Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / drivers / md / dm-raid.c
1 /*
2 * Copyright (C) 2010-2011 Neil Brown
3 * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16
17 #include <linux/device-mapper.h>
18
19 #define DM_MSG_PREFIX "raid"
20 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
21
22 /*
23 * Minimum sectors of free reshape space per raid device
24 */
25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26
27 static bool devices_handle_discard_safely = false;
28
29 /*
30 * The following flags are used by dm-raid.c to set up the array state.
31 * They must be cleared before md_run is called.
32 */
33 #define FirstUse 10 /* rdev flag */
34
35 struct raid_dev {
36 /*
37 * Two DM devices, one to hold metadata and one to hold the
38 * actual data/parity. The reason for this is to not confuse
39 * ti->len and give more flexibility in altering size and
40 * characteristics.
41 *
42 * While it is possible for this device to be associated
43 * with a different physical device than the data_dev, it
44 * is intended for it to be the same.
45 * |--------- Physical Device ---------|
46 * |- meta_dev -|------ data_dev ------|
47 */
48 struct dm_dev *meta_dev;
49 struct dm_dev *data_dev;
50 struct md_rdev rdev;
51 };
52
53 /*
54 * Bits for establishing rs->ctr_flags
55 *
56 * 1 = no flag value
57 * 2 = flag with value
58 */
59 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */
60 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */
61 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */
62 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */
63 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */
64 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */
65 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */
66 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */
67 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */
68 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */
70 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */
71 /* New for v1.9.0 */
72 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
73 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
74 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
75
76 /*
77 * Flags for rs->ctr_flags field.
78 */
79 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC)
80 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC)
81 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD)
82 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP)
83 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
84 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
85 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
86 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY)
87 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE)
88 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE)
89 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES)
90 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT)
91 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS)
92 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET)
93 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
94
95 /*
96 * Definitions of various constructor flags to
97 * be used in checks of valid / invalid flags
98 * per raid level.
99 */
100 /* Define all any sync flags */
101 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
102
103 /* Define flags for options without argument (e.g. 'nosync') */
104 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
105 CTR_FLAG_RAID10_USE_NEAR_SETS)
106
107 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
108 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
109 CTR_FLAG_WRITE_MOSTLY | \
110 CTR_FLAG_DAEMON_SLEEP | \
111 CTR_FLAG_MIN_RECOVERY_RATE | \
112 CTR_FLAG_MAX_RECOVERY_RATE | \
113 CTR_FLAG_MAX_WRITE_BEHIND | \
114 CTR_FLAG_STRIPE_CACHE | \
115 CTR_FLAG_REGION_SIZE | \
116 CTR_FLAG_RAID10_COPIES | \
117 CTR_FLAG_RAID10_FORMAT | \
118 CTR_FLAG_DELTA_DISKS | \
119 CTR_FLAG_DATA_OFFSET)
120
121 /* Valid options definitions per raid level... */
122
123 /* "raid0" does only accept data offset */
124 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET)
125
126 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
127 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
128 CTR_FLAG_REBUILD | \
129 CTR_FLAG_WRITE_MOSTLY | \
130 CTR_FLAG_DAEMON_SLEEP | \
131 CTR_FLAG_MIN_RECOVERY_RATE | \
132 CTR_FLAG_MAX_RECOVERY_RATE | \
133 CTR_FLAG_MAX_WRITE_BEHIND | \
134 CTR_FLAG_REGION_SIZE | \
135 CTR_FLAG_DELTA_DISKS | \
136 CTR_FLAG_DATA_OFFSET)
137
138 /* "raid10" does not accept any raid1 or stripe cache options */
139 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
140 CTR_FLAG_REBUILD | \
141 CTR_FLAG_DAEMON_SLEEP | \
142 CTR_FLAG_MIN_RECOVERY_RATE | \
143 CTR_FLAG_MAX_RECOVERY_RATE | \
144 CTR_FLAG_REGION_SIZE | \
145 CTR_FLAG_RAID10_COPIES | \
146 CTR_FLAG_RAID10_FORMAT | \
147 CTR_FLAG_DELTA_DISKS | \
148 CTR_FLAG_DATA_OFFSET | \
149 CTR_FLAG_RAID10_USE_NEAR_SETS)
150
151 /*
152 * "raid4/5/6" do not accept any raid1 or raid10 specific options
153 *
154 * "raid6" does not accept "nosync", because it is not guaranteed
155 * that both parity and q-syndrome are being written properly with
156 * any writes
157 */
158 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
159 CTR_FLAG_REBUILD | \
160 CTR_FLAG_DAEMON_SLEEP | \
161 CTR_FLAG_MIN_RECOVERY_RATE | \
162 CTR_FLAG_MAX_RECOVERY_RATE | \
163 CTR_FLAG_MAX_WRITE_BEHIND | \
164 CTR_FLAG_STRIPE_CACHE | \
165 CTR_FLAG_REGION_SIZE | \
166 CTR_FLAG_DELTA_DISKS | \
167 CTR_FLAG_DATA_OFFSET)
168
169 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \
170 CTR_FLAG_REBUILD | \
171 CTR_FLAG_DAEMON_SLEEP | \
172 CTR_FLAG_MIN_RECOVERY_RATE | \
173 CTR_FLAG_MAX_RECOVERY_RATE | \
174 CTR_FLAG_MAX_WRITE_BEHIND | \
175 CTR_FLAG_STRIPE_CACHE | \
176 CTR_FLAG_REGION_SIZE | \
177 CTR_FLAG_DELTA_DISKS | \
178 CTR_FLAG_DATA_OFFSET)
179 /* ...valid options definitions per raid level */
180
181 /*
182 * Flags for rs->runtime_flags field
183 * (RT_FLAG prefix meaning "runtime flag")
184 *
185 * These are all internal and used to define runtime state,
186 * e.g. to prevent another resume from preresume processing
187 * the raid set all over again.
188 */
189 #define RT_FLAG_RS_PRERESUMED 0
190 #define RT_FLAG_RS_RESUMED 1
191 #define RT_FLAG_RS_BITMAP_LOADED 2
192 #define RT_FLAG_UPDATE_SBS 3
193 #define RT_FLAG_RESHAPE_RS 4
194 #define RT_FLAG_KEEP_RS_FROZEN 5
195
196 /* Array elements of 64 bit needed for rebuild/failed disk bits */
197 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
198
199 /*
200 * raid set level, layout and chunk sectors backup/restore
201 */
202 struct rs_layout {
203 int new_level;
204 int new_layout;
205 int new_chunk_sectors;
206 };
207
208 struct raid_set {
209 struct dm_target *ti;
210
211 uint32_t bitmap_loaded;
212 uint32_t stripe_cache_entries;
213 unsigned long ctr_flags;
214 unsigned long runtime_flags;
215
216 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
217
218 int raid_disks;
219 int delta_disks;
220 int data_offset;
221 int raid10_copies;
222 int requested_bitmap_chunk_sectors;
223
224 struct mddev md;
225 struct raid_type *raid_type;
226 struct dm_target_callbacks callbacks;
227
228 struct raid_dev dev[0];
229 };
230
231 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
232 {
233 struct mddev *mddev = &rs->md;
234
235 l->new_level = mddev->new_level;
236 l->new_layout = mddev->new_layout;
237 l->new_chunk_sectors = mddev->new_chunk_sectors;
238 }
239
240 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
241 {
242 struct mddev *mddev = &rs->md;
243
244 mddev->new_level = l->new_level;
245 mddev->new_layout = l->new_layout;
246 mddev->new_chunk_sectors = l->new_chunk_sectors;
247 }
248
249 /* raid10 algorithms (i.e. formats) */
250 #define ALGORITHM_RAID10_DEFAULT 0
251 #define ALGORITHM_RAID10_NEAR 1
252 #define ALGORITHM_RAID10_OFFSET 2
253 #define ALGORITHM_RAID10_FAR 3
254
255 /* Supported raid types and properties. */
256 static struct raid_type {
257 const char *name; /* RAID algorithm. */
258 const char *descr; /* Descriptor text for logging. */
259 const unsigned int parity_devs; /* # of parity devices. */
260 const unsigned int minimal_devs;/* minimal # of devices in set. */
261 const unsigned int level; /* RAID level. */
262 const unsigned int algorithm; /* RAID algorithm. */
263 } raid_types[] = {
264 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
265 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
266 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
267 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
268 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
269 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
270 {"raid4", "raid4 (dedicated last parity disk)", 1, 2, 4, ALGORITHM_PARITY_N}, /* raid4 layout = raid5_n */
271 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
272 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
273 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
274 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
275 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
276 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
277 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
278 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
279 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
280 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
281 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
282 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
283 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
284 };
285
286 /* True, if @v is in inclusive range [@min, @max] */
287 static bool __within_range(long v, long min, long max)
288 {
289 return v >= min && v <= max;
290 }
291
292 /* All table line arguments are defined here */
293 static struct arg_name_flag {
294 const unsigned long flag;
295 const char *name;
296 } __arg_name_flags[] = {
297 { CTR_FLAG_SYNC, "sync"},
298 { CTR_FLAG_NOSYNC, "nosync"},
299 { CTR_FLAG_REBUILD, "rebuild"},
300 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
301 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
302 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
303 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
304 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
305 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
306 { CTR_FLAG_REGION_SIZE, "region_size"},
307 { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
308 { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
309 { CTR_FLAG_DATA_OFFSET, "data_offset"},
310 { CTR_FLAG_DELTA_DISKS, "delta_disks"},
311 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
312 };
313
314 /* Return argument name string for given @flag */
315 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
316 {
317 if (hweight32(flag) == 1) {
318 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
319
320 while (anf-- > __arg_name_flags)
321 if (flag & anf->flag)
322 return anf->name;
323
324 } else
325 DMERR("%s called with more than one flag!", __func__);
326
327 return NULL;
328 }
329
330 /*
331 * Bool helpers to test for various raid levels of a raid set.
332 * It's level as reported by the superblock rather than
333 * the requested raid_type passed to the constructor.
334 */
335 /* Return true, if raid set in @rs is raid0 */
336 static bool rs_is_raid0(struct raid_set *rs)
337 {
338 return !rs->md.level;
339 }
340
341 /* Return true, if raid set in @rs is raid1 */
342 static bool rs_is_raid1(struct raid_set *rs)
343 {
344 return rs->md.level == 1;
345 }
346
347 /* Return true, if raid set in @rs is raid10 */
348 static bool rs_is_raid10(struct raid_set *rs)
349 {
350 return rs->md.level == 10;
351 }
352
353 /* Return true, if raid set in @rs is level 6 */
354 static bool rs_is_raid6(struct raid_set *rs)
355 {
356 return rs->md.level == 6;
357 }
358
359 /* Return true, if raid set in @rs is level 4, 5 or 6 */
360 static bool rs_is_raid456(struct raid_set *rs)
361 {
362 return __within_range(rs->md.level, 4, 6);
363 }
364
365 /* Return true, if raid set in @rs is reshapable */
366 static bool __is_raid10_far(int layout);
367 static bool rs_is_reshapable(struct raid_set *rs)
368 {
369 return rs_is_raid456(rs) ||
370 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
371 }
372
373 /* Return true, if raid set in @rs is recovering */
374 static bool rs_is_recovering(struct raid_set *rs)
375 {
376 return rs->md.recovery_cp < rs->dev[0].rdev.sectors;
377 }
378
379 /* Return true, if raid set in @rs is reshaping */
380 static bool rs_is_reshaping(struct raid_set *rs)
381 {
382 return rs->md.reshape_position != MaxSector;
383 }
384
385 /*
386 * bool helpers to test for various raid levels of a raid type @rt
387 */
388
389 /* Return true, if raid type in @rt is raid0 */
390 static bool rt_is_raid0(struct raid_type *rt)
391 {
392 return !rt->level;
393 }
394
395 /* Return true, if raid type in @rt is raid1 */
396 static bool rt_is_raid1(struct raid_type *rt)
397 {
398 return rt->level == 1;
399 }
400
401 /* Return true, if raid type in @rt is raid10 */
402 static bool rt_is_raid10(struct raid_type *rt)
403 {
404 return rt->level == 10;
405 }
406
407 /* Return true, if raid type in @rt is raid4/5 */
408 static bool rt_is_raid45(struct raid_type *rt)
409 {
410 return __within_range(rt->level, 4, 5);
411 }
412
413 /* Return true, if raid type in @rt is raid6 */
414 static bool rt_is_raid6(struct raid_type *rt)
415 {
416 return rt->level == 6;
417 }
418
419 /* Return true, if raid type in @rt is raid4/5/6 */
420 static bool rt_is_raid456(struct raid_type *rt)
421 {
422 return __within_range(rt->level, 4, 6);
423 }
424 /* END: raid level bools */
425
426 /* Return valid ctr flags for the raid level of @rs */
427 static unsigned long __valid_flags(struct raid_set *rs)
428 {
429 if (rt_is_raid0(rs->raid_type))
430 return RAID0_VALID_FLAGS;
431 else if (rt_is_raid1(rs->raid_type))
432 return RAID1_VALID_FLAGS;
433 else if (rt_is_raid10(rs->raid_type))
434 return RAID10_VALID_FLAGS;
435 else if (rt_is_raid45(rs->raid_type))
436 return RAID45_VALID_FLAGS;
437 else if (rt_is_raid6(rs->raid_type))
438 return RAID6_VALID_FLAGS;
439
440 return 0;
441 }
442
443 /*
444 * Check for valid flags set on @rs
445 *
446 * Has to be called after parsing of the ctr flags!
