;
783 __le32 layout;
784 __le32 stripe_sectors;
785
786 /* Remainder of a logical block is zero-filled when writing (see super_sync()). */
787 } __packed;
788
789 static int read_disk_sb(struct md_rdev *rdev, int size)
790 {
791 BUG_ON(!rdev->sb_page);
792
793 if (rdev->sb_loaded)
794 return 0;
795
796 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
797 DMERR("Failed to read superblock of device at position %d",
798 rdev->raid_disk);
799 md_error(rdev->mddev, rdev);
800 return -EINVAL;
801 }
802
803 rdev->sb_loaded = 1;
804
805 return 0;
806 }
807
808 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
809 {
810 int i;
811 uint64_t failed_devices;
812 struct dm_raid_superblock *sb;
813 struct raid_set *rs = container_of(mddev, struct raid_set, md);
814
815 sb = page_address(rdev->sb_page);
816 failed_devices = le64_to_cpu(sb->failed_devices);
817
818 for (i = 0; i < mddev->raid_disks; i++)
819 if (!rs->dev[i].data_dev ||
820 test_bit(Faulty, &(rs->dev[i].rdev.flags)))
821 failed_devices |= (1ULL << i);
822
823 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
824
825 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
826 sb->features = cpu_to_le32(0); /* No features yet */
827
828 sb->num_devices = cpu_to_le32(mddev->raid_disks);
829 sb->array_position = cpu_to_le32(rdev->raid_disk);
830
831 sb->events = cpu_to_le64(mddev->events);
832 sb->failed_devices = cpu_to_le64(failed_devices);
833
834 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
835 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
836
837 sb->level = cpu_to_le32(mddev->level);
838 sb->layout = cpu_to_le32(mddev->layout);
839 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
840 }
841
842 /*
843 * super_load
844 *
845 * This function creates a superblock if one is not found on the device
846 * and will decide which superblock to use if there's a choice.
847 *
848 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
849 */
850 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
851 {
852 int ret;
853 struct dm_raid_superblock *sb;
854 struct dm_raid_superblock *refsb;
855 uint64_t events_sb, events_refsb;
856
857 rdev->sb_start = 0;
858 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
859 if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
860 DMERR("superblock size of a logical block is no longer valid");
861 return -EINVAL;
862 }
863
864 ret = read_disk_sb(rdev, rdev->sb_size);
865 if (ret)
866 return ret;
867
868 sb = page_address(rdev->sb_page);
869
870 /*
871 * Two cases that we want to write new superblocks and rebuild:
872 * 1) New device (no matching magic number)
873 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
874 */
875 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
876 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
877 super_sync(rdev->mddev, rdev);
878
879 set_bit(FirstUse, &rdev->flags);
880
881 /* Force writing of superblocks to disk */
882 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
883
884 /* Any superblock is better than none, choose that if given */
885 return refdev ? 0 : 1;
886 }
887
888 if (!refdev)
889 return 1;
890
891 events_sb = le64_to_cpu(sb->events);
892
893 refsb = page_address(refdev->sb_page);
894 events_refsb = le64_to_cpu(refsb->events);
895
896 return (events_sb > events_refsb) ? 1 : 0;
897 }
898
899 static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
900 {
901 int role;
902 struct raid_set *rs = container_of(mddev, struct raid_set, md);
903 uint64_t events_sb;
904 uint64_t failed_devices;
905 struct dm_raid_superblock *sb;
906 uint32_t new_devs = 0;
907 uint32_t rebuilds = 0;
908 struct md_rdev *r;
909 struct dm_raid_superblock *sb2;
910
911 sb = page_address(rdev->sb_page);
912 events_sb = le64_to_cpu(sb->events);
913 failed_devices = le64_to_cpu(sb->failed_devices);
914
915 /*
916 * Initialise to 1 if this is a new superblock.
