timer_list: Add the base offset so remaining nsecs are accurate for non monotonic...
[deliverable/linux.git] / drivers / md / dm-table.c
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23
24 #define DM_MSG_PREFIX "table"
25
26 #define MAX_DEPTH 16
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31 struct dm_table {
32 struct mapped_device *md;
33 unsigned type;
34
35 /* btree table */
36 unsigned int depth;
37 unsigned int counts[MAX_DEPTH]; /* in nodes */
38 sector_t *index[MAX_DEPTH];
39
40 unsigned int num_targets;
41 unsigned int num_allocated;
42 sector_t *highs;
43 struct dm_target *targets;
44
45 struct target_type *immutable_target_type;
46 unsigned integrity_supported:1;
47 unsigned singleton:1;
48
49 /*
50 * Indicates the rw permissions for the new logical
51 * device. This should be a combination of FMODE_READ
52 * and FMODE_WRITE.
53 */
54 fmode_t mode;
55
56 /* a list of devices used by this table */
57 struct list_head devices;
58
59 /* events get handed up using this callback */
60 void (*event_fn)(void *);
61 void *event_context;
62
63 struct dm_md_mempools *mempools;
64
65 struct list_head target_callbacks;
66 };
67
68 /*
69 * Similar to ceiling(log_size(n))
70 */
71 static unsigned int int_log(unsigned int n, unsigned int base)
72 {
73 int result = 0;
74
75 while (n > 1) {
76 n = dm_div_up(n, base);
77 result++;
78 }
79
80 return result;
81 }
82
83 /*
84 * Calculate the index of the child node of the n'th node k'th key.
85 */
86 static inline unsigned int get_child(unsigned int n, unsigned int k)
87 {
88 return (n * CHILDREN_PER_NODE) + k;
89 }
90
91 /*
92 * Return the n'th node of level l from table t.
93 */
94 static inline sector_t *get_node(struct dm_table *t,
95 unsigned int l, unsigned int n)
96 {
97 return t->index[l] + (n * KEYS_PER_NODE);
98 }
99
100 /*
101 * Return the highest key that you could lookup from the n'th
102 * node on level l of the btree.
103 */
104 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
105 {
106 for (; l < t->depth - 1; l++)
107 n = get_child(n, CHILDREN_PER_NODE - 1);
108
109 if (n >= t->counts[l])
110 return (sector_t) - 1;
111
112 return get_node(t, l, n)[KEYS_PER_NODE - 1];
113 }
114
115 /*
116 * Fills in a level of the btree based on the highs of the level
117 * below it.
118 */
119 static int setup_btree_index(unsigned int l, struct dm_table *t)
120 {
121 unsigned int n, k;
122 sector_t *node;
123
124 for (n = 0U; n < t->counts[l]; n++) {
125 node = get_node(t, l, n);
126
127 for (k = 0U; k < KEYS_PER_NODE; k++)
128 node[k] = high(t, l + 1, get_child(n, k));
129 }
130
131 return 0;
132 }
133
134 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
135 {
136 unsigned long size;
137 void *addr;
138
139 /*
140 * Check that we're not going to overflow.
141 */
142 if (nmemb > (ULONG_MAX / elem_size))
143 return NULL;
144
145 size = nmemb * elem_size;
146 addr = vzalloc(size);
147
148 return addr;
149 }
150 EXPORT_SYMBOL(dm_vcalloc);
151
152 /*
153 * highs, and targets are managed as dynamic arrays during a
154 * table load.
155 */
156 static int alloc_targets(struct dm_table *t, unsigned int num)
157 {
158 sector_t *n_highs;
159 struct dm_target *n_targets;
160
161 /*
162 * Allocate both the target array and offset array at once.
163 * Append an empty entry to catch sectors beyond the end of
164 * the device.
165 */
166 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
167 sizeof(sector_t));
168 if (!n_highs)
169 return -ENOMEM;
170
171 n_targets = (struct dm_target *) (n_highs + num);
172
173 memset(n_highs, -1, sizeof(*n_highs) * num);
174 vfree(t->highs);
175
176 t->num_allocated = num;
177 t->highs = n_highs;
178 t->targets = n_targets;
179
180 return 0;
181 }
182
183 int dm_table_create(struct dm_table **result, fmode_t mode,
184 unsigned num_targets, struct mapped_device *md)
185 {
186 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
187
188 if (!t)
189 return -ENOMEM;
190
191 INIT_LIST_HEAD(&t->devices);
192 INIT_LIST_HEAD(&t->target_callbacks);
193
194 if (!num_targets)
195 num_targets = KEYS_PER_NODE;
196
197 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
198
199 if (!num_targets) {
200 kfree(t);
201 return -ENOMEM;
202 }
203
204 if (alloc_targets(t, num_targets)) {
205 kfree(t);
206 return -ENOMEM;
207 }
208
209 t->mode = mode;
210 t->md = md;
211 *result = t;
212 return 0;
213 }
214
215 static void free_devices(struct list_head *devices, struct mapped_device *md)
216 {
217 struct list_head *tmp, *next;
218
219 list_for_each_safe(tmp, next, devices) {
220 struct dm_dev_internal *dd =
221 list_entry(tmp, struct dm_dev_internal, list);
222 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
223 dm_device_name(md), dd->dm_dev->name);
224 dm_put_table_device(md, dd->dm_dev);
225 kfree(dd);
226 }
227 }
228
229 void dm_table_destroy(struct dm_table *t)
230 {
231 unsigned int i;
232
233 if (!t)
234 return;
235
236 /* free the indexes */
237 if (t->depth >= 2)
238 vfree(t->index[t->depth - 2]);
239
240 /* free the targets */
241 for (i = 0; i < t->num_targets; i++) {
242 struct dm_target *tgt = t->targets + i;
243
244 if (tgt->type->dtr)
245 tgt->type->dtr(tgt);
246
247 dm_put_target_type(tgt->type);
248 }
249
250 vfree(t->highs);
251
252 /* free the device list */
253 free_devices(&t->devices, t->md);
254
255 dm_free_md_mempools(t->mempools);
256
257 kfree(t);
258 }
259
260 /*
261 * See if we've already got a device in the list.