447 */
448 static int rs_check_for_valid_flags(struct raid_set *rs)
449 {
450 if (rs->ctr_flags & ~__valid_flags(rs)) {
451 rs->ti->error = "Invalid flags combination";
452 return -EINVAL;
453 }
454
455 return 0;
456 }
457
458 /* MD raid10 bit definitions and helpers */
459 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
460 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
461 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
462 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
463
464 /* Return md raid10 near copies for @layout */
465 static unsigned int __raid10_near_copies(int layout)
466 {
467 return layout & 0xFF;
468 }
469
470 /* Return md raid10 far copies for @layout */
471 static unsigned int __raid10_far_copies(int layout)
472 {
473 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
474 }
475
476 /* Return true if md raid10 offset for @layout */
477 static bool __is_raid10_offset(int layout)
478 {
479 return !!(layout & RAID10_OFFSET);
480 }
481
482 /* Return true if md raid10 near for @layout */
483 static bool __is_raid10_near(int layout)
484 {
485 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
486 }
487
488 /* Return true if md raid10 far for @layout */
489 static bool __is_raid10_far(int layout)
490 {
491 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
492 }
493
494 /* Return md raid10 layout string for @layout */
495 static const char *raid10_md_layout_to_format(int layout)
496 {
497 /*
498 * Bit 16 stands for "offset"
499 * (i.e. adjacent stripes hold copies)
500 *
501 * Refer to MD's raid10.c for details
502 */
503 if (__is_raid10_offset(layout))
504 return "offset";
505
506 if (__raid10_near_copies(layout) > 1)
507 return "near";
508
509 WARN_ON(__raid10_far_copies(layout) < 2);
510
511 return "far";
512 }
513
514 /* Return md raid10 algorithm for @name */
515 static int raid10_name_to_format(const char *name)
516 {
517 if (!strcasecmp(name, "near"))
518 return ALGORITHM_RAID10_NEAR;
519 else if (!strcasecmp(name, "offset"))
520 return ALGORITHM_RAID10_OFFSET;
521 else if (!strcasecmp(name, "far"))
522 return ALGORITHM_RAID10_FAR;
523
524 return -EINVAL;
525 }
526
527 /* Return md raid10 copies for @layout */
528 static unsigned int raid10_md_layout_to_copies(int layout)
529 {
530 return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
531 }
532
533 /* Return md raid10 format id for @format string */
534 static int raid10_format_to_md_layout(struct raid_set *rs,
535 unsigned int algorithm,
536 unsigned int copies)
537 {
538 unsigned int n = 1, f = 1, r = 0;
539
540 /*
541 * MD resilienece flaw:
542 *
543 * enabling use_far_sets for far/offset formats causes copies
544 * to be colocated on the same devs together with their origins!
545 *
546 * -> disable it for now in the definition above
547 */
548 if (algorithm == ALGORITHM_RAID10_DEFAULT ||
549 algorithm == ALGORITHM_RAID10_NEAR)
550 n = copies;
551
552 else if (algorithm == ALGORITHM_RAID10_OFFSET) {
553 f = copies;
554 r = RAID10_OFFSET;
555 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
556 r |= RAID10_USE_FAR_SETS;
557
558 } else if (algorithm == ALGORITHM_RAID10_FAR) {
559 f = copies;
560 r = !RAID10_OFFSET;
561 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
562 r |= RAID10_USE_FAR_SETS;
563
564 } else
565 return -EINVAL;
566
567 return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
568 }
569 /* END: MD raid10 bit definitions and helpers */
570
571 /* Check for any of the raid10 algorithms */
572 static bool __got_raid10(struct raid_type *rtp, const int layout)
573 {
574 if (rtp->level == 10) {
575 switch (rtp->algorithm) {
576 case ALGORITHM_RAID10_DEFAULT:
577 case ALGORITHM_RAID10_NEAR:
578 return __is_raid10_near(layout);
579 case ALGORITHM_RAID10_OFFSET:
580 return __is_raid10_offset(layout);
581 case ALGORITHM_RAID10_FAR:
582 return __is_raid10_far(layout);
583 default:
584 break;
585 }
586 }
587
588 return false;
589 }
590
591 /* Return raid_type for @name */
592 static struct raid_type *get_raid_type(const char *name)
593 {
594 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
595
596 while (rtp-- > raid_types)
597 if (!strcasecmp(rtp->name, name))
598 return rtp;
599
600 return NULL;
601 }
602
603 /* Return raid_type for @name based derived from @level and @layout */
604 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
605 {
606 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
607
608 while (rtp-- > raid_types) {
609 /* RAID10 special checks based on @layout flags/properties */
610 if (rtp->level == level &&
611 (__got_raid10(rtp, layout) || rtp->algorithm == layout))
612 return rtp;
613 }
614
615 return NULL;
616 }
617
618 /*
619 * Conditionally change bdev capacity of @rs
620 * in case of a disk add/remove reshape
621 */
622 static void rs_set_capacity(struct raid_set *rs)
623 {
624 struct mddev *mddev = &rs->md;
625 struct md_rdev *rdev;
626 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
627
628 /*
629 * raid10 sets rdev->sector to the device size, which
630 * is unintended in case of out-of-place reshaping
631 */
632 rdev_for_each(rdev, mddev)
633 rdev->sectors = mddev->dev_sectors;
634
635 set_capacity(gendisk, mddev->array_sectors);
636 revalidate_disk(gendisk);
637 }
638
639 /*
640 * Set the mddev properties in @rs to the current
641 * ones retrieved from the freshest superblock
642 */
643 static void rs_set_cur(struct raid_set *rs)
644 {
645 struct mddev *mddev = &rs->md;
646
647 mddev->new_level = mddev->level;
648 mddev->new_layout = mddev->layout;
649 mddev->new_chunk_sectors = mddev->chunk_sectors;
650 }
651
652 /*
653 * Set the mddev properties in @rs to the new
654 * ones requested by the ctr
655 */
656 static void rs_set_new(struct raid_set *rs)
657 {
658 struct mddev *mddev = &rs->md;
659
660 mddev->level = mddev->new_level;
661 mddev->layout = mddev->new_layout;
662 mddev->chunk_sectors = mddev->new_chunk_sectors;
663 mddev->raid_disks = rs->raid_disks;
664 mddev->delta_disks = 0;
665 }
666
667 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
668 unsigned int raid_devs)
669 {
670 unsigned int i;
671 struct raid_set *rs;
672
673 if (raid_devs <= raid_type->parity_devs) {
674 ti->error = "Insufficient number of devices";
675 return ERR_PTR(-EINVAL);
676 }
677
678 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
679 if (!rs) {
680 ti->error = "Cannot allocate raid context";
681 return ERR_PTR(-ENOMEM);
682 }
683
684 mddev_init(&rs->md);
685
686 rs->raid_disks = raid_devs;
687 rs->delta_disks = 0;
688
689 rs->ti = ti;
690 rs->raid_type = raid_type;
691 rs->stripe_cache_entries = 256;
692 rs->md.raid_disks = raid_devs;
693 rs->md.level = raid_type->level;
694 rs->md.new_level = rs->md.level;
695 rs->md.layout = raid_type->algorithm;
696 rs->md.new_layout = rs->md.layout;
697 rs->md.delta_disks = 0;
698 rs->md.recovery_cp = MaxSector;
699
700 for (i = 0; i < raid_devs; i++)
701 md_rdev_init(&rs->dev[i].rdev);
702
703 /*
704 * Remaining items to be initialized by further RAID params:
705 * rs->md.persistent
706 * rs->md.external
707 * rs->md.chunk_sectors
708 * rs->md.new_chunk_sectors
709 * rs->md.dev_sectors
710 */
711
712 return rs;
713 }
714
715 static void raid_set_free(struct raid_set *rs)
716 {
717 int i;
718
719 for (i = 0; i < rs->raid_disks; i++) {
720 if (rs->dev[i].meta_dev)
721 dm_put_device(rs->ti, rs->dev[i].meta_dev);
722 md_rdev_clear(&rs->dev[i].rdev);
723 if (rs->dev[i].data_dev)
724 dm_put_device(rs->ti, rs->dev[i].data_dev);
725 }
726
727 kfree(rs);
728 }
729
730 /*
731 * For every device we have two words
732 * <meta_dev>: meta device name or '-' if missing
733 * <data_dev>: data device name or '-' if missing
734 *
735 * The following are permitted:
736 * - -
737 * - <data_dev>
738 * <meta_dev> <data_dev>
739 *
740 * The following is not allowed:
741 * <meta_dev> -
742 *
743 * This code parses those words. If there is a failure,
744 * the caller must use raid_set_free() to unwind the operations.
745 */
746 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
747 {
748 int i;
749 int rebuild = 0;
750 int metadata_available = 0;
751 int r = 0;
752 const char *arg;
753
754 /* Put off the number of raid devices argument to get to dev pairs */
755 arg = dm_shift_arg(as);
756 if (!arg)
757 return -EINVAL;
758
759 for (i = 0; i < rs->raid_disks; i++) {
760 rs->dev[i].rdev.raid_disk = i;
761
762 rs->dev[i].meta_dev = NULL;
763 rs->dev[i].data_dev = NULL;
764
765 /*
766 * There are no offsets, since there is a separate device
767 * for data and metadata.
768 */
769 rs->dev[i].rdev.data_offset = 0;
770 rs->dev[i].rdev.mddev = &rs->md;
771
772 arg = dm_shift_arg(as);
773 if (!arg)
774 return -EINVAL;
775
776 if (strcmp(arg, "-")) {
777 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
778 &rs->dev[i].meta_dev);
779 if (r) {
780 rs->ti->error = "RAID metadata device lookup failure";
781 return r;
782 }
783
784 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
785 if (!rs->dev[i].rdev.sb_page) {
786 rs->ti->error = "Failed to allocate superblock page";
787 return -ENOMEM;
788 }
789 }
790
791 arg = dm_shift_arg(as);
792 if (!arg)
793 return -EINVAL;
794
795 if (!strcmp(arg, "-")) {
796 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
797 (!rs->dev[i].rdev.recovery_offset)) {
798 rs->ti->error = "Drive designated for rebuild not specified";
799 return -EINVAL;
800 }
801
802 if (rs->dev[i].meta_dev) {
803 rs->ti->error = "No data device supplied with metadata device";
804 return -EINVAL;
805 }
806
807 continue;
808 }
809
810 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
811 &rs->dev[i].data_dev);
812 if (r) {
813 rs->ti->error = "RAID device lookup failure";
814 return r;
815 }
816
817 if (rs->dev[i].meta_dev) {
818 metadata_available = 1;
819 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
820 }
821 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
822 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
823 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
824 rebuild++;
825 }
826
827 if (metadata_available) {
828 rs->md.external = 0;
829 rs->md.persistent = 1;
830 rs->md.major_version = 2;
831 } else if (rebuild && !rs->md.recovery_cp) {
832 /*
833 * Without metadata, we will not be able to tell if the array
834 * is in-sync or not - we must assume it is not. Therefore,
835 * it is impossible to rebuild a drive.
836 *
837 * Even if there is metadata, the on-disk information may
838 * indicate that the array is not in-sync and it will then
839 * fail at that time.
840 *
841 * User could specify 'nosync' option if desperate.
842 */
843 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
844 return -EINVAL;
845 }
846
847 return 0;
848 }
849
850 /*
851 * validate_region_size
852 * @rs
853 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
854 *
855 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
856 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
857 *
858 * Returns: 0 on success, -EINVAL on failure.
859 */
860 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
861 {
862 unsigned long min_region_size = rs->ti->len / (1 << 21);
863
864 if (!region_size) {
865 /*
866 * Choose a reasonable default. All figures in sectors.
867 */
868 if (min_region_size > (1 << 13)) {
869 /* If not a power of 2, make it the next power of 2 */
870 region_size = roundup_pow_of_two(min_region_size);
871 DMINFO("Choosing default region size of %lu sectors",
872 region_size);
873 } else {
874 DMINFO("Choosing default region size of 4MiB");
875 region_size = 1 << 13; /* sectors */
876 }
877 } else {
878 /*
879 * Validate user-supplied value.
880 */
881 if (region_size > rs->ti->len) {
882 rs->ti->error = "Supplied region size is too large";
883 return -EINVAL;
884 }
885
886 if (region_size < min_region_size) {
887 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
888 region_size, min_region_size);
889 rs->ti->error = "Supplied region size is too small";
890 return -EINVAL;
891 }
892
893 if (!is_power_of_2(region_size)) {
894 rs->ti->error = "Region size is not a power of 2";
895 return -EINVAL;
896 }
897
898 if (region_size < rs->md.chunk_sectors) {
899 rs->ti->error = "Region size is smaller than the chunk size";
900 return -EINVAL;
901 }
902 }
903
904 /*
905 * Convert sectors to bytes.
906 */
907 rs->md.bitmap_info.chunksize = to_bytes(region_size);
908
909 return 0;
910 }
911
912 /*
913 * validate_raid_redundancy
914 * @rs
915 *
916 * Determine if there are enough devices in the array that haven't
917 * failed (or are being rebuilt) to form a usable array.
918 *
919 * Returns: 0 on success, -EINVAL on failure.
920 */
921 static int validate_raid_redundancy(struct raid_set *rs)
922 {
923 unsigned int i, rebuild_cnt = 0;
924 unsigned int rebuilds_per_group = 0, copies;
925 unsigned int group_size, last_group_start;
926
927 for (i = 0; i < rs->md.raid_disks; i++)
928 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
929 !rs->dev[i].rdev.sb_page)
930 rebuild_cnt++;
931
932 switch (rs->raid_type->level) {
933 case 1:
934 if (rebuild_cnt >= rs->md.raid_disks)
935 goto too_many;
936 break;
937 case 4:
938 case 5:
939 case 6:
940 if (rebuild_cnt > rs->raid_type->parity_devs)
941 goto too_many;
942 break;
943 case 10:
944 copies = raid10_md_layout_to_copies(rs->md.new_layout);
945 if (rebuild_cnt < copies)
946 break;
947
948 /*
949 * It is possible to have a higher rebuild count for RAID10,
950 * as long as the failed devices occur in different mirror
951 * groups (i.e. different stripes).
