dm thin: use INIT_WORK_ONSTACK in noflush_work to avoid ODEBUG warning
[deliverable/linux.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/rculist.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/rbtree.h>
20
21 #define DM_MSG_PREFIX "thin"
22
23 /*
24 * Tunable constants
25 */
26 #define ENDIO_HOOK_POOL_SIZE 1024
27 #define MAPPING_POOL_SIZE 1024
28 #define PRISON_CELLS 1024
29 #define COMMIT_PERIOD HZ
30
31 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
32 "A percentage of time allocated for copy on write");
33
34 /*
35 * The block size of the device holding pool data must be
36 * between 64KB and 1GB.
37 */
38 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
39 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
40
41 /*
42 * Device id is restricted to 24 bits.
43 */
44 #define MAX_DEV_ID ((1 << 24) - 1)
45
46 /*
47 * How do we handle breaking sharing of data blocks?
48 * =================================================
49 *
50 * We use a standard copy-on-write btree to store the mappings for the
51 * devices (note I'm talking about copy-on-write of the metadata here, not
52 * the data). When you take an internal snapshot you clone the root node
53 * of the origin btree. After this there is no concept of an origin or a
54 * snapshot. They are just two device trees that happen to point to the
55 * same data blocks.
56 *
57 * When we get a write in we decide if it's to a shared data block using
58 * some timestamp magic. If it is, we have to break sharing.
59 *
60 * Let's say we write to a shared block in what was the origin. The
61 * steps are:
62 *
63 * i) plug io further to this physical block. (see bio_prison code).
64 *
65 * ii) quiesce any read io to that shared data block. Obviously
66 * including all devices that share this block. (see dm_deferred_set code)
67 *
68 * iii) copy the data block to a newly allocate block. This step can be
69 * missed out if the io covers the block. (schedule_copy).
70 *
71 * iv) insert the new mapping into the origin's btree
72 * (process_prepared_mapping). This act of inserting breaks some
73 * sharing of btree nodes between the two devices. Breaking sharing only
74 * effects the btree of that specific device. Btrees for the other
75 * devices that share the block never change. The btree for the origin
76 * device as it was after the last commit is untouched, ie. we're using
77 * persistent data structures in the functional programming sense.
78 *
79 * v) unplug io to this physical block, including the io that triggered
80 * the breaking of sharing.
81 *
82 * Steps (ii) and (iii) occur in parallel.
83 *
84 * The metadata _doesn't_ need to be committed before the io continues. We
85 * get away with this because the io is always written to a _new_ block.
86 * If there's a crash, then:
87 *
88 * - The origin mapping will point to the old origin block (the shared
89 * one). This will contain the data as it was before the io that triggered
90 * the breaking of sharing came in.
91 *
92 * - The snap mapping still points to the old block. As it would after
93 * the commit.
94 *
95 * The downside of this scheme is the timestamp magic isn't perfect, and
96 * will continue to think that data block in the snapshot device is shared
97 * even after the write to the origin has broken sharing. I suspect data
98 * blocks will typically be shared by many different devices, so we're
99 * breaking sharing n + 1 times, rather than n, where n is the number of
100 * devices that reference this data block. At the moment I think the
101 * benefits far, far outweigh the disadvantages.
102 */
103
104 /*----------------------------------------------------------------*/
105
106 /*
107 * Key building.
108 */
109 static void build_data_key(struct dm_thin_device *td,
110 dm_block_t b, struct dm_cell_key *key)
111 {
112 key->virtual = 0;
113 key->dev = dm_thin_dev_id(td);
114 key->block = b;
115 }
116
117 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
118 struct dm_cell_key *key)
119 {
120 key->virtual = 1;
121 key->dev = dm_thin_dev_id(td);
122 key->block = b;
123 }
124
125 /*----------------------------------------------------------------*/
126
127 /*
128 * A pool device ties together a metadata device and a data device. It
129 * also provides the interface for creating and destroying internal
130 * devices.
131 */
132 struct dm_thin_new_mapping;
133
134 /*
135 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
136 */
137 enum pool_mode {
138 PM_WRITE, /* metadata may be changed */
139 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
140 PM_READ_ONLY, /* metadata may not be changed */
141 PM_FAIL, /* all I/O fails */
142 };
143
144 struct pool_features {
145 enum pool_mode mode;
146
147 bool zero_new_blocks:1;
148 bool discard_enabled:1;
149 bool discard_passdown:1;
150 bool error_if_no_space:1;
151 };
152
153 struct thin_c;
154 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
155 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
156
157 struct pool {
158 struct list_head list;
159 struct dm_target *ti; /* Only set if a pool target is bound */
160
161 struct mapped_device *pool_md;
162 struct block_device *md_dev;
163 struct dm_pool_metadata *pmd;
164
165 dm_block_t low_water_blocks;
166 uint32_t sectors_per_block;
167 int sectors_per_block_shift;
168
169 struct pool_features pf;
170 bool low_water_triggered:1; /* A dm event has been sent */
171
172 struct dm_bio_prison *prison;
173 struct dm_kcopyd_client *copier;
174
175 struct workqueue_struct *wq;
176 struct work_struct worker;
177 struct delayed_work waker;
178
179 unsigned long last_commit_jiffies;
180 unsigned ref_count;
181
182 spinlock_t lock;
183 struct bio_list deferred_flush_bios;
184 struct list_head prepared_mappings;
185 struct list_head prepared_discards;
186 struct list_head active_thins;
187
188 struct dm_deferred_set *shared_read_ds;
189 struct dm_deferred_set *all_io_ds;
190
191 struct dm_thin_new_mapping *next_mapping;
192 mempool_t *mapping_pool;
193
194 process_bio_fn process_bio;
195 process_bio_fn process_discard;
196
197 process_mapping_fn process_prepared_mapping;
198 process_mapping_fn process_prepared_discard;
199 };
200
201 static enum pool_mode get_pool_mode(struct pool *pool);
202 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
203
204 /*
205 * Target context for a pool.
206 */
207 struct pool_c {
208 struct dm_target *ti;
209 struct pool *pool;
210 struct dm_dev *data_dev;
211 struct dm_dev *metadata_dev;
212 struct dm_target_callbacks callbacks;
213
214 dm_block_t low_water_blocks;
215 struct pool_features requested_pf; /* Features requested during table load */
216 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
217 };
218
219 /*
220 * Target context for a thin.
221 */
222 struct thin_c {
223 struct list_head list;
224 struct dm_dev *pool_dev;
225 struct dm_dev *origin_dev;
226 dm_thin_id dev_id;
227
228 struct pool *pool;
229 struct dm_thin_device *td;
230 bool requeue_mode:1;
231 spinlock_t lock;
232 struct bio_list deferred_bio_list;
233 struct bio_list retry_on_resume_list;
234 struct rb_root sort_bio_list; /* sorted list of deferred bios */
235
236 /*
237 * Ensures the thin is not destroyed until the worker has finished
238 * iterating the active_thins list.
239 */
240 atomic_t refcount;
241 struct completion can_destroy;
242 };
243
244 /*----------------------------------------------------------------*/
245
246 /*
247 * wake_worker() is used when new work is queued and when pool_resume is
248 * ready to continue deferred IO processing.
249 */
250 static void wake_worker(struct pool *pool)
251 {
252 queue_work(pool->wq, &pool->worker);
253 }
254
255 /*----------------------------------------------------------------*/
256
257 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
258 struct dm_bio_prison_cell **cell_result)
259 {
260 int r;
261 struct dm_bio_prison_cell *cell_prealloc;
262
263 /*
264 * Allocate a cell from the prison's mempool.
265 * This might block but it can't fail.
266 */
267 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
268
269 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
270 if (r)
271 /*
272 * We reused an old cell; we can get rid of
273 * the new one.
274 */
275 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
276
277 return r;
278 }
279
280 static void cell_release(struct pool *pool,
281 struct dm_bio_prison_cell *cell,
282 struct bio_list *bios)
283 {
284 dm_cell_release(pool->prison, cell, bios);
285 dm_bio_prison_free_cell(pool->prison, cell);
286 }
287
288 static void cell_release_no_holder(struct pool *pool,
289 struct dm_bio_prison_cell *cell,
290 struct bio_list *bios)
291 {
292 dm_cell_release_no_holder(pool->prison, cell, bios);
293 dm_bio_prison_free_cell(pool->prison, cell);
294 }
295
296 static void cell_defer_no_holder_no_free(struct thin_c *tc,
297 struct dm_bio_prison_cell *cell)
298 {
299 struct pool *pool = tc->pool;
300 unsigned long flags;
301
302 spin_lock_irqsave(&tc->lock, flags);
303 dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list);
304 spin_unlock_irqrestore(&tc->lock, flags);
305
306 wake_worker(pool);
307 }
308
309 static void cell_error(struct pool *pool,
310 struct dm_bio_prison_cell *cell)
311 {
312 dm_cell_error(pool->prison, cell);
313 dm_bio_prison_free_cell(pool->prison, cell);
314 }
315
316 /*----------------------------------------------------------------*/
317
318 /*
319 * A global list of pools that uses a struct mapped_device as a key.
320 */
321 static struct dm_thin_pool_table {
322 struct mutex mutex;
323 struct list_head pools;
324 } dm_thin_pool_table;
325
326 static void pool_table_init(void)
327 {
328 mutex_init(&dm_thin_pool_table.mutex);
329 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
330 }
331
332 static void __pool_table_insert(struct pool *pool)
333 {
334 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335 list_add(&pool->list, &dm_thin_pool_table.pools);
336 }
337
338 static void __pool_table_remove(struct pool *pool)
339 {
340 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
341 list_del(&pool->list);
342 }
343
344 static struct pool *__pool_table_lookup(struct mapped_device *md)
345 {
346 struct pool *pool = NULL, *tmp;
347
348 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
349
350 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
351 if (tmp->pool_md == md) {
352 pool = tmp;
353 break;
354 }
355 }
356
357 return pool;
358 }
359
360 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
361 {
362 struct pool *pool = NULL, *tmp;
363
364 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
365
366 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
367 if (tmp->md_dev == md_dev) {
368 pool = tmp;
369 break;
370 }
371 }
372
373 return pool;
374 }
375
376 /*----------------------------------------------------------------*/
377
378 struct dm_thin_endio_hook {
379 struct thin_c *tc;
380 struct dm_deferred_entry *shared_read_entry;
381 struct dm_deferred_entry *all_io_entry;
382 struct dm_thin_new_mapping *overwrite_mapping;
383 struct rb_node rb_node;
384 };
385
386 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
387 {
388 struct bio *bio;
389 struct bio_list bios;
390 unsigned long flags;
391
392 bio_list_init(&bios);
393
394 spin_lock_irqsave(&tc->lock, flags);
395 bio_list_merge(&bios, master);
396 bio_list_init(master);
397 spin_unlock_irqrestore(&tc->lock, flags);
398
399 while ((bio = bio_list_pop(&bios)))
400 bio_endio(bio, DM_ENDIO_REQUEUE);
401 }
402
403 static void requeue_io(struct thin_c *tc)
404 {
405 requeue_bio_list(tc, &tc->deferred_bio_list);
406 requeue_bio_list(tc, &tc->retry_on_resume_list);
407 }
408
409 static void error_thin_retry_list(struct thin_c *tc)
410 {
411 struct bio *bio;
412 unsigned long flags;
413 struct bio_list bios;
414
415 bio_list_init(&bios);
416
417 spin_lock_irqsave(&tc->lock, flags);
418 bio_list_merge(&bios, &tc->retry_on_resume_list);
419 bio_list_init(&tc->retry_on_resume_list);
420 spin_unlock_irqrestore(&tc->lock, flags);
421
422 while ((bio = bio_list_pop(&bios)))
423 bio_io_error(bio);
424 }
425
426 static void error_retry_list(struct pool *pool)
427 {
428 struct thin_c *tc;
429
430 rcu_read_lock();
431 list_for_each_entry_rcu(tc, &pool->active_thins, list)
432 error_thin_retry_list(tc);
433 rcu_read_unlock();
434 }
435
436 /*
437 * This section of code contains the logic for processing a thin device's IO.