262 */
263 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
264 {
265 struct dm_dev_internal *dd;
266
267 list_for_each_entry (dd, l, list)
268 if (dd->dm_dev->bdev->bd_dev == dev)
269 return dd;
270
271 return NULL;
272 }
273
274 /*
275 * If possible, this checks an area of a destination device is invalid.
276 */
277 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
278 sector_t start, sector_t len, void *data)
279 {
280 struct request_queue *q;
281 struct queue_limits *limits = data;
282 struct block_device *bdev = dev->bdev;
283 sector_t dev_size =
284 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
285 unsigned short logical_block_size_sectors =
286 limits->logical_block_size >> SECTOR_SHIFT;
287 char b[BDEVNAME_SIZE];
288
289 /*
290 * Some devices exist without request functions,
291 * such as loop devices not yet bound to backing files.
292 * Forbid the use of such devices.
293 */
294 q = bdev_get_queue(bdev);
295 if (!q || !q->make_request_fn) {
296 DMWARN("%s: %s is not yet initialised: "
297 "start=%llu, len=%llu, dev_size=%llu",
298 dm_device_name(ti->table->md), bdevname(bdev, b),
299 (unsigned long long)start,
300 (unsigned long long)len,
301 (unsigned long long)dev_size);
302 return 1;
303 }
304
305 if (!dev_size)
306 return 0;
307
308 if ((start >= dev_size) || (start + len > dev_size)) {
309 DMWARN("%s: %s too small for target: "
310 "start=%llu, len=%llu, dev_size=%llu",
311 dm_device_name(ti->table->md), bdevname(bdev, b),
312 (unsigned long long)start,
313 (unsigned long long)len,
314 (unsigned long long)dev_size);
315 return 1;
316 }
317
318 if (logical_block_size_sectors <= 1)
319 return 0;
320
321 if (start & (logical_block_size_sectors - 1)) {
322 DMWARN("%s: start=%llu not aligned to h/w "
323 "logical block size %u of %s",
324 dm_device_name(ti->table->md),
325 (unsigned long long)start,
326 limits->logical_block_size, bdevname(bdev, b));
327 return 1;
328 }
329
330 if (len & (logical_block_size_sectors - 1)) {
331 DMWARN("%s: len=%llu not aligned to h/w "
332 "logical block size %u of %s",
333 dm_device_name(ti->table->md),
334 (unsigned long long)len,
335 limits->logical_block_size, bdevname(bdev, b));
336 return 1;
337 }
338
339 return 0;
340 }
341
342 /*
343 * This upgrades the mode on an already open dm_dev, being
344 * careful to leave things as they were if we fail to reopen the
345 * device and not to touch the existing bdev field in case
346 * it is accessed concurrently inside dm_table_any_congested().
347 */
348 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
349 struct mapped_device *md)
350 {
351 int r;
352 struct dm_dev *old_dev, *new_dev;
353
354 old_dev = dd->dm_dev;
355
356 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
357 dd->dm_dev->mode | new_mode, &new_dev);
358 if (r)
359 return r;
360
361 dd->dm_dev = new_dev;
362 dm_put_table_device(md, old_dev);
363
364 return 0;
365 }
366
367 /*
368 * Add a device to the list, or just increment the usage count if
369 * it's already present.
370 */
371 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
372 struct dm_dev **result)
373 {
374 int r;
375 dev_t uninitialized_var(dev);
376 struct dm_dev_internal *dd;
377 struct dm_table *t = ti->table;
378 struct block_device *bdev;
379
380 BUG_ON(!t);
381
382 /* convert the path to a device */
383 bdev = lookup_bdev(path);
384 if (IS_ERR(bdev)) {
385 dev = name_to_dev_t(path);
386 if (!dev)
387 return -ENODEV;
388 } else {
389 dev = bdev->bd_dev;
390 bdput(bdev);
391 }
392
393 dd = find_device(&t->devices, dev);
394 if (!dd) {
395 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
396 if (!dd)
397 return -ENOMEM;
398
399 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
400 kfree(dd);
401 return r;
402 }
403
404 atomic_set(&dd->count, 0);
405 list_add(&dd->list, &t->devices);
406
407 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
408 r = upgrade_mode(dd, mode, t->md);
409 if (r)
410 return r;
411 }
412 atomic_inc(&dd->count);
413
414 *result = dd->dm_dev;
415 return 0;
416 }
417 EXPORT_SYMBOL(dm_get_device);
418
419 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
420 sector_t start, sector_t len, void *data)
421 {
422 struct queue_limits *limits = data;
423 struct block_device *bdev = dev->bdev;
424 struct request_queue *q = bdev_get_queue(bdev);
425 char b[BDEVNAME_SIZE];
426
427 if (unlikely(!q)) {
428 DMWARN("%s: Cannot set limits for nonexistent device %s",
429 dm_device_name(ti->table->md), bdevname(bdev, b));
430 return 0;
431 }
432
433 if (bdev_stack_limits(limits, bdev, start) < 0)
434 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
435 "physical_block_size=%u, logical_block_size=%u, "
436 "alignment_offset=%u, start=%llu",
437 dm_device_name(ti->table->md), bdevname(bdev, b),
438 q->limits.physical_block_size,
439 q->limits.logical_block_size,
440 q->limits.alignment_offset,
441 (unsigned long long) start << SECTOR_SHIFT);
442
443 /*
444 * Check if merge fn is supported.
445 * If not we'll force DM to use PAGE_SIZE or
446 * smaller I/O, just to be safe.
447 */
448 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
449 blk_limits_max_hw_sectors(limits,
450 (unsigned int) (PAGE_SIZE >> 9));
451 return 0;
452 }
453
454 /*
455 * Decrement a device's use count and remove it if necessary.