917 */
918 mddev->events = events_sb ? : 1;
919
920 /*
921 * Reshaping is not currently allowed
922 */
923 if (le32_to_cpu(sb->level) != mddev->level) {
924 DMERR("Reshaping arrays not yet supported. (RAID level change)");
925 return -EINVAL;
926 }
927 if (le32_to_cpu(sb->layout) != mddev->layout) {
928 DMERR("Reshaping arrays not yet supported. (RAID layout change)");
929 DMERR(" 0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout);
930 DMERR(" Old layout: %s w/ %d copies",
931 raid10_md_layout_to_format(le32_to_cpu(sb->layout)),
932 raid10_md_layout_to_copies(le32_to_cpu(sb->layout)));
933 DMERR(" New layout: %s w/ %d copies",
934 raid10_md_layout_to_format(mddev->layout),
935 raid10_md_layout_to_copies(mddev->layout));
936 return -EINVAL;
937 }
938 if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) {
939 DMERR("Reshaping arrays not yet supported. (stripe sectors change)");
940 return -EINVAL;
941 }
942
943 /* We can only change the number of devices in RAID1 right now */
944 if ((rs->raid_type->level != 1) &&
945 (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
946 DMERR("Reshaping arrays not yet supported. (device count change)");
947 return -EINVAL;
948 }
949
950 if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
951 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
952
953 /*
954 * During load, we set FirstUse if a new superblock was written.
955 * There are two reasons we might not have a superblock:
956 * 1) The array is brand new - in which case, all of the
957 * devices must have their In_sync bit set. Also,
958 * recovery_cp must be 0, unless forced.
959 * 2) This is a new device being added to an old array
960 * and the new device needs to be rebuilt - in which
961 * case the In_sync bit will /not/ be set and
962 * recovery_cp must be MaxSector.
963 */
964 rdev_for_each(r, mddev) {
965 if (!test_bit(In_sync, &r->flags)) {
966 DMINFO("Device %d specified for rebuild: "
967 "Clearing superblock", r->raid_disk);
968 rebuilds++;
969 } else if (test_bit(FirstUse, &r->flags))
970 new_devs++;
971 }
972
973 if (!rebuilds) {
974 if (new_devs == mddev->raid_disks) {
975 DMINFO("Superblocks created for new array");
976 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
977 } else if (new_devs) {
978 DMERR("New device injected "
979 "into existing array without 'rebuild' "
980 "parameter specified");
981 return -EINVAL;
982 }
983 } else if (new_devs) {
984 DMERR("'rebuild' devices cannot be "
985 "injected into an array with other first-time devices");
986 return -EINVAL;
987 } else if (mddev->recovery_cp != MaxSector) {
988 DMERR("'rebuild' specified while array is not in-sync");
989 return -EINVAL;
990 }
991
992 /*
993 * Now we set the Faulty bit for those devices that are
994 * recorded in the superblock as failed.
995 */
996 rdev_for_each(r, mddev) {
997 if (!r->sb_page)
998 continue;
999 sb2 = page_address(r->sb_page);
1000 sb2->failed_devices = 0;
1001
1002 /*
1003 * Check for any device re-ordering.
1004 */
1005 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
1006 role = le32_to_cpu(sb2->array_position);
1007 if (role != r->raid_disk) {
1008 if (rs->raid_type->level != 1) {
1009 rs->ti->error = "Cannot change device "
1010 "positions in RAID array";
1011 return -EINVAL;
1012 }
1013 DMINFO("RAID1 device #%d now at position #%d",
1014 role, r->raid_disk);
1015 }
1016
1017 /*
1018 * Partial recovery is performed on
1019 * returning failed devices.
1020 */
1021 if (failed_devices & (1 << role))
1022 set_bit(Faulty, &r->flags);
1023 }
1024 }
1025
1026 return 0;
1027 }
1028
1029 static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
1030 {
1031 struct dm_raid_superblock *sb = page_address(rdev->sb_page);
1032
1033 /*
1034 * If mddev->events is not set, we know we have not yet initialized
1035 * the array.