438 * Much of the code depends on pool object resources (lists, workqueues, etc)
439 * but most is exclusively called from the thin target rather than the thin-pool
440 * target.
441 */
442
443 static bool block_size_is_power_of_two(struct pool *pool)
444 {
445 return pool->sectors_per_block_shift >= 0;
446 }
447
448 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
449 {
450 struct pool *pool = tc->pool;
451 sector_t block_nr = bio->bi_iter.bi_sector;
452
453 if (block_size_is_power_of_two(pool))
454 block_nr >>= pool->sectors_per_block_shift;
455 else
456 (void) sector_div(block_nr, pool->sectors_per_block);
457
458 return block_nr;
459 }
460
461 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
462 {
463 struct pool *pool = tc->pool;
464 sector_t bi_sector = bio->bi_iter.bi_sector;
465
466 bio->bi_bdev = tc->pool_dev->bdev;
467 if (block_size_is_power_of_two(pool))
468 bio->bi_iter.bi_sector =
469 (block << pool->sectors_per_block_shift) |
470 (bi_sector & (pool->sectors_per_block - 1));
471 else
472 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
473 sector_div(bi_sector, pool->sectors_per_block);
474 }
475
476 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
477 {
478 bio->bi_bdev = tc->origin_dev->bdev;
479 }
480
481 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
482 {
483 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
484 dm_thin_changed_this_transaction(tc->td);
485 }
486
487 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
488 {
489 struct dm_thin_endio_hook *h;
490
491 if (bio->bi_rw & REQ_DISCARD)
492 return;
493
494 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
495 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
496 }
497
498 static void issue(struct thin_c *tc, struct bio *bio)
499 {
500 struct pool *pool = tc->pool;
501 unsigned long flags;
502
503 if (!bio_triggers_commit(tc, bio)) {
504 generic_make_request(bio);
505 return;
506 }
507
508 /*
509 * Complete bio with an error if earlier I/O caused changes to
510 * the metadata that can't be committed e.g, due to I/O errors
511 * on the metadata device.
512 */
513 if (dm_thin_aborted_changes(tc->td)) {
514 bio_io_error(bio);
515 return;
516 }
517
518 /*
519 * Batch together any bios that trigger commits and then issue a
520 * single commit for them in process_deferred_bios().
521 */
522 spin_lock_irqsave(&pool->lock, flags);
523 bio_list_add(&pool->deferred_flush_bios, bio);
524 spin_unlock_irqrestore(&pool->lock, flags);
525 }
526
527 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
528 {
529 remap_to_origin(tc, bio);
530 issue(tc, bio);
531 }
532
533 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
534 dm_block_t block)
535 {
536 remap(tc, bio, block);
537 issue(tc, bio);
538 }
539
540 /*----------------------------------------------------------------*/
541
542 /*
543 * Bio endio functions.
544 */
545 struct dm_thin_new_mapping {
546 struct list_head list;
547
548 bool quiesced:1;
549 bool prepared:1;
550 bool pass_discard:1;
551 bool definitely_not_shared:1;
552
553 int err;
554 struct thin_c *tc;
555 dm_block_t virt_block;
556 dm_block_t data_block;
557 struct dm_bio_prison_cell *cell, *cell2;
558
559 /*
560 * If the bio covers the whole area of a block then we can avoid
561 * zeroing or copying. Instead this bio is hooked. The bio will
562 * still be in the cell, so care has to be taken to avoid issuing
563 * the bio twice.
564 */
565 struct bio *bio;
566 bio_end_io_t *saved_bi_end_io;
567 };
568
569 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
570 {
571 struct pool *pool = m->tc->pool;
572
573 if (m->quiesced && m->prepared) {
574 list_add_tail(&m->list, &pool->prepared_mappings);
575 wake_worker(pool);
576 }
577 }
578
579 static void copy_complete(int read_err, unsigned long write_err, void *context)
580 {
581 unsigned long flags;
582 struct dm_thin_new_mapping *m = context;
583 struct pool *pool = m->tc->pool;
584
585 m->err = read_err || write_err ? -EIO : 0;
586
587 spin_lock_irqsave(&pool->lock, flags);
588 m->prepared = true;
589 __maybe_add_mapping(m);
590 spin_unlock_irqrestore(&pool->lock, flags);
591 }
592
593 static void overwrite_endio(struct bio *bio, int err)
594 {
595 unsigned long flags;
596 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
597 struct dm_thin_new_mapping *m = h->overwrite_mapping;
598 struct pool *pool = m->tc->pool;
599
600 m->err = err;
601
602 spin_lock_irqsave(&pool->lock, flags);
603 m->prepared = true;
604 __maybe_add_mapping(m);
605 spin_unlock_irqrestore(&pool->lock, flags);
606 }
607
608 /*----------------------------------------------------------------*/
609
610 /*
611 * Workqueue.
612 */
613
614 /*
615 * Prepared mapping jobs.
616 */
617
618 /*
619 * This sends the bios in the cell back to the deferred_bios list.
620 */
621 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
622 {
623 struct pool *pool = tc->pool;
624 unsigned long flags;
625
626 spin_lock_irqsave(&tc->lock, flags);
627 cell_release(pool, cell, &tc->deferred_bio_list);
628 spin_unlock_irqrestore(&tc->lock, flags);
629
630 wake_worker(pool);
631 }
632
633 /*
634 * Same as cell_defer above, except it omits the original holder of the cell.
635 */
636 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
637 {
638 struct pool *pool = tc->pool;
639 unsigned long flags;
640
641 spin_lock_irqsave(&tc->lock, flags);
642 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
643 spin_unlock_irqrestore(&tc->lock, flags);
644
645 wake_worker(pool);
646 }
647
648 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
649 {
650 if (m->bio) {
651 m->bio->bi_end_io = m->saved_bi_end_io;
652 atomic_inc(&m->bio->bi_remaining);
653 }
654 cell_error(m->tc->pool, m->cell);
655 list_del(&m->list);
656 mempool_free(m, m->tc->pool->mapping_pool);
657 }
658
659 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
660 {
661 struct thin_c *tc = m->tc;
662 struct pool *pool = tc->pool;
663 struct bio *bio;
664 int r;
665
666 bio = m->bio;
667 if (bio) {
668 bio->bi_end_io = m->saved_bi_end_io;
669 atomic_inc(&bio->bi_remaining);
670 }
671
672 if (m->err) {
673 cell_error(pool, m->cell);
674 goto out;
675 }
676
677 /*
678 * Commit the prepared block into the mapping btree.
679 * Any I/O for this block arriving after this point will get
680 * remapped to it directly.
681 */
682 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
683 if (r) {
684 metadata_operation_failed(pool, "dm_thin_insert_block", r);
685 cell_error(pool, m->cell);
686 goto out;
687 }
688
689 /*
690 * Release any bios held while the block was being provisioned.
691 * If we are processing a write bio that completely covers the block,
692 * we already processed it so can ignore it now when processing
693 * the bios in the cell.
694 */
695 if (bio) {
696 cell_defer_no_holder(tc, m->cell);
697 bio_endio(bio, 0);
698 } else
699 cell_defer(tc, m->cell);
700
701 out:
702 list_del(&m->list);
703 mempool_free(m, pool->mapping_pool);
704 }
705
706 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
707 {
708 struct thin_c *tc = m->tc;
709
710 bio_io_error(m->bio);
711 cell_defer_no_holder(tc, m->cell);
712 cell_defer_no_holder(tc, m->cell2);
713 mempool_free(m, tc->pool->mapping_pool);
714 }
715
716 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
717 {
718 struct thin_c *tc = m->tc;
719
720 inc_all_io_entry(tc->pool, m->bio);
721 cell_defer_no_holder(tc, m->cell);
722 cell_defer_no_holder(tc, m->cell2);
723
724 if (m->pass_discard)
725 if (m->definitely_not_shared)
726 remap_and_issue(tc, m->bio, m->data_block);
727 else {
728 bool used = false;
729 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
730 bio_endio(m->bio, 0);
731 else
732 remap_and_issue(tc, m->bio, m->data_block);
733 }
734 else
735 bio_endio(m->bio, 0);
736
737 mempool_free(m, tc->pool->mapping_pool);
738 }
739
740 static void process_prepared_discard(struct dm_thin_new_mapping *m)
741 {
742 int r;
743 struct thin_c *tc = m->tc;
744
745 r = dm_thin_remove_block(tc->td, m->virt_block);
746 if (r)
747 DMERR_LIMIT("dm_thin_remove_block() failed");
748
749 process_prepared_discard_passdown(m);
750 }
751
752 static void process_prepared(struct pool *pool, struct list_head *head,
753 process_mapping_fn *fn)
754 {
755 unsigned long flags;
756 struct list_head maps;
757 struct dm_thin_new_mapping *m, *tmp;
758
759 INIT_LIST_HEAD(&maps);
760 spin_lock_irqsave(&pool->lock, flags);
761 list_splice_init(head, &maps);
762 spin_unlock_irqrestore(&pool->lock, flags);
763
764 list_for_each_entry_safe(m, tmp, &maps, list)
765 (*fn)(m);
766 }
767
768 /*
769 * Deferred bio jobs.
