NVMe: per-cpu io queues
[deliverable/linux.git] / drivers / md / dm-table.c
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21
22 #define DM_MSG_PREFIX "table"
23
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28
29 struct dm_table {
30 struct mapped_device *md;
31 unsigned type;
32
33 /* btree table */
34 unsigned int depth;
35 unsigned int counts[MAX_DEPTH]; /* in nodes */
36 sector_t *index[MAX_DEPTH];
37
38 unsigned int num_targets;
39 unsigned int num_allocated;
40 sector_t *highs;
41 struct dm_target *targets;
42
43 struct target_type *immutable_target_type;
44 unsigned integrity_supported:1;
45 unsigned singleton:1;
46
47 /*
48 * Indicates the rw permissions for the new logical
49 * device. This should be a combination of FMODE_READ
50 * and FMODE_WRITE.
51 */
52 fmode_t mode;
53
54 /* a list of devices used by this table */
55 struct list_head devices;
56
57 /* events get handed up using this callback */
58 void (*event_fn)(void *);
59 void *event_context;
60
61 struct dm_md_mempools *mempools;
62
63 struct list_head target_callbacks;
64 };
65
66 /*
67 * Similar to ceiling(log_size(n))
68 */
69 static unsigned int int_log(unsigned int n, unsigned int base)
70 {
71 int result = 0;
72
73 while (n > 1) {
74 n = dm_div_up(n, base);
75 result++;
76 }
77
78 return result;
79 }
80
81 /*
82 * Calculate the index of the child node of the n'th node k'th key.
83 */
84 static inline unsigned int get_child(unsigned int n, unsigned int k)
85 {
86 return (n * CHILDREN_PER_NODE) + k;
87 }
88
89 /*
90 * Return the n'th node of level l from table t.
91 */
92 static inline sector_t *get_node(struct dm_table *t,
93 unsigned int l, unsigned int n)
94 {
95 return t->index[l] + (n * KEYS_PER_NODE);
96 }
97
98 /*
99 * Return the highest key that you could lookup from the n'th
100 * node on level l of the btree.
101 */
102 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
103 {
104 for (; l < t->depth - 1; l++)
105 n = get_child(n, CHILDREN_PER_NODE - 1);
106
107 if (n >= t->counts[l])
108 return (sector_t) - 1;
109
110 return get_node(t, l, n)[KEYS_PER_NODE - 1];
111 }
112
113 /*
114 * Fills in a level of the btree based on the highs of the level
115 * below it.
116 */
117 static int setup_btree_index(unsigned int l, struct dm_table *t)
118 {
119 unsigned int n, k;
120 sector_t *node;
121
122 for (n = 0U; n < t->counts[l]; n++) {
123 node = get_node(t, l, n);
124
125 for (k = 0U; k < KEYS_PER_NODE; k++)
126 node[k] = high(t, l + 1, get_child(n, k));
127 }
128
129 return 0;
130 }
131
132 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
133 {
134 unsigned long size;
135 void *addr;
136
137 /*
138 * Check that we're not going to overflow.
139 */
140 if (nmemb > (ULONG_MAX / elem_size))
141 return NULL;
142
143 size = nmemb * elem_size;
144 addr = vzalloc(size);
145
146 return addr;
147 }
148 EXPORT_SYMBOL(dm_vcalloc);
149
150 /*
151 * highs, and targets are managed as dynamic arrays during a
152 * table load.
153 */
154 static int alloc_targets(struct dm_table *t, unsigned int num)
155 {
156 sector_t *n_highs;
157 struct dm_target *n_targets;
158
159 /*
160 * Allocate both the target array and offset array at once.
161 * Append an empty entry to catch sectors beyond the end of
162 * the device.
163 */
164 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
165 sizeof(sector_t));
166 if (!n_highs)
167 return -ENOMEM;
168
169 n_targets = (struct dm_target *) (n_highs + num);
170
171 memset(n_highs, -1, sizeof(*n_highs) * num);
172 vfree(t->highs);
173
174 t->num_allocated = num;
175 t->highs = n_highs;
176 t->targets = n_targets;
177
178 return 0;
179 }
180
181 int dm_table_create(struct dm_table **result, fmode_t mode,
182 unsigned num_targets, struct mapped_device *md)
183 {
184 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
185
186 if (!t)
187 return -ENOMEM;
188
189 INIT_LIST_HEAD(&t->devices);
190 INIT_LIST_HEAD(&t->target_callbacks);
191
192 if (!num_targets)
193 num_targets = KEYS_PER_NODE;
194
195 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
196
197 if (!num_targets) {
198 kfree(t);
199 return -ENOMEM;
200 }
201
202 if (alloc_targets(t, num_targets)) {
203 kfree(t);
204 return -ENOMEM;
205 }
206
207 t->mode = mode;
208 t->md = md;
209 *result = t;
210 return 0;
211 }
212
213 static void free_devices(struct list_head *devices)
214 {
215 struct list_head *tmp, *next;
216
217 list_for_each_safe(tmp, next, devices) {
218 struct dm_dev_internal *dd =
219 list_entry(tmp, struct dm_dev_internal, list);
220 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
221 dd->dm_dev.name);
222 kfree(dd);
223 }
224 }
225
226 void dm_table_destroy(struct dm_table *t)
227 {
228 unsigned int i;
229
230 if (!t)
231 return;
232
233 /* free the indexes */
234 if (t->depth >= 2)
235 vfree(t->index[t->depth - 2]);
236
237 /* free the targets */
238 for (i = 0; i < t->num_targets; i++) {
239 struct dm_target *tgt = t->targets + i;
240
241 if (tgt->type->dtr)
242 tgt->type->dtr(tgt);
243
244 dm_put_target_type(tgt->type);
245 }
246
247 vfree(t->highs);
248
249 /* free the device list */
250 free_devices(&t->devices);
251
252 dm_free_md_mempools(t->mempools);
253
254 kfree(t);
255 }
256
257 /*
258 * See if we've already got a device in the list.