1036 */
1037 if (!mddev->events && super_init_validation(mddev, rdev))
1038 return -EINVAL;
1039
1040 mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
1041 rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
1042 if (!test_bit(FirstUse, &rdev->flags)) {
1043 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
1044 if (rdev->recovery_offset != MaxSector)
1045 clear_bit(In_sync, &rdev->flags);
1046 }
1047
1048 /*
1049 * If a device comes back, set it as not In_sync and no longer faulty.
1050 */
1051 if (test_bit(Faulty, &rdev->flags)) {
1052 clear_bit(Faulty, &rdev->flags);
1053 clear_bit(In_sync, &rdev->flags);
1054 rdev->saved_raid_disk = rdev->raid_disk;
1055 rdev->recovery_offset = 0;
1056 }
1057
1058 clear_bit(FirstUse, &rdev->flags);
1059
1060 return 0;
1061 }
1062
1063 /*
1064 * Analyse superblocks and select the freshest.
1065 */
1066 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
1067 {
1068 int ret;
1069 struct raid_dev *dev;
1070 struct md_rdev *rdev, *tmp, *freshest;
1071 struct mddev *mddev = &rs->md;
1072
1073 freshest = NULL;
1074 rdev_for_each_safe(rdev, tmp, mddev) {
1075 /*
1076 * Skipping super_load due to DMPF_SYNC will cause
1077 * the array to undergo initialization again as
1078 * though it were new. This is the intended effect
1079 * of the "sync" directive.
1080 *
1081 * When reshaping capability is added, we must ensure
1082 * that the "sync" directive is disallowed during the
1083 * reshape.
1084 */
1085 if (rs->print_flags & DMPF_SYNC)
1086 continue;
1087
1088 if (!rdev->meta_bdev)
1089 continue;
1090
1091 ret = super_load(rdev, freshest);
1092
1093 switch (ret) {
1094 case 1:
1095 freshest = rdev;
1096 break;
1097 case 0:
1098 break;
1099 default:
1100 dev = container_of(rdev, struct raid_dev, rdev);
1101 if (dev->meta_dev)
1102 dm_put_device(ti, dev->meta_dev);
1103
1104 dev->meta_dev = NULL;
1105 rdev->meta_bdev = NULL;
1106
1107 if (rdev->sb_page)
1108 put_page(rdev->sb_page);
1109
1110 rdev->sb_page = NULL;
1111
1112 rdev->sb_loaded = 0;
1113
1114 /*
1115 * We might be able to salvage the data device
1116 * even though the meta device has failed. For
1117 * now, we behave as though '- -' had been
1118 * set for this device in the table.
1119 */
1120 if (dev->data_dev)
1121 dm_put_device(ti, dev->data_dev);
1122
1123 dev->data_dev = NULL;
1124 rdev->bdev = NULL;
1125
1126 list_del(&rdev->same_set);
1127 }
1128 }
1129
1130 if (!freshest)
1131 return 0;
1132
1133 if (validate_raid_redundancy(rs)) {
1134 rs->ti->error = "Insufficient redundancy to activate array";
1135 return -EINVAL;
1136 }
1137
1138 /*
1139 * Validation of the freshest device provides the source of
1140 * validation for the remaining devices.
1141 */
1142 ti->error = "Unable to assemble array: Invalid superblocks";
1143 if (super_validate(mddev, freshest))
1144 return -EINVAL;
1145
1146 rdev_for_each(rdev, mddev)
1147 if ((rdev != freshest) && super_validate(mddev, rdev))
1148 return -EINVAL;
1149
1150 return 0;
1151 }
1152
1153 /*
1154 * Enable/disable discard support on RAID set depending on
1155 * RAID level and discard properties of underlying RAID members.