456 */
457 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
458 {
459 int found = 0;
460 struct list_head *devices = &ti->table->devices;
461 struct dm_dev_internal *dd;
462
463 list_for_each_entry(dd, devices, list) {
464 if (dd->dm_dev == d) {
465 found = 1;
466 break;
467 }
468 }
469 if (!found) {
470 DMWARN("%s: device %s not in table devices list",
471 dm_device_name(ti->table->md), d->name);
472 return;
473 }
474 if (atomic_dec_and_test(&dd->count)) {
475 dm_put_table_device(ti->table->md, d);
476 list_del(&dd->list);
477 kfree(dd);
478 }
479 }
480 EXPORT_SYMBOL(dm_put_device);
481
482 /*
483 * Checks to see if the target joins onto the end of the table.
484 */
485 static int adjoin(struct dm_table *table, struct dm_target *ti)
486 {
487 struct dm_target *prev;
488
489 if (!table->num_targets)
490 return !ti->begin;
491
492 prev = &table->targets[table->num_targets - 1];
493 return (ti->begin == (prev->begin + prev->len));
494 }
495
496 /*
497 * Used to dynamically allocate the arg array.
498 *
499 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
500 * process messages even if some device is suspended. These messages have a
501 * small fixed number of arguments.
502 *
503 * On the other hand, dm-switch needs to process bulk data using messages and
504 * excessive use of GFP_NOIO could cause trouble.
505 */
506 static char **realloc_argv(unsigned *array_size, char **old_argv)
507 {
508 char **argv;
509 unsigned new_size;
510 gfp_t gfp;
511
512 if (*array_size) {
513 new_size = *array_size * 2;
514 gfp = GFP_KERNEL;
515 } else {
516 new_size = 8;
517 gfp = GFP_NOIO;
518 }
519 argv = kmalloc(new_size * sizeof(*argv), gfp);
520 if (argv) {
521 memcpy(argv, old_argv, *array_size * sizeof(*argv));
522 *array_size = new_size;
523 }
524
525 kfree(old_argv);
526 return argv;
527 }
528
529 /*
530 * Destructively splits up the argument list to pass to ctr.
531 */
532 int dm_split_args(int *argc, char ***argvp, char *input)
533 {
534 char *start, *end = input, *out, **argv = NULL;
535 unsigned array_size = 0;
536
537 *argc = 0;
538
539 if (!input) {
540 *argvp = NULL;
541 return 0;
542 }
543
544 argv = realloc_argv(&array_size, argv);
545 if (!argv)
546 return -ENOMEM;
547
548 while (1) {
549 /* Skip whitespace */
550 start = skip_spaces(end);
551
552 if (!*start)
553 break; /* success, we hit the end */
554
555 /* 'out' is used to remove any back-quotes */
556 end = out = start;
557 while (*end) {
558 /* Everything apart from '\0' can be quoted */
559 if (*end == '\\' && *(end + 1)) {
560 *out++ = *(end + 1);
561 end += 2;
562 continue;
563 }
564
565 if (isspace(*end))
566 break; /* end of token */
567
568 *out++ = *end++;
569 }
570
571 /* have we already filled the array ? */
572 if ((*argc + 1) > array_size) {
573 argv = realloc_argv(&array_size, argv);
574 if (!argv)
575 return -ENOMEM;
576 }
577
578 /* we know this is whitespace */
579 if (*end)
580 end++;
581
582 /* terminate the string and put it in the array */
583 *out = '\0';
584 argv[*argc] = start;
585 (*argc)++;
586 }
587
588 *argvp = argv;
589 return 0;
590 }
591
592 /*
593 * Impose necessary and sufficient conditions on a devices's table such
594 * that any incoming bio which respects its logical_block_size can be
595 * processed successfully. If it falls across the boundary between
596 * two or more targets, the size of each piece it gets split into must
597 * be compatible with the logical_block_size of the target processing it.
598 */
599 static int validate_hardware_logical_block_alignment(struct dm_table *table,
600 struct queue_limits *limits)
601 {
602 /*
603 * This function uses arithmetic modulo the logical_block_size
604 * (in units of 512-byte sectors).
605 */
606 unsigned short device_logical_block_size_sects =
607 limits->logical_block_size >> SECTOR_SHIFT;
608
609 /*
610 * Offset of the start of the next table entry, mod logical_block_size.
611 */
612 unsigned short next_target_start = 0;
613
614 /*
615 * Given an aligned bio that extends beyond the end of a
616 * target, how many sectors must the next target handle?
617 */
618 unsigned short remaining = 0;
619
620 struct dm_target *uninitialized_var(ti);
621 struct queue_limits ti_limits;
622 unsigned i = 0;
623
624 /*
625 * Check each entry in the table in turn.
626 */
627 while (i < dm_table_get_num_targets(table)) {
628 ti = dm_table_get_target(table, i++);
629
630 blk_set_stacking_limits(&ti_limits);
631
632 /* combine all target devices' limits */
633 if (ti->type->iterate_devices)
634 ti->type->iterate_devices(ti, dm_set_device_limits,
635 &ti_limits);
636
637 /*
638 * If the remaining sectors fall entirely within this
639 * table entry are they compatible with its logical_block_size?
640 */
641 if (remaining < ti->len &&
642 remaining & ((ti_limits.logical_block_size >>
643 SECTOR_SHIFT) - 1))
644 break; /* Error */
645
646 next_target_start =
647 (unsigned short) ((next_target_start + ti->len) &
648 (device_logical_block_size_sects - 1));
649 remaining = next_target_start ?