259 */
260 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
261 {
262 struct dm_dev_internal *dd;
263
264 list_for_each_entry (dd, l, list)
265 if (dd->dm_dev.bdev->bd_dev == dev)
266 return dd;
267
268 return NULL;
269 }
270
271 /*
272 * Open a device so we can use it as a map destination.
273 */
274 static int open_dev(struct dm_dev_internal *d, dev_t dev,
275 struct mapped_device *md)
276 {
277 static char *_claim_ptr = "I belong to device-mapper";
278 struct block_device *bdev;
279
280 int r;
281
282 BUG_ON(d->dm_dev.bdev);
283
284 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
285 if (IS_ERR(bdev))
286 return PTR_ERR(bdev);
287
288 r = bd_link_disk_holder(bdev, dm_disk(md));
289 if (r) {
290 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
291 return r;
292 }
293
294 d->dm_dev.bdev = bdev;
295 return 0;
296 }
297
298 /*
299 * Close a device that we've been using.
300 */
301 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
302 {
303 if (!d->dm_dev.bdev)
304 return;
305
306 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
307 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
308 d->dm_dev.bdev = NULL;
309 }
310
311 /*
312 * If possible, this checks an area of a destination device is invalid.
313 */
314 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
315 sector_t start, sector_t len, void *data)
316 {
317 struct request_queue *q;
318 struct queue_limits *limits = data;
319 struct block_device *bdev = dev->bdev;
320 sector_t dev_size =
321 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
322 unsigned short logical_block_size_sectors =
323 limits->logical_block_size >> SECTOR_SHIFT;
324 char b[BDEVNAME_SIZE];
325
326 /*
327 * Some devices exist without request functions,
328 * such as loop devices not yet bound to backing files.
329 * Forbid the use of such devices.
330 */
331 q = bdev_get_queue(bdev);
332 if (!q || !q->make_request_fn) {
333 DMWARN("%s: %s is not yet initialised: "
334 "start=%llu, len=%llu, dev_size=%llu",
335 dm_device_name(ti->table->md), bdevname(bdev, b),
336 (unsigned long long)start,
337 (unsigned long long)len,
338 (unsigned long long)dev_size);
339 return 1;
340 }
341
342 if (!dev_size)
343 return 0;
344
345 if ((start >= dev_size) || (start + len > dev_size)) {
346 DMWARN("%s: %s too small for target: "
347 "start=%llu, len=%llu, dev_size=%llu",
348 dm_device_name(ti->table->md), bdevname(bdev, b),
349 (unsigned long long)start,
350 (unsigned long long)len,
351 (unsigned long long)dev_size);
352 return 1;
353 }
354
355 if (logical_block_size_sectors <= 1)
356 return 0;
357
358 if (start & (logical_block_size_sectors - 1)) {
359 DMWARN("%s: start=%llu not aligned to h/w "
360 "logical block size %u of %s",
361 dm_device_name(ti->table->md),
362 (unsigned long long)start,
363 limits->logical_block_size, bdevname(bdev, b));
364 return 1;
365 }
366
367 if (len & (logical_block_size_sectors - 1)) {
368 DMWARN("%s: len=%llu not aligned to h/w "
369 "logical block size %u of %s",
370 dm_device_name(ti->table->md),
371 (unsigned long long)len,
372 limits->logical_block_size, bdevname(bdev, b));
373 return 1;
374 }
375
376 return 0;
377 }
378
379 /*
380 * This upgrades the mode on an already open dm_dev, being
381 * careful to leave things as they were if we fail to reopen the
382 * device and not to touch the existing bdev field in case
383 * it is accessed concurrently inside dm_table_any_congested().
384 */
385 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
386 struct mapped_device *md)
387 {
388 int r;
389 struct dm_dev_internal dd_new, dd_old;
390
391 dd_new = dd_old = *dd;
392
393 dd_new.dm_dev.mode |= new_mode;
394 dd_new.dm_dev.bdev = NULL;
395
396 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
397 if (r)
398 return r;
399
400 dd->dm_dev.mode |= new_mode;
401 close_dev(&dd_old, md);
402
403 return 0;
404 }
405
406 /*
407 * Add a device to the list, or just increment the usage count if
408 * it's already present.
409 */
410 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
411 struct dm_dev **result)
412 {
413 int r;
414 dev_t uninitialized_var(dev);
415 struct dm_dev_internal *dd;
416 unsigned int major, minor;
417 struct dm_table *t = ti->table;
418 char dummy;
419
420 BUG_ON(!t);
421
422 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
423 /* Extract the major/minor numbers */
424 dev = MKDEV(major, minor);
425 if (MAJOR(dev) != major || MINOR(dev) != minor)
426 return -EOVERFLOW;
427 } else {
428 /* convert the path to a device */
429 struct block_device *bdev = lookup_bdev(path);
430
431 if (IS_ERR(bdev))
432 return PTR_ERR(bdev);
433 dev = bdev->bd_dev;
434 bdput(bdev);
435 }
436
437 dd = find_device(&t->devices, dev);
438 if (!dd) {
439 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
440 if (!dd)
441 return -ENOMEM;
442
443 dd->dm_dev.mode = mode;
444 dd->dm_dev.bdev = NULL;
445
446 if ((r = open_dev(dd, dev, t->md))) {
447 kfree(dd);
448 return r;
449 }
450
451 format_dev_t(dd->dm_dev.name, dev);
452
453 atomic_set(&dd->count, 0);
454 list_add(&dd->list, &t->devices);
455
456 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
457 r = upgrade_mode(dd, mode, t->md);
458 if (r)
459 return r;
460 }
461 atomic_inc(&dd->count);
462
463 *result = &dd->dm_dev;
464 return 0;
465 }
466 EXPORT_SYMBOL(dm_get_device);
467
468 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
469 sector_t start, sector_t len, void *data)
470 {
471 struct queue_limits *limits = data;
472 struct block_device *bdev = dev->bdev;
473 struct request_queue *q = bdev_get_queue(bdev);
474 char b[BDEVNAME_SIZE];
475
476 if (unlikely(!q)) {
477 DMWARN("%s: Cannot set limits for nonexistent device %s",
478 dm_device_name(ti->table->md), bdevname(bdev, b));
479 return 0;
480 }
481
482 if (bdev_stack_limits(limits, bdev, start) < 0)
483 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
484 "physical_block_size=%u, logical_block_size=%u, "
485 "alignment_offset=%u, start=%llu",
486 dm_device_name(ti->table->md), bdevname(bdev, b),
487 q->limits.physical_block_size,
488 q->limits.logical_block_size,
489 q->limits.alignment_offset,
490 (unsigned long long) start << SECTOR_SHIFT);
491
492 /*
493 * Check if merge fn is supported.