952 *
953 * When checking "near" format, make sure no adjacent devices
954 * have failed beyond what can be handled. In addition to the
955 * simple case where the number of devices is a multiple of the
956 * number of copies, we must also handle cases where the number
957 * of devices is not a multiple of the number of copies.
958 * E.g. dev1 dev2 dev3 dev4 dev5
959 * A A B B C
960 * C D D E E
961 */
962 if (__is_raid10_near(rs->md.new_layout)) {
963 for (i = 0; i < rs->md.raid_disks; i++) {
964 if (!(i % copies))
965 rebuilds_per_group = 0;
966 if ((!rs->dev[i].rdev.sb_page ||
967 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
968 (++rebuilds_per_group >= copies))
969 goto too_many;
970 }
971 break;
972 }
973
974 /*
975 * When checking "far" and "offset" formats, we need to ensure
976 * that the device that holds its copy is not also dead or
977 * being rebuilt. (Note that "far" and "offset" formats only
978 * support two copies right now. These formats also only ever
979 * use the 'use_far_sets' variant.)
980 *
981 * This check is somewhat complicated by the need to account
982 * for arrays that are not a multiple of (far) copies. This
983 * results in the need to treat the last (potentially larger)
984 * set differently.
985 */
986 group_size = (rs->md.raid_disks / copies);
987 last_group_start = (rs->md.raid_disks / group_size) - 1;
988 last_group_start *= group_size;
989 for (i = 0; i < rs->md.raid_disks; i++) {
990 if (!(i % copies) && !(i > last_group_start))
991 rebuilds_per_group = 0;
992 if ((!rs->dev[i].rdev.sb_page ||
993 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
994 (++rebuilds_per_group >= copies))
995 goto too_many;
996 }
997 break;
998 default:
999 if (rebuild_cnt)
1000 return -EINVAL;
1001 }
1002
1003 return 0;
1004
1005 too_many:
1006 return -EINVAL;
1007 }
1008
1009 /*
1010 * Possible arguments are...
1011 * <chunk_size> [optional_args]
1012 *
1013 * Argument definitions
1014 * <chunk_size> The number of sectors per disk that
1015 * will form the "stripe"
1016 * [[no]sync] Force or prevent recovery of the
1017 * entire array
1018 * [rebuild <idx>] Rebuild the drive indicated by the index
1019 * [daemon_sleep <ms>] Time between bitmap daemon work to
1020 * clear bits
1021 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1022 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1023 * [write_mostly <idx>] Indicate a write mostly drive via index
1024 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
1025 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
1026 * [region_size <sectors>] Defines granularity of bitmap
1027 *
1028 * RAID10-only options:
1029 * [raid10_copies <# copies>] Number of copies. (Default: 2)
1030 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
1031 */
1032 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1033 unsigned int num_raid_params)
1034 {
1035 int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1036 unsigned int raid10_copies = 2;
1037 unsigned int i, write_mostly = 0;
1038 unsigned int region_size = 0;
1039 sector_t max_io_len;
1040 const char *arg, *key;
1041 struct raid_dev *rd;
1042 struct raid_type *rt = rs->raid_type;
1043
1044 arg = dm_shift_arg(as);
1045 num_raid_params--; /* Account for chunk_size argument */
1046
1047 if (kstrtoint(arg, 10, &value) < 0) {
1048 rs->ti->error = "Bad numerical argument given for chunk_size";
1049 return -EINVAL;
1050 }
1051
1052 /*
1053 * First, parse the in-order required arguments
1054 * "chunk_size" is the only argument of this type.
1055 */
1056 if (rt_is_raid1(rt)) {
1057 if (value)
1058 DMERR("Ignoring chunk size parameter for RAID 1");
1059 value = 0;
1060 } else if (!is_power_of_2(value)) {
1061 rs->ti->error = "Chunk size must be a power of 2";
1062 return -EINVAL;
1063 } else if (value < 8) {
1064 rs->ti->error = "Chunk size value is too small";
1065 return -EINVAL;
1066 }
1067
1068 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1069
1070 /*
1071 * We set each individual device as In_sync with a completed
1072 * 'recovery_offset'. If there has been a device failure or
1073 * replacement then one of the following cases applies:
1074 *
1075 * 1) User specifies 'rebuild'.
1076 * - Device is reset when param is read.
1077 * 2) A new device is supplied.
1078 * - No matching superblock found, resets device.
1079 * 3) Device failure was transient and returns on reload.
1080 * - Failure noticed, resets device for bitmap replay.
1081 * 4) Device hadn't completed recovery after previous failure.
1082 * - Superblock is read and overrides recovery_offset.
1083 *
1084 * What is found in the superblocks of the devices is always
1085 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1086 */
1087 for (i = 0; i < rs->raid_disks; i++) {
1088 set_bit(In_sync, &rs->dev[i].rdev.flags);
1089 rs->dev[i].rdev.recovery_offset = MaxSector;
1090 }
1091
1092 /*
1093 * Second, parse the unordered optional arguments
1094 */
1095 for (i = 0; i < num_raid_params; i++) {
1096 key = dm_shift_arg(as);
1097 if (!key) {
1098 rs->ti->error = "Not enough raid parameters given";
1099 return -EINVAL;
1100 }
1101
1102 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1103 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1104 rs->ti->error = "Only one 'nosync' argument allowed";
1105 return -EINVAL;
1106 }
1107 continue;
1108 }
1109 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1110 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1111 rs->ti->error = "Only one 'sync' argument allowed";
1112 return -EINVAL;
1113 }
1114 continue;
1115 }
1116 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1117 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1118 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1119 return -EINVAL;
1120 }
1121 continue;
1122 }
1123
1124 arg = dm_shift_arg(as);
1125 i++; /* Account for the argument pairs */
1126 if (!arg) {
1127 rs->ti->error = "Wrong number of raid parameters given";
1128 return -EINVAL;
1129 }
1130
1131 /*
1132 * Parameters that take a string value are checked here.
1133 */
1134
1135 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1136 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1137 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1138 return -EINVAL;
1139 }
1140 if (!rt_is_raid10(rt)) {
1141 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1142 return -EINVAL;
1143 }
1144 raid10_format = raid10_name_to_format(arg);
1145 if (raid10_format < 0) {
1146 rs->ti->error = "Invalid 'raid10_format' value given";
1147 return raid10_format;
1148 }
1149 continue;
1150 }
1151
1152 if (kstrtoint(arg, 10, &value) < 0) {
1153 rs->ti->error = "Bad numerical argument given in raid params";
1154 return -EINVAL;
1155 }
1156
1157 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1158 /*
1159 * "rebuild" is being passed in by userspace to provide
1160 * indexes of replaced devices and to set up additional
1161 * devices on raid level takeover.
1162 */
1163 if (!__within_range(value, 0, rs->raid_disks - 1)) {
1164 rs->ti->error = "Invalid rebuild index given";
1165 return -EINVAL;
1166 }
1167
1168 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1169 rs->ti->error = "rebuild for this index already given";
1170 return -EINVAL;
1171 }
1172
1173 rd = rs->dev + value;
1174 clear_bit(In_sync, &rd->rdev.flags);
1175 clear_bit(Faulty, &rd->rdev.flags);
1176 rd->rdev.recovery_offset = 0;
1177 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1178 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1179 if (!rt_is_raid1(rt)) {
1180 rs->ti->error = "write_mostly option is only valid for RAID1";
1181 return -EINVAL;
1182 }
1183
1184 if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1185 rs->ti->error = "Invalid write_mostly index given";
1186 return -EINVAL;
1187 }
1188
1189 write_mostly++;
1190 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1191 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1192 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1193 if (!rt_is_raid1(rt)) {
1194 rs->ti->error = "max_write_behind option is only valid for RAID1";
1195 return -EINVAL;
1196 }
1197
1198 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1199 rs->ti->error = "Only one max_write_behind argument pair allowed";
1200 return -EINVAL;
1201 }
1202
1203 /*
1204 * In device-mapper, we specify things in sectors, but
1205 * MD records this value in kB
1206 */
1207 value /= 2;
1208 if (value > COUNTER_MAX) {
1209 rs->ti->error = "Max write-behind limit out of range";
1210 return -EINVAL;
1211 }
1212
1213 rs->md.bitmap_info.max_write_behind = value;
1214 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1215 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1216 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1217 return -EINVAL;
1218 }
1219 if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
1220 rs->ti->error = "daemon sleep period out of range";
1221 return -EINVAL;
1222 }
1223 rs->md.bitmap_info.daemon_sleep = value;
1224 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1225 /* Userspace passes new data_offset after having extended the the data image LV */
1226 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1227 rs->ti->error = "Only one data_offset argument pair allowed";
1228 return -EINVAL;
1229 }
1230 /* Ensure sensible data offset */
1231 if (value < 0 ||
1232 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1233 rs->ti->error = "Bogus data_offset value";
1234 return -EINVAL;
1235 }
1236 rs->data_offset = value;
1237 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1238 /* Define the +/-# of disks to add to/remove from the given raid set */
1239 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1240 rs->ti->error = "Only one delta_disks argument pair allowed";
1241 return -EINVAL;
1242 }
1243 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1244 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1245 rs->ti->error = "Too many delta_disk requested";
1246 return -EINVAL;
1247 }
1248
1249 rs->delta_disks = value;
1250 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1251 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1252 rs->ti->error = "Only one stripe_cache argument pair allowed";
1253 return -EINVAL;
1254 }
1255
1256 if (!rt_is_raid456(rt)) {
1257 rs->ti->error = "Inappropriate argument: stripe_cache";
1258 return -EINVAL;
1259 }
1260
1261 rs->stripe_cache_entries = value;
1262 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1263 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1264 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1265 return -EINVAL;
1266 }
1267 if (value > INT_MAX) {
1268 rs->ti->error = "min_recovery_rate out of range";
1269 return -EINVAL;
1270 }
1271 rs->md.sync_speed_min = (int)value;
1272 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1273 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1274 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1275 return -EINVAL;
1276 }
1277 if (value > INT_MAX) {
1278 rs->ti->error = "max_recovery_rate out of range";
1279 return -EINVAL;
1280 }
1281 rs->md.sync_speed_max = (int)value;
1282 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1283 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1284 rs->ti->error = "Only one region_size argument pair allowed";
1285 return -EINVAL;
1286 }
1287
1288 region_size = value;
1289 rs->requested_bitmap_chunk_sectors = value;
1290 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1291 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1292 rs->ti->error = "Only one raid10_copies argument pair allowed";
1293 return -EINVAL;
1294 }
1295
1296 if (!__within_range(value, 2, rs->md.raid_disks)) {
1297 rs->ti->error = "Bad value for 'raid10_copies'";
1298 return -EINVAL;
1299 }
1300
1301 raid10_copies = value;
1302 } else {
1303 DMERR("Unable to parse RAID parameter: %s", key);
1304 rs->ti->error = "Unable to parse RAID parameter";
1305 return -EINVAL;
1306 }
1307 }
1308
1309 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1310 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1311 rs->ti->error = "sync and nosync are mutually exclusive";
1312 return -EINVAL;
1313 }
1314
1315 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1316 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1317 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1318 rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1319 return -EINVAL;
1320 }
1321
1322 if (write_mostly >= rs->md.raid_disks) {
1323 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1324 return -EINVAL;
1325 }
1326
1327 if (validate_region_size(rs, region_size))
1328 return -EINVAL;
1329
1330 if (rs->md.chunk_sectors)
1331 max_io_len = rs->md.chunk_sectors;
1332 else
1333 max_io_len = region_size;
1334
1335 if (dm_set_target_max_io_len(rs->ti, max_io_len))
1336 return -EINVAL;
1337
1338 if (rt_is_raid10(rt)) {
1339 if (raid10_copies > rs->md.raid_disks) {
1340 rs->ti->error = "Not enough devices to satisfy specification";
1341 return -EINVAL;
1342 }
1343
1344 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1345 if (rs->md.new_layout < 0) {
1346 rs->ti->error = "Error getting raid10 format";
1347 return rs->md.new_layout;
1348 }
1349
1350 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1351 if (!rt) {
1352 rs->ti->error = "Failed to recognize new raid10 layout";
1353 return -EINVAL;
1354 }
1355
1356 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1357 rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1358 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1359 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1360 return -EINVAL;
1361 }
1362 }
1363
1364 rs->raid10_copies = raid10_copies;
1365
1366 /* Assume there are no metadata devices until the drives are parsed */
1367 rs->md.persistent = 0;
1368 rs->md.external = 1;
1369
1370 /* Check, if any invalid ctr arguments have been passed in for the raid level */
1371 return rs_check_for_valid_flags(rs);
1372 }
1373
1374 /* Set raid4/5/6 cache size */
1375 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1376 {
1377 int r;
1378 struct r5conf *conf;
1379 struct mddev *mddev = &rs->md;
1380 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1381 uint32_t nr_stripes = rs->stripe_cache_entries;
1382
1383 if (!rt_is_raid456(rs->raid_type)) {
1384 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1385 return -EINVAL;
1386 }
1387
1388 if (nr_stripes < min_stripes) {
1389 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1390 nr_stripes, min_stripes);
1391 nr_stripes = min_stripes;
1392 }
1393
1394 conf = mddev->private;
1395 if (!conf) {
1396 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1397 return -EINVAL;
1398 }
1399
1400 /* Try setting number of stripes in raid456 stripe cache */
1401 if (conf->min_nr_stripes != nr_stripes) {
1402 r = raid5_set_cache_size(mddev, nr_stripes);
1403 if (r) {
1404 rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1405 return r;
1406 }
1407
1408 DMINFO("%u stripe cache entries", nr_stripes);
1409 }
1410
1411 return 0;
1412 }
1413
1414 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1415 static unsigned int mddev_data_stripes(struct raid_set *rs)
1416 {
1417 return rs->md.raid_disks - rs->raid_type->parity_devs;
1418 }
1419
1420 /* Return # of data stripes of @rs (i.e. as of ctr) */
1421 static unsigned int rs_data_stripes(struct raid_set *rs)
1422 {
1423 return rs->raid_disks - rs->raid_type->parity_devs;
1424 }
1425
1426 /* Calculate the sectors per device and per array used for @rs */
1427 static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1428 {
1429 int delta_disks;
1430 unsigned int data_stripes;
1431 struct mddev *mddev = &rs->md;
1432 struct md_rdev *rdev;
1433 sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1434
1435 if (use_mddev) {
1436 delta_disks = mddev->delta_disks;
1437 data_stripes = mddev_data_stripes(rs);
1438 } else {
1439 delta_disks = rs->delta_disks;
1440 data_stripes = rs_data_stripes(rs);
1441 }
1442
1443 /* Special raid1 case w/o delta_disks support (yet) */
1444 if (rt_is_raid1(rs->raid_type))
1445 ;
1446 else if (rt_is_raid10(rs->raid_type)) {
1447 if (rs->raid10_copies < 2 ||
1448 delta_disks < 0) {
1449 rs->ti->error = "Bogus raid10 data copies or delta disks";
1450 return -EINVAL;
1451 }
1452
1453 dev_sectors *= rs->raid10_copies;
1454 if (sector_div(dev_sectors, data_stripes))
1455 goto bad;
1456
1457 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1458 if (sector_div(array_sectors, rs->raid10_copies))
1459 goto bad;
1460
1461 } else if (sector_div(dev_sectors, data_stripes))
1462 goto bad;
1463
1464 else
1465 /* Striped layouts */
1466 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1467
1468 rdev_for_each(rdev, mddev)
1469 rdev->sectors = dev_sectors;
1470
1471 mddev->array_sectors = array_sectors;
1472 mddev->dev_sectors = dev_sectors;
1473
1474 return 0;
1475 bad:
1476 rs->ti->error = "Target length not divisible by number of data devices";
1477 return -EINVAL;
1478 }
1479
1480 /* Setup recovery on @rs */
1481 static void __rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1482 {
1483 /* raid0 does not recover */
1484 if (rs_is_raid0(rs))
1485 rs->md.recovery_cp = MaxSector;
1486 /*
1487 * A raid6 set has to be recovered either
1488 * completely or for the grown part to
1489 * ensure proper parity and Q-Syndrome
1490 */
1491 else if (rs_is_raid6(rs))
1492 rs->md.recovery_cp = dev_sectors;
1493 /*
1494 * Other raid set types may skip recovery
1495 * depending on the 'nosync' flag.