1156 */
1157 static void configure_discard_support(struct dm_target *ti, struct raid_set *rs)
1158 {
1159 int i;
1160 bool raid456;
1161
1162 /* Assume discards not supported until after checks below. */
1163 ti->discards_supported = false;
1164
1165 /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
1166 raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
1167
1168 for (i = 0; i < rs->md.raid_disks; i++) {
1169 struct request_queue *q;
1170
1171 if (!rs->dev[i].rdev.bdev)
1172 continue;
1173
1174 q = bdev_get_queue(rs->dev[i].rdev.bdev);
1175 if (!q || !blk_queue_discard(q))
1176 return;
1177
1178 if (raid456) {
1179 if (!q->limits.discard_zeroes_data)
1180 return;
1181 if (!devices_handle_discard_safely) {
1182 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
1183 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
1184 return;
1185 }
1186 }
1187 }
1188
1189 /* All RAID members properly support discards */
1190 ti->discards_supported = true;
1191
1192 /*
1193 * RAID1 and RAID10 personalities require bio splitting,
1194 * RAID0/4/5/6 don't and process large discard bios properly.
1195 */
1196 ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
1197 ti->num_discard_bios = 1;
1198 }
1199
1200 /*
1201 * Construct a RAID4/5/6 mapping:
1202 * Args:
1203 * <raid_type> <#raid_params> <raid_params> \
1204 * <#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
1205 *
1206 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
1207 * details on possible <raid_params>.
1208 */
1209 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
1210 {
1211 int ret;
1212 struct raid_type *rt;
1213 unsigned long num_raid_params, num_raid_devs;
1214 struct raid_set *rs = NULL;
1215
1216 /* Must have at least <raid_type> <#raid_params> */
1217 if (argc < 2) {
1218 ti->error = "Too few arguments";
1219 return -EINVAL;
1220 }
1221
1222 /* raid type */
1223 rt = get_raid_type(argv[0]);
1224 if (!rt) {
1225 ti->error = "Unrecognised raid_type";
1226 return -EINVAL;
1227 }
1228 argc--;
1229 argv++;
1230
1231 /* number of RAID parameters */
1232 if (kstrtoul(argv[0], 10, &num_raid_params) < 0) {
1233 ti->error = "Cannot understand number of RAID parameters";
1234 return -EINVAL;
1235 }
1236 argc--;
1237 argv++;
1238
1239 /* Skip over RAID params for now and find out # of devices */
1240 if (num_raid_params >= argc) {
1241 ti->error = "Arguments do not agree with counts given";
1242 return -EINVAL;
1243 }
1244
1245 if ((kstrtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
1246 (num_raid_devs >= INT_MAX)) {
1247 ti->error = "Cannot understand number of raid devices";
1248 return -EINVAL;
1249 }
1250
1251 argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
1252 if (argc != (num_raid_devs * 2)) {
1253 ti->error = "Supplied RAID devices does not match the count given";
1254 return -EINVAL;
1255 }
1256
1257 rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
1258 if (IS_ERR(rs))
1259 return PTR_ERR(rs);
1260
1261 ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
1262 if (ret)
1263 goto bad;
1264
1265 argv += num_raid_params + 1;
1266
1267 ret = dev_parms(rs, argv);
1268 if (ret)
1269 goto bad;
1270
1271 rs->md.sync_super = super_sync;
1272 ret = analyse_superblocks(ti, rs);
1273 if (ret)
1274 goto bad;
1275
1276 INIT_WORK(&rs->md.event_work, do_table_event);
1277 ti->private = rs;
1278 ti->num_flush_bios = 1;
1279
1280 /*
1281 * Disable/enable discard support on RAID set.