494 * If not we'll force DM to use PAGE_SIZE or
495 * smaller I/O, just to be safe.
496 */
497 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
498 blk_limits_max_hw_sectors(limits,
499 (unsigned int) (PAGE_SIZE >> 9));
500 return 0;
501 }
502 EXPORT_SYMBOL_GPL(dm_set_device_limits);
503
504 /*
505 * Decrement a device's use count and remove it if necessary.
506 */
507 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
508 {
509 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
510 dm_dev);
511
512 if (atomic_dec_and_test(&dd->count)) {
513 close_dev(dd, ti->table->md);
514 list_del(&dd->list);
515 kfree(dd);
516 }
517 }
518 EXPORT_SYMBOL(dm_put_device);
519
520 /*
521 * Checks to see if the target joins onto the end of the table.
522 */
523 static int adjoin(struct dm_table *table, struct dm_target *ti)
524 {
525 struct dm_target *prev;
526
527 if (!table->num_targets)
528 return !ti->begin;
529
530 prev = &table->targets[table->num_targets - 1];
531 return (ti->begin == (prev->begin + prev->len));
532 }
533
534 /*
535 * Used to dynamically allocate the arg array.
536 *
537 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
538 * process messages even if some device is suspended. These messages have a
539 * small fixed number of arguments.
540 *
541 * On the other hand, dm-switch needs to process bulk data using messages and
542 * excessive use of GFP_NOIO could cause trouble.
543 */
544 static char **realloc_argv(unsigned *array_size, char **old_argv)
545 {
546 char **argv;
547 unsigned new_size;
548 gfp_t gfp;
549
550 if (*array_size) {
551 new_size = *array_size * 2;
552 gfp = GFP_KERNEL;
553 } else {
554 new_size = 8;
555 gfp = GFP_NOIO;
556 }
557 argv = kmalloc(new_size * sizeof(*argv), gfp);
558 if (argv) {
559 memcpy(argv, old_argv, *array_size * sizeof(*argv));
560 *array_size = new_size;
561 }
562
563 kfree(old_argv);
564 return argv;
565 }
566
567 /*
568 * Destructively splits up the argument list to pass to ctr.
569 */
570 int dm_split_args(int *argc, char ***argvp, char *input)
571 {
572 char *start, *end = input, *out, **argv = NULL;
573 unsigned array_size = 0;
574
575 *argc = 0;
576
577 if (!input) {
578 *argvp = NULL;
579 return 0;
580 }
581
582 argv = realloc_argv(&array_size, argv);
583 if (!argv)
584 return -ENOMEM;
585
586 while (1) {
587 /* Skip whitespace */
588 start = skip_spaces(end);
589
590 if (!*start)
591 break; /* success, we hit the end */
592
593 /* 'out' is used to remove any back-quotes */
594 end = out = start;
595 while (*end) {
596 /* Everything apart from '\0' can be quoted */
597 if (*end == '\\' && *(end + 1)) {
598 *out++ = *(end + 1);
599 end += 2;
600 continue;
601 }
602
603 if (isspace(*end))
604 break; /* end of token */
605
606 *out++ = *end++;
607 }
608
609 /* have we already filled the array ? */
610 if ((*argc + 1) > array_size) {
611 argv = realloc_argv(&array_size, argv);
612 if (!argv)
613 return -ENOMEM;
614 }
615
616 /* we know this is whitespace */
617 if (*end)
618 end++;
619
620 /* terminate the string and put it in the array */
621 *out = '\0';
622 argv[*argc] = start;
623 (*argc)++;
624 }
625
626 *argvp = argv;
627 return 0;
628 }
629
630 /*
631 * Impose necessary and sufficient conditions on a devices's table such
632 * that any incoming bio which respects its logical_block_size can be
633 * processed successfully. If it falls across the boundary between
634 * two or more targets, the size of each piece it gets split into must
635 * be compatible with the logical_block_size of the target processing it.
636 */
637 static int validate_hardware_logical_block_alignment(struct dm_table *table,
638 struct queue_limits *limits)
639 {
640 /*
641 * This function uses arithmetic modulo the logical_block_size
642 * (in units of 512-byte sectors).
643 */
644 unsigned short device_logical_block_size_sects =
645 limits->logical_block_size >> SECTOR_SHIFT;
646
647 /*
648 * Offset of the start of the next table entry, mod logical_block_size.
649 */
650 unsigned short next_target_start = 0;
651
652 /*
653 * Given an aligned bio that extends beyond the end of a
654 * target, how many sectors must the next target handle?