650 device_logical_block_size_sects - next_target_start : 0;
651 }
652
653 if (remaining) {
654 DMWARN("%s: table line %u (start sect %llu len %llu) "
655 "not aligned to h/w logical block size %u",
656 dm_device_name(table->md), i,
657 (unsigned long long) ti->begin,
658 (unsigned long long) ti->len,
659 limits->logical_block_size);
660 return -EINVAL;
661 }
662
663 return 0;
664 }
665
666 int dm_table_add_target(struct dm_table *t, const char *type,
667 sector_t start, sector_t len, char *params)
668 {
669 int r = -EINVAL, argc;
670 char **argv;
671 struct dm_target *tgt;
672
673 if (t->singleton) {
674 DMERR("%s: target type %s must appear alone in table",
675 dm_device_name(t->md), t->targets->type->name);
676 return -EINVAL;
677 }
678
679 BUG_ON(t->num_targets >= t->num_allocated);
680
681 tgt = t->targets + t->num_targets;
682 memset(tgt, 0, sizeof(*tgt));
683
684 if (!len) {
685 DMERR("%s: zero-length target", dm_device_name(t->md));
686 return -EINVAL;
687 }
688
689 tgt->type = dm_get_target_type(type);
690 if (!tgt->type) {
691 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
692 type);
693 return -EINVAL;
694 }
695
696 if (dm_target_needs_singleton(tgt->type)) {
697 if (t->num_targets) {
698 DMERR("%s: target type %s must appear alone in table",
699 dm_device_name(t->md), type);
700 return -EINVAL;
701 }
702 t->singleton = 1;
703 }
704
705 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
706 DMERR("%s: target type %s may not be included in read-only tables",
707 dm_device_name(t->md), type);
708 return -EINVAL;
709 }
710
711 if (t->immutable_target_type) {
712 if (t->immutable_target_type != tgt->type) {
713 DMERR("%s: immutable target type %s cannot be mixed with other target types",
714 dm_device_name(t->md), t->immutable_target_type->name);
715 return -EINVAL;
716 }
717 } else if (dm_target_is_immutable(tgt->type)) {
718 if (t->num_targets) {
719 DMERR("%s: immutable target type %s cannot be mixed with other target types",
720 dm_device_name(t->md), tgt->type->name);
721 return -EINVAL;
722 }
723 t->immutable_target_type = tgt->type;
724 }
725
726 tgt->table = t;
727 tgt->begin = start;
728 tgt->len = len;
729 tgt->error = "Unknown error";
730
731 /*
732 * Does this target adjoin the previous one ?
733 */
734 if (!adjoin(t, tgt)) {
735 tgt->error = "Gap in table";
736 r = -EINVAL;
737 goto bad;
738 }
739
740 r = dm_split_args(&argc, &argv, params);
741 if (r) {
742 tgt->error = "couldn't split parameters (insufficient memory)";
743 goto bad;
744 }
745
746 r = tgt->type->ctr(tgt, argc, argv);
747 kfree(argv);
748 if (r)
749 goto bad;
750
751 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
752
753 if (!tgt->num_discard_bios && tgt->discards_supported)
754 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
755 dm_device_name(t->md), type);
756
757 return 0;
758
759 bad:
760 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
761 dm_put_target_type(tgt->type);
762 return r;
763 }
764
765 /*
766 * Target argument parsing helpers.
767 */
768 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
769 unsigned *value, char **error, unsigned grouped)
770 {
771 const char *arg_str = dm_shift_arg(arg_set);
772 char dummy;
773
774 if (!arg_str ||
775 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
776 (*value < arg->min) ||
777 (*value > arg->max) ||
778 (grouped && arg_set->argc < *value)) {
779 *error = arg->error;
780 return -EINVAL;
781 }
782
783 return 0;
784 }
785
786 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
787 unsigned *value, char **error)
788 {
789 return validate_next_arg(arg, arg_set, value, error, 0);
790 }
791 EXPORT_SYMBOL(dm_read_arg);
792
793 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
794 unsigned *value, char **error)
795 {
796 return validate_next_arg(arg, arg_set, value, error, 1);
797 }
798 EXPORT_SYMBOL(dm_read_arg_group);
799
800 const char *dm_shift_arg(struct dm_arg_set *as)
801 {
802 char *r;
803
804 if (as->argc) {
805 as->argc--;
806 r = *as->argv;
807 as->argv++;
808 return r;
809 }
810
811 return NULL;
812 }
813 EXPORT_SYMBOL(dm_shift_arg);
814
815 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
816 {
817 BUG_ON(as->argc < num_args);
818 as->argc -= num_args;
819 as->argv += num_args;
820 }
821 EXPORT_SYMBOL(dm_consume_args);
822
823 static bool __table_type_request_based(unsigned table_type)
824 {
825 return (table_type == DM_TYPE_REQUEST_BASED ||
826 table_type == DM_TYPE_MQ_REQUEST_BASED);
827 }
828
829 static int dm_table_set_type(struct dm_table *t)
830 {
831 unsigned i;
832 unsigned bio_based = 0, request_based = 0, hybrid = 0;
833 bool use_blk_mq = false;
834 struct dm_target *tgt;
835 struct dm_dev_internal *dd;
836 struct list_head *devices;
837 unsigned live_md_type = dm_get_md_type(t->md);
838
839 for (i = 0; i < t->num_targets; i++) {
840 tgt = t->targets + i;
841 if (dm_target_hybrid(tgt))
842 hybrid = 1;
843 else if (dm_target_request_based(tgt))
844 request_based = 1;
845 else
846 bio_based = 1;
847
848 if (bio_based && request_based) {
849 DMWARN("Inconsistent table: different target types"
850 " can't be mixed up");
851 return -EINVAL;
852 }
853 }
854
855 if (hybrid && !bio_based && !request_based) {
856 /*
857 * The targets can work either way.
858 * Determine the type from the live device.
859 * Default to bio-based if device is new.
860 */
861 if (__table_type_request_based(live_md_type))
862 request_based = 1;
863 else
864 bio_based = 1;
865 }
866
867 if (bio_based) {
868 /* We must use this table as bio-based */
869 t->type = DM_TYPE_BIO_BASED;
870 return 0;
871 }
872
873 BUG_ON(!request_based); /* No targets in this table */
874
875 /*
876 * Request-based dm supports only tables that have a single target now.
877 * To support multiple targets, request splitting support is needed,
878 * and that needs lots of changes in the block-layer.
879 * (e.g. request completion process for partial completion.)