1282 */
1283 configure_discard_support(ti, rs);
1284
1285 mutex_lock(&rs->md.reconfig_mutex);
1286 ret = md_run(&rs->md);
1287 rs->md.in_sync = 0; /* Assume already marked dirty */
1288 mutex_unlock(&rs->md.reconfig_mutex);
1289
1290 if (ret) {
1291 ti->error = "Fail to run raid array";
1292 goto bad;
1293 }
1294
1295 if (ti->len != rs->md.array_sectors) {
1296 ti->error = "Array size does not match requested target length";
1297 ret = -EINVAL;
1298 goto size_mismatch;
1299 }
1300 rs->callbacks.congested_fn = raid_is_congested;
1301 dm_table_add_target_callbacks(ti->table, &rs->callbacks);
1302
1303 mddev_suspend(&rs->md);
1304 return 0;
1305
1306 size_mismatch:
1307 md_stop(&rs->md);
1308 bad:
1309 context_free(rs);
1310
1311 return ret;
1312 }
1313
1314 static void raid_dtr(struct dm_target *ti)
1315 {
1316 struct raid_set *rs = ti->private;
1317
1318 list_del_init(&rs->callbacks.list);
1319 md_stop(&rs->md);
1320 context_free(rs);
1321 }
1322
1323 static int raid_map(struct dm_target *ti, struct bio *bio)
1324 {
1325 struct raid_set *rs = ti->private;
1326 struct mddev *mddev = &rs->md;
1327
1328 mddev->pers->make_request(mddev, bio);
1329
1330 return DM_MAPIO_SUBMITTED;
1331 }
1332
1333 static const char *decipher_sync_action(struct mddev *mddev)
1334 {
1335 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
1336 return "frozen";
1337
1338 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1339 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
1340 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1341 return "reshape";
1342
1343 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1344 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1345 return "resync";
1346 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1347 return "check";
1348 return "repair";
1349 }
1350
1351 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
1352 return "recover";
1353 }
1354
1355 return "idle";
1356 }
1357
1358 static void raid_status(struct dm_target *ti, status_type_t type,
1359 unsigned status_flags, char *result, unsigned maxlen)
1360 {
1361 struct raid_set *rs = ti->private;
1362 unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1363 unsigned sz = 0;
1364 int i, array_in_sync = 0;
1365 sector_t sync;
1366
1367 switch (type) {
1368 case STATUSTYPE_INFO:
1369 DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1370
1371 if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1372 sync = rs->md.curr_resync_completed;
1373 else
1374 sync = rs->md.recovery_cp;
1375
1376 if (sync >= rs->md.resync_max_sectors) {
1377 /*
1378 * Sync complete.
1379 */
1380 array_in_sync = 1;
1381 sync = rs->md.resync_max_sectors;
1382 } else if (test_bit(MD_RECOVERY_REQUESTED, &rs->md.recovery)) {
1383 /*
1384 * If "check" or "repair" is occurring, the array has
1385 * undergone and initial sync and the health characters
1386 * should not be 'a' anymore.
1387 */
1388 array_in_sync = 1;
1389 } else {
1390 /*
1391 * The array may be doing an initial sync, or it may
1392 * be rebuilding individual components. If all the
1393 * devices are In_sync, then it is the array that is
1394 * being initialized.
1395 */
1396 for (i = 0; i < rs->md.raid_disks; i++)
1397 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
1398 array_in_sync = 1;
1399 }
1400
1401 /*
1402 * Status characters:
1403 * 'D' = Dead/Failed device
1404 * 'a' = Alive but not in-sync
1405 * 'A' = Alive and in-sync
1406 */
1407 for (i = 0; i < rs->md.raid_disks; i++) {
1408 if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1409 DMEMIT("D");
1410 else if (!array_in_sync ||
1411 !test_bit(In_sync, &rs->dev[i].rdev.flags))
1412 DMEMIT("a");
1413 else
1414 DMEMIT("A");
1415 }
1416
1417 /*
1418 * In-sync ratio:
1419 * The in-sync ratio shows the progress of:
1420 * - Initializing the array
1421 * - Rebuilding a subset of devices of the array
1422 * The user can distinguish between the two by referring
1423 * to the status characters.