655 */
656 unsigned short remaining = 0;
657
658 struct dm_target *uninitialized_var(ti);
659 struct queue_limits ti_limits;
660 unsigned i = 0;
661
662 /*
663 * Check each entry in the table in turn.
664 */
665 while (i < dm_table_get_num_targets(table)) {
666 ti = dm_table_get_target(table, i++);
667
668 blk_set_stacking_limits(&ti_limits);
669
670 /* combine all target devices' limits */
671 if (ti->type->iterate_devices)
672 ti->type->iterate_devices(ti, dm_set_device_limits,
673 &ti_limits);
674
675 /*
676 * If the remaining sectors fall entirely within this
677 * table entry are they compatible with its logical_block_size?
678 */
679 if (remaining < ti->len &&
680 remaining & ((ti_limits.logical_block_size >>
681 SECTOR_SHIFT) - 1))
682 break; /* Error */
683
684 next_target_start =
685 (unsigned short) ((next_target_start + ti->len) &
686 (device_logical_block_size_sects - 1));
687 remaining = next_target_start ?
688 device_logical_block_size_sects - next_target_start : 0;
689 }
690
691 if (remaining) {
692 DMWARN("%s: table line %u (start sect %llu len %llu) "
693 "not aligned to h/w logical block size %u",
694 dm_device_name(table->md), i,
695 (unsigned long long) ti->begin,
696 (unsigned long long) ti->len,
697 limits->logical_block_size);
698 return -EINVAL;
699 }
700
701 return 0;
702 }
703
704 int dm_table_add_target(struct dm_table *t, const char *type,
705 sector_t start, sector_t len, char *params)
706 {
707 int r = -EINVAL, argc;
708 char **argv;
709 struct dm_target *tgt;
710
711 if (t->singleton) {
712 DMERR("%s: target type %s must appear alone in table",
713 dm_device_name(t->md), t->targets->type->name);
714 return -EINVAL;
715 }
716
717 BUG_ON(t->num_targets >= t->num_allocated);
718
719 tgt = t->targets + t->num_targets;
720 memset(tgt, 0, sizeof(*tgt));
721
722 if (!len) {
723 DMERR("%s: zero-length target", dm_device_name(t->md));
724 return -EINVAL;
725 }
726
727 tgt->type = dm_get_target_type(type);
728 if (!tgt->type) {
729 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
730 type);
731 return -EINVAL;
732 }
733
734 if (dm_target_needs_singleton(tgt->type)) {
735 if (t->num_targets) {
736 DMERR("%s: target type %s must appear alone in table",
737 dm_device_name(t->md), type);
738 return -EINVAL;
739 }
740 t->singleton = 1;
741 }
742
743 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
744 DMERR("%s: target type %s may not be included in read-only tables",
745 dm_device_name(t->md), type);
746 return -EINVAL;
747 }
748
749 if (t->immutable_target_type) {
750 if (t->immutable_target_type != tgt->type) {
751 DMERR("%s: immutable target type %s cannot be mixed with other target types",
752 dm_device_name(t->md), t->immutable_target_type->name);
753 return -EINVAL;
754 }
755 } else if (dm_target_is_immutable(tgt->type)) {
756 if (t->num_targets) {
757 DMERR("%s: immutable target type %s cannot be mixed with other target types",
758 dm_device_name(t->md), tgt->type->name);
759 return -EINVAL;
760 }
761 t->immutable_target_type = tgt->type;
762 }
763
764 tgt->table = t;
765 tgt->begin = start;
766 tgt->len = len;
767 tgt->error = "Unknown error";
768
769 /*
770 * Does this target adjoin the previous one ?
771 */
772 if (!adjoin(t, tgt)) {
773 tgt->error = "Gap in table";
774 r = -EINVAL;
775 goto bad;
776 }
777
778 r = dm_split_args(&argc, &argv, params);
779 if (r) {
780 tgt->error = "couldn't split parameters (insufficient memory)";
781 goto bad;
782 }
783
784 r = tgt->type->ctr(tgt, argc, argv);
785 kfree(argv);
786 if (r)
787 goto bad;
788
789 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
790
791 if (!tgt->num_discard_bios && tgt->discards_supported)
792 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
793 dm_device_name(t->md), type);
794
795 return 0;
796
797 bad:
798 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
799 dm_put_target_type(tgt->type);
800 return r;
801 }
802
803 /*
804 * Target argument parsing helpers.
805 */
806 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
807 unsigned *value, char **error, unsigned grouped)
808 {
809 const char *arg_str = dm_shift_arg(arg_set);
810 char dummy;
811
812 if (!arg_str ||
813 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
814 (*value < arg->min) ||
815 (*value > arg->max) ||
816 (grouped && arg_set->argc < *value)) {
817 *error = arg->error;
818 return -EINVAL;
819 }
820
821 return 0;
822 }
823
824 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
825 unsigned *value, char **error)
826 {
827 return validate_next_arg(arg, arg_set, value, error, 0);
828 }
829 EXPORT_SYMBOL(dm_read_arg);
830
831 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
832 unsigned *value, char **error)
833 {
834 return validate_next_arg(arg, arg_set, value, error, 1);
835 }
836 EXPORT_SYMBOL(dm_read_arg_group);
837
838 const char *dm_shift_arg(struct dm_arg_set *as)
839 {
840 char *r;
841
842 if (as->argc) {
843 as->argc--;
844 r = *as->argv;
845 as->argv++;
846 return r;
847 }
848
849 return NULL;
850 }
851 EXPORT_SYMBOL(dm_shift_arg);
852
853 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
854 {
855 BUG_ON(as->argc < num_args);
856 as->argc -= num_args;
857 as->argv += num_args;
858 }
859 EXPORT_SYMBOL(dm_consume_args);
860
861 static int dm_table_set_type(struct dm_table *t)
862 {
863 unsigned i;
864 unsigned bio_based = 0, request_based = 0, hybrid = 0;
865 struct dm_target *tgt;
866 struct dm_dev_internal *dd;
867 struct list_head *devices;
868 unsigned live_md_type;
869
870 for (i = 0; i < t->num_targets; i++) {
871 tgt = t->targets + i;
872 if (dm_target_hybrid(tgt))
873 hybrid = 1;
874 else if (dm_target_request_based(tgt))
875 request_based = 1;
876 else
877 bio_based = 1;
878
879 if (bio_based && request_based) {
880 DMWARN("Inconsistent table: different target types"
881 " can't be mixed up");
882 return -EINVAL;
883 }
884 }
885
886 if (hybrid && !bio_based && !request_based) {
887 /*
888 * The targets can work either way.