880 */
881 if (t->num_targets > 1) {
882 DMWARN("Request-based dm doesn't support multiple targets yet");
883 return -EINVAL;
884 }
885
886 /* Non-request-stackable devices can't be used for request-based dm */
887 devices = dm_table_get_devices(t);
888 list_for_each_entry(dd, devices, list) {
889 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
890
891 if (!blk_queue_stackable(q)) {
892 DMERR("table load rejected: including"
893 " non-request-stackable devices");
894 return -EINVAL;
895 }
896
897 if (q->mq_ops)
898 use_blk_mq = true;
899 }
900
901 if (use_blk_mq) {
902 /* verify _all_ devices in the table are blk-mq devices */
903 list_for_each_entry(dd, devices, list)
904 if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
905 DMERR("table load rejected: not all devices"
906 " are blk-mq request-stackable");
907 return -EINVAL;
908 }
909 t->type = DM_TYPE_MQ_REQUEST_BASED;
910
911 } else if (list_empty(devices) && __table_type_request_based(live_md_type)) {
912 /* inherit live MD type */
913 t->type = live_md_type;
914
915 } else
916 t->type = DM_TYPE_REQUEST_BASED;
917
918 return 0;
919 }
920
921 unsigned dm_table_get_type(struct dm_table *t)
922 {
923 return t->type;
924 }
925
926 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
927 {
928 return t->immutable_target_type;
929 }
930
931 bool dm_table_request_based(struct dm_table *t)
932 {
933 return __table_type_request_based(dm_table_get_type(t));
934 }
935
936 bool dm_table_mq_request_based(struct dm_table *t)
937 {
938 return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
939 }
940
941 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
942 {
943 unsigned type = dm_table_get_type(t);
944 unsigned per_bio_data_size = 0;
945 struct dm_target *tgt;
946 unsigned i;
947
948 if (unlikely(type == DM_TYPE_NONE)) {
949 DMWARN("no table type is set, can't allocate mempools");
950 return -EINVAL;
951 }
952
953 if (type == DM_TYPE_BIO_BASED)
954 for (i = 0; i < t->num_targets; i++) {
955 tgt = t->targets + i;
956 per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
957 }
958
959 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_bio_data_size);
960 if (!t->mempools)
961 return -ENOMEM;
962
963 return 0;
964 }
965
966 void dm_table_free_md_mempools(struct dm_table *t)
967 {
968 dm_free_md_mempools(t->mempools);
969 t->mempools = NULL;
970 }
971
972 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
973 {
974 return t->mempools;
975 }
976
977 static int setup_indexes(struct dm_table *t)
978 {
979 int i;
980 unsigned int total = 0;
981 sector_t *indexes;
982
983 /* allocate the space for *all* the indexes */
984 for (i = t->depth - 2; i >= 0; i--) {
985 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
986 total += t->counts[i];
987 }
988
989 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
990 if (!indexes)
991 return -ENOMEM;
992
993 /* set up internal nodes, bottom-up */
994 for (i = t->depth - 2; i >= 0; i--) {
995 t->index[i] = indexes;
996 indexes += (KEYS_PER_NODE * t->counts[i]);
997 setup_btree_index(i, t);
998 }
999
1000 return 0;
1001 }
1002
1003 /*
1004 * Builds the btree to index the map.
1005 */
1006 static int dm_table_build_index(struct dm_table *t)
1007 {
1008 int r = 0;
1009 unsigned int leaf_nodes;
1010
1011 /* how many indexes will the btree have ? */
1012 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1013 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1014
1015 /* leaf layer has already been set up */
1016 t->counts[t->depth - 1] = leaf_nodes;
1017 t->index[t->depth - 1] = t->highs;
1018
1019 if (t->depth >= 2)
1020 r = setup_indexes(t);
1021
1022 return r;
1023 }
1024
1025 /*
1026 * Get a disk whose integrity profile reflects the table's profile.
1027 * If %match_all is true, all devices' profiles must match.
1028 * If %match_all is false, all devices must at least have an
1029 * allocated integrity profile; but uninitialized is ok.
1030 * Returns NULL if integrity support was inconsistent or unavailable.
1031 */
1032 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1033 bool match_all)
1034 {
1035 struct list_head *devices = dm_table_get_devices(t);
1036 struct dm_dev_internal *dd = NULL;
1037 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1038
1039 list_for_each_entry(dd, devices, list) {
1040 template_disk = dd->dm_dev->bdev->bd_disk;
1041 if (!blk_get_integrity(template_disk))
1042 goto no_integrity;
1043 if (!match_all && !blk_integrity_is_initialized(template_disk))
1044 continue; /* skip uninitialized profiles */
1045 else if (prev_disk &&
1046 blk_integrity_compare(prev_disk, template_disk) < 0)
1047 goto no_integrity;
1048 prev_disk = template_disk;
1049 }
1050
1051 return template_disk;
1052
1053 no_integrity:
1054 if (prev_disk)
1055 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1056 dm_device_name(t->md),
1057 prev_disk->disk_name,
1058 template_disk->disk_name);
1059 return NULL;
1060 }
1061
1062 /*
1063 * Register the mapped device for blk_integrity support if
1064 * the underlying devices have an integrity profile. But all devices
1065 * may not have matching profiles (checking all devices isn't reliable
1066 * during table load because this table may use other DM device(s) which
1067 * must be resumed before they will have an initialized integity profile).
1068 * Stacked DM devices force a 2 stage integrity profile validation:
1069 * 1 - during load, validate all initialized integrity profiles match
1070 * 2 - during resume, validate all integrity profiles match
1071 */
1072 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1073 {
1074 struct gendisk *template_disk = NULL;
1075
1076 template_disk = dm_table_get_integrity_disk(t, false);
1077 if (!template_disk)
1078 return 0;
1079
1080 if (!blk_integrity_is_initialized(dm_disk(md))) {
1081 t->integrity_supported = 1;
1082 return blk_integrity_register(dm_disk(md), NULL);
1083 }
1084
1085 /*
1086 * If DM device already has an initalized integrity
1087 * profile the new profile should not conflict.