1496 */
1497 else
1498 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1499 ? MaxSector : dev_sectors;
1500 }
1501
1502 /* Setup recovery on @rs based on raid type, device size and 'nosync' flag */
1503 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1504 {
1505 if (!dev_sectors)
1506 /* New raid set or 'sync' flag provided */
1507 __rs_setup_recovery(rs, 0);
1508 else if (dev_sectors == MaxSector)
1509 /* Prevent recovery */
1510 __rs_setup_recovery(rs, MaxSector);
1511 else if (rs->dev[0].rdev.sectors < dev_sectors)
1512 /* Grown raid set */
1513 __rs_setup_recovery(rs, rs->dev[0].rdev.sectors);
1514 else
1515 __rs_setup_recovery(rs, MaxSector);
1516 }
1517
1518 static void do_table_event(struct work_struct *ws)
1519 {
1520 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1521
1522 smp_rmb(); /* Make sure we access most actual mddev properties */
1523 if (!rs_is_reshaping(rs))
1524 rs_set_capacity(rs);
1525 dm_table_event(rs->ti->table);
1526 }
1527
1528 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1529 {
1530 struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1531
1532 return mddev_congested(&rs->md, bits);
1533 }
1534
1535 /*
1536 * Make sure a valid takover (level switch) is being requested on @rs
1537 *
1538 * Conversions of raid sets from one MD personality to another
1539 * have to conform to restrictions which are enforced here.
1540 */
1541 static int rs_check_takeover(struct raid_set *rs)
1542 {
1543 struct mddev *mddev = &rs->md;
1544 unsigned int near_copies;
1545
1546 if (rs->md.degraded) {
1547 rs->ti->error = "Can't takeover degraded raid set";
1548 return -EPERM;
1549 }
1550
1551 if (rs_is_reshaping(rs)) {
1552 rs->ti->error = "Can't takeover reshaping raid set";
1553 return -EPERM;
1554 }
1555
1556 switch (mddev->level) {
1557 case 0:
1558 /* raid0 -> raid1/5 with one disk */
1559 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1560 mddev->raid_disks == 1)
1561 return 0;
1562
1563 /* raid0 -> raid10 */
1564 if (mddev->new_level == 10 &&
1565 !(rs->raid_disks % mddev->raid_disks))
1566 return 0;
1567
1568 /* raid0 with multiple disks -> raid4/5/6 */
1569 if (__within_range(mddev->new_level, 4, 6) &&
1570 mddev->new_layout == ALGORITHM_PARITY_N &&
1571 mddev->raid_disks > 1)
1572 return 0;
1573
1574 break;
1575
1576 case 10:
1577 /* Can't takeover raid10_offset! */
1578 if (__is_raid10_offset(mddev->layout))
1579 break;
1580
1581 near_copies = __raid10_near_copies(mddev->layout);
1582
1583 /* raid10* -> raid0 */
1584 if (mddev->new_level == 0) {
1585 /* Can takeover raid10_near with raid disks divisable by data copies! */
1586 if (near_copies > 1 &&
1587 !(mddev->raid_disks % near_copies)) {
1588 mddev->raid_disks /= near_copies;
1589 mddev->delta_disks = mddev->raid_disks;
1590 return 0;
1591 }
1592
1593 /* Can takeover raid10_far */
1594 if (near_copies == 1 &&
1595 __raid10_far_copies(mddev->layout) > 1)
1596 return 0;
1597
1598 break;
1599 }
1600
1601 /* raid10_{near,far} -> raid1 */
1602 if (mddev->new_level == 1 &&
1603 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1604 return 0;
1605
1606 /* raid10_{near,far} with 2 disks -> raid4/5 */
1607 if (__within_range(mddev->new_level, 4, 5) &&
1608 mddev->raid_disks == 2)
1609 return 0;
1610 break;
1611
1612 case 1:
1613 /* raid1 with 2 disks -> raid4/5 */
1614 if (__within_range(mddev->new_level, 4, 5) &&
1615 mddev->raid_disks == 2) {
1616 mddev->degraded = 1;
1617 return 0;
1618 }
1619
1620 /* raid1 -> raid0 */
1621 if (mddev->new_level == 0 &&
1622 mddev->raid_disks == 1)
1623 return 0;
1624
1625 /* raid1 -> raid10 */
1626 if (mddev->new_level == 10)
1627 return 0;
1628 break;
1629
1630 case 4:
1631 /* raid4 -> raid0 */
1632 if (mddev->new_level == 0)
1633 return 0;
1634
1635 /* raid4 -> raid1/5 with 2 disks */
1636 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1637 mddev->raid_disks == 2)
1638 return 0;
1639
1640 /* raid4 -> raid5/6 with parity N */
1641 if (__within_range(mddev->new_level, 5, 6) &&
1642 mddev->layout == ALGORITHM_PARITY_N)
1643 return 0;
1644 break;
1645
1646 case 5:
1647 /* raid5 with parity N -> raid0 */
1648 if (mddev->new_level == 0 &&
1649 mddev->layout == ALGORITHM_PARITY_N)
1650 return 0;
1651
1652 /* raid5 with parity N -> raid4 */
1653 if (mddev->new_level == 4 &&
1654 mddev->layout == ALGORITHM_PARITY_N)
1655 return 0;
1656
1657 /* raid5 with 2 disks -> raid1/4/10 */
1658 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1659 mddev->raid_disks == 2)
1660 return 0;
1661
1662 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1663 if (mddev->new_level == 6 &&
1664 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1665 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1666 return 0;
1667 break;
1668
1669 case 6:
1670 /* raid6 with parity N -> raid0 */
1671 if (mddev->new_level == 0 &&
1672 mddev->layout == ALGORITHM_PARITY_N)
1673 return 0;
1674
1675 /* raid6 with parity N -> raid4 */
1676 if (mddev->new_level == 4 &&
1677 mddev->layout == ALGORITHM_PARITY_N)
1678 return 0;
1679
1680 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1681 if (mddev->new_level == 5 &&
1682 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1683 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1684 return 0;
1685
1686 default:
1687 break;
1688 }
1689
1690 rs->ti->error = "takeover not possible";
1691 return -EINVAL;
1692 }
1693
1694 /* True if @rs requested to be taken over */
1695 static bool rs_takeover_requested(struct raid_set *rs)
1696 {
1697 return rs->md.new_level != rs->md.level;
1698 }
1699
1700 /* True if @rs is requested to reshape by ctr */
1701 static bool rs_reshape_requested(struct raid_set *rs)
1702 {
1703 bool change;
1704 struct mddev *mddev = &rs->md;
1705
1706 if (rs_takeover_requested(rs))
1707 return false;
1708
1709 if (!mddev->level)
1710 return false;
1711
1712 change = mddev->new_layout != mddev->layout ||
1713 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1714 rs->delta_disks;
1715
1716 /* Historical case to support raid1 reshape without delta disks */
1717 if (mddev->level == 1) {
1718 if (rs->delta_disks)
1719 return !!rs->delta_disks;
1720
1721 return !change &&
1722 mddev->raid_disks != rs->raid_disks;
1723 }
1724
1725 if (mddev->level == 10)
1726 return change &&
1727 !__is_raid10_far(mddev->new_layout) &&
1728 rs->delta_disks >= 0;
1729
1730 return change;
1731 }
1732
1733 /* Features */
1734 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */
1735
1736 /* State flags for sb->flags */
1737 #define SB_FLAG_RESHAPE_ACTIVE 0x1
1738 #define SB_FLAG_RESHAPE_BACKWARDS 0x2
1739
1740 /*
1741 * This structure is never routinely used by userspace, unlike md superblocks.
1742 * Devices with this superblock should only ever be accessed via device-mapper.
1743 */
1744 #define DM_RAID_MAGIC 0x64526D44
1745 struct dm_raid_superblock {
1746 __le32 magic; /* "DmRd" */
1747 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1748
1749 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1750 __le32 array_position; /* The position of this drive in the raid set */
1751
1752 __le64 events; /* Incremented by md when superblock updated */
1753 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */
1754 /* indicate failures (see extension below) */
1755
1756 /*
1757 * This offset tracks the progress of the repair or replacement of
1758 * an individual drive.
1759 */
1760 __le64 disk_recovery_offset;
1761
1762 /*
1763 * This offset tracks the progress of the initial raid set
1764 * synchronisation/parity calculation.
1765 */
1766 __le64 array_resync_offset;
1767
1768 /*
1769 * raid characteristics
1770 */
1771 __le32 level;
1772 __le32 layout;
1773 __le32 stripe_sectors;
1774
1775 /********************************************************************
1776 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1777 *
1778 * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist
1779 */
1780
1781 __le32 flags; /* Flags defining array states for reshaping */
1782
1783 /*
1784 * This offset tracks the progress of a raid
1785 * set reshape in order to be able to restart it
1786 */
1787 __le64 reshape_position;
1788
1789 /*
1790 * These define the properties of the array in case of an interrupted reshape
1791 */
1792 __le32 new_level;
1793 __le32 new_layout;
1794 __le32 new_stripe_sectors;
1795 __le32 delta_disks;
1796
1797 __le64 array_sectors; /* Array size in sectors */
1798
1799 /*
1800 * Sector offsets to data on devices (reshaping).
1801 * Needed to support out of place reshaping, thus
1802 * not writing over any stripes whilst converting
1803 * them from old to new layout
1804 */
1805 __le64 data_offset;
1806 __le64 new_data_offset;
1807
1808 __le64 sectors; /* Used device size in sectors */
1809
1810 /*
1811 * Additonal Bit field of devices indicating failures to support
1812 * up to 256 devices with the 1.9.0 on-disk metadata format
1813 */
1814 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1815
1816 __le32 incompat_features; /* Used to indicate any incompatible features */
1817
1818 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1819 } __packed;
1820
1821 /*
1822 * Check for reshape constraints on raid set @rs:
1823 *
1824 * - reshape function non-existent
1825 * - degraded set
1826 * - ongoing recovery
1827 * - ongoing reshape
1828 *
1829 * Returns 0 if none or -EPERM if given constraint
1830 * and error message reference in @errmsg
1831 */
1832 static int rs_check_reshape(struct raid_set *rs)
1833 {
1834 struct mddev *mddev = &rs->md;
1835
1836 if (!mddev->pers || !mddev->pers->check_reshape)
1837 rs->ti->error = "Reshape not supported";
1838 else if (mddev->degraded)
1839 rs->ti->error = "Can't reshape degraded raid set";
1840 else if (rs_is_recovering(rs))
1841 rs->ti->error = "Convert request on recovering raid set prohibited";
1842 else if (rs_is_reshaping(rs))
1843 rs->ti->error = "raid set already reshaping!";
1844 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
1845 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
1846 else
1847 return 0;
1848
1849 return -EPERM;
1850 }
1851
1852 static int read_disk_sb(struct md_rdev *rdev, int size)
1853 {
1854 BUG_ON(!rdev->sb_page);
1855
1856 if (rdev->sb_loaded)
1857 return 0;
1858
1859 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
1860 DMERR("Failed to read superblock of device at position %d",
1861 rdev->raid_disk);
1862 md_error(rdev->mddev, rdev);
1863 return -EINVAL;
1864 }
1865
1866 rdev->sb_loaded = 1;
1867
1868 return 0;
1869 }
1870
1871 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1872 {
1873 failed_devices[0] = le64_to_cpu(sb->failed_devices);
1874 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
1875
1876 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1877 int i = ARRAY_SIZE(sb->extended_failed_devices);
1878
1879 while (i--)
1880 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
1881 }
1882 }
1883
1884 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1885 {
1886 int i = ARRAY_SIZE(sb->extended_failed_devices);
1887
1888 sb->failed_devices = cpu_to_le64(failed_devices[0]);
1889 while (i--)
1890 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
1891 }
1892
1893 /*
1894 * Synchronize the superblock members with the raid set properties
1895 *
1896 * All superblock data is little endian.