889 * Determine the type from the live device.
890 * Default to bio-based if device is new.
891 */
892 live_md_type = dm_get_md_type(t->md);
893 if (live_md_type == DM_TYPE_REQUEST_BASED)
894 request_based = 1;
895 else
896 bio_based = 1;
897 }
898
899 if (bio_based) {
900 /* We must use this table as bio-based */
901 t->type = DM_TYPE_BIO_BASED;
902 return 0;
903 }
904
905 BUG_ON(!request_based); /* No targets in this table */
906
907 /* Non-request-stackable devices can't be used for request-based dm */
908 devices = dm_table_get_devices(t);
909 list_for_each_entry(dd, devices, list) {
910 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
911 DMWARN("table load rejected: including"
912 " non-request-stackable devices");
913 return -EINVAL;
914 }
915 }
916
917 /*
918 * Request-based dm supports only tables that have a single target now.
919 * To support multiple targets, request splitting support is needed,
920 * and that needs lots of changes in the block-layer.
921 * (e.g. request completion process for partial completion.)
922 */
923 if (t->num_targets > 1) {
924 DMWARN("Request-based dm doesn't support multiple targets yet");
925 return -EINVAL;
926 }
927
928 t->type = DM_TYPE_REQUEST_BASED;
929
930 return 0;
931 }
932
933 unsigned dm_table_get_type(struct dm_table *t)
934 {
935 return t->type;
936 }
937
938 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
939 {
940 return t->immutable_target_type;
941 }
942
943 bool dm_table_request_based(struct dm_table *t)
944 {
945 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
946 }
947
948 int dm_table_alloc_md_mempools(struct dm_table *t)
949 {
950 unsigned type = dm_table_get_type(t);
951 unsigned per_bio_data_size = 0;
952 struct dm_target *tgt;
953 unsigned i;
954
955 if (unlikely(type == DM_TYPE_NONE)) {
956 DMWARN("no table type is set, can't allocate mempools");
957 return -EINVAL;
958 }
959
960 if (type == DM_TYPE_BIO_BASED)
961 for (i = 0; i < t->num_targets; i++) {
962 tgt = t->targets + i;
963 per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
964 }
965
966 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
967 if (!t->mempools)
968 return -ENOMEM;
969
970 return 0;
971 }
972
973 void dm_table_free_md_mempools(struct dm_table *t)
974 {
975 dm_free_md_mempools(t->mempools);
976 t->mempools = NULL;
977 }
978
979 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
980 {
981 return t->mempools;
982 }
983
984 static int setup_indexes(struct dm_table *t)
985 {
986 int i;
987 unsigned int total = 0;
988 sector_t *indexes;
989
990 /* allocate the space for *all* the indexes */
991 for (i = t->depth - 2; i >= 0; i--) {
992 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
993 total += t->counts[i];
994 }
995
996 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
997 if (!indexes)
998 return -ENOMEM;
999
1000 /* set up internal nodes, bottom-up */
1001 for (i = t->depth - 2; i >= 0; i--) {
1002 t->index[i] = indexes;
1003 indexes += (KEYS_PER_NODE * t->counts[i]);
1004 setup_btree_index(i, t);
1005 }
1006
1007 return 0;
1008 }
1009
1010 /*
1011 * Builds the btree to index the map.
1012 */
1013 static int dm_table_build_index(struct dm_table *t)
1014 {
1015 int r = 0;
1016 unsigned int leaf_nodes;
1017
1018 /* how many indexes will the btree have ? */
1019 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1020 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1021
1022 /* leaf layer has already been set up */
1023 t->counts[t->depth - 1] = leaf_nodes;
1024 t->index[t->depth - 1] = t->highs;
1025
1026 if (t->depth >= 2)
1027 r = setup_indexes(t);
1028
1029 return r;
1030 }
1031
1032 /*
1033 * Get a disk whose integrity profile reflects the table's profile.
1034 * If %match_all is true, all devices' profiles must match.
1035 * If %match_all is false, all devices must at least have an
1036 * allocated integrity profile; but uninitialized is ok.
1037 * Returns NULL if integrity support was inconsistent or unavailable.
1038 */
1039 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1040 bool match_all)
1041 {
1042 struct list_head *devices = dm_table_get_devices(t);
1043 struct dm_dev_internal *dd = NULL;
1044 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1045
1046 list_for_each_entry(dd, devices, list) {
1047 template_disk = dd->dm_dev.bdev->bd_disk;
1048 if (!blk_get_integrity(template_disk))
1049 goto no_integrity;
1050 if (!match_all && !blk_integrity_is_initialized(template_disk))
1051 continue; /* skip uninitialized profiles */
1052 else if (prev_disk &&
1053 blk_integrity_compare(prev_disk, template_disk) < 0)
1054 goto no_integrity;
1055 prev_disk = template_disk;
1056 }
1057
1058 return template_disk;
1059
1060 no_integrity:
1061 if (prev_disk)
1062 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1063 dm_device_name(t->md),
1064 prev_disk->disk_name,
1065 template_disk->disk_name);
1066 return NULL;
1067 }
1068
1069 /*
1070 * Register the mapped device for blk_integrity support if
1071 * the underlying devices have an integrity profile. But all devices
1072 * may not have matching profiles (checking all devices isn't reliable
1073 * during table load because this table may use other DM device(s) which
1074 * must be resumed before they will have an initialized integity profile).