1088 */
1089 if (blk_integrity_is_initialized(template_disk) &&
1090 blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1091 DMWARN("%s: conflict with existing integrity profile: "
1092 "%s profile mismatch",
1093 dm_device_name(t->md),
1094 template_disk->disk_name);
1095 return 1;
1096 }
1097
1098 /* Preserve existing initialized integrity profile */
1099 t->integrity_supported = 1;
1100 return 0;
1101 }
1102
1103 /*
1104 * Prepares the table for use by building the indices,
1105 * setting the type, and allocating mempools.
1106 */
1107 int dm_table_complete(struct dm_table *t)
1108 {
1109 int r;
1110
1111 r = dm_table_set_type(t);
1112 if (r) {
1113 DMERR("unable to set table type");
1114 return r;
1115 }
1116
1117 r = dm_table_build_index(t);
1118 if (r) {
1119 DMERR("unable to build btrees");
1120 return r;
1121 }
1122
1123 r = dm_table_prealloc_integrity(t, t->md);
1124 if (r) {
1125 DMERR("could not register integrity profile.");
1126 return r;
1127 }
1128
1129 r = dm_table_alloc_md_mempools(t, t->md);
1130 if (r)
1131 DMERR("unable to allocate mempools");
1132
1133 return r;
1134 }
1135
1136 static DEFINE_MUTEX(_event_lock);
1137 void dm_table_event_callback(struct dm_table *t,
1138 void (*fn)(void *), void *context)
1139 {
1140 mutex_lock(&_event_lock);
1141 t->event_fn = fn;
1142 t->event_context = context;
1143 mutex_unlock(&_event_lock);
1144 }
1145
1146 void dm_table_event(struct dm_table *t)
1147 {
1148 /*
1149 * You can no longer call dm_table_event() from interrupt
1150 * context, use a bottom half instead.
1151 */
1152 BUG_ON(in_interrupt());
1153
1154 mutex_lock(&_event_lock);
1155 if (t->event_fn)
1156 t->event_fn(t->event_context);
1157 mutex_unlock(&_event_lock);
1158 }
1159 EXPORT_SYMBOL(dm_table_event);
1160
1161 sector_t dm_table_get_size(struct dm_table *t)
1162 {
1163 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1164 }
1165 EXPORT_SYMBOL(dm_table_get_size);
1166
1167 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1168 {
1169 if (index >= t->num_targets)
1170 return NULL;
1171
1172 return t->targets + index;
1173 }
1174
1175 /*
1176 * Search the btree for the correct target.
1177 *
1178 * Caller should check returned pointer with dm_target_is_valid()
1179 * to trap I/O beyond end of device.
1180 */
1181 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1182 {
1183 unsigned int l, n = 0, k = 0;
1184 sector_t *node;
1185
1186 for (l = 0; l < t->depth; l++) {
1187 n = get_child(n, k);
1188 node = get_node(t, l, n);
1189
1190 for (k = 0; k < KEYS_PER_NODE; k++)
1191 if (node[k] >= sector)
1192 break;
1193 }
1194
1195 return &t->targets[(KEYS_PER_NODE * n) + k];
1196 }
1197
1198 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1199 sector_t start, sector_t len, void *data)
1200 {
1201 unsigned *num_devices = data;
1202
1203 (*num_devices)++;
1204
1205 return 0;
1206 }
1207
1208 /*
1209 * Check whether a table has no data devices attached using each
1210 * target's iterate_devices method.
1211 * Returns false if the result is unknown because a target doesn't
1212 * support iterate_devices.
1213 */
1214 bool dm_table_has_no_data_devices(struct dm_table *table)
1215 {
1216 struct dm_target *uninitialized_var(ti);
1217 unsigned i = 0, num_devices = 0;
1218
1219 while (i < dm_table_get_num_targets(table)) {
1220 ti = dm_table_get_target(table, i++);
1221
1222 if (!ti->type->iterate_devices)
1223 return false;
1224
1225 ti->type->iterate_devices(ti, count_device, &num_devices);
1226 if (num_devices)
1227 return false;
1228 }
1229
1230 return true;
1231 }
1232
1233 /*
1234 * Establish the new table's queue_limits and validate them.
1235 */
1236 int dm_calculate_queue_limits(struct dm_table *table,
1237 struct queue_limits *limits)
1238 {
1239 struct dm_target *uninitialized_var(ti);
1240 struct queue_limits ti_limits;
1241 unsigned i = 0;
1242
1243 blk_set_stacking_limits(limits);
1244
1245 while (i < dm_table_get_num_targets(table)) {
1246 blk_set_stacking_limits(&ti_limits);
1247
1248 ti = dm_table_get_target(table, i++);
1249
1250 if (!ti->type->iterate_devices)
1251 goto combine_limits;
1252
1253 /*
1254 * Combine queue limits of all the devices this target uses.
1255 */
1256 ti->type->iterate_devices(ti, dm_set_device_limits,
1257 &ti_limits);
1258
1259 /* Set I/O hints portion of queue limits */
1260 if (ti->type->io_hints)
1261 ti->type->io_hints(ti, &ti_limits);
1262
1263 /*
1264 * Check each device area is consistent with the target's
1265 * overall queue limits.
1266 */
1267 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1268 &ti_limits))
1269 return -EINVAL;
1270
1271 combine_limits:
1272 /*
1273 * Merge this target's queue limits into the overall limits
1274 * for the table.
1275 */
1276 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1277 DMWARN("%s: adding target device "
1278 "(start sect %llu len %llu) "
1279 "caused an alignment inconsistency",
1280 dm_device_name(table->md),
1281 (unsigned long long) ti->begin,
1282 (unsigned long long) ti->len);
1283 }
1284
1285 return validate_hardware_logical_block_alignment(table, limits);
1286 }
1287
1288 /*
1289 * Set the integrity profile for this device if all devices used have
1290 * matching profiles. We're quite deep in the resume path but still
1291 * don't know if all devices (particularly DM devices this device
1292 * may be stacked on) have matching profiles. Even if the profiles
1293 * don't match we have no way to fail (to resume) at this point.