1897 */
1898 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
1899 {
1900 bool update_failed_devices = false;
1901 unsigned int i;
1902 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1903 struct dm_raid_superblock *sb;
1904 struct raid_set *rs = container_of(mddev, struct raid_set, md);
1905
1906 /* No metadata device, no superblock */
1907 if (!rdev->meta_bdev)
1908 return;
1909
1910 BUG_ON(!rdev->sb_page);
1911
1912 sb = page_address(rdev->sb_page);
1913
1914 sb_retrieve_failed_devices(sb, failed_devices);
1915
1916 for (i = 0; i < rs->raid_disks; i++)
1917 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
1918 update_failed_devices = true;
1919 set_bit(i, (void *) failed_devices);
1920 }
1921
1922 if (update_failed_devices)
1923 sb_update_failed_devices(sb, failed_devices);
1924
1925 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
1926 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1927
1928 sb->num_devices = cpu_to_le32(mddev->raid_disks);
1929 sb->array_position = cpu_to_le32(rdev->raid_disk);
1930
1931 sb->events = cpu_to_le64(mddev->events);
1932
1933 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
1934 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
1935
1936 sb->level = cpu_to_le32(mddev->level);
1937 sb->layout = cpu_to_le32(mddev->layout);
1938 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
1939
1940 sb->new_level = cpu_to_le32(mddev->new_level);
1941 sb->new_layout = cpu_to_le32(mddev->new_layout);
1942 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
1943
1944 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1945
1946 smp_rmb(); /* Make sure we access most recent reshape position */
1947 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1948 if (le64_to_cpu(sb->reshape_position) != MaxSector) {
1949 /* Flag ongoing reshape */
1950 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
1951
1952 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
1953 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
1954 } else {
1955 /* Clear reshape flags */
1956 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
1957 }
1958
1959 sb->array_sectors = cpu_to_le64(mddev->array_sectors);
1960 sb->data_offset = cpu_to_le64(rdev->data_offset);
1961 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
1962 sb->sectors = cpu_to_le64(rdev->sectors);
1963 sb->incompat_features = cpu_to_le32(0);
1964
1965 /* Zero out the rest of the payload after the size of the superblock */
1966 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
1967 }
1968
1969 /*
1970 * super_load
1971 *
1972 * This function creates a superblock if one is not found on the device
1973 * and will decide which superblock to use if there's a choice.
1974 *
1975 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
1976 */
1977 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
1978 {
1979 int r;
1980 struct dm_raid_superblock *sb;
1981 struct dm_raid_superblock *refsb;
1982 uint64_t events_sb, events_refsb;
1983
1984 rdev->sb_start = 0;
1985 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
1986 if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
1987 DMERR("superblock size of a logical block is no longer valid");
1988 return -EINVAL;
1989 }
1990
1991 r = read_disk_sb(rdev, rdev->sb_size);
1992 if (r)
1993 return r;
1994
1995 sb = page_address(rdev->sb_page);
1996
1997 /*
1998 * Two cases that we want to write new superblocks and rebuild:
1999 * 1) New device (no matching magic number)
2000 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2001 */
2002 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2003 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2004 super_sync(rdev->mddev, rdev);
2005
2006 set_bit(FirstUse, &rdev->flags);
2007 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2008
2009 /* Force writing of superblocks to disk */
2010 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
2011
2012 /* Any superblock is better than none, choose that if given */
2013 return refdev ? 0 : 1;
2014 }
2015
2016 if (!refdev)
2017 return 1;
2018
2019 events_sb = le64_to_cpu(sb->events);
2020
2021 refsb = page_address(refdev->sb_page);
2022 events_refsb = le64_to_cpu(refsb->events);
2023
2024 return (events_sb > events_refsb) ? 1 : 0;
2025 }
2026
2027 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2028 {
2029 int role;
2030 unsigned int d;
2031 struct mddev *mddev = &rs->md;
2032 uint64_t events_sb;
2033 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2034 struct dm_raid_superblock *sb;
2035 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2036 struct md_rdev *r;
2037 struct dm_raid_superblock *sb2;
2038
2039 sb = page_address(rdev->sb_page);
2040 events_sb = le64_to_cpu(sb->events);
2041
2042 /*
2043 * Initialise to 1 if this is a new superblock.
2044 */
2045 mddev->events = events_sb ? : 1;
2046
2047 mddev->reshape_position = MaxSector;
2048
2049 /*
2050 * Reshaping is supported, e.g. reshape_position is valid
2051 * in superblock and superblock content is authoritative.
2052 */
2053 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2054 /* Superblock is authoritative wrt given raid set layout! */
2055 mddev->raid_disks = le32_to_cpu(sb->num_devices);
2056 mddev->level = le32_to_cpu(sb->level);
2057 mddev->layout = le32_to_cpu(sb->layout);
2058 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2059 mddev->new_level = le32_to_cpu(sb->new_level);
2060 mddev->new_layout = le32_to_cpu(sb->new_layout);
2061 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2062 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2063 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2064
2065 /* raid was reshaping and got interrupted */
2066 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2067 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2068 DMERR("Reshape requested but raid set is still reshaping");
2069 return -EINVAL;
2070 }
2071
2072 if (mddev->delta_disks < 0 ||
2073 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2074 mddev->reshape_backwards = 1;
2075 else
2076 mddev->reshape_backwards = 0;
2077
2078 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2079 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2080 }
2081
2082 } else {
2083 /*
2084 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2085 */
2086 if (le32_to_cpu(sb->level) != mddev->level) {
2087 DMERR("Reshaping/takeover raid sets not yet supported. (raid level/stripes/size change)");
2088 return -EINVAL;
2089 }
2090 if (le32_to_cpu(sb->layout) != mddev->layout) {
2091 DMERR("Reshaping raid sets not yet supported. (raid layout change)");
2092 DMERR(" 0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout);
2093 DMERR(" Old layout: %s w/ %d copies",
2094 raid10_md_layout_to_format(le32_to_cpu(sb->layout)),
2095 raid10_md_layout_to_copies(le32_to_cpu(sb->layout)));
2096 DMERR(" New layout: %s w/ %d copies",
2097 raid10_md_layout_to_format(mddev->layout),
2098 raid10_md_layout_to_copies(mddev->layout));
2099 return -EINVAL;
2100 }
2101 if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) {
2102 DMERR("Reshaping raid sets not yet supported. (stripe sectors change)");
2103 return -EINVAL;
2104 }
2105
2106 /* We can only change the number of devices in raid1 with old (i.e. pre 1.0.7) metadata */
2107 if (!rt_is_raid1(rs->raid_type) &&
2108 (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
2109 DMERR("Reshaping raid sets not yet supported. (device count change from %u to %u)",
2110 sb->num_devices, mddev->raid_disks);
2111 return -EINVAL;
2112 }
2113
2114 /* Table line is checked vs. authoritative superblock */
2115 rs_set_new(rs);
2116 }
2117
2118 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2119 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2120
2121 /*
2122 * During load, we set FirstUse if a new superblock was written.
2123 * There are two reasons we might not have a superblock:
2124 * 1) The raid set is brand new - in which case, all of the
2125 * devices must have their In_sync bit set. Also,
2126 * recovery_cp must be 0, unless forced.
2127 * 2) This is a new device being added to an old raid set
2128 * and the new device needs to be rebuilt - in which
2129 * case the In_sync bit will /not/ be set and
2130 * recovery_cp must be MaxSector.
2131 * 3) This is/are a new device(s) being added to an old
2132 * raid set during takeover to a higher raid level
2133 * to provide capacity for redundancy or during reshape
2134 * to add capacity to grow the raid set.
2135 */
2136 d = 0;
2137 rdev_for_each(r, mddev) {
2138 if (test_bit(FirstUse, &r->flags))
2139 new_devs++;
2140
2141 if (!test_bit(In_sync, &r->flags)) {
2142 DMINFO("Device %d specified for rebuild; clearing superblock",
2143 r->raid_disk);
2144 rebuilds++;
2145
2146 if (test_bit(FirstUse, &r->flags))
2147 rebuild_and_new++;
2148 }
2149
2150 d++;
2151 }
2152
2153 if (new_devs == rs->raid_disks || !rebuilds) {
2154 /* Replace a broken device */
2155 if (new_devs == 1 && !rs->delta_disks)
2156 ;
2157 if (new_devs == rs->raid_disks) {
2158 DMINFO("Superblocks created for new raid set");
2159 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2160 } else if (new_devs != rebuilds &&
2161 new_devs != rs->delta_disks) {
2162 DMERR("New device injected into existing raid set without "
2163 "'delta_disks' or 'rebuild' parameter specified");
2164 return -EINVAL;
2165 }
2166 } else if (new_devs && new_devs != rebuilds) {
2167 DMERR("%u 'rebuild' devices cannot be injected into"
2168 " a raid set with %u other first-time devices",
2169 rebuilds, new_devs);
2170 return -EINVAL;
2171 } else if (rebuilds) {
2172 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2173 DMERR("new device%s provided without 'rebuild'",
2174 new_devs > 1 ? "s" : "");
2175 return -EINVAL;
2176 } else if (rs_is_recovering(rs)) {
2177 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2178 (unsigned long long) mddev->recovery_cp);
2179 return -EINVAL;
2180 } else if (rs_is_reshaping(rs)) {
2181 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2182 (unsigned long long) mddev->reshape_position);
2183 return -EINVAL;
2184 }
2185 }
2186
2187 /*
2188 * Now we set the Faulty bit for those devices that are
2189 * recorded in the superblock as failed.
2190 */
2191 sb_retrieve_failed_devices(sb, failed_devices);
2192 rdev_for_each(r, mddev) {
2193 if (!r->sb_page)
2194 continue;
2195 sb2 = page_address(r->sb_page);
2196 sb2->failed_devices = 0;
2197 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2198
2199 /*
2200 * Check for any device re-ordering.
2201 */
2202 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2203 role = le32_to_cpu(sb2->array_position);
2204 if (role < 0)
2205 continue;
2206
2207 if (role != r->raid_disk) {
2208 if (__is_raid10_near(mddev->layout)) {
2209 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2210 rs->raid_disks % rs->raid10_copies) {
2211 rs->ti->error =
2212 "Cannot change raid10 near set to odd # of devices!";
2213 return -EINVAL;
2214 }
2215
2216 sb2->array_position = cpu_to_le32(r->raid_disk);
2217
2218 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2219 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2220 !rt_is_raid1(rs->raid_type)) {
2221 rs->ti->error = "Cannot change device positions in raid set";
2222 return -EINVAL;
2223 }
2224
2225 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2226 }
2227
2228 /*
2229 * Partial recovery is performed on
2230 * returning failed devices.
2231 */
2232 if (test_bit(role, (void *) failed_devices))
2233 set_bit(Faulty, &r->flags);
2234 }
2235 }
2236
2237 return 0;
2238 }
2239
2240 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2241 {
2242 struct mddev *mddev = &rs->md;
2243 struct dm_raid_superblock *sb;
2244
2245 if (rs_is_raid0(rs) || !rdev->sb_page)
2246 return 0;
2247
2248 sb = page_address(rdev->sb_page);
2249
2250 /*
2251 * If mddev->events is not set, we know we have not yet initialized
2252 * the array.
2253 */
2254 if (!mddev->events && super_init_validation(rs, rdev))
2255 return -EINVAL;
2256
2257 if (le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2258 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2259 return -EINVAL;
2260 }
2261
2262 if (sb->incompat_features) {
2263 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2264 return -EINVAL;
2265 }
2266
2267 /* Enable bitmap creation for RAID levels != 0 */
2268 mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
2269 rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2270
2271 if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2272 /* Retrieve device size stored in superblock to be prepared for shrink */
2273 rdev->sectors = le64_to_cpu(sb->sectors);
2274 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2275 if (rdev->recovery_offset == MaxSector)
2276 set_bit(In_sync, &rdev->flags);
2277 /*
2278 * If no reshape in progress -> we're recovering single
2279 * disk(s) and have to set the device(s) to out-of-sync
2280 */
2281 else if (!rs_is_reshaping(rs))
2282 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2283 }
2284
2285 /*
2286 * If a device comes back, set it as not In_sync and no longer faulty.
2287 */
2288 if (test_and_clear_bit(Faulty, &rdev->flags)) {
2289 rdev->recovery_offset = 0;
2290 clear_bit(In_sync, &rdev->flags);
2291 rdev->saved_raid_disk = rdev->raid_disk;
2292 }
2293
2294 /* Reshape support -> restore repective data offsets */
2295 rdev->data_offset = le64_to_cpu(sb->data_offset);
2296 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2297
2298 return 0;
2299 }
2300
2301 /*
2302 * Analyse superblocks and select the freshest.
2303 */
2304 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2305 {
2306 int r;
2307 struct raid_dev *dev;
2308 struct md_rdev *rdev, *tmp, *freshest;
2309 struct mddev *mddev = &rs->md;
2310
2311 freshest = NULL;
2312 rdev_for_each_safe(rdev, tmp, mddev) {
2313 /*
2314 * Skipping super_load due to CTR_FLAG_SYNC will cause
2315 * the array to undergo initialization again as
2316 * though it were new. This is the intended effect
2317 * of the "sync" directive.
2318 *
2319 * When reshaping capability is added, we must ensure
2320 * that the "sync" directive is disallowed during the
2321 * reshape.