770 */
771 static int io_overlaps_block(struct pool *pool, struct bio *bio)
772 {
773 return bio->bi_iter.bi_size ==
774 (pool->sectors_per_block << SECTOR_SHIFT);
775 }
776
777 static int io_overwrites_block(struct pool *pool, struct bio *bio)
778 {
779 return (bio_data_dir(bio) == WRITE) &&
780 io_overlaps_block(pool, bio);
781 }
782
783 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
784 bio_end_io_t *fn)
785 {
786 *save = bio->bi_end_io;
787 bio->bi_end_io = fn;
788 }
789
790 static int ensure_next_mapping(struct pool *pool)
791 {
792 if (pool->next_mapping)
793 return 0;
794
795 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
796
797 return pool->next_mapping ? 0 : -ENOMEM;
798 }
799
800 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
801 {
802 struct dm_thin_new_mapping *m = pool->next_mapping;
803
804 BUG_ON(!pool->next_mapping);
805
806 memset(m, 0, sizeof(struct dm_thin_new_mapping));
807 INIT_LIST_HEAD(&m->list);
808 m->bio = NULL;
809
810 pool->next_mapping = NULL;
811
812 return m;
813 }
814
815 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
816 struct dm_dev *origin, dm_block_t data_origin,
817 dm_block_t data_dest,
818 struct dm_bio_prison_cell *cell, struct bio *bio)
819 {
820 int r;
821 struct pool *pool = tc->pool;
822 struct dm_thin_new_mapping *m = get_next_mapping(pool);
823
824 m->tc = tc;
825 m->virt_block = virt_block;
826 m->data_block = data_dest;
827 m->cell = cell;
828
829 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
830 m->quiesced = true;
831
832 /*
833 * IO to pool_dev remaps to the pool target's data_dev.
834 *
835 * If the whole block of data is being overwritten, we can issue the
836 * bio immediately. Otherwise we use kcopyd to clone the data first.
837 */
838 if (io_overwrites_block(pool, bio)) {
839 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
840
841 h->overwrite_mapping = m;
842 m->bio = bio;
843 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
844 inc_all_io_entry(pool, bio);
845 remap_and_issue(tc, bio, data_dest);
846 } else {
847 struct dm_io_region from, to;
848
849 from.bdev = origin->bdev;
850 from.sector = data_origin * pool->sectors_per_block;
851 from.count = pool->sectors_per_block;
852
853 to.bdev = tc->pool_dev->bdev;
854 to.sector = data_dest * pool->sectors_per_block;
855 to.count = pool->sectors_per_block;
856
857 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
858 0, copy_complete, m);
859 if (r < 0) {
860 mempool_free(m, pool->mapping_pool);
861 DMERR_LIMIT("dm_kcopyd_copy() failed");
862 cell_error(pool, cell);
863 }
864 }
865 }
866
867 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
868 dm_block_t data_origin, dm_block_t data_dest,
869 struct dm_bio_prison_cell *cell, struct bio *bio)
870 {
871 schedule_copy(tc, virt_block, tc->pool_dev,
872 data_origin, data_dest, cell, bio);
873 }
874
875 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
876 dm_block_t data_dest,
877 struct dm_bio_prison_cell *cell, struct bio *bio)
878 {
879 schedule_copy(tc, virt_block, tc->origin_dev,
880 virt_block, data_dest, cell, bio);
881 }
882
883 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
884 dm_block_t data_block, struct dm_bio_prison_cell *cell,
885 struct bio *bio)
886 {
887 struct pool *pool = tc->pool;
888 struct dm_thin_new_mapping *m = get_next_mapping(pool);
889
890 m->quiesced = true;
891 m->prepared = false;
892 m->tc = tc;
893 m->virt_block = virt_block;
894 m->data_block = data_block;
895 m->cell = cell;
896
897 /*
898 * If the whole block of data is being overwritten or we are not
899 * zeroing pre-existing data, we can issue the bio immediately.
900 * Otherwise we use kcopyd to zero the data first.
901 */
902 if (!pool->pf.zero_new_blocks)
903 process_prepared_mapping(m);
904
905 else if (io_overwrites_block(pool, bio)) {
906 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
907
908 h->overwrite_mapping = m;
909 m->bio = bio;
910 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
911 inc_all_io_entry(pool, bio);
912 remap_and_issue(tc, bio, data_block);
913 } else {
914 int r;
915 struct dm_io_region to;
916
917 to.bdev = tc->pool_dev->bdev;
918 to.sector = data_block * pool->sectors_per_block;
919 to.count = pool->sectors_per_block;
920
921 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
922 if (r < 0) {
923 mempool_free(m, pool->mapping_pool);
924 DMERR_LIMIT("dm_kcopyd_zero() failed");
925 cell_error(pool, cell);
926 }
927 }
928 }
929
930 /*
931 * A non-zero return indicates read_only or fail_io mode.
932 * Many callers don't care about the return value.
933 */
934 static int commit(struct pool *pool)
935 {
936 int r;
937
938 if (get_pool_mode(pool) != PM_WRITE)
939 return -EINVAL;
940
941 r = dm_pool_commit_metadata(pool->pmd);
942 if (r)
943 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
944
945 return r;
946 }
947
948 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
949 {
950 unsigned long flags;
951
952 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
953 DMWARN("%s: reached low water mark for data device: sending event.",
954 dm_device_name(pool->pool_md));
955 spin_lock_irqsave(&pool->lock, flags);
956 pool->low_water_triggered = true;
957 spin_unlock_irqrestore(&pool->lock, flags);
958 dm_table_event(pool->ti->table);
959 }
960 }
961
962 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
963
964 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
965 {
966 int r;
967 dm_block_t free_blocks;
968 struct pool *pool = tc->pool;
969
970 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
971 return -EINVAL;
972
973 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
974 if (r) {
975 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
976 return r;
977 }
978
979 check_low_water_mark(pool, free_blocks);
980
981 if (!free_blocks) {
982 /*
983 * Try to commit to see if that will free up some
984 * more space.
985 */
986 r = commit(pool);
987 if (r)
988 return r;
989
990 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
991 if (r) {
992 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
993 return r;
994 }
995
996 if (!free_blocks) {
997 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
998 return -ENOSPC;
999 }
1000 }
1001
1002 r = dm_pool_alloc_data_block(pool->pmd, result);
1003 if (r) {
1004 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1005 return r;
1006 }
1007
1008 return 0;
1009 }
1010
1011 /*
1012 * If we have run out of space, queue bios until the device is
1013 * resumed, presumably after having been reloaded with more space.
1014 */
1015 static void retry_on_resume(struct bio *bio)
1016 {
1017 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1018 struct thin_c *tc = h->tc;
1019 unsigned long flags;
1020
1021 spin_lock_irqsave(&tc->lock, flags);
1022 bio_list_add(&tc->retry_on_resume_list, bio);
1023 spin_unlock_irqrestore(&tc->lock, flags);
1024 }
1025
1026 static bool should_error_unserviceable_bio(struct pool *pool)
1027 {
1028 enum pool_mode m = get_pool_mode(pool);
1029
1030 switch (m) {
1031 case PM_WRITE:
1032 /* Shouldn't get here */
1033 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1034 return true;
1035
1036 case PM_OUT_OF_DATA_SPACE:
1037 return pool->pf.error_if_no_space;
1038
1039 case PM_READ_ONLY:
1040 case PM_FAIL:
1041 return true;
1042 default:
1043 /* Shouldn't get here */
1044 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1045 return true;
1046 }
1047 }
1048
1049 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1050 {
1051 if (should_error_unserviceable_bio(pool))
1052 bio_io_error(bio);
1053 else
1054 retry_on_resume(bio);
1055 }
1056
1057 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1058 {
1059 struct bio *bio;
1060 struct bio_list bios;
1061
1062 if (should_error_unserviceable_bio(pool)) {
1063 cell_error(pool, cell);
1064 return;
1065 }
1066
1067 bio_list_init(&bios);
1068 cell_release(pool, cell, &bios);
1069
1070 if (should_error_unserviceable_bio(pool))
1071 while ((bio = bio_list_pop(&bios)))
1072 bio_io_error(bio);
1073 else
1074 while ((bio = bio_list_pop(&bios)))
1075 retry_on_resume(bio);
1076 }
1077
1078 static void process_discard(struct thin_c *tc, struct bio *bio)
1079 {
1080 int r;
1081 unsigned long flags;
1082 struct pool *pool = tc->pool;
1083 struct dm_bio_prison_cell *cell, *cell2;
1084 struct dm_cell_key key, key2;
1085 dm_block_t block = get_bio_block(tc, bio);
1086 struct dm_thin_lookup_result lookup_result;
1087 struct dm_thin_new_mapping *m;
1088
1089 build_virtual_key(tc->td, block, &key);
1090 if (bio_detain(tc->pool, &key, bio, &cell))
1091 return;
1092
1093 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1094 switch (r) {
1095 case 0:
1096 /*
1097 * Check nobody is fiddling with this pool block. This can
1098 * happen if someone's in the process of breaking sharing
1099 * on this block.
1100 */
1101 build_data_key(tc->td, lookup_result.block, &key2);
1102 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1103 cell_defer_no_holder(tc, cell);
1104 break;
1105 }
1106
1107 if (io_overlaps_block(pool, bio)) {
1108 /*
1109 * IO may still be going to the destination block. We must
1110 * quiesce before we can do the removal.
1111 */
1112 m = get_next_mapping(pool);
1113 m->tc = tc;
1114 m->pass_discard = pool->pf.discard_passdown;
1115 m->definitely_not_shared = !lookup_result.shared;
1116 m->virt_block = block;
1117 m->data_block = lookup_result.block;
1118 m->cell = cell;
1119 m->cell2 = cell2;
1120 m->bio = bio;
1121
1122 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1123 spin_lock_irqsave(&pool->lock, flags);
1124 list_add_tail(&m->list, &pool->prepared_discards);
1125 spin_unlock_irqrestore(&pool->lock, flags);
1126 wake_worker(pool);
1127 }
1128 } else {
1129 inc_all_io_entry(pool, bio);
1130 cell_defer_no_holder(tc, cell);
1131 cell_defer_no_holder(tc, cell2);
1132
1133 /*
1134 * The DM core makes sure that the discard doesn't span
1135 * a block boundary. So we submit the discard of a
1136 * partial block appropriately.
1137 */
1138 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1139 remap_and_issue(tc, bio, lookup_result.block);
1140 else
1141 bio_endio(bio, 0);
1142 }
1143 break;
1144
1145 case -ENODATA:
1146 /*
1147 * It isn't provisioned, just forget it.
1148 */
1149 cell_defer_no_holder(tc, cell);
1150 bio_endio(bio, 0);
1151 break;
1152
1153 default:
1154 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1155 __func__, r);
1156 cell_defer_no_holder(tc, cell);
1157 bio_io_error(bio);
1158 break;
1159 }
1160 }
1161
1162 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1163 struct dm_cell_key *key,
1164 struct dm_thin_lookup_result *lookup_result,
1165 struct dm_bio_prison_cell *cell)
1166 {
1167 int r;
1168 dm_block_t data_block;
1169 struct pool *pool = tc->pool;
1170
1171 r = alloc_data_block(tc, &data_block);
1172 switch (r) {
1173 case 0:
1174 schedule_internal_copy(tc, block, lookup_result->block,
1175 data_block, cell, bio);
1176 break;
1177
1178 case -ENOSPC:
1179 retry_bios_on_resume(pool, cell);
1180 break;
1181
1182 default:
1183 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1184 __func__, r);
1185 cell_error(pool, cell);
1186 break;
1187 }
1188 }
1189
1190 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1191 dm_block_t block,
1192 struct dm_thin_lookup_result *lookup_result)
1193 {
1194 struct dm_bio_prison_cell *cell;
1195 struct pool *pool = tc->pool;
1196 struct dm_cell_key key;
1197
1198 /*
1199 * If cell is already occupied, then sharing is already in the process
1200 * of being broken so we have nothing further to do here.