1075 * Stacked DM devices force a 2 stage integrity profile validation:
1076 * 1 - during load, validate all initialized integrity profiles match
1077 * 2 - during resume, validate all integrity profiles match
1078 */
1079 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1080 {
1081 struct gendisk *template_disk = NULL;
1082
1083 template_disk = dm_table_get_integrity_disk(t, false);
1084 if (!template_disk)
1085 return 0;
1086
1087 if (!blk_integrity_is_initialized(dm_disk(md))) {
1088 t->integrity_supported = 1;
1089 return blk_integrity_register(dm_disk(md), NULL);
1090 }
1091
1092 /*
1093 * If DM device already has an initalized integrity
1094 * profile the new profile should not conflict.
1095 */
1096 if (blk_integrity_is_initialized(template_disk) &&
1097 blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1098 DMWARN("%s: conflict with existing integrity profile: "
1099 "%s profile mismatch",
1100 dm_device_name(t->md),
1101 template_disk->disk_name);
1102 return 1;
1103 }
1104
1105 /* Preserve existing initialized integrity profile */
1106 t->integrity_supported = 1;
1107 return 0;
1108 }
1109
1110 /*
1111 * Prepares the table for use by building the indices,
1112 * setting the type, and allocating mempools.
1113 */
1114 int dm_table_complete(struct dm_table *t)
1115 {
1116 int r;
1117
1118 r = dm_table_set_type(t);
1119 if (r) {
1120 DMERR("unable to set table type");
1121 return r;
1122 }
1123
1124 r = dm_table_build_index(t);
1125 if (r) {
1126 DMERR("unable to build btrees");
1127 return r;
1128 }
1129
1130 r = dm_table_prealloc_integrity(t, t->md);
1131 if (r) {
1132 DMERR("could not register integrity profile.");
1133 return r;
1134 }
1135
1136 r = dm_table_alloc_md_mempools(t);
1137 if (r)
1138 DMERR("unable to allocate mempools");
1139
1140 return r;
1141 }
1142
1143 static DEFINE_MUTEX(_event_lock);
1144 void dm_table_event_callback(struct dm_table *t,
1145 void (*fn)(void *), void *context)
1146 {
1147 mutex_lock(&_event_lock);
1148 t->event_fn = fn;
1149 t->event_context = context;
1150 mutex_unlock(&_event_lock);
1151 }
1152
1153 void dm_table_event(struct dm_table *t)
1154 {
1155 /*
1156 * You can no longer call dm_table_event() from interrupt
1157 * context, use a bottom half instead.
1158 */
1159 BUG_ON(in_interrupt());
1160
1161 mutex_lock(&_event_lock);
1162 if (t->event_fn)
1163 t->event_fn(t->event_context);
1164 mutex_unlock(&_event_lock);
1165 }
1166 EXPORT_SYMBOL(dm_table_event);
1167
1168 sector_t dm_table_get_size(struct dm_table *t)
1169 {
1170 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1171 }
1172 EXPORT_SYMBOL(dm_table_get_size);
1173
1174 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1175 {
1176 if (index >= t->num_targets)
1177 return NULL;
1178
1179 return t->targets + index;
1180 }
1181
1182 /*
1183 * Search the btree for the correct target.
1184 *
1185 * Caller should check returned pointer with dm_target_is_valid()
1186 * to trap I/O beyond end of device.
1187 */
1188 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1189 {
1190 unsigned int l, n = 0, k = 0;
1191 sector_t *node;
1192
1193 for (l = 0; l < t->depth; l++) {
1194 n = get_child(n, k);
1195 node = get_node(t, l, n);
1196
1197 for (k = 0; k < KEYS_PER_NODE; k++)
1198 if (node[k] >= sector)
1199 break;
1200 }
1201
1202 return &t->targets[(KEYS_PER_NODE * n) + k];
1203 }
1204
1205 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1206 sector_t start, sector_t len, void *data)
1207 {
1208 unsigned *num_devices = data;
1209
1210 (*num_devices)++;
1211
1212 return 0;
1213 }
1214
1215 /*
1216 * Check whether a table has no data devices attached using each
1217 * target's iterate_devices method.
1218 * Returns false if the result is unknown because a target doesn't
1219 * support iterate_devices.
1220 */
1221 bool dm_table_has_no_data_devices(struct dm_table *table)
1222 {
1223 struct dm_target *uninitialized_var(ti);
1224 unsigned i = 0, num_devices = 0;
1225
1226 while (i < dm_table_get_num_targets(table)) {
1227 ti = dm_table_get_target(table, i++);
1228
1229 if (!ti->type->iterate_devices)
1230 return false;
1231
1232 ti->type->iterate_devices(ti, count_device, &num_devices);
1233 if (num_devices)
1234 return false;
1235 }
1236
1237 return true;
1238 }
1239
1240 /*
1241 * Establish the new table's queue_limits and validate them.
1242 */
1243 int dm_calculate_queue_limits(struct dm_table *table,
1244 struct queue_limits *limits)
1245 {
1246 struct dm_target *uninitialized_var(ti);
1247 struct queue_limits ti_limits;
1248 unsigned i = 0;
1249
1250 blk_set_stacking_limits(limits);
1251
1252 while (i < dm_table_get_num_targets(table)) {
1253 blk_set_stacking_limits(&ti_limits);
1254
1255 ti = dm_table_get_target(table, i++);
1256
1257 if (!ti->type->iterate_devices)
1258 goto combine_limits;
1259
1260 /*
1261 * Combine queue limits of all the devices this target uses.