2322 */
2323 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2324 continue;
2325
2326 if (!rdev->meta_bdev)
2327 continue;
2328
2329 r = super_load(rdev, freshest);
2330
2331 switch (r) {
2332 case 1:
2333 freshest = rdev;
2334 break;
2335 case 0:
2336 break;
2337 default:
2338 dev = container_of(rdev, struct raid_dev, rdev);
2339 if (dev->meta_dev)
2340 dm_put_device(ti, dev->meta_dev);
2341
2342 dev->meta_dev = NULL;
2343 rdev->meta_bdev = NULL;
2344
2345 if (rdev->sb_page)
2346 put_page(rdev->sb_page);
2347
2348 rdev->sb_page = NULL;
2349
2350 rdev->sb_loaded = 0;
2351
2352 /*
2353 * We might be able to salvage the data device
2354 * even though the meta device has failed. For
2355 * now, we behave as though '- -' had been
2356 * set for this device in the table.
2357 */
2358 if (dev->data_dev)
2359 dm_put_device(ti, dev->data_dev);
2360
2361 dev->data_dev = NULL;
2362 rdev->bdev = NULL;
2363
2364 list_del(&rdev->same_set);
2365 }
2366 }
2367
2368 if (!freshest)
2369 return 0;
2370
2371 if (validate_raid_redundancy(rs)) {
2372 rs->ti->error = "Insufficient redundancy to activate array";
2373 return -EINVAL;
2374 }
2375
2376 /*
2377 * Validation of the freshest device provides the source of
2378 * validation for the remaining devices.
2379 */
2380 rs->ti->error = "Unable to assemble array: Invalid superblocks";
2381 if (super_validate(rs, freshest))
2382 return -EINVAL;
2383
2384 rdev_for_each(rdev, mddev)
2385 if ((rdev != freshest) && super_validate(rs, rdev))
2386 return -EINVAL;
2387 return 0;
2388 }
2389
2390 /*
2391 * Adjust data_offset and new_data_offset on all disk members of @rs
2392 * for out of place reshaping if requested by contructor
2393 *
2394 * We need free space at the beginning of each raid disk for forward
2395 * and at the end for backward reshapes which userspace has to provide
2396 * via remapping/reordering of space.
2397 */
2398 static int rs_adjust_data_offsets(struct raid_set *rs)
2399 {
2400 sector_t data_offset = 0, new_data_offset = 0;
2401 struct md_rdev *rdev;
2402
2403 /* Constructor did not request data offset change */
2404 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2405 if (!rs_is_reshapable(rs))
2406 goto out;
2407
2408 return 0;
2409 }
2410
2411 /* HM FIXME: get InSync raid_dev? */
2412 rdev = &rs->dev[0].rdev;
2413
2414 if (rs->delta_disks < 0) {
2415 /*
2416 * Removing disks (reshaping backwards):
2417 *
2418 * - before reshape: data is at offset 0 and free space
2419 * is at end of each component LV
2420 *
2421 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2422 */
2423 data_offset = 0;
2424 new_data_offset = rs->data_offset;
2425
2426 } else if (rs->delta_disks > 0) {
2427 /*
2428 * Adding disks (reshaping forwards):
2429 *
2430 * - before reshape: data is at offset rs->data_offset != 0 and
2431 * free space is at begin of each component LV
2432 *
2433 * - after reshape: data is at offset 0 on each component LV
2434 */
2435 data_offset = rs->data_offset;
2436 new_data_offset = 0;
2437
2438 } else {
2439 /*
2440 * User space passes in 0 for data offset after having removed reshape space
2441 *
2442 * - or - (data offset != 0)
2443 *
2444 * Changing RAID layout or chunk size -> toggle offsets
2445 *
2446 * - before reshape: data is at offset rs->data_offset 0 and
2447 * free space is at end of each component LV
2448 * -or-
2449 * data is at offset rs->data_offset != 0 and
2450 * free space is at begin of each component LV
2451 *
2452 * - after reshape: data is at offset 0 if it was at offset != 0
2453 * or at offset != 0 if it was at offset 0
2454 * on each component LV
2455 *
2456 */
2457 data_offset = rs->data_offset ? rdev->data_offset : 0;
2458 new_data_offset = data_offset ? 0 : rs->data_offset;
2459 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2460 }
2461
2462 /*
2463 * Make sure we got a minimum amount of free sectors per device
2464 */
2465 if (rs->data_offset &&
2466 to_sector(i_size_read(rdev->bdev->bd_inode)) - rdev->sectors < MIN_FREE_RESHAPE_SPACE) {
2467 rs->ti->error = data_offset ? "No space for forward reshape" :
2468 "No space for backward reshape";
2469 return -ENOSPC;
2470 }
2471 out:
2472 /* Adjust data offsets on all rdevs */
2473 rdev_for_each(rdev, &rs->md) {
2474 rdev->data_offset = data_offset;
2475 rdev->new_data_offset = new_data_offset;
2476 }
2477
2478 return 0;
2479 }
2480
2481 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2482 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2483 {
2484 int i = 0;
2485 struct md_rdev *rdev;
2486
2487 rdev_for_each(rdev, &rs->md) {
2488 rdev->raid_disk = i++;
2489 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2490 }
2491 }
2492
2493 /*
2494 * Setup @rs for takeover by a different raid level
2495 */
2496 static int rs_setup_takeover(struct raid_set *rs)
2497 {
2498 struct mddev *mddev = &rs->md;
2499 struct md_rdev *rdev;
2500 unsigned int d = mddev->raid_disks = rs->raid_disks;
2501 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2502
2503 if (rt_is_raid10(rs->raid_type)) {
2504 if (mddev->level == 0) {
2505 /* Userpace reordered disks -> adjust raid_disk indexes */
2506 __reorder_raid_disk_indexes(rs);
2507
2508 /* raid0 -> raid10_far layout */
2509 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2510 rs->raid10_copies);
2511 } else if (mddev->level == 1)
2512 /* raid1 -> raid10_near layout */
2513 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2514 rs->raid_disks);
2515 else
2516 return -EINVAL;
2517
2518 }
2519
2520 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2521 mddev->recovery_cp = MaxSector;
2522
2523 while (d--) {
2524 rdev = &rs->dev[d].rdev;
2525
2526 if (test_bit(d, (void *) rs->rebuild_disks)) {
2527 clear_bit(In_sync, &rdev->flags);
2528 clear_bit(Faulty, &rdev->flags);
2529 mddev->recovery_cp = rdev->recovery_offset = 0;
2530 /* Bitmap has to be created when we do an "up" takeover */
2531 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2532 }
2533
2534 rdev->new_data_offset = new_data_offset;
2535 }
2536
2537 return 0;
2538 }
2539
2540 /* Prepare @rs for reshape */
2541 static int rs_prepare_reshape(struct raid_set *rs)
2542 {
2543 bool reshape;
2544 struct mddev *mddev = &rs->md;
2545
2546 if (rs_is_raid10(rs)) {
2547 if (rs->raid_disks != mddev->raid_disks &&
2548 __is_raid10_near(mddev->layout) &&
2549 rs->raid10_copies &&
2550 rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2551 /*
2552 * raid disk have to be multiple of data copies to allow this conversion,
2553 *
2554 * This is actually not a reshape it is a
2555 * rebuild of any additional mirrors per group
2556 */
2557 if (rs->raid_disks % rs->raid10_copies) {
2558 rs->ti->error = "Can't reshape raid10 mirror groups";
2559 return -EINVAL;
2560 }
2561
2562 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2563 __reorder_raid_disk_indexes(rs);
2564 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2565 rs->raid10_copies);
2566 mddev->new_layout = mddev->layout;
2567 reshape = false;
2568 } else
2569 reshape = true;
2570
2571 } else if (rs_is_raid456(rs))
2572 reshape = true;
2573
2574 else if (rs_is_raid1(rs)) {
2575 if (rs->delta_disks) {
2576 /* Process raid1 via delta_disks */
2577 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2578 reshape = true;
2579 } else {
2580 /* Process raid1 without delta_disks */
2581 mddev->raid_disks = rs->raid_disks;
2582 set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2583 reshape = false;
2584 }
2585 } else {
2586 rs->ti->error = "Called with bogus raid type";
2587 return -EINVAL;
2588 }
2589
2590 if (reshape) {
2591 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2592 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2593 set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2594 } else if (mddev->raid_disks < rs->raid_disks)
2595 /* Create new superblocks and bitmaps, if any new disks */
2596 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2597
2598 return 0;
2599 }
2600
2601 /*
2602 *
2603 * - change raid layout
2604 * - change chunk size
2605 * - add disks
2606 * - remove disks
2607 */
2608 static int rs_setup_reshape(struct raid_set *rs)
2609 {
2610 int r = 0;
2611 unsigned int cur_raid_devs, d;
2612 struct mddev *mddev = &rs->md;
2613 struct md_rdev *rdev;
2614
2615 mddev->delta_disks = rs->delta_disks;
2616 cur_raid_devs = mddev->raid_disks;
2617
2618 /* Ignore impossible layout change whilst adding/removing disks */
2619 if (mddev->delta_disks &&
2620 mddev->layout != mddev->new_layout) {
2621 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2622 mddev->new_layout = mddev->layout;
2623 }
2624
2625 /*
2626 * Adjust array size:
2627 *
2628 * - in case of adding disks, array size has
2629 * to grow after the disk adding reshape,
2630 * which'll hapen in the event handler;
2631 * reshape will happen forward, so space has to
2632 * be available at the beginning of each disk
2633 *
2634 * - in case of removing disks, array size
2635 * has to shrink before starting the reshape,
2636 * which'll happen here;
2637 * reshape will happen backward, so space has to
2638 * be available at the end of each disk
2639 *
2640 * - data_offset and new_data_offset are
2641 * adjusted for aforementioned out of place
2642 * reshaping based on userspace passing in
2643 * the "data_offset <sectors>" key/value
2644 * pair via the constructor
2645 */
2646
2647 /* Add disk(s) */
2648 if (rs->delta_disks > 0) {
2649 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2650 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2651 rdev = &rs->dev[d].rdev;
2652 clear_bit(In_sync, &rdev->flags);
2653
2654 /*
2655 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2656 * by md, which'll store that erroneously in the superblock on reshape
2657 */
2658 rdev->saved_raid_disk = -1;
2659 rdev->raid_disk = d;
2660
2661 rdev->sectors = mddev->dev_sectors;
2662 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2663 }
2664
2665 mddev->reshape_backwards = 0; /* adding disks -> forward reshape */
2666
2667 /* Remove disk(s) */
2668 } else if (rs->delta_disks < 0) {
2669 r = rs_set_dev_and_array_sectors(rs, true);
2670 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2671
2672 /* Change layout and/or chunk size */
2673 } else {
2674 /*
2675 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2676 *
2677 * keeping number of disks and do layout change ->
2678 *
2679 * toggle reshape_backward depending on data_offset:
2680 *
2681 * - free space upfront -> reshape forward
2682 *
2683 * - free space at the end -> reshape backward
2684 *
2685 *
2686 * This utilizes free reshape space avoiding the need
2687 * for userspace to move (parts of) LV segments in
2688 * case of layout/chunksize change (for disk
2689 * adding/removing reshape space has to be at
2690 * the proper address (see above with delta_disks):
2691 *
2692 * add disk(s) -> begin
2693 * remove disk(s)-> end
2694 */
2695 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2696 }
2697
2698 return r;
2699 }
2700
2701 /*
2702 * Enable/disable discard support on RAID set depending on
2703 * RAID level and discard properties of underlying RAID members.
2704 */
2705 static void configure_discard_support(struct raid_set *rs)
2706 {
2707 int i;
2708 bool raid456;
2709 struct dm_target *ti = rs->ti;
2710
2711 /* Assume discards not supported until after checks below. */
2712 ti->discards_supported = false;
2713
2714 /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
2715 raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
2716
2717 for (i = 0; i < rs->raid_disks; i++) {
2718 struct request_queue *q;
2719
2720 if (!rs->dev[i].rdev.bdev)
2721 continue;
2722
2723 q = bdev_get_queue(rs->dev[i].rdev.bdev);
2724 if (!q || !blk_queue_discard(q))
2725 return;
2726
2727 if (raid456) {
2728 if (!q->limits.discard_zeroes_data)
2729 return;
2730 if (!devices_handle_discard_safely) {
2731 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2732 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2733 return;
2734 }
2735 }
2736 }
2737
2738 /* All RAID members properly support discards */
2739 ti->discards_supported = true;
2740
2741 /*
2742 * RAID1 and RAID10 personalities require bio splitting,
2743 * RAID0/4/5/6 don't and process large discard bios properly.
2744 */
2745 ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
2746 ti->num_discard_bios = 1;
2747 }
2748
2749 /*
2750 * Construct a RAID0/1/10/4/5/6 mapping:
2751 * Args:
2752 * <raid_type> <#raid_params> <raid_params>{0,} \
2753 * <#raid_devs> [<meta_dev1> <dev1>]{1,}
2754 *
2755 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
2756 * details on possible <raid_params>.
2757 *
2758 * Userspace is free to initialize the metadata devices, hence the superblocks to
2759 * enforce recreation based on the passed in table parameters.