1201 */
1202 build_data_key(tc->td, lookup_result->block, &key);
1203 if (bio_detain(pool, &key, bio, &cell))
1204 return;
1205
1206 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1207 break_sharing(tc, bio, block, &key, lookup_result, cell);
1208 else {
1209 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1210
1211 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1212 inc_all_io_entry(pool, bio);
1213 cell_defer_no_holder(tc, cell);
1214
1215 remap_and_issue(tc, bio, lookup_result->block);
1216 }
1217 }
1218
1219 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1220 struct dm_bio_prison_cell *cell)
1221 {
1222 int r;
1223 dm_block_t data_block;
1224 struct pool *pool = tc->pool;
1225
1226 /*
1227 * Remap empty bios (flushes) immediately, without provisioning.
1228 */
1229 if (!bio->bi_iter.bi_size) {
1230 inc_all_io_entry(pool, bio);
1231 cell_defer_no_holder(tc, cell);
1232
1233 remap_and_issue(tc, bio, 0);
1234 return;
1235 }
1236
1237 /*
1238 * Fill read bios with zeroes and complete them immediately.
1239 */
1240 if (bio_data_dir(bio) == READ) {
1241 zero_fill_bio(bio);
1242 cell_defer_no_holder(tc, cell);
1243 bio_endio(bio, 0);
1244 return;
1245 }
1246
1247 r = alloc_data_block(tc, &data_block);
1248 switch (r) {
1249 case 0:
1250 if (tc->origin_dev)
1251 schedule_external_copy(tc, block, data_block, cell, bio);
1252 else
1253 schedule_zero(tc, block, data_block, cell, bio);
1254 break;
1255
1256 case -ENOSPC:
1257 retry_bios_on_resume(pool, cell);
1258 break;
1259
1260 default:
1261 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1262 __func__, r);
1263 cell_error(pool, cell);
1264 break;
1265 }
1266 }
1267
1268 static void process_bio(struct thin_c *tc, struct bio *bio)
1269 {
1270 int r;
1271 struct pool *pool = tc->pool;
1272 dm_block_t block = get_bio_block(tc, bio);
1273 struct dm_bio_prison_cell *cell;
1274 struct dm_cell_key key;
1275 struct dm_thin_lookup_result lookup_result;
1276
1277 /*
1278 * If cell is already occupied, then the block is already
1279 * being provisioned so we have nothing further to do here.
1280 */
1281 build_virtual_key(tc->td, block, &key);
1282 if (bio_detain(pool, &key, bio, &cell))
1283 return;
1284
1285 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1286 switch (r) {
1287 case 0:
1288 if (lookup_result.shared) {
1289 process_shared_bio(tc, bio, block, &lookup_result);
1290 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1291 } else {
1292 inc_all_io_entry(pool, bio);
1293 cell_defer_no_holder(tc, cell);
1294
1295 remap_and_issue(tc, bio, lookup_result.block);
1296 }
1297 break;
1298
1299 case -ENODATA:
1300 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1301 inc_all_io_entry(pool, bio);
1302 cell_defer_no_holder(tc, cell);
1303
1304 remap_to_origin_and_issue(tc, bio);
1305 } else
1306 provision_block(tc, bio, block, cell);
1307 break;
1308
1309 default:
1310 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1311 __func__, r);
1312 cell_defer_no_holder(tc, cell);
1313 bio_io_error(bio);
1314 break;
1315 }
1316 }
1317
1318 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1319 {
1320 int r;
1321 int rw = bio_data_dir(bio);
1322 dm_block_t block = get_bio_block(tc, bio);
1323 struct dm_thin_lookup_result lookup_result;
1324
1325 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1326 switch (r) {
1327 case 0:
1328 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1329 handle_unserviceable_bio(tc->pool, bio);
1330 else {
1331 inc_all_io_entry(tc->pool, bio);
1332 remap_and_issue(tc, bio, lookup_result.block);
1333 }
1334 break;
1335
1336 case -ENODATA:
1337 if (rw != READ) {
1338 handle_unserviceable_bio(tc->pool, bio);
1339 break;
1340 }
1341
1342 if (tc->origin_dev) {
1343 inc_all_io_entry(tc->pool, bio);
1344 remap_to_origin_and_issue(tc, bio);
1345 break;
1346 }
1347
1348 zero_fill_bio(bio);
1349 bio_endio(bio, 0);
1350 break;
1351
1352 default:
1353 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1354 __func__, r);
1355 bio_io_error(bio);
1356 break;
1357 }
1358 }
1359
1360 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1361 {
1362 bio_endio(bio, 0);
1363 }
1364
1365 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1366 {
1367 bio_io_error(bio);
1368 }
1369
1370 /*
1371 * FIXME: should we also commit due to size of transaction, measured in
1372 * metadata blocks?
1373 */
1374 static int need_commit_due_to_time(struct pool *pool)
1375 {
1376 return jiffies < pool->last_commit_jiffies ||
1377 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1378 }
1379
1380 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1381 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1382
1383 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1384 {
1385 struct rb_node **rbp, *parent;
1386 struct dm_thin_endio_hook *pbd;
1387 sector_t bi_sector = bio->bi_iter.bi_sector;
1388
1389 rbp = &tc->sort_bio_list.rb_node;
1390 parent = NULL;
1391 while (*rbp) {
1392 parent = *rbp;
1393 pbd = thin_pbd(parent);
1394
1395 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1396 rbp = &(*rbp)->rb_left;
1397 else
1398 rbp = &(*rbp)->rb_right;
1399 }
1400
1401 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1402 rb_link_node(&pbd->rb_node, parent, rbp);
1403 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1404 }
1405
1406 static void __extract_sorted_bios(struct thin_c *tc)
1407 {
1408 struct rb_node *node;
1409 struct dm_thin_endio_hook *pbd;
1410 struct bio *bio;
1411
1412 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1413 pbd = thin_pbd(node);
1414 bio = thin_bio(pbd);
1415
1416 bio_list_add(&tc->deferred_bio_list, bio);
1417 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1418 }
1419
1420 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1421 }
1422
1423 static void __sort_thin_deferred_bios(struct thin_c *tc)
1424 {
1425 struct bio *bio;
1426 struct bio_list bios;
1427
1428 bio_list_init(&bios);
1429 bio_list_merge(&bios, &tc->deferred_bio_list);
1430 bio_list_init(&tc->deferred_bio_list);
1431
1432 /* Sort deferred_bio_list using rb-tree */
1433 while ((bio = bio_list_pop(&bios)))
1434 __thin_bio_rb_add(tc, bio);
1435
1436 /*
1437 * Transfer the sorted bios in sort_bio_list back to
1438 * deferred_bio_list to allow lockless submission of
1439 * all bios.
1440 */
1441 __extract_sorted_bios(tc);
1442 }
1443
1444 static void process_thin_deferred_bios(struct thin_c *tc)
1445 {
1446 struct pool *pool = tc->pool;
1447 unsigned long flags;
1448 struct bio *bio;
1449 struct bio_list bios;
1450 struct blk_plug plug;
1451
1452 if (tc->requeue_mode) {
1453 requeue_bio_list(tc, &tc->deferred_bio_list);
1454 return;
1455 }
1456
1457 bio_list_init(&bios);
1458
1459 spin_lock_irqsave(&tc->lock, flags);
1460
1461 if (bio_list_empty(&tc->deferred_bio_list)) {
1462 spin_unlock_irqrestore(&tc->lock, flags);
1463 return;
1464 }
1465
1466 __sort_thin_deferred_bios(tc);
1467
1468 bio_list_merge(&bios, &tc->deferred_bio_list);
1469 bio_list_init(&tc->deferred_bio_list);
1470
1471 spin_unlock_irqrestore(&tc->lock, flags);
1472
1473 blk_start_plug(&plug);
1474 while ((bio = bio_list_pop(&bios))) {
1475 /*
1476 * If we've got no free new_mapping structs, and processing
1477 * this bio might require one, we pause until there are some
1478 * prepared mappings to process.
1479 */
1480 if (ensure_next_mapping(pool)) {
1481 spin_lock_irqsave(&tc->lock, flags);
1482 bio_list_add(&tc->deferred_bio_list, bio);
1483 bio_list_merge(&tc->deferred_bio_list, &bios);
1484 spin_unlock_irqrestore(&tc->lock, flags);
1485 break;
1486 }
1487
1488 if (bio->bi_rw & REQ_DISCARD)
1489 pool->process_discard(tc, bio);
1490 else
1491 pool->process_bio(tc, bio);
1492 }
1493 blk_finish_plug(&plug);
1494 }
1495
1496 static void thin_get(struct thin_c *tc);
1497 static void thin_put(struct thin_c *tc);
1498
1499 /*
1500 * We can't hold rcu_read_lock() around code that can block. So we
1501 * find a thin with the rcu lock held; bump a refcount; then drop
1502 * the lock.
1503 */
1504 static struct thin_c *get_first_thin(struct pool *pool)
1505 {
1506 struct thin_c *tc = NULL;
1507
1508 rcu_read_lock();
1509 if (!list_empty(&pool->active_thins)) {
1510 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1511 thin_get(tc);
1512 }
1513 rcu_read_unlock();
1514
1515 return tc;
1516 }
1517
1518 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1519 {
1520 struct thin_c *old_tc = tc;
1521
1522 rcu_read_lock();
1523 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1524 thin_get(tc);
1525 thin_put(old_tc);
1526 rcu_read_unlock();
1527 return tc;
1528 }
1529 thin_put(old_tc);
1530 rcu_read_unlock();
1531
1532 return NULL;
1533 }
1534
1535 static void process_deferred_bios(struct pool *pool)
1536 {
1537 unsigned long flags;
1538 struct bio *bio;
1539 struct bio_list bios;
1540 struct thin_c *tc;
1541
1542 tc = get_first_thin(pool);
1543 while (tc) {
1544 process_thin_deferred_bios(tc);
1545 tc = get_next_thin(pool, tc);
1546 }
1547
1548 /*
1549 * If there are any deferred flush bios, we must commit
1550 * the metadata before issuing them.
1551 */
1552 bio_list_init(&bios);
1553 spin_lock_irqsave(&pool->lock, flags);
1554 bio_list_merge(&bios, &pool->deferred_flush_bios);
1555 bio_list_init(&pool->deferred_flush_bios);
1556 spin_unlock_irqrestore(&pool->lock, flags);
1557
1558 if (bio_list_empty(&bios) &&
1559 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1560 return;
1561
1562 if (commit(pool)) {
1563 while ((bio = bio_list_pop(&bios)))
1564 bio_io_error(bio);
1565 return;
1566 }
1567 pool->last_commit_jiffies = jiffies;
1568
1569 while ((bio = bio_list_pop(&bios)))
1570 generic_make_request(bio);
1571 }
1572
1573 static void do_worker(struct work_struct *ws)
1574 {
1575 struct pool *pool = container_of(ws, struct pool, worker);
1576
1577 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1578 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1579 process_deferred_bios(pool);
1580 }
1581
1582 /*
1583 * We want to commit periodically so that not too much
1584 * unwritten data builds up.