1294 */
1295 static void dm_table_set_integrity(struct dm_table *t)
1296 {
1297 struct gendisk *template_disk = NULL;
1298
1299 if (!blk_get_integrity(dm_disk(t->md)))
1300 return;
1301
1302 template_disk = dm_table_get_integrity_disk(t, true);
1303 if (template_disk)
1304 blk_integrity_register(dm_disk(t->md),
1305 blk_get_integrity(template_disk));
1306 else if (blk_integrity_is_initialized(dm_disk(t->md)))
1307 DMWARN("%s: device no longer has a valid integrity profile",
1308 dm_device_name(t->md));
1309 else
1310 DMWARN("%s: unable to establish an integrity profile",
1311 dm_device_name(t->md));
1312 }
1313
1314 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1315 sector_t start, sector_t len, void *data)
1316 {
1317 unsigned flush = (*(unsigned *)data);
1318 struct request_queue *q = bdev_get_queue(dev->bdev);
1319
1320 return q && (q->flush_flags & flush);
1321 }
1322
1323 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1324 {
1325 struct dm_target *ti;
1326 unsigned i = 0;
1327
1328 /*
1329 * Require at least one underlying device to support flushes.
1330 * t->devices includes internal dm devices such as mirror logs
1331 * so we need to use iterate_devices here, which targets
1332 * supporting flushes must provide.
1333 */
1334 while (i < dm_table_get_num_targets(t)) {
1335 ti = dm_table_get_target(t, i++);
1336
1337 if (!ti->num_flush_bios)
1338 continue;
1339
1340 if (ti->flush_supported)
1341 return true;
1342
1343 if (ti->type->iterate_devices &&
1344 ti->type->iterate_devices(ti, device_flush_capable, &flush))
1345 return true;
1346 }
1347
1348 return false;
1349 }
1350
1351 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1352 {
1353 struct dm_target *ti;
1354 unsigned i = 0;
1355
1356 /* Ensure that all targets supports discard_zeroes_data. */
1357 while (i < dm_table_get_num_targets(t)) {
1358 ti = dm_table_get_target(t, i++);
1359
1360 if (ti->discard_zeroes_data_unsupported)
1361 return false;
1362 }
1363
1364 return true;
1365 }
1366
1367 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1368 sector_t start, sector_t len, void *data)
1369 {
1370 struct request_queue *q = bdev_get_queue(dev->bdev);
1371
1372 return q && blk_queue_nonrot(q);
1373 }
1374
1375 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1376 sector_t start, sector_t len, void *data)
1377 {
1378 struct request_queue *q = bdev_get_queue(dev->bdev);
1379
1380 return q && !blk_queue_add_random(q);
1381 }
1382
1383 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1384 sector_t start, sector_t len, void *data)
1385 {
1386 struct request_queue *q = bdev_get_queue(dev->bdev);
1387
1388 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1389 }
1390
1391 static int queue_supports_sg_gaps(struct dm_target *ti, struct dm_dev *dev,
1392 sector_t start, sector_t len, void *data)
1393 {
1394 struct request_queue *q = bdev_get_queue(dev->bdev);
1395
1396 return q && !test_bit(QUEUE_FLAG_SG_GAPS, &q->queue_flags);
1397 }
1398
1399 static bool dm_table_all_devices_attribute(struct dm_table *t,
1400 iterate_devices_callout_fn func)
1401 {
1402 struct dm_target *ti;
1403 unsigned i = 0;
1404
1405 while (i < dm_table_get_num_targets(t)) {
1406 ti = dm_table_get_target(t, i++);
1407
1408 if (!ti->type->iterate_devices ||
1409 !ti->type->iterate_devices(ti, func, NULL))
1410 return false;
1411 }
1412
1413 return true;
1414 }
1415
1416 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1417 sector_t start, sector_t len, void *data)
1418 {
1419 struct request_queue *q = bdev_get_queue(dev->bdev);
1420
1421 return q && !q->limits.max_write_same_sectors;
1422 }
1423
1424 static bool dm_table_supports_write_same(struct dm_table *t)
1425 {
1426 struct dm_target *ti;
1427 unsigned i = 0;
1428
1429 while (i < dm_table_get_num_targets(t)) {
1430 ti = dm_table_get_target(t, i++);
1431
1432 if (!ti->num_write_same_bios)
1433 return false;
1434
1435 if (!ti->type->iterate_devices ||
1436 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1437 return false;
1438 }
1439
1440 return true;
1441 }
1442
1443 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1444 sector_t start, sector_t len, void *data)
1445 {
1446 struct request_queue *q = bdev_get_queue(dev->bdev);
1447
1448 return q && blk_queue_discard(q);
1449 }
1450
1451 static bool dm_table_supports_discards(struct dm_table *t)
1452 {
1453 struct dm_target *ti;
1454 unsigned i = 0;
1455
1456 /*
1457 * Unless any target used by the table set discards_supported,
1458 * require at least one underlying device to support discards.
1459 * t->devices includes internal dm devices such as mirror logs
1460 * so we need to use iterate_devices here, which targets
1461 * supporting discard selectively must provide.