1424 */
1425 DMEMIT(" %llu/%llu",
1426 (unsigned long long) sync,
1427 (unsigned long long) rs->md.resync_max_sectors);
1428
1429 /*
1430 * Sync action:
1431 * See Documentation/device-mapper/dm-raid.c for
1432 * information on each of these states.
1433 */
1434 DMEMIT(" %s", decipher_sync_action(&rs->md));
1435
1436 /*
1437 * resync_mismatches/mismatch_cnt
1438 * This field shows the number of discrepancies found when
1439 * performing a "check" of the array.
1440 */
1441 DMEMIT(" %llu",
1442 (strcmp(rs->md.last_sync_action, "check")) ? 0 :
1443 (unsigned long long)
1444 atomic64_read(&rs->md.resync_mismatches));
1445 break;
1446 case STATUSTYPE_TABLE:
1447 /* The string you would use to construct this array */
1448 for (i = 0; i < rs->md.raid_disks; i++) {
1449 if ((rs->print_flags & DMPF_REBUILD) &&
1450 rs->dev[i].data_dev &&
1451 !test_bit(In_sync, &rs->dev[i].rdev.flags))
1452 raid_param_cnt += 2; /* for rebuilds */
1453 if (rs->dev[i].data_dev &&
1454 test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1455 raid_param_cnt += 2;
1456 }
1457
1458 raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2);
1459 if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
1460 raid_param_cnt--;
1461
1462 DMEMIT("%s %u %u", rs->raid_type->name,
1463 raid_param_cnt, rs->md.chunk_sectors);
1464
1465 if ((rs->print_flags & DMPF_SYNC) &&
1466 (rs->md.recovery_cp == MaxSector))
1467 DMEMIT(" sync");
1468 if (rs->print_flags & DMPF_NOSYNC)
1469 DMEMIT(" nosync");
1470
1471 for (i = 0; i < rs->md.raid_disks; i++)
1472 if ((rs->print_flags & DMPF_REBUILD) &&
1473 rs->dev[i].data_dev &&
1474 !test_bit(In_sync, &rs->dev[i].rdev.flags))
1475 DMEMIT(" rebuild %u", i);
1476
1477 if (rs->print_flags & DMPF_DAEMON_SLEEP)
1478 DMEMIT(" daemon_sleep %lu",
1479 rs->md.bitmap_info.daemon_sleep);
1480
1481 if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
1482 DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1483
1484 if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
1485 DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1486
1487 for (i = 0; i < rs->md.raid_disks; i++)
1488 if (rs->dev[i].data_dev &&
1489 test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1490 DMEMIT(" write_mostly %u", i);
1491
1492 if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
1493 DMEMIT(" max_write_behind %lu",
1494 rs->md.bitmap_info.max_write_behind);
1495
1496 if (rs->print_flags & DMPF_STRIPE_CACHE) {
1497 struct r5conf *conf = rs->md.private;
1498
1499 /* convert from kiB to sectors */
1500 DMEMIT(" stripe_cache %d",
1501 conf ? conf->max_nr_stripes * 2 : 0);
1502 }
1503
1504 if (rs->print_flags & DMPF_REGION_SIZE)
1505 DMEMIT(" region_size %lu",
1506 rs->md.bitmap_info.chunksize >> 9);
1507
1508 if (rs->print_flags & DMPF_RAID10_COPIES)
1509 DMEMIT(" raid10_copies %u",
1510 raid10_md_layout_to_copies(rs->md.layout));
1511
1512 if (rs->print_flags & DMPF_RAID10_FORMAT)
1513 DMEMIT(" raid10_format %s",
1514 raid10_md_layout_to_format(rs->md.layout));
1515
1516 DMEMIT(" %d", rs->md.raid_disks);
1517 for (i = 0; i < rs->md.raid_disks; i++) {
1518 if (rs->dev[i].meta_dev)
1519 DMEMIT(" %s", rs->dev[i].meta_dev->name);
1520 else
1521 DMEMIT(" -");
1522
1523 if (rs->dev[i].data_dev)
1524 DMEMIT(" %s", rs->dev[i].data_dev->name);
1525 else
1526 DMEMIT(" -");
1527 }
1528 }
1529 }
1530
1531 static int raid_message(struct dm_target *ti, unsigned argc, char **argv)
1532 {
1533 struct raid_set *rs = ti->private;
1534 struct mddev *mddev = &rs->md;
1535
1536 if (!strcasecmp(argv[0], "reshape")) {