2760 *
2761 */
2762 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2763 {
2764 int r;
2765 bool resize;
2766 struct raid_type *rt;
2767 unsigned int num_raid_params, num_raid_devs;
2768 sector_t calculated_dev_sectors;
2769 struct raid_set *rs = NULL;
2770 const char *arg;
2771 struct rs_layout rs_layout;
2772 struct dm_arg_set as = { argc, argv }, as_nrd;
2773 struct dm_arg _args[] = {
2774 { 0, as.argc, "Cannot understand number of raid parameters" },
2775 { 1, 254, "Cannot understand number of raid devices parameters" }
2776 };
2777
2778 /* Must have <raid_type> */
2779 arg = dm_shift_arg(&as);
2780 if (!arg) {
2781 ti->error = "No arguments";
2782 return -EINVAL;
2783 }
2784
2785 rt = get_raid_type(arg);
2786 if (!rt) {
2787 ti->error = "Unrecognised raid_type";
2788 return -EINVAL;
2789 }
2790
2791 /* Must have <#raid_params> */
2792 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
2793 return -EINVAL;
2794
2795 /* number of raid device tupples <meta_dev data_dev> */
2796 as_nrd = as;
2797 dm_consume_args(&as_nrd, num_raid_params);
2798 _args[1].max = (as_nrd.argc - 1) / 2;
2799 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
2800 return -EINVAL;
2801
2802 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
2803 ti->error = "Invalid number of supplied raid devices";
2804 return -EINVAL;
2805 }
2806
2807 rs = raid_set_alloc(ti, rt, num_raid_devs);
2808 if (IS_ERR(rs))
2809 return PTR_ERR(rs);
2810
2811 r = parse_raid_params(rs, &as, num_raid_params);
2812 if (r)
2813 goto bad;
2814
2815 r = parse_dev_params(rs, &as);
2816 if (r)
2817 goto bad;
2818
2819 rs->md.sync_super = super_sync;
2820
2821 /*
2822 * Calculate ctr requested array and device sizes to allow
2823 * for superblock analysis needing device sizes defined.
2824 *
2825 * Any existing superblock will overwrite the array and device sizes
2826 */
2827 r = rs_set_dev_and_array_sectors(rs, false);
2828 if (r)
2829 goto bad;
2830
2831 calculated_dev_sectors = rs->dev[0].rdev.sectors;
2832
2833 /*
2834 * Backup any new raid set level, layout, ...
2835 * requested to be able to compare to superblock
2836 * members for conversion decisions.
2837 */
2838 rs_config_backup(rs, &rs_layout);
2839
2840 r = analyse_superblocks(ti, rs);
2841 if (r)
2842 goto bad;
2843
2844 resize = calculated_dev_sectors != rs->dev[0].rdev.sectors;
2845
2846 INIT_WORK(&rs->md.event_work, do_table_event);
2847 ti->private = rs;
2848 ti->num_flush_bios = 1;
2849
2850 /* Restore any requested new layout for conversion decision */
2851 rs_config_restore(rs, &rs_layout);
2852
2853 /*
2854 * Now that we have any superblock metadata available,
2855 * check for new, recovering, reshaping, to be taken over,
2856 * to be reshaped or an existing, unchanged raid set to
2857 * run in sequence.
2858 */
2859 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
2860 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
2861 if (rs_is_raid6(rs) &&
2862 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
2863 ti->error = "'nosync' not allowed for new raid6 set";
2864 r = -EINVAL;
2865 goto bad;
2866 }
2867 rs_setup_recovery(rs, 0);
2868 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2869 rs_set_new(rs);
2870 } else if (rs_is_recovering(rs)) {
2871 /* A recovering raid set may be resized */
2872 ; /* skip setup rs */
2873 } else if (rs_is_reshaping(rs)) {
2874 /* Have to reject size change request during reshape */
2875 if (resize) {
2876 ti->error = "Can't resize a reshaping raid set";
2877 r = -EPERM;
2878 goto bad;
2879 }
2880 /* skip setup rs */
2881 } else if (rs_takeover_requested(rs)) {
2882 if (rs_is_reshaping(rs)) {
2883 ti->error = "Can't takeover a reshaping raid set";
2884 r = -EPERM;
2885 goto bad;
2886 }
2887
2888 /*
2889 * If a takeover is needed, userspace sets any additional
2890 * devices to rebuild and we can check for a valid request here.
2891 *
2892 * If acceptible, set the level to the new requested
2893 * one, prohibit requesting recovery, allow the raid
2894 * set to run and store superblocks during resume.
2895 */
2896 r = rs_check_takeover(rs);
2897 if (r)
2898 goto bad;
2899
2900 r = rs_setup_takeover(rs);
2901 if (r)
2902 goto bad;
2903
2904 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2905 set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2906 /* Takeover ain't recovery, so disable recovery */
2907 rs_setup_recovery(rs, MaxSector);
2908 rs_set_new(rs);
2909 } else if (rs_reshape_requested(rs)) {
2910 /*
2911 * We can only prepare for a reshape here, because the
2912 * raid set needs to run to provide the repective reshape
2913 * check functions via its MD personality instance.
2914 *
2915 * So do the reshape check after md_run() succeeded.
2916 */
2917 r = rs_prepare_reshape(rs);
2918 if (r)
2919 return r;
2920
2921 /* Reshaping ain't recovery, so disable recovery */
2922 rs_setup_recovery(rs, MaxSector);
2923 rs_set_cur(rs);
2924 } else {
2925 /* May not set recovery when a device rebuild is requested */
2926 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
2927 rs_setup_recovery(rs, MaxSector);
2928 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2929 } else
2930 rs_setup_recovery(rs, test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ?
2931 0 : (resize ? calculated_dev_sectors : MaxSector));
2932 rs_set_cur(rs);
2933 }
2934
2935 /* If constructor requested it, change data and new_data offsets */
2936 r = rs_adjust_data_offsets(rs);
2937 if (r)
2938 goto bad;
2939
2940 /* Start raid set read-only and assumed clean to change in raid_resume() */
2941 rs->md.ro = 1;
2942 rs->md.in_sync = 1;
2943 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
2944
2945 /* Has to be held on running the array */
2946 mddev_lock_nointr(&rs->md);
2947 r = md_run(&rs->md);
2948 rs->md.in_sync = 0; /* Assume already marked dirty */
2949
2950 if (r) {
2951 ti->error = "Failed to run raid array";
2952 mddev_unlock(&rs->md);
2953 goto bad;
2954 }
2955
2956 rs->callbacks.congested_fn = raid_is_congested;
2957 dm_table_add_target_callbacks(ti->table, &rs->callbacks);
2958
2959 mddev_suspend(&rs->md);
2960
2961 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
2962 if (rs_is_raid456(rs)) {
2963 r = rs_set_raid456_stripe_cache(rs);
2964 if (r)
2965 goto bad_stripe_cache;
2966 }
2967
2968 /* Now do an early reshape check */
2969 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
2970 r = rs_check_reshape(rs);
2971 if (r)
2972 goto bad_check_reshape;
2973
2974 /* Restore new, ctr requested layout to perform check */
2975 rs_config_restore(rs, &rs_layout);
2976
2977 if (rs->md.pers->start_reshape) {
2978 r = rs->md.pers->check_reshape(&rs->md);
2979 if (r) {
2980 ti->error = "Reshape check failed";
2981 goto bad_check_reshape;
2982 }
2983 }
2984 }
2985
2986 mddev_unlock(&rs->md);
2987 return 0;
2988
2989 bad_stripe_cache:
2990 bad_check_reshape:
2991 md_stop(&rs->md);
2992 bad:
2993 raid_set_free(rs);
2994
2995 return r;
2996 }
2997
2998 static void raid_dtr(struct dm_target *ti)
2999 {
3000 struct raid_set *rs = ti->private;
3001
3002 list_del_init(&rs->callbacks.list);
3003 md_stop(&rs->md);
3004 raid_set_free(rs);
3005 }
3006
3007 static int raid_map(struct dm_target *ti, struct bio *bio)
3008 {
3009 struct raid_set *rs = ti->private;
3010 struct mddev *mddev = &rs->md;
3011
3012 /*
3013 * If we're reshaping to add disk(s)), ti->len and
3014 * mddev->array_sectors will differ during the process
3015 * (ti->len > mddev->array_sectors), so we have to requeue
3016 * bios with addresses > mddev->array_sectors here or
3017 * there will occur accesses past EOD of the component
3018 * data images thus erroring the raid set.
3019 */
3020 if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3021 return DM_MAPIO_REQUEUE;
3022
3023 mddev->pers->make_request(mddev, bio);
3024
3025 return DM_MAPIO_SUBMITTED;
3026 }
3027
3028 /* Return string describing the current sync action of @mddev */
3029 static const char *decipher_sync_action(struct mddev *mddev)
3030 {
3031 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3032 return "frozen";
3033
3034 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3035 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3036 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3037 return "reshape";
3038
3039 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3040 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3041 return "resync";
3042 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3043 return "check";
3044 return "repair";
3045 }
3046
3047 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3048 return "recover";
3049 }
3050
3051 return "idle";
3052 }
3053
3054 /*
3055 * Return status string @rdev
3056 *
3057 * Status characters:
3058 *
3059 * 'D' = Dead/Failed device
3060 * 'a' = Alive but not in-sync
3061 * 'A' = Alive and in-sync
3062 */
3063 static const char *__raid_dev_status(struct md_rdev *rdev, bool array_in_sync)
3064 {
3065 if (test_bit(Faulty, &rdev->flags))
3066 return "D";
3067 else if (!array_in_sync || !test_bit(In_sync, &rdev->flags))
3068 return "a";
3069 else
3070 return "A";
3071 }
3072
3073 /* Helper to return resync/reshape progress for @rs and @array_in_sync */
3074 static sector_t rs_get_progress(struct raid_set *rs,
3075 sector_t resync_max_sectors, bool *array_in_sync)
3076 {
3077 sector_t r, recovery_cp, curr_resync_completed;
3078 struct mddev *mddev = &rs->md;
3079
3080 curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp;
3081 recovery_cp = mddev->recovery_cp;
3082 *array_in_sync = false;
3083
3084 if (rs_is_raid0(rs)) {
3085 r = resync_max_sectors;
3086 *array_in_sync = true;
3087
3088 } else {
3089 r = mddev->reshape_position;
3090
3091 /* Reshape is relative to the array size */
3092 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
3093 r != MaxSector) {
3094 if (r == MaxSector) {
3095 *array_in_sync = true;
3096 r = resync_max_sectors;
3097 } else {
3098 /* Got to reverse on backward reshape */
3099 if (mddev->reshape_backwards)
3100 r = mddev->array_sectors - r;
3101
3102 /* Devide by # of data stripes */
3103 sector_div(r, mddev_data_stripes(rs));
3104 }
3105
3106 /* Sync is relative to the component device size */
3107 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3108 r = curr_resync_completed;
3109 else
3110 r = recovery_cp;
3111
3112 if (r == MaxSector) {
3113 /*
3114 * Sync complete.
3115 */
3116 *array_in_sync = true;
3117 r = resync_max_sectors;
3118 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3119 /*
3120 * If "check" or "repair" is occurring, the raid set has
3121 * undergone an initial sync and the health characters
3122 * should not be 'a' anymore.
3123 */
3124 *array_in_sync = true;
3125 } else {
3126 struct md_rdev *rdev;
3127
3128 /*
3129 * The raid set may be doing an initial sync, or it may
3130 * be rebuilding individual components. If all the
3131 * devices are In_sync, then it is the raid set that is
3132 * being initialized.
3133 */
3134 rdev_for_each(rdev, mddev)
3135 if (!test_bit(In_sync, &rdev->flags))
3136 *array_in_sync = true;
3137 #if 0
3138 r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */
3139 #endif
3140 }
3141 }
3142
3143 return r;
3144 }
3145
3146 /* Helper to return @dev name or "-" if !@dev */
3147 static const char *__get_dev_name(struct dm_dev *dev)
3148 {
3149 return dev ? dev->name : "-";
3150 }
3151
3152 static void raid_status(struct dm_target *ti, status_type_t type,
3153 unsigned int status_flags, char *result, unsigned int maxlen)
3154 {
3155 struct raid_set *rs = ti->private;
3156 struct mddev *mddev = &rs->md;
3157 struct r5conf *conf = mddev->private;
3158 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3159 bool array_in_sync;
3160 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3161 unsigned int sz = 0;
3162 unsigned int rebuild_disks;
3163 unsigned int write_mostly_params = 0;
3164 sector_t progress, resync_max_sectors, resync_mismatches;
3165 const char *sync_action;
3166 struct raid_type *rt;
3167 struct md_rdev *rdev;
3168
3169 switch (type) {
3170 case STATUSTYPE_INFO:
3171 /* *Should* always succeed */
3172 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3173 if (!rt)
3174 return;
3175
3176 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3177
3178 /* Access most recent mddev properties for status output */
3179 smp_rmb();
3180 /* Get sensible max sectors even if raid set not yet started */
3181 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3182 mddev->resync_max_sectors : mddev->dev_sectors;
3183 progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync);
3184 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3185 atomic64_read(&mddev->resync_mismatches) : 0;
3186 sync_action = decipher_sync_action(&rs->md);
3187
3188 /* HM FIXME: do we want another state char for raid0? It shows 'D' or 'A' now */
3189 rdev_for_each(rdev, mddev)
3190 DMEMIT(__raid_dev_status(rdev, array_in_sync));
3191
3192 /*
3193 * In-sync/Reshape ratio:
3194 * The in-sync ratio shows the progress of:
3195 * - Initializing the raid set
3196 * - Rebuilding a subset of devices of the raid set
3197 * The user can distinguish between the two by referring
3198 * to the status characters.
3199 *
3200 * The reshape ratio shows the progress of
3201 * changing the raid layout or the number of
3202 * disks of a raid set
3203 */
3204 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3205 (unsigned long long) resync_max_sectors);
3206
3207 /*
3208 * v1.5.0+:
3209 *
3210 * Sync action:
3211 * See Documentation/device-mapper/dm-raid.txt for
3212 * information on each of these states.
3213 */
3214 DMEMIT(" %s", sync_action);
3215
3216 /*
3217 * v1.5.0+:
3218 *
3219 * resync_mismatches/mismatch_cnt
3220 * This field shows the number of discrepancies found when
3221 * performing a "check" of the raid set.
3222 */
3223 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3224
3225 /*
3226 * v1.9.0+:
3227 *
3228 * data_offset (needed for out of space reshaping)
3229 * This field shows the data offset into the data
3230 * image LV where the first stripes data starts.
3231 *
3232 * We keep data_offset equal on all raid disks of the set,
3233 * so retrieving it from the first raid disk is sufficient.