1585 */
1586 static void do_waker(struct work_struct *ws)
1587 {
1588 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1589 wake_worker(pool);
1590 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1591 }
1592
1593 /*----------------------------------------------------------------*/
1594
1595 struct noflush_work {
1596 struct work_struct worker;
1597 struct thin_c *tc;
1598
1599 atomic_t complete;
1600 wait_queue_head_t wait;
1601 };
1602
1603 static void complete_noflush_work(struct noflush_work *w)
1604 {
1605 atomic_set(&w->complete, 1);
1606 wake_up(&w->wait);
1607 }
1608
1609 static void do_noflush_start(struct work_struct *ws)
1610 {
1611 struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1612 w->tc->requeue_mode = true;
1613 requeue_io(w->tc);
1614 complete_noflush_work(w);
1615 }
1616
1617 static void do_noflush_stop(struct work_struct *ws)
1618 {
1619 struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1620 w->tc->requeue_mode = false;
1621 complete_noflush_work(w);
1622 }
1623
1624 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1625 {
1626 struct noflush_work w;
1627
1628 INIT_WORK_ONSTACK(&w.worker, fn);
1629 w.tc = tc;
1630 atomic_set(&w.complete, 0);
1631 init_waitqueue_head(&w.wait);
1632
1633 queue_work(tc->pool->wq, &w.worker);
1634
1635 wait_event(w.wait, atomic_read(&w.complete));
1636 }
1637
1638 /*----------------------------------------------------------------*/
1639
1640 static enum pool_mode get_pool_mode(struct pool *pool)
1641 {
1642 return pool->pf.mode;
1643 }
1644
1645 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1646 {
1647 dm_table_event(pool->ti->table);
1648 DMINFO("%s: switching pool to %s mode",
1649 dm_device_name(pool->pool_md), new_mode);
1650 }
1651
1652 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1653 {
1654 struct pool_c *pt = pool->ti->private;
1655 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1656 enum pool_mode old_mode = get_pool_mode(pool);
1657
1658 /*
1659 * Never allow the pool to transition to PM_WRITE mode if user
1660 * intervention is required to verify metadata and data consistency.
1661 */
1662 if (new_mode == PM_WRITE && needs_check) {
1663 DMERR("%s: unable to switch pool to write mode until repaired.",
1664 dm_device_name(pool->pool_md));
1665 if (old_mode != new_mode)
1666 new_mode = old_mode;
1667 else
1668 new_mode = PM_READ_ONLY;
1669 }
1670 /*
1671 * If we were in PM_FAIL mode, rollback of metadata failed. We're
1672 * not going to recover without a thin_repair. So we never let the
1673 * pool move out of the old mode.
1674 */
1675 if (old_mode == PM_FAIL)
1676 new_mode = old_mode;
1677
1678 switch (new_mode) {
1679 case PM_FAIL:
1680 if (old_mode != new_mode)
1681 notify_of_pool_mode_change(pool, "failure");
1682 dm_pool_metadata_read_only(pool->pmd);
1683 pool->process_bio = process_bio_fail;
1684 pool->process_discard = process_bio_fail;
1685 pool->process_prepared_mapping = process_prepared_mapping_fail;
1686 pool->process_prepared_discard = process_prepared_discard_fail;
1687
1688 error_retry_list(pool);
1689 break;
1690
1691 case PM_READ_ONLY:
1692 if (old_mode != new_mode)
1693 notify_of_pool_mode_change(pool, "read-only");
1694 dm_pool_metadata_read_only(pool->pmd);
1695 pool->process_bio = process_bio_read_only;
1696 pool->process_discard = process_bio_success;
1697 pool->process_prepared_mapping = process_prepared_mapping_fail;
1698 pool->process_prepared_discard = process_prepared_discard_passdown;
1699
1700 error_retry_list(pool);
1701 break;
1702
1703 case PM_OUT_OF_DATA_SPACE:
1704 /*
1705 * Ideally we'd never hit this state; the low water mark
1706 * would trigger userland to extend the pool before we
1707 * completely run out of data space. However, many small
1708 * IOs to unprovisioned space can consume data space at an
1709 * alarming rate. Adjust your low water mark if you're
1710 * frequently seeing this mode.
1711 */
1712 if (old_mode != new_mode)
1713 notify_of_pool_mode_change(pool, "out-of-data-space");
1714 pool->process_bio = process_bio_read_only;
1715 pool->process_discard = process_discard;
1716 pool->process_prepared_mapping = process_prepared_mapping;
1717 pool->process_prepared_discard = process_prepared_discard_passdown;
1718 break;
1719
1720 case PM_WRITE:
1721 if (old_mode != new_mode)
1722 notify_of_pool_mode_change(pool, "write");
1723 dm_pool_metadata_read_write(pool->pmd);
1724 pool->process_bio = process_bio;
1725 pool->process_discard = process_discard;
1726 pool->process_prepared_mapping = process_prepared_mapping;
1727 pool->process_prepared_discard = process_prepared_discard;
1728 break;
1729 }
1730
1731 pool->pf.mode = new_mode;
1732 /*
1733 * The pool mode may have changed, sync it so bind_control_target()
1734 * doesn't cause an unexpected mode transition on resume.
1735 */
1736 pt->adjusted_pf.mode = new_mode;
1737 }
1738
1739 static void abort_transaction(struct pool *pool)
1740 {
1741 const char *dev_name = dm_device_name(pool->pool_md);
1742
1743 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1744 if (dm_pool_abort_metadata(pool->pmd)) {
1745 DMERR("%s: failed to abort metadata transaction", dev_name);
1746 set_pool_mode(pool, PM_FAIL);
1747 }
1748
1749 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1750 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1751 set_pool_mode(pool, PM_FAIL);
1752 }
1753 }
1754
1755 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1756 {
1757 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1758 dm_device_name(pool->pool_md), op, r);
1759
1760 abort_transaction(pool);
1761 set_pool_mode(pool, PM_READ_ONLY);
1762 }
1763
1764 /*----------------------------------------------------------------*/
1765
1766 /*
1767 * Mapping functions.
1768 */
1769
1770 /*
1771 * Called only while mapping a thin bio to hand it over to the workqueue.
1772 */
1773 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1774 {
1775 unsigned long flags;
1776 struct pool *pool = tc->pool;
1777
1778 spin_lock_irqsave(&tc->lock, flags);
1779 bio_list_add(&tc->deferred_bio_list, bio);
1780 spin_unlock_irqrestore(&tc->lock, flags);
1781
1782 wake_worker(pool);
1783 }
1784
1785 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1786 {
1787 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1788
1789 h->tc = tc;
1790 h->shared_read_entry = NULL;
1791 h->all_io_entry = NULL;
1792 h->overwrite_mapping = NULL;
1793 }
1794
1795 /*
1796 * Non-blocking function called from the thin target's map function.
1797 */
1798 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1799 {
1800 int r;
1801 struct thin_c *tc = ti->private;
1802 dm_block_t block = get_bio_block(tc, bio);
1803 struct dm_thin_device *td = tc->td;
1804 struct dm_thin_lookup_result result;
1805 struct dm_bio_prison_cell cell1, cell2;
1806 struct dm_bio_prison_cell *cell_result;
1807 struct dm_cell_key key;
1808
1809 thin_hook_bio(tc, bio);
1810
1811 if (tc->requeue_mode) {
1812 bio_endio(bio, DM_ENDIO_REQUEUE);
1813 return DM_MAPIO_SUBMITTED;
1814 }
1815
1816 if (get_pool_mode(tc->pool) == PM_FAIL) {
1817 bio_io_error(bio);
1818 return DM_MAPIO_SUBMITTED;
1819 }
1820
1821 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1822 thin_defer_bio(tc, bio);
1823 return DM_MAPIO_SUBMITTED;
1824 }
1825
1826 r = dm_thin_find_block(td, block, 0, &result);
1827
1828 /*
1829 * Note that we defer readahead too.
1830 */
1831 switch (r) {
1832 case 0:
1833 if (unlikely(result.shared)) {
1834 /*
1835 * We have a race condition here between the
1836 * result.shared value returned by the lookup and
1837 * snapshot creation, which may cause new
1838 * sharing.
1839 *
1840 * To avoid this always quiesce the origin before
1841 * taking the snap. You want to do this anyway to
1842 * ensure a consistent application view
1843 * (i.e. lockfs).
1844 *
1845 * More distant ancestors are irrelevant. The
1846 * shared flag will be set in their case.
1847 */
1848 thin_defer_bio(tc, bio);
1849 return DM_MAPIO_SUBMITTED;
1850 }
1851
1852 build_virtual_key(tc->td, block, &key);
1853 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1854 return DM_MAPIO_SUBMITTED;
1855
1856 build_data_key(tc->td, result.block, &key);
1857 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1858 cell_defer_no_holder_no_free(tc, &cell1);
1859 return DM_MAPIO_SUBMITTED;
1860 }
1861
1862 inc_all_io_entry(tc->pool, bio);
1863 cell_defer_no_holder_no_free(tc, &cell2);
1864 cell_defer_no_holder_no_free(tc, &cell1);
1865
1866 remap(tc, bio, result.block);
1867 return DM_MAPIO_REMAPPED;
1868
1869 case -ENODATA:
1870 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1871 /*
1872 * This block isn't provisioned, and we have no way
1873 * of doing so.
1874 */
1875 handle_unserviceable_bio(tc->pool, bio);
1876 return DM_MAPIO_SUBMITTED;
1877 }
1878 /* fall through */
1879
1880 case -EWOULDBLOCK:
1881 /*
1882 * In future, the failed dm_thin_find_block above could
1883 * provide the hint to load the metadata into cache.
1884 */
1885 thin_defer_bio(tc, bio);
1886 return DM_MAPIO_SUBMITTED;
1887
1888 default:
1889 /*
1890 * Must always call bio_io_error on failure.
1891 * dm_thin_find_block can fail with -EINVAL if the
1892 * pool is switched to fail-io mode.
1893 */
1894 bio_io_error(bio);
1895 return DM_MAPIO_SUBMITTED;
1896 }
1897 }
1898
1899 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1900 {
1901 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1902 struct request_queue *q;
1903
1904 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
1905 return 1;
1906
1907 q = bdev_get_queue(pt->data_dev->bdev);
1908 return bdi_congested(&q->backing_dev_info, bdi_bits);
1909 }
1910
1911 static void requeue_bios(struct pool *pool)
1912 {
1913 unsigned long flags;
1914 struct thin_c *tc;
1915
1916 rcu_read_lock();
1917 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
1918 spin_lock_irqsave(&tc->lock, flags);
1919 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
1920 bio_list_init(&tc->retry_on_resume_list);
1921 spin_unlock_irqrestore(&tc->lock, flags);
1922 }
1923 rcu_read_unlock();
1924 }
1925
1926 /*----------------------------------------------------------------
1927 * Binding of control targets to a pool object
1928 *--------------------------------------------------------------*/
1929 static bool data_dev_supports_discard(struct pool_c *pt)
1930 {
1931 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1932
1933 return q && blk_queue_discard(q);
1934 }
1935
1936 static bool is_factor(sector_t block_size, uint32_t n)
1937 {
1938 return !sector_div(block_size, n);
1939 }
1940
1941 /*
1942 * If discard_passdown was enabled verify that the data device
1943 * supports discards. Disable discard_passdown if not.