1462 */
1463 while (i < dm_table_get_num_targets(t)) {
1464 ti = dm_table_get_target(t, i++);
1465
1466 if (!ti->num_discard_bios)
1467 continue;
1468
1469 if (ti->discards_supported)
1470 return true;
1471
1472 if (ti->type->iterate_devices &&
1473 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1474 return true;
1475 }
1476
1477 return false;
1478 }
1479
1480 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1481 struct queue_limits *limits)
1482 {
1483 unsigned flush = 0;
1484
1485 /*
1486 * Copy table's limits to the DM device's request_queue
1487 */
1488 q->limits = *limits;
1489
1490 if (!dm_table_supports_discards(t))
1491 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1492 else
1493 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1494
1495 if (dm_table_supports_flush(t, REQ_FLUSH)) {
1496 flush |= REQ_FLUSH;
1497 if (dm_table_supports_flush(t, REQ_FUA))
1498 flush |= REQ_FUA;
1499 }
1500 blk_queue_flush(q, flush);
1501
1502 if (!dm_table_discard_zeroes_data(t))
1503 q->limits.discard_zeroes_data = 0;
1504
1505 /* Ensure that all underlying devices are non-rotational. */
1506 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1507 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1508 else
1509 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1510
1511 if (!dm_table_supports_write_same(t))
1512 q->limits.max_write_same_sectors = 0;
1513
1514 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1515 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1516 else
1517 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1518
1519 if (dm_table_all_devices_attribute(t, queue_supports_sg_gaps))
1520 queue_flag_clear_unlocked(QUEUE_FLAG_SG_GAPS, q);
1521 else
1522 queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, q);
1523
1524 dm_table_set_integrity(t);
1525
1526 /*
1527 * Determine whether or not this queue's I/O timings contribute
1528 * to the entropy pool, Only request-based targets use this.
1529 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1530 * have it set.
1531 */
1532 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1533 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1534
1535 /*
1536 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1537 * visible to other CPUs because, once the flag is set, incoming bios
1538 * are processed by request-based dm, which refers to the queue
1539 * settings.
1540 * Until the flag set, bios are passed to bio-based dm and queued to
1541 * md->deferred where queue settings are not needed yet.
1542 * Those bios are passed to request-based dm at the resume time.
1543 */
1544 smp_mb();
1545 if (dm_table_request_based(t))
1546 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1547 }
1548
1549 unsigned int dm_table_get_num_targets(struct dm_table *t)
1550 {
1551 return t->num_targets;
1552 }
1553
1554 struct list_head *dm_table_get_devices(struct dm_table *t)
1555 {
1556 return &t->devices;
1557 }
1558
1559 fmode_t dm_table_get_mode(struct dm_table *t)
1560 {
1561 return t->mode;
1562 }
1563 EXPORT_SYMBOL(dm_table_get_mode);
1564
1565 enum suspend_mode {
1566 PRESUSPEND,
1567 PRESUSPEND_UNDO,
1568 POSTSUSPEND,
1569 };
1570
1571 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1572 {
1573 int i = t->num_targets;
1574 struct dm_target *ti = t->targets;
1575
1576 while (i--) {
1577 switch (mode) {
1578 case PRESUSPEND:
1579 if (ti->type->presuspend)
1580 ti->type->presuspend(ti);
1581 break;
1582 case PRESUSPEND_UNDO:
1583 if (ti->type->presuspend_undo)
1584 ti->type->presuspend_undo(ti);
1585 break;
1586 case POSTSUSPEND:
1587 if (ti->type->postsuspend)
1588 ti->type->postsuspend(ti);
1589 break;
1590 }
1591 ti++;
1592 }
1593 }
1594
1595 void dm_table_presuspend_targets(struct dm_table *t)
1596 {
1597 if (!t)
1598 return;
1599
1600 suspend_targets(t, PRESUSPEND);
1601 }
1602
1603 void dm_table_presuspend_undo_targets(struct dm_table *t)
1604 {
1605 if (!t)
1606 return;
1607
1608 suspend_targets(t, PRESUSPEND_UNDO);
1609 }
1610
1611 void dm_table_postsuspend_targets(struct dm_table *t)
1612 {
1613 if (!t)
1614 return;
1615
1616 suspend_targets(t, POSTSUSPEND);
1617 }
1618
1619 int dm_table_resume_targets(struct dm_table *t)
1620 {
1621 int i, r = 0;
1622
1623 for (i = 0; i < t->num_targets; i++) {
1624 struct dm_target *ti = t->targets + i;
1625
1626 if (!ti->type->preresume)
1627 continue;
1628
1629 r = ti->type->preresume(ti);
1630 if (r) {
1631 DMERR("%s: %s: preresume failed, error = %d",
1632 dm_device_name(t->md), ti->type->name, r);
1633 return r;
1634 }
1635 }
1636
1637 for (i = 0; i < t->num_targets; i++) {
1638 struct dm_target *ti = t->targets + i;
1639
1640 if (ti->type->resume)
1641 ti->type->resume(ti);
1642 }
1643
1644 return 0;
1645 }
1646
1647 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1648 {
1649 list_add(&cb->list, &t->target_callbacks);
1650 }
1651 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1652
1653 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1654 {
1655 struct dm_dev_internal *dd;
1656 struct list_head *devices = dm_table_get_devices(t);
1657 struct dm_target_callbacks *cb;
1658 int r = 0;
1659
1660 list_for_each_entry(dd, devices, list) {
1661 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1662 char b[BDEVNAME_SIZE];
1663
1664 if (likely(q))
1665 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1666 else
1667 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1668 dm_device_name(t->md),
1669 bdevname(dd->dm_dev->bdev, b));
1670 }
1671
1672 list_for_each_entry(cb, &t->target_callbacks, list)
1673 if (cb->congested_fn)
1674 r |= cb->congested_fn(cb, bdi_bits);
1675
1676 return r;
1677 }
1678
1679 struct mapped_device *dm_table_get_md(struct dm_table *t)
1680 {
1681 return t->md;
1682 }
1683 EXPORT_SYMBOL(dm_table_get_md);
1684
1685 void dm_table_run_md_queue_async(struct dm_table *t)
1686 {
1687 struct mapped_device *md;
1688 struct request_queue *queue;
1689 unsigned long flags;
1690
1691 if (!dm_table_request_based(t))
1692 return;
1693
1694 md = dm_table_get_md(t);
1695 queue = dm_get_md_queue(md);
1696 if (queue) {
1697 if (queue->mq_ops)
1698 blk_mq_run_hw_queues(queue, true);
1699 else {
1700 spin_lock_irqsave(queue->queue_lock, flags);
1701 blk_run_queue_async(queue);
1702 spin_unlock_irqrestore(queue->queue_lock, flags);
1703 }
1704 }
1705 }
1706 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1707
This page took 0.06916 seconds and 5 git commands to generate.