1537 DMERR("Reshape not supported.");
1538 return -EINVAL;
1539 }
1540
1541 if (!mddev->pers || !mddev->pers->sync_request)
1542 return -EINVAL;
1543
1544 if (!strcasecmp(argv[0], "frozen"))
1545 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
1546 else
1547 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
1548
1549 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
1550 if (mddev->sync_thread) {
1551 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1552 md_reap_sync_thread(mddev);
1553 }
1554 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1555 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
1556 return -EBUSY;
1557 else if (!strcasecmp(argv[0], "resync"))
1558 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1559 else if (!strcasecmp(argv[0], "recover")) {
1560 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1561 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1562 } else {
1563 if (!strcasecmp(argv[0], "check"))
1564 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
1565 else if (!!strcasecmp(argv[0], "repair"))
1566 return -EINVAL;
1567 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
1568 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
1569 }
1570 if (mddev->ro == 2) {
1571 /* A write to sync_action is enough to justify
1572 * canceling read-auto mode
1573 */
1574 mddev->ro = 0;
1575 if (!mddev->suspended)
1576 md_wakeup_thread(mddev->sync_thread);
1577 }
1578 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1579 if (!mddev->suspended)
1580 md_wakeup_thread(mddev->thread);
1581
1582 return 0;
1583 }
1584
1585 static int raid_iterate_devices(struct dm_target *ti,
1586 iterate_devices_callout_fn fn, void *data)
1587 {
1588 struct raid_set *rs = ti->private;
1589 unsigned i;
1590 int ret = 0;
1591
1592 for (i = 0; !ret && i < rs->md.raid_disks; i++)
1593 if (rs->dev[i].data_dev)
1594 ret = fn(ti,
1595 rs->dev[i].data_dev,
1596 0, /* No offset on data devs */
1597 rs->md.dev_sectors,
1598 data);
1599
1600 return ret;
1601 }
1602
1603 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1604 {
1605 struct raid_set *rs = ti->private;
1606 unsigned chunk_size = rs->md.chunk_sectors << 9;
1607 struct r5conf *conf = rs->md.private;
1608
1609 blk_limits_io_min(limits, chunk_size);
1610 blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1611 }
1612
1613 static void raid_presuspend(struct dm_target *ti)
1614 {
1615 struct raid_set *rs = ti->private;
1616
1617 md_stop_writes(&rs->md);
1618 }
1619
1620 static void raid_postsuspend(struct dm_target *ti)
1621 {
1622 struct raid_set *rs = ti->private;
1623
1624 mddev_suspend(&rs->md);
1625 }
1626
1627 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
1628 {
1629 int i;
1630 uint64_t failed_devices, cleared_failed_devices = 0;
1631 unsigned long flags;
1632 struct dm_raid_superblock *sb;
1633 struct md_rdev *r;
1634
1635 for (i = 0; i < rs->md.raid_disks; i++) {
1636 r = &rs->dev[i].rdev;
1637 if (test_bit(Faulty, &r->flags) && r->sb_page &&
1638 sync_page_io(r, 0, r->sb_size, r->sb_page, READ, 1)) {
1639 DMINFO("Faulty %s device #%d has readable super block."
1640 " Attempting to revive it.",
1641 rs->raid_type->name, i);
1642
1643 /*
1644 * Faulty bit may be set, but sometimes the array can
1645 * be suspended before the personalities can respond
1646 * by removing the device from the array (i.e. calling
1647 * 'hot_remove_disk'). If they haven't yet removed
1648 * the failed device, its 'raid_disk' number will be
1649 * '>= 0' - meaning we must call this function
1650 * ourselves.