1944 */
1945 static void disable_passdown_if_not_supported(struct pool_c *pt)
1946 {
1947 struct pool *pool = pt->pool;
1948 struct block_device *data_bdev = pt->data_dev->bdev;
1949 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1950 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1951 const char *reason = NULL;
1952 char buf[BDEVNAME_SIZE];
1953
1954 if (!pt->adjusted_pf.discard_passdown)
1955 return;
1956
1957 if (!data_dev_supports_discard(pt))
1958 reason = "discard unsupported";
1959
1960 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1961 reason = "max discard sectors smaller than a block";
1962
1963 else if (data_limits->discard_granularity > block_size)
1964 reason = "discard granularity larger than a block";
1965
1966 else if (!is_factor(block_size, data_limits->discard_granularity))
1967 reason = "discard granularity not a factor of block size";
1968
1969 if (reason) {
1970 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1971 pt->adjusted_pf.discard_passdown = false;
1972 }
1973 }
1974
1975 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1976 {
1977 struct pool_c *pt = ti->private;
1978
1979 /*
1980 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1981 */
1982 enum pool_mode old_mode = get_pool_mode(pool);
1983 enum pool_mode new_mode = pt->adjusted_pf.mode;
1984
1985 /*
1986 * Don't change the pool's mode until set_pool_mode() below.
1987 * Otherwise the pool's process_* function pointers may
1988 * not match the desired pool mode.
1989 */
1990 pt->adjusted_pf.mode = old_mode;
1991
1992 pool->ti = ti;
1993 pool->pf = pt->adjusted_pf;
1994 pool->low_water_blocks = pt->low_water_blocks;
1995
1996 set_pool_mode(pool, new_mode);
1997
1998 return 0;
1999 }
2000
2001 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2002 {
2003 if (pool->ti == ti)
2004 pool->ti = NULL;
2005 }
2006
2007 /*----------------------------------------------------------------
2008 * Pool creation
2009 *--------------------------------------------------------------*/
2010 /* Initialize pool features. */
2011 static void pool_features_init(struct pool_features *pf)
2012 {
2013 pf->mode = PM_WRITE;
2014 pf->zero_new_blocks = true;
2015 pf->discard_enabled = true;
2016 pf->discard_passdown = true;
2017 pf->error_if_no_space = false;
2018 }
2019
2020 static void __pool_destroy(struct pool *pool)
2021 {
2022 __pool_table_remove(pool);
2023
2024 if (dm_pool_metadata_close(pool->pmd) < 0)
2025 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2026
2027 dm_bio_prison_destroy(pool->prison);
2028 dm_kcopyd_client_destroy(pool->copier);
2029
2030 if (pool->wq)
2031 destroy_workqueue(pool->wq);
2032
2033 if (pool->next_mapping)
2034 mempool_free(pool->next_mapping, pool->mapping_pool);
2035 mempool_destroy(pool->mapping_pool);
2036 dm_deferred_set_destroy(pool->shared_read_ds);
2037 dm_deferred_set_destroy(pool->all_io_ds);
2038 kfree(pool);
2039 }
2040
2041 static struct kmem_cache *_new_mapping_cache;
2042
2043 static struct pool *pool_create(struct mapped_device *pool_md,
2044 struct block_device *metadata_dev,
2045 unsigned long block_size,
2046 int read_only, char **error)
2047 {
2048 int r;
2049 void *err_p;
2050 struct pool *pool;
2051 struct dm_pool_metadata *pmd;
2052 bool format_device = read_only ? false : true;
2053
2054 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2055 if (IS_ERR(pmd)) {
2056 *error = "Error creating metadata object";
2057 return (struct pool *)pmd;
2058 }
2059
2060 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2061 if (!pool) {
2062 *error = "Error allocating memory for pool";
2063 err_p = ERR_PTR(-ENOMEM);
2064 goto bad_pool;
2065 }
2066
2067 pool->pmd = pmd;
2068 pool->sectors_per_block = block_size;
2069 if (block_size & (block_size - 1))
2070 pool->sectors_per_block_shift = -1;
2071 else
2072 pool->sectors_per_block_shift = __ffs(block_size);
2073 pool->low_water_blocks = 0;
2074 pool_features_init(&pool->pf);
2075 pool->prison = dm_bio_prison_create(PRISON_CELLS);
2076 if (!pool->prison) {
2077 *error = "Error creating pool's bio prison";
2078 err_p = ERR_PTR(-ENOMEM);
2079 goto bad_prison;
2080 }
2081
2082 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2083 if (IS_ERR(pool->copier)) {
2084 r = PTR_ERR(pool->copier);
2085 *error = "Error creating pool's kcopyd client";
2086 err_p = ERR_PTR(r);
2087 goto bad_kcopyd_client;
2088 }
2089
2090 /*
2091 * Create singlethreaded workqueue that will service all devices
2092 * that use this metadata.
2093 */
2094 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2095 if (!pool->wq) {
2096 *error = "Error creating pool's workqueue";
2097 err_p = ERR_PTR(-ENOMEM);
2098 goto bad_wq;
2099 }
2100
2101 INIT_WORK(&pool->worker, do_worker);
2102 INIT_DELAYED_WORK(&pool->waker, do_waker);
2103 spin_lock_init(&pool->lock);
2104 bio_list_init(&pool->deferred_flush_bios);
2105 INIT_LIST_HEAD(&pool->prepared_mappings);
2106 INIT_LIST_HEAD(&pool->prepared_discards);
2107 INIT_LIST_HEAD(&pool->active_thins);
2108 pool->low_water_triggered = false;
2109
2110 pool->shared_read_ds = dm_deferred_set_create();
2111 if (!pool->shared_read_ds) {
2112 *error = "Error creating pool's shared read deferred set";
2113 err_p = ERR_PTR(-ENOMEM);
2114 goto bad_shared_read_ds;
2115 }
2116
2117 pool->all_io_ds = dm_deferred_set_create();
2118 if (!pool->all_io_ds) {
2119 *error = "Error creating pool's all io deferred set";
2120 err_p = ERR_PTR(-ENOMEM);
2121 goto bad_all_io_ds;
2122 }
2123
2124 pool->next_mapping = NULL;
2125 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2126 _new_mapping_cache);
2127 if (!pool->mapping_pool) {
2128 *error = "Error creating pool's mapping mempool";
2129 err_p = ERR_PTR(-ENOMEM);
2130 goto bad_mapping_pool;
2131 }
2132
2133 pool->ref_count = 1;
2134 pool->last_commit_jiffies = jiffies;
2135 pool->pool_md = pool_md;
2136 pool->md_dev = metadata_dev;
2137 __pool_table_insert(pool);
2138
2139 return pool;
2140
2141 bad_mapping_pool:
2142 dm_deferred_set_destroy(pool->all_io_ds);
2143 bad_all_io_ds:
2144 dm_deferred_set_destroy(pool->shared_read_ds);
2145 bad_shared_read_ds:
2146 destroy_workqueue(pool->wq);
2147 bad_wq:
2148 dm_kcopyd_client_destroy(pool->copier);
2149 bad_kcopyd_client:
2150 dm_bio_prison_destroy(pool->prison);
2151 bad_prison:
2152 kfree(pool);
2153 bad_pool:
2154 if (dm_pool_metadata_close(pmd))
2155 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2156
2157 return err_p;
2158 }
2159
2160 static void __pool_inc(struct pool *pool)
2161 {
2162 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2163 pool->ref_count++;
2164 }
2165
2166 static void __pool_dec(struct pool *pool)
2167 {
2168 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2169 BUG_ON(!pool->ref_count);
2170 if (!--pool->ref_count)
2171 __pool_destroy(pool);
2172 }
2173
2174 static struct pool *__pool_find(struct mapped_device *pool_md,
2175 struct block_device *metadata_dev,
2176 unsigned long block_size, int read_only,
2177 char **error, int *created)
2178 {
2179 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2180
2181 if (pool) {
2182 if (pool->pool_md != pool_md) {
2183 *error = "metadata device already in use by a pool";
2184 return ERR_PTR(-EBUSY);
2185 }
2186 __pool_inc(pool);
2187
2188 } else {
2189 pool = __pool_table_lookup(pool_md);
2190 if (pool) {
2191 if (pool->md_dev != metadata_dev) {
2192 *error = "different pool cannot replace a pool";
2193 return ERR_PTR(-EINVAL);
2194 }
2195 __pool_inc(pool);
2196
2197 } else {
2198 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2199 *created = 1;
2200 }
2201 }
2202
2203 return pool;
2204 }
2205
2206 /*----------------------------------------------------------------
2207 * Pool target methods
2208 *--------------------------------------------------------------*/
2209 static void pool_dtr(struct dm_target *ti)
2210 {
2211 struct pool_c *pt = ti->private;
2212
2213 mutex_lock(&dm_thin_pool_table.mutex);
2214
2215 unbind_control_target(pt->pool, ti);
2216 __pool_dec(pt->pool);
2217 dm_put_device(ti, pt->metadata_dev);
2218 dm_put_device(ti, pt->data_dev);
2219 kfree(pt);
2220
2221 mutex_unlock(&dm_thin_pool_table.mutex);
2222 }
2223
2224 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2225 struct dm_target *ti)
2226 {
2227 int r;
2228 unsigned argc;
2229 const char *arg_name;
2230
2231 static struct dm_arg _args[] = {
2232 {0, 4, "Invalid number of pool feature arguments"},
2233 };
2234
2235 /*
2236 * No feature arguments supplied.