3234 */
3235 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3236 break;
3237
3238 case STATUSTYPE_TABLE:
3239 /* Report the table line string you would use to construct this raid set */
3240
3241 /* Calculate raid parameter count */
3242 for (i = 0; i < rs->raid_disks; i++)
3243 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3244 write_mostly_params += 2;
3245 rebuild_disks = memweight(rs->rebuild_disks, DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks));
3246 raid_param_cnt += rebuild_disks * 2 +
3247 write_mostly_params +
3248 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3249 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3250 /* Emit table line */
3251 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3252 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3253 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3254 raid10_md_layout_to_format(mddev->layout));
3255 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3256 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3257 raid10_md_layout_to_copies(mddev->layout));
3258 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3259 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3260 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3261 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3262 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3263 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3264 (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3265 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3266 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3267 (unsigned long long) rs->data_offset);
3268 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3269 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3270 mddev->bitmap_info.daemon_sleep);
3271 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3272 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3273 max(rs->delta_disks, mddev->delta_disks));
3274 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3275 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3276 max_nr_stripes);
3277 if (rebuild_disks)
3278 for (i = 0; i < rs->raid_disks; i++)
3279 if (test_bit(rs->dev[i].rdev.raid_disk, (void *) rs->rebuild_disks))
3280 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3281 rs->dev[i].rdev.raid_disk);
3282 if (write_mostly_params)
3283 for (i = 0; i < rs->raid_disks; i++)
3284 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3285 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3286 rs->dev[i].rdev.raid_disk);
3287 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3288 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3289 mddev->bitmap_info.max_write_behind);
3290 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3291 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3292 mddev->sync_speed_max);
3293 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3294 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3295 mddev->sync_speed_min);
3296 DMEMIT(" %d", rs->raid_disks);
3297 for (i = 0; i < rs->raid_disks; i++)
3298 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3299 __get_dev_name(rs->dev[i].data_dev));
3300 }
3301 }
3302
3303 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv)
3304 {
3305 struct raid_set *rs = ti->private;
3306 struct mddev *mddev = &rs->md;
3307
3308 if (!mddev->pers || !mddev->pers->sync_request)
3309 return -EINVAL;
3310
3311 if (!strcasecmp(argv[0], "frozen"))
3312 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3313 else
3314 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3315
3316 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3317 if (mddev->sync_thread) {
3318 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3319 md_reap_sync_thread(mddev);
3320 }
3321 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3322 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3323 return -EBUSY;
3324 else if (!strcasecmp(argv[0], "resync"))
3325 ; /* MD_RECOVERY_NEEDED set below */
3326 else if (!strcasecmp(argv[0], "recover"))
3327 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3328 else {
3329 if (!strcasecmp(argv[0], "check"))
3330 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3331 else if (!!strcasecmp(argv[0], "repair"))
3332 return -EINVAL;
3333 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3334 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3335 }
3336 if (mddev->ro == 2) {
3337 /* A write to sync_action is enough to justify
3338 * canceling read-auto mode
3339 */
3340 mddev->ro = 0;
3341 if (!mddev->suspended && mddev->sync_thread)
3342 md_wakeup_thread(mddev->sync_thread);
3343 }
3344 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3345 if (!mddev->suspended && mddev->thread)
3346 md_wakeup_thread(mddev->thread);
3347
3348 return 0;
3349 }
3350
3351 static int raid_iterate_devices(struct dm_target *ti,
3352 iterate_devices_callout_fn fn, void *data)
3353 {
3354 struct raid_set *rs = ti->private;
3355 unsigned int i;
3356 int r = 0;
3357
3358 for (i = 0; !r && i < rs->md.raid_disks; i++)
3359 if (rs->dev[i].data_dev)
3360 r = fn(ti,
3361 rs->dev[i].data_dev,
3362 0, /* No offset on data devs */
3363 rs->md.dev_sectors,
3364 data);
3365
3366 return r;
3367 }
3368
3369 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3370 {
3371 struct raid_set *rs = ti->private;
3372 unsigned int chunk_size = to_bytes(rs->md.chunk_sectors);
3373
3374 blk_limits_io_min(limits, chunk_size);
3375 blk_limits_io_opt(limits, chunk_size * mddev_data_stripes(rs));
3376 }
3377
3378 static void raid_presuspend(struct dm_target *ti)
3379 {
3380 struct raid_set *rs = ti->private;
3381
3382 md_stop_writes(&rs->md);
3383 }
3384
3385 static void raid_postsuspend(struct dm_target *ti)
3386 {
3387 struct raid_set *rs = ti->private;
3388
3389 if (test_and_clear_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3390 if (!rs->md.suspended)
3391 mddev_suspend(&rs->md);
3392 rs->md.ro = 1;
3393 }
3394 }
3395
3396 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3397 {
3398 int i;
3399 uint64_t failed_devices, cleared_failed_devices = 0;
3400 unsigned long flags;
3401 struct dm_raid_superblock *sb;
3402 struct md_rdev *r;
3403
3404 for (i = 0; i < rs->md.raid_disks; i++) {
3405 r = &rs->dev[i].rdev;
3406 if (test_bit(Faulty, &r->flags) && r->sb_page &&
3407 sync_page_io(r, 0, r->sb_size, r->sb_page,
3408 REQ_OP_READ, 0, true)) {
3409 DMINFO("Faulty %s device #%d has readable super block."
3410 " Attempting to revive it.",
3411 rs->raid_type->name, i);
3412
3413 /*
3414 * Faulty bit may be set, but sometimes the array can
3415 * be suspended before the personalities can respond
3416 * by removing the device from the array (i.e. calling
3417 * 'hot_remove_disk'). If they haven't yet removed
3418 * the failed device, its 'raid_disk' number will be
3419 * '>= 0' - meaning we must call this function
3420 * ourselves.
3421 */
3422 if ((r->raid_disk >= 0) &&
3423 (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0))
3424 /* Failed to revive this device, try next */
3425 continue;
3426
3427 r->raid_disk = i;
3428 r->saved_raid_disk = i;
3429 flags = r->flags;
3430 clear_bit(Faulty, &r->flags);
3431 clear_bit(WriteErrorSeen, &r->flags);
3432 clear_bit(In_sync, &r->flags);
3433 if (r->mddev->pers->hot_add_disk(r->mddev, r)) {
3434 r->raid_disk = -1;
3435 r->saved_raid_disk = -1;
3436 r->flags = flags;
3437 } else {
3438 r->recovery_offset = 0;
3439 cleared_failed_devices |= 1 << i;
3440 }
3441 }
3442 }
3443 if (cleared_failed_devices) {
3444 rdev_for_each(r, &rs->md) {
3445 sb = page_address(r->sb_page);
3446 failed_devices = le64_to_cpu(sb->failed_devices);
3447 failed_devices &= ~cleared_failed_devices;
3448 sb->failed_devices = cpu_to_le64(failed_devices);
3449 }
3450 }
3451 }
3452
3453 static int __load_dirty_region_bitmap(struct raid_set *rs)
3454 {
3455 int r = 0;
3456
3457 /* Try loading the bitmap unless "raid0", which does not have one */
3458 if (!rs_is_raid0(rs) &&
3459 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3460 r = bitmap_load(&rs->md);
3461 if (r)
3462 DMERR("Failed to load bitmap");
3463 }
3464
3465 return r;
3466 }
3467
3468 /* Enforce updating all superblocks */
3469 static void rs_update_sbs(struct raid_set *rs)
3470 {
3471 struct mddev *mddev = &rs->md;
3472 int ro = mddev->ro;
3473
3474 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3475 mddev->ro = 0;
3476 md_update_sb(mddev, 1);
3477 mddev->ro = ro;
3478 }
3479
3480 /*
3481 * Reshape changes raid algorithm of @rs to new one within personality
3482 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3483 * disks from a raid set thus growing/shrinking it or resizes the set
3484 *
3485 * Call mddev_lock_nointr() before!
3486 */
3487 static int rs_start_reshape(struct raid_set *rs)
3488 {
3489 int r;
3490 struct mddev *mddev = &rs->md;
3491 struct md_personality *pers = mddev->pers;
3492
3493 r = rs_setup_reshape(rs);
3494 if (r)
3495 return r;
3496
3497 /* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */
3498 if (mddev->suspended)
3499 mddev_resume(mddev);
3500
3501 /*
3502 * Check any reshape constraints enforced by the personalility
3503 *
3504 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3505 */
3506 r = pers->check_reshape(mddev);
3507 if (r) {
3508 rs->ti->error = "pers->check_reshape() failed";
3509 return r;
3510 }
3511
3512 /*
3513 * Personality may not provide start reshape method in which
3514 * case check_reshape above has already covered everything
3515 */
3516 if (pers->start_reshape) {
3517 r = pers->start_reshape(mddev);
3518 if (r) {
3519 rs->ti->error = "pers->start_reshape() failed";
3520 return r;
3521 }
3522 }
3523
3524 /* Suspend because a resume will happen in raid_resume() */
3525 if (!mddev->suspended)
3526 mddev_suspend(mddev);
3527
3528 /*
3529 * Now reshape got set up, update superblocks to
3530 * reflect the fact so that a table reload will
3531 * access proper superblock content in the ctr.
3532 */
3533 rs_update_sbs(rs);
3534
3535 return 0;
3536 }
3537
3538 static int raid_preresume(struct dm_target *ti)
3539 {
3540 int r;
3541 struct raid_set *rs = ti->private;
3542 struct mddev *mddev = &rs->md;
3543
3544 /* This is a resume after a suspend of the set -> it's already started */
3545 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3546 return 0;
3547
3548 /*
3549 * The superblocks need to be updated on disk if the
3550 * array is new or new devices got added (thus zeroed
3551 * out by userspace) or __load_dirty_region_bitmap
3552 * will overwrite them in core with old data or fail.
3553 */
3554 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3555 rs_update_sbs(rs);
3556
3557 /*
3558 * Disable/enable discard support on raid set after any
3559 * conversion, because devices can have been added
3560 */
3561 configure_discard_support(rs);
3562
3563 /* Load the bitmap from disk unless raid0 */
3564 r = __load_dirty_region_bitmap(rs);
3565 if (r)
3566 return r;
3567
3568 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */
3569 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) &&
3570 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) {
3571 r = bitmap_resize(mddev->bitmap, mddev->dev_sectors,
3572 to_bytes(rs->requested_bitmap_chunk_sectors), 0);
3573 if (r)
3574 DMERR("Failed to resize bitmap");
3575 }
3576
3577 /* Check for any resize/reshape on @rs and adjust/initiate */
3578 /* Be prepared for mddev_resume() in raid_resume() */
3579 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3580 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3581 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3582 mddev->resync_min = mddev->recovery_cp;
3583 }
3584
3585 rs_set_capacity(rs);
3586
3587 /* Check for any reshape request unless new raid set */
3588 if (test_and_clear_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3589 /* Initiate a reshape. */
3590 mddev_lock_nointr(mddev);
3591 r = rs_start_reshape(rs);
3592 mddev_unlock(mddev);
3593 if (r)
3594 DMWARN("Failed to check/start reshape, continuing without change");
3595 r = 0;
3596 }
3597
3598 return r;
3599 }
3600
3601 static void raid_resume(struct dm_target *ti)
3602 {
3603 struct raid_set *rs = ti->private;
3604 struct mddev *mddev = &rs->md;
3605
3606 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3607 /*
3608 * A secondary resume while the device is active.
3609 * Take this opportunity to check whether any failed
3610 * devices are reachable again.
3611 */
3612 attempt_restore_of_faulty_devices(rs);
3613 } else {
3614 mddev->ro = 0;
3615 mddev->in_sync = 0;
3616
3617 /*
3618 * When passing in flags to the ctr, we expect userspace
3619 * to reset them because they made it to the superblocks
3620 * and reload the mapping anyway.
3621 *
3622 * -> only unfreeze recovery in case of a table reload or
3623 * we'll have a bogus recovery/reshape position
3624 * retrieved from the superblock by the ctr because
3625 * the ongoing recovery/reshape will change it after read.
3626 */
3627 if (!test_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags))
3628 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3629
3630 if (mddev->suspended)
3631 mddev_resume(mddev);
3632 }
3633 }
3634
3635 static struct target_type raid_target = {
3636 .name = "raid",
3637 .version = {1, 9, 0},
3638 .module = THIS_MODULE,
3639 .ctr = raid_ctr,
3640 .dtr = raid_dtr,
3641 .map = raid_map,
3642 .status = raid_status,
3643 .message = raid_message,
3644 .iterate_devices = raid_iterate_devices,
3645 .io_hints = raid_io_hints,
3646 .presuspend = raid_presuspend,
3647 .postsuspend = raid_postsuspend,
3648 .preresume = raid_preresume,
3649 .resume = raid_resume,
3650 };
3651
3652 static int __init dm_raid_init(void)
3653 {
3654 DMINFO("Loading target version %u.%u.%u",
3655 raid_target.version[0],
3656 raid_target.version[1],
3657 raid_target.version[2]);
3658 return dm_register_target(&raid_target);
3659 }
3660
3661 static void __exit dm_raid_exit(void)
3662 {
3663 dm_unregister_target(&raid_target);
3664 }
3665
3666 module_init(dm_raid_init);
3667 module_exit(dm_raid_exit);
3668
3669 module_param(devices_handle_discard_safely, bool, 0644);
3670 MODULE_PARM_DESC(devices_handle_discard_safely,
3671 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
3672
3673 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
3674 MODULE_ALIAS("dm-raid0");
3675 MODULE_ALIAS("dm-raid1");
3676 MODULE_ALIAS("dm-raid10");
3677 MODULE_ALIAS("dm-raid4");
3678 MODULE_ALIAS("dm-raid5");
3679 MODULE_ALIAS("dm-raid6");
3680 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
3681 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
3682 MODULE_LICENSE("GPL");
This page took 0.106837 seconds and 6 git commands to generate.