1262 */
1263 ti->type->iterate_devices(ti, dm_set_device_limits,
1264 &ti_limits);
1265
1266 /* Set I/O hints portion of queue limits */
1267 if (ti->type->io_hints)
1268 ti->type->io_hints(ti, &ti_limits);
1269
1270 /*
1271 * Check each device area is consistent with the target's
1272 * overall queue limits.
1273 */
1274 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1275 &ti_limits))
1276 return -EINVAL;
1277
1278 combine_limits:
1279 /*
1280 * Merge this target's queue limits into the overall limits
1281 * for the table.
1282 */
1283 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1284 DMWARN("%s: adding target device "
1285 "(start sect %llu len %llu) "
1286 "caused an alignment inconsistency",
1287 dm_device_name(table->md),
1288 (unsigned long long) ti->begin,
1289 (unsigned long long) ti->len);
1290 }
1291
1292 return validate_hardware_logical_block_alignment(table, limits);
1293 }
1294
1295 /*
1296 * Set the integrity profile for this device if all devices used have
1297 * matching profiles. We're quite deep in the resume path but still
1298 * don't know if all devices (particularly DM devices this device
1299 * may be stacked on) have matching profiles. Even if the profiles
1300 * don't match we have no way to fail (to resume) at this point.
1301 */
1302 static void dm_table_set_integrity(struct dm_table *t)
1303 {
1304 struct gendisk *template_disk = NULL;
1305
1306 if (!blk_get_integrity(dm_disk(t->md)))
1307 return;
1308
1309 template_disk = dm_table_get_integrity_disk(t, true);
1310 if (template_disk)
1311 blk_integrity_register(dm_disk(t->md),
1312 blk_get_integrity(template_disk));
1313 else if (blk_integrity_is_initialized(dm_disk(t->md)))
1314 DMWARN("%s: device no longer has a valid integrity profile",
1315 dm_device_name(t->md));
1316 else
1317 DMWARN("%s: unable to establish an integrity profile",
1318 dm_device_name(t->md));
1319 }
1320
1321 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1322 sector_t start, sector_t len, void *data)
1323 {
1324 unsigned flush = (*(unsigned *)data);
1325 struct request_queue *q = bdev_get_queue(dev->bdev);
1326
1327 return q && (q->flush_flags & flush);
1328 }
1329
1330 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1331 {
1332 struct dm_target *ti;
1333 unsigned i = 0;
1334
1335 /*
1336 * Require at least one underlying device to support flushes.
1337 * t->devices includes internal dm devices such as mirror logs
1338 * so we need to use iterate_devices here, which targets
1339 * supporting flushes must provide.
1340 */
1341 while (i < dm_table_get_num_targets(t)) {
1342 ti = dm_table_get_target(t, i++);
1343
1344 if (!ti->num_flush_bios)
1345 continue;
1346
1347 if (ti->flush_supported)
1348 return 1;
1349
1350 if (ti->type->iterate_devices &&
1351 ti->type->iterate_devices(ti, device_flush_capable, &flush))
1352 return 1;
1353 }
1354
1355 return 0;
1356 }
1357
1358 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1359 {
1360 struct dm_target *ti;
1361 unsigned i = 0;
1362
1363 /* Ensure that all targets supports discard_zeroes_data. */
1364 while (i < dm_table_get_num_targets(t)) {
1365 ti = dm_table_get_target(t, i++);
1366
1367 if (ti->discard_zeroes_data_unsupported)
1368 return 0;
1369 }
1370
1371 return 1;
1372 }
1373
1374 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1375 sector_t start, sector_t len, void *data)
1376 {
1377 struct request_queue *q = bdev_get_queue(dev->bdev);
1378
1379 return q && blk_queue_nonrot(q);
1380 }
1381
1382 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1383 sector_t start, sector_t len, void *data)
1384 {
1385 struct request_queue *q = bdev_get_queue(dev->bdev);
1386
1387 return q && !blk_queue_add_random(q);
1388 }
1389
1390 static bool dm_table_all_devices_attribute(struct dm_table *t,
1391 iterate_devices_callout_fn func)
1392 {
1393 struct dm_target *ti;
1394 unsigned i = 0;
1395
1396 while (i < dm_table_get_num_targets(t)) {
1397 ti = dm_table_get_target(t, i++);
1398
1399 if (!ti->type->iterate_devices ||
1400 !ti->type->iterate_devices(ti, func, NULL))
1401 return 0;
1402 }
1403
1404 return 1;
1405 }
1406
1407 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1408 sector_t start, sector_t len, void *data)
1409 {
1410 struct request_queue *q = bdev_get_queue(dev->bdev);
1411
1412 return q && !q->limits.max_write_same_sectors;
1413 }
1414
1415 static bool dm_table_supports_write_same(struct dm_table *t)
1416 {
1417 struct dm_target *ti;
1418 unsigned i = 0;
1419
1420 while (i < dm_table_get_num_targets(t)) {
1421 ti = dm_table_get_target(t, i++);
1422
1423 if (!ti->num_write_same_bios)
1424 return false;
1425
1426 if (!ti->type->iterate_devices ||
1427 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1428 return false;
1429 }
1430
1431 return true;
1432 }
1433
1434 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1435 struct queue_limits *limits)
1436 {
1437 unsigned flush = 0;
1438
1439 /*
1440 * Copy table's limits to the DM device's request_queue
1441 */
1442 q->limits = *limits;
1443
1444 if (!dm_table_supports_discards(t))
1445 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1446 else
1447 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1448
1449 if (dm_table_supports_flush(t, REQ_FLUSH)) {
1450 flush |= REQ_FLUSH;
1451 if (dm_table_supports_flush(t, REQ_FUA))
1452 flush |= REQ_FUA;
1453 }
1454 blk_queue_flush(q, flush);
1455
1456 if (!dm_table_discard_zeroes_data(t))
1457 q->limits.discard_zeroes_data = 0;
1458
1459 /* Ensure that all underlying devices are non-rotational. */
1460 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1461 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1462 else
1463 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1464
1465 if (!dm_table_supports_write_same(t))
1466 q->limits.max_write_same_sectors = 0;
1467
1468 dm_table_set_integrity(t);
1469
1470 /*
1471 * Determine whether or not this queue's I/O timings contribute
1472 * to the entropy pool, Only request-based targets use this.