2237 */
2238 if (!as->argc)
2239 return 0;
2240
2241 r = dm_read_arg_group(_args, as, &argc, &ti->error);
2242 if (r)
2243 return -EINVAL;
2244
2245 while (argc && !r) {
2246 arg_name = dm_shift_arg(as);
2247 argc--;
2248
2249 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2250 pf->zero_new_blocks = false;
2251
2252 else if (!strcasecmp(arg_name, "ignore_discard"))
2253 pf->discard_enabled = false;
2254
2255 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2256 pf->discard_passdown = false;
2257
2258 else if (!strcasecmp(arg_name, "read_only"))
2259 pf->mode = PM_READ_ONLY;
2260
2261 else if (!strcasecmp(arg_name, "error_if_no_space"))
2262 pf->error_if_no_space = true;
2263
2264 else {
2265 ti->error = "Unrecognised pool feature requested";
2266 r = -EINVAL;
2267 break;
2268 }
2269 }
2270
2271 return r;
2272 }
2273
2274 static void metadata_low_callback(void *context)
2275 {
2276 struct pool *pool = context;
2277
2278 DMWARN("%s: reached low water mark for metadata device: sending event.",
2279 dm_device_name(pool->pool_md));
2280
2281 dm_table_event(pool->ti->table);
2282 }
2283
2284 static sector_t get_dev_size(struct block_device *bdev)
2285 {
2286 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2287 }
2288
2289 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2290 {
2291 sector_t metadata_dev_size = get_dev_size(bdev);
2292 char buffer[BDEVNAME_SIZE];
2293
2294 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2295 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2296 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2297 }
2298
2299 static sector_t get_metadata_dev_size(struct block_device *bdev)
2300 {
2301 sector_t metadata_dev_size = get_dev_size(bdev);
2302
2303 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2304 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2305
2306 return metadata_dev_size;
2307 }
2308
2309 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2310 {
2311 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2312
2313 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2314
2315 return metadata_dev_size;
2316 }
2317
2318 /*
2319 * When a metadata threshold is crossed a dm event is triggered, and
2320 * userland should respond by growing the metadata device. We could let
2321 * userland set the threshold, like we do with the data threshold, but I'm
2322 * not sure they know enough to do this well.
2323 */
2324 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2325 {
2326 /*
2327 * 4M is ample for all ops with the possible exception of thin
2328 * device deletion which is harmless if it fails (just retry the
2329 * delete after you've grown the device).
2330 */
2331 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2332 return min((dm_block_t)1024ULL /* 4M */, quarter);
2333 }
2334
2335 /*
2336 * thin-pool <metadata dev> <data dev>
2337 * <data block size (sectors)>
2338 * <low water mark (blocks)>
2339 * [<#feature args> [<arg>]*]
2340 *
2341 * Optional feature arguments are:
2342 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2343 * ignore_discard: disable discard
2344 * no_discard_passdown: don't pass discards down to the data device
2345 * read_only: Don't allow any changes to be made to the pool metadata.
2346 * error_if_no_space: error IOs, instead of queueing, if no space.
2347 */
2348 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2349 {
2350 int r, pool_created = 0;
2351 struct pool_c *pt;
2352 struct pool *pool;
2353 struct pool_features pf;
2354 struct dm_arg_set as;
2355 struct dm_dev *data_dev;
2356 unsigned long block_size;
2357 dm_block_t low_water_blocks;
2358 struct dm_dev *metadata_dev;
2359 fmode_t metadata_mode;
2360
2361 /*
2362 * FIXME Remove validation from scope of lock.
2363 */
2364 mutex_lock(&dm_thin_pool_table.mutex);
2365
2366 if (argc < 4) {
2367 ti->error = "Invalid argument count";
2368 r = -EINVAL;
2369 goto out_unlock;
2370 }
2371
2372 as.argc = argc;
2373 as.argv = argv;
2374
2375 /*
2376 * Set default pool features.
2377 */
2378 pool_features_init(&pf);
2379
2380 dm_consume_args(&as, 4);
2381 r = parse_pool_features(&as, &pf, ti);
2382 if (r)
2383 goto out_unlock;
2384
2385 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2386 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2387 if (r) {
2388 ti->error = "Error opening metadata block device";
2389 goto out_unlock;
2390 }
2391 warn_if_metadata_device_too_big(metadata_dev->bdev);
2392
2393 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2394 if (r) {
2395 ti->error = "Error getting data device";
2396 goto out_metadata;
2397 }
2398
2399 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2400 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2401 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2402 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2403 ti->error = "Invalid block size";
2404 r = -EINVAL;
2405 goto out;
2406 }
2407
2408 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2409 ti->error = "Invalid low water mark";
2410 r = -EINVAL;
2411 goto out;
2412 }
2413
2414 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2415 if (!pt) {
2416 r = -ENOMEM;
2417 goto out;
2418 }
2419
2420 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2421 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2422 if (IS_ERR(pool)) {
2423 r = PTR_ERR(pool);
2424 goto out_free_pt;
2425 }
2426
2427 /*
2428 * 'pool_created' reflects whether this is the first table load.
2429 * Top level discard support is not allowed to be changed after
2430 * initial load. This would require a pool reload to trigger thin
2431 * device changes.
2432 */
2433 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2434 ti->error = "Discard support cannot be disabled once enabled";
2435 r = -EINVAL;
2436 goto out_flags_changed;
2437 }
2438
2439 pt->pool = pool;
2440 pt->ti = ti;
2441 pt->metadata_dev = metadata_dev;
2442 pt->data_dev = data_dev;
2443 pt->low_water_blocks = low_water_blocks;
2444 pt->adjusted_pf = pt->requested_pf = pf;
2445 ti->num_flush_bios = 1;
2446
2447 /*
2448 * Only need to enable discards if the pool should pass
2449 * them down to the data device. The thin device's discard
2450 * processing will cause mappings to be removed from the btree.
2451 */
2452 ti->discard_zeroes_data_unsupported = true;
2453 if (pf.discard_enabled && pf.discard_passdown) {
2454 ti->num_discard_bios = 1;
2455
2456 /*
2457 * Setting 'discards_supported' circumvents the normal
2458 * stacking of discard limits (this keeps the pool and
2459 * thin devices' discard limits consistent).
2460 */
2461 ti->discards_supported = true;
2462 }
2463 ti->private = pt;
2464
2465 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2466 calc_metadata_threshold(pt),
2467 metadata_low_callback,
2468 pool);
2469 if (r)
2470 goto out_free_pt;
2471
2472 pt->callbacks.congested_fn = pool_is_congested;
2473 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2474
2475 mutex_unlock(&dm_thin_pool_table.mutex);
2476
2477 return 0;
2478
2479 out_flags_changed:
2480 __pool_dec(pool);
2481 out_free_pt:
2482 kfree(pt);
2483 out:
2484 dm_put_device(ti, data_dev);
2485 out_metadata:
2486 dm_put_device(ti, metadata_dev);
2487 out_unlock:
2488 mutex_unlock(&dm_thin_pool_table.mutex);
2489
2490 return r;
2491 }
2492
2493 static int pool_map(struct dm_target *ti, struct bio *bio)
2494 {
2495 int r;
2496 struct pool_c *pt = ti->private;
2497 struct pool *pool = pt->pool;
2498 unsigned long flags;
2499
2500 /*
2501 * As this is a singleton target, ti->begin is always zero.
2502 */
2503 spin_lock_irqsave(&pool->lock, flags);
2504 bio->bi_bdev = pt->data_dev->bdev;
2505 r = DM_MAPIO_REMAPPED;
2506 spin_unlock_irqrestore(&pool->lock, flags);
2507
2508 return r;
2509 }
2510
2511 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2512 {
2513 int r;
2514 struct pool_c *pt = ti->private;
2515 struct pool *pool = pt->pool;
2516 sector_t data_size = ti->len;
2517 dm_block_t sb_data_size;
2518
2519 *need_commit = false;
2520
2521 (void) sector_div(data_size, pool->sectors_per_block);
2522
2523 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2524 if (r) {
2525 DMERR("%s: failed to retrieve data device size",
2526 dm_device_name(pool->pool_md));
2527 return r;
2528 }
2529
2530 if (data_size < sb_data_size) {
2531 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2532 dm_device_name(pool->pool_md),
2533 (unsigned long long)data_size, sb_data_size);
2534 return -EINVAL;
2535
2536 } else if (data_size > sb_data_size) {
2537 if (dm_pool_metadata_needs_check(pool->pmd)) {
2538 DMERR("%s: unable to grow the data device until repaired.",
2539 dm_device_name(pool->pool_md));
2540 return 0;
2541 }
2542
2543 if (sb_data_size)
2544 DMINFO("%s: growing the data device from %llu to %llu blocks",
2545 dm_device_name(pool->pool_md),
2546 sb_data_size, (unsigned long long)data_size);
2547 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2548 if (r) {
2549 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2550 return r;
2551 }
2552
2553 *need_commit = true;
2554 }
2555
2556 return 0;
2557 }
2558
2559 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2560 {
2561 int r;
2562 struct pool_c *pt = ti->private;
2563 struct pool *pool = pt->pool;
2564 dm_block_t metadata_dev_size, sb_metadata_dev_size;
2565
2566 *need_commit = false;
2567
2568 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2569
2570 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2571 if (r) {
2572 DMERR("%s: failed to retrieve metadata device size",
2573 dm_device_name(pool->pool_md));
2574 return r;
2575 }
2576
2577 if (metadata_dev_size < sb_metadata_dev_size) {
2578 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2579 dm_device_name(pool->pool_md),
2580 metadata_dev_size, sb_metadata_dev_size);
2581 return -EINVAL;
2582
2583 } else if (metadata_dev_size > sb_metadata_dev_size) {
2584 if (dm_pool_metadata_needs_check(pool->pmd)) {
2585 DMERR("%s: unable to grow the metadata device until repaired.",
2586 dm_device_name(pool->pool_md));
2587 return 0;
2588 }
2589
2590 warn_if_metadata_device_too_big(pool->md_dev);
2591 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2592 dm_device_name(pool->pool_md),
2593 sb_metadata_dev_size, metadata_dev_size);
2594 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2595 if (r) {
2596 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2597 return r;
2598 }
2599
2600 *need_commit = true;
2601 }
2602
2603 return 0;
2604 }
2605
2606 /*
2607 * Retrieves the number of blocks of the data device from
2608 * the superblock and compares it to the actual device size,
2609 * thus resizing the data device in case it has grown.
2610 *
2611 * This both copes with opening preallocated data devices in the ctr
2612 * being followed by a resume
2613 * -and-
2614 * calling the resume method individually after userspace has
2615 * grown the data device in reaction to a table event.
2616 */
2617 static int pool_preresume(struct dm_target *ti)
2618 {
2619 int r;
2620 bool need_commit1, need_commit2;
2621 struct pool_c *pt = ti->private;
2622 struct pool *pool = pt->pool;
2623
2624 /*
2625 * Take control of the pool object.