1651 */
1652 if ((r->raid_disk >= 0) &&
1653 (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0))
1654 /* Failed to revive this device, try next */
1655 continue;
1656
1657 r->raid_disk = i;
1658 r->saved_raid_disk = i;
1659 flags = r->flags;
1660 clear_bit(Faulty, &r->flags);
1661 clear_bit(WriteErrorSeen, &r->flags);
1662 clear_bit(In_sync, &r->flags);
1663 if (r->mddev->pers->hot_add_disk(r->mddev, r)) {
1664 r->raid_disk = -1;
1665 r->saved_raid_disk = -1;
1666 r->flags = flags;
1667 } else {
1668 r->recovery_offset = 0;
1669 cleared_failed_devices |= 1 << i;
1670 }
1671 }
1672 }
1673 if (cleared_failed_devices) {
1674 rdev_for_each(r, &rs->md) {
1675 sb = page_address(r->sb_page);
1676 failed_devices = le64_to_cpu(sb->failed_devices);
1677 failed_devices &= ~cleared_failed_devices;
1678 sb->failed_devices = cpu_to_le64(failed_devices);
1679 }
1680 }
1681 }
1682
1683 static void raid_resume(struct dm_target *ti)
1684 {
1685 struct raid_set *rs = ti->private;
1686
1687 set_bit(MD_CHANGE_DEVS, &rs->md.flags);
1688 if (!rs->bitmap_loaded) {
1689 bitmap_load(&rs->md);
1690 rs->bitmap_loaded = 1;
1691 } else {
1692 /*
1693 * A secondary resume while the device is active.
1694 * Take this opportunity to check whether any failed
1695 * devices are reachable again.
1696 */
1697 attempt_restore_of_faulty_devices(rs);
1698 }
1699
1700 clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
1701 mddev_resume(&rs->md);
1702 }
1703
1704 static struct target_type raid_target = {
1705 .name = "raid",
1706 .version = {1, 6, 0},
1707 .module = THIS_MODULE,
1708 .ctr = raid_ctr,
1709 .dtr = raid_dtr,
1710 .map = raid_map,
1711 .status = raid_status,
1712 .message = raid_message,
1713 .iterate_devices = raid_iterate_devices,
1714 .io_hints = raid_io_hints,
1715 .presuspend = raid_presuspend,
1716 .postsuspend = raid_postsuspend,
1717 .resume = raid_resume,
1718 };
1719
1720 static int __init dm_raid_init(void)
1721 {
1722 DMINFO("Loading target version %u.%u.%u",
1723 raid_target.version[0],
1724 raid_target.version[1],
1725 raid_target.version[2]);
1726 return dm_register_target(&raid_target);
1727 }
1728
1729 static void __exit dm_raid_exit(void)
1730 {
1731 dm_unregister_target(&raid_target);
1732 }
1733
1734 module_init(dm_raid_init);
1735 module_exit(dm_raid_exit);
1736
1737 module_param(devices_handle_discard_safely, bool, 0644);
1738 MODULE_PARM_DESC(devices_handle_discard_safely,
1739 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
1740
1741 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1742 MODULE_ALIAS("dm-raid1");
1743 MODULE_ALIAS("dm-raid10");
1744 MODULE_ALIAS("dm-raid4");
1745 MODULE_ALIAS("dm-raid5");
1746 MODULE_ALIAS("dm-raid6");
1747 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
1748 MODULE_LICENSE("GPL");
This page took 0.071733 seconds and 5 git commands to generate.