1473 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1474 * have it set.
1475 */
1476 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1477 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1478
1479 /*
1480 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1481 * visible to other CPUs because, once the flag is set, incoming bios
1482 * are processed by request-based dm, which refers to the queue
1483 * settings.
1484 * Until the flag set, bios are passed to bio-based dm and queued to
1485 * md->deferred where queue settings are not needed yet.
1486 * Those bios are passed to request-based dm at the resume time.
1487 */
1488 smp_mb();
1489 if (dm_table_request_based(t))
1490 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1491 }
1492
1493 unsigned int dm_table_get_num_targets(struct dm_table *t)
1494 {
1495 return t->num_targets;
1496 }
1497
1498 struct list_head *dm_table_get_devices(struct dm_table *t)
1499 {
1500 return &t->devices;
1501 }
1502
1503 fmode_t dm_table_get_mode(struct dm_table *t)
1504 {
1505 return t->mode;
1506 }
1507 EXPORT_SYMBOL(dm_table_get_mode);
1508
1509 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1510 {
1511 int i = t->num_targets;
1512 struct dm_target *ti = t->targets;
1513
1514 while (i--) {
1515 if (postsuspend) {
1516 if (ti->type->postsuspend)
1517 ti->type->postsuspend(ti);
1518 } else if (ti->type->presuspend)
1519 ti->type->presuspend(ti);
1520
1521 ti++;
1522 }
1523 }
1524
1525 void dm_table_presuspend_targets(struct dm_table *t)
1526 {
1527 if (!t)
1528 return;
1529
1530 suspend_targets(t, 0);
1531 }
1532
1533 void dm_table_postsuspend_targets(struct dm_table *t)
1534 {
1535 if (!t)
1536 return;
1537
1538 suspend_targets(t, 1);
1539 }
1540
1541 int dm_table_resume_targets(struct dm_table *t)
1542 {
1543 int i, r = 0;
1544
1545 for (i = 0; i < t->num_targets; i++) {
1546 struct dm_target *ti = t->targets + i;
1547
1548 if (!ti->type->preresume)
1549 continue;
1550
1551 r = ti->type->preresume(ti);
1552 if (r) {
1553 DMERR("%s: %s: preresume failed, error = %d",
1554 dm_device_name(t->md), ti->type->name, r);
1555 return r;
1556 }
1557 }
1558
1559 for (i = 0; i < t->num_targets; i++) {
1560 struct dm_target *ti = t->targets + i;
1561
1562 if (ti->type->resume)
1563 ti->type->resume(ti);
1564 }
1565
1566 return 0;
1567 }
1568
1569 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1570 {
1571 list_add(&cb->list, &t->target_callbacks);
1572 }
1573 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1574
1575 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1576 {
1577 struct dm_dev_internal *dd;
1578 struct list_head *devices = dm_table_get_devices(t);
1579 struct dm_target_callbacks *cb;
1580 int r = 0;
1581
1582 list_for_each_entry(dd, devices, list) {
1583 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1584 char b[BDEVNAME_SIZE];
1585
1586 if (likely(q))
1587 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1588 else
1589 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1590 dm_device_name(t->md),
1591 bdevname(dd->dm_dev.bdev, b));
1592 }
1593
1594 list_for_each_entry(cb, &t->target_callbacks, list)
1595 if (cb->congested_fn)
1596 r |= cb->congested_fn(cb, bdi_bits);
1597
1598 return r;
1599 }
1600
1601 int dm_table_any_busy_target(struct dm_table *t)
1602 {
1603 unsigned i;
1604 struct dm_target *ti;
1605
1606 for (i = 0; i < t->num_targets; i++) {
1607 ti = t->targets + i;
1608 if (ti->type->busy && ti->type->busy(ti))
1609 return 1;
1610 }
1611
1612 return 0;
1613 }
1614
1615 struct mapped_device *dm_table_get_md(struct dm_table *t)
1616 {
1617 return t->md;
1618 }
1619 EXPORT_SYMBOL(dm_table_get_md);
1620
1621 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1622 sector_t start, sector_t len, void *data)
1623 {
1624 struct request_queue *q = bdev_get_queue(dev->bdev);
1625
1626 return q && blk_queue_discard(q);
1627 }
1628
1629 bool dm_table_supports_discards(struct dm_table *t)
1630 {
1631 struct dm_target *ti;
1632 unsigned i = 0;
1633
1634 /*
1635 * Unless any target used by the table set discards_supported,
1636 * require at least one underlying device to support discards.
1637 * t->devices includes internal dm devices such as mirror logs
1638 * so we need to use iterate_devices here, which targets
1639 * supporting discard selectively must provide.
1640 */
1641 while (i < dm_table_get_num_targets(t)) {
1642 ti = dm_table_get_target(t, i++);
1643
1644 if (!ti->num_discard_bios)
1645 continue;
1646
1647 if (ti->discards_supported)
1648 return 1;
1649
1650 if (ti->type->iterate_devices &&
1651 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1652 return 1;
1653 }
1654
1655 return 0;
1656 }
This page took 0.06919 seconds and 5 git commands to generate.