2626 */
2627 r = bind_control_target(pool, ti);
2628 if (r)
2629 return r;
2630
2631 r = maybe_resize_data_dev(ti, &need_commit1);
2632 if (r)
2633 return r;
2634
2635 r = maybe_resize_metadata_dev(ti, &need_commit2);
2636 if (r)
2637 return r;
2638
2639 if (need_commit1 || need_commit2)
2640 (void) commit(pool);
2641
2642 return 0;
2643 }
2644
2645 static void pool_resume(struct dm_target *ti)
2646 {
2647 struct pool_c *pt = ti->private;
2648 struct pool *pool = pt->pool;
2649 unsigned long flags;
2650
2651 spin_lock_irqsave(&pool->lock, flags);
2652 pool->low_water_triggered = false;
2653 spin_unlock_irqrestore(&pool->lock, flags);
2654 requeue_bios(pool);
2655
2656 do_waker(&pool->waker.work);
2657 }
2658
2659 static void pool_postsuspend(struct dm_target *ti)
2660 {
2661 struct pool_c *pt = ti->private;
2662 struct pool *pool = pt->pool;
2663
2664 cancel_delayed_work(&pool->waker);
2665 flush_workqueue(pool->wq);
2666 (void) commit(pool);
2667 }
2668
2669 static int check_arg_count(unsigned argc, unsigned args_required)
2670 {
2671 if (argc != args_required) {
2672 DMWARN("Message received with %u arguments instead of %u.",
2673 argc, args_required);
2674 return -EINVAL;
2675 }
2676
2677 return 0;
2678 }
2679
2680 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2681 {
2682 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2683 *dev_id <= MAX_DEV_ID)
2684 return 0;
2685
2686 if (warning)
2687 DMWARN("Message received with invalid device id: %s", arg);
2688
2689 return -EINVAL;
2690 }
2691
2692 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2693 {
2694 dm_thin_id dev_id;
2695 int r;
2696
2697 r = check_arg_count(argc, 2);
2698 if (r)
2699 return r;
2700
2701 r = read_dev_id(argv[1], &dev_id, 1);
2702 if (r)
2703 return r;
2704
2705 r = dm_pool_create_thin(pool->pmd, dev_id);
2706 if (r) {
2707 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2708 argv[1]);
2709 return r;
2710 }
2711
2712 return 0;
2713 }
2714
2715 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2716 {
2717 dm_thin_id dev_id;
2718 dm_thin_id origin_dev_id;
2719 int r;
2720
2721 r = check_arg_count(argc, 3);
2722 if (r)
2723 return r;
2724
2725 r = read_dev_id(argv[1], &dev_id, 1);
2726 if (r)
2727 return r;
2728
2729 r = read_dev_id(argv[2], &origin_dev_id, 1);
2730 if (r)
2731 return r;
2732
2733 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2734 if (r) {
2735 DMWARN("Creation of new snapshot %s of device %s failed.",
2736 argv[1], argv[2]);
2737 return r;
2738 }
2739
2740 return 0;
2741 }
2742
2743 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2744 {
2745 dm_thin_id dev_id;
2746 int r;
2747
2748 r = check_arg_count(argc, 2);
2749 if (r)
2750 return r;
2751
2752 r = read_dev_id(argv[1], &dev_id, 1);
2753 if (r)
2754 return r;
2755
2756 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2757 if (r)
2758 DMWARN("Deletion of thin device %s failed.", argv[1]);
2759
2760 return r;
2761 }
2762
2763 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2764 {
2765 dm_thin_id old_id, new_id;
2766 int r;
2767
2768 r = check_arg_count(argc, 3);
2769 if (r)
2770 return r;
2771
2772 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2773 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2774 return -EINVAL;
2775 }
2776
2777 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2778 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2779 return -EINVAL;
2780 }
2781
2782 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2783 if (r) {
2784 DMWARN("Failed to change transaction id from %s to %s.",
2785 argv[1], argv[2]);
2786 return r;
2787 }
2788
2789 return 0;
2790 }
2791
2792 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2793 {
2794 int r;
2795
2796 r = check_arg_count(argc, 1);
2797 if (r)
2798 return r;
2799
2800 (void) commit(pool);
2801
2802 r = dm_pool_reserve_metadata_snap(pool->pmd);
2803 if (r)
2804 DMWARN("reserve_metadata_snap message failed.");
2805
2806 return r;
2807 }
2808
2809 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2810 {
2811 int r;
2812
2813 r = check_arg_count(argc, 1);
2814 if (r)
2815 return r;
2816
2817 r = dm_pool_release_metadata_snap(pool->pmd);
2818 if (r)
2819 DMWARN("release_metadata_snap message failed.");
2820
2821 return r;
2822 }
2823
2824 /*
2825 * Messages supported:
2826 * create_thin <dev_id>
2827 * create_snap <dev_id> <origin_id>
2828 * delete <dev_id>
2829 * trim <dev_id> <new_size_in_sectors>
2830 * set_transaction_id <current_trans_id> <new_trans_id>
2831 * reserve_metadata_snap
2832 * release_metadata_snap
2833 */
2834 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2835 {
2836 int r = -EINVAL;
2837 struct pool_c *pt = ti->private;
2838 struct pool *pool = pt->pool;
2839
2840 if (!strcasecmp(argv[0], "create_thin"))
2841 r = process_create_thin_mesg(argc, argv, pool);
2842
2843 else if (!strcasecmp(argv[0], "create_snap"))
2844 r = process_create_snap_mesg(argc, argv, pool);
2845
2846 else if (!strcasecmp(argv[0], "delete"))
2847 r = process_delete_mesg(argc, argv, pool);
2848
2849 else if (!strcasecmp(argv[0], "set_transaction_id"))
2850 r = process_set_transaction_id_mesg(argc, argv, pool);
2851
2852 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2853 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2854
2855 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2856 r = process_release_metadata_snap_mesg(argc, argv, pool);
2857
2858 else
2859 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2860
2861 if (!r)
2862 (void) commit(pool);
2863
2864 return r;
2865 }
2866
2867 static void emit_flags(struct pool_features *pf, char *result,
2868 unsigned sz, unsigned maxlen)
2869 {
2870 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2871 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2872 pf->error_if_no_space;
2873 DMEMIT("%u ", count);
2874
2875 if (!pf->zero_new_blocks)
2876 DMEMIT("skip_block_zeroing ");
2877
2878 if (!pf->discard_enabled)
2879 DMEMIT("ignore_discard ");
2880
2881 if (!pf->discard_passdown)
2882 DMEMIT("no_discard_passdown ");
2883
2884 if (pf->mode == PM_READ_ONLY)
2885 DMEMIT("read_only ");
2886
2887 if (pf->error_if_no_space)
2888 DMEMIT("error_if_no_space ");
2889 }
2890
2891 /*
2892 * Status line is:
2893 * <transaction id> <used metadata sectors>/<total metadata sectors>
2894 * <used data sectors>/<total data sectors> <held metadata root>
2895 */
2896 static void pool_status(struct dm_target *ti, status_type_t type,
2897 unsigned status_flags, char *result, unsigned maxlen)
2898 {
2899 int r;
2900 unsigned sz = 0;
2901 uint64_t transaction_id;
2902 dm_block_t nr_free_blocks_data;
2903 dm_block_t nr_free_blocks_metadata;
2904 dm_block_t nr_blocks_data;
2905 dm_block_t nr_blocks_metadata;
2906 dm_block_t held_root;
2907 char buf[BDEVNAME_SIZE];
2908 char buf2[BDEVNAME_SIZE];
2909 struct pool_c *pt = ti->private;
2910 struct pool *pool = pt->pool;
2911
2912 switch (type) {
2913 case STATUSTYPE_INFO:
2914 if (get_pool_mode(pool) == PM_FAIL) {
2915 DMEMIT("Fail");
2916 break;
2917 }
2918
2919 /* Commit to ensure statistics aren't out-of-date */
2920 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2921 (void) commit(pool);
2922
2923 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2924 if (r) {
2925 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2926 dm_device_name(pool->pool_md), r);
2927 goto err;
2928 }
2929
2930 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2931 if (r) {
2932 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2933 dm_device_name(pool->pool_md), r);
2934 goto err;
2935 }
2936
2937 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2938 if (r) {
2939 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2940 dm_device_name(pool->pool_md), r);
2941 goto err;
2942 }
2943
2944 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2945 if (r) {
2946 DMERR("%s: dm_pool_get_free_block_count returned %d",
2947 dm_device_name(pool->pool_md), r);
2948 goto err;
2949 }
2950
2951 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2952 if (r) {
2953 DMERR("%s: dm_pool_get_data_dev_size returned %d",
2954 dm_device_name(pool->pool_md), r);
2955 goto err;
2956 }
2957
2958 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2959 if (r) {
2960 DMERR("%s: dm_pool_get_metadata_snap returned %d",
2961 dm_device_name(pool->pool_md), r);
2962 goto err;
2963 }
2964
2965 DMEMIT("%llu %llu/%llu %llu/%llu ",
2966 (unsigned long long)transaction_id,
2967 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2968 (unsigned long long)nr_blocks_metadata,
2969 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2970 (unsigned long long)nr_blocks_data);
2971
2972 if (held_root)
2973 DMEMIT("%llu ", held_root);
2974 else
2975 DMEMIT("- ");
2976
2977 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
2978 DMEMIT("out_of_data_space ");
2979 else if (pool->pf.mode == PM_READ_ONLY)
2980 DMEMIT("ro ");
2981 else
2982 DMEMIT("rw ");
2983
2984 if (!pool->pf.discard_enabled)
2985 DMEMIT("ignore_discard ");
2986 else if (pool->pf.discard_passdown)
2987 DMEMIT("discard_passdown ");
2988 else
2989 DMEMIT("no_discard_passdown ");
2990
2991 if (pool->pf.error_if_no_space)
2992 DMEMIT("error_if_no_space ");
2993 else
2994 DMEMIT("queue_if_no_space ");
2995
2996 break;
2997
2998 case STATUSTYPE_TABLE:
2999 DMEMIT("%s %s %lu %llu ",
3000 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3001 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3002 (unsigned long)pool->sectors_per_block,
3003 (unsigned long long)pt->low_water_blocks);
3004 emit_flags(&pt->requested_pf, result, sz, maxlen);
3005 break;
3006 }
3007 return;
3008
3009 err:
3010 DMEMIT("Error");
3011 }
3012
3013 static int pool_iterate_devices(struct dm_target *ti,
3014 iterate_devices_callout_fn fn, void *data)
3015 {
3016 struct pool_c *pt = ti->private;
3017
3018 return fn(ti, pt->data_dev, 0, ti->len, data);
3019 }
3020
3021 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3022 struct bio_vec *biovec, int max_size)
3023 {
3024 struct pool_c *pt = ti->private;
3025 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3026
3027 if (!q->merge_bvec_fn)
3028 return max_size;
3029
3030 bvm->bi_bdev = pt->data_dev->bdev;
3031
3032 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3033 }
3034
3035 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3036 {
3037 struct pool *pool = pt->pool;
3038 struct queue_limits *data_limits;
3039
3040 limits->max_discard_sectors = pool->sectors_per_block;
3041
3042 /*
3043 * discard_granularity is just a hint, and not enforced.
3044 */
3045 if (pt->adjusted_pf.discard_passdown) {
3046 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3047 limits->discard_granularity = data_limits->discard_granularity;
3048 } else
3049 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3050 }
3051
3052 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3053 {
3054 struct pool_c *pt = ti->private;
3055 struct pool *pool = pt->pool;
3056 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3057
3058 /*
3059 * If the system-determined stacked limits are compatible with the
3060 * pool's blocksize (io_opt is a factor) do not override them.
3061 */
3062 if (io_opt_sectors < pool->sectors_per_block ||
3063 do_div(io_opt_sectors, pool->sectors_per_block)) {
3064 blk_limits_io_min(limits, 0);
3065 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3066 }
3067
3068 /*
3069 * pt->adjusted_pf is a staging area for the actual features to use.
3070 * They get transferred to the live pool in bind_control_target()
3071 * called from pool_preresume().
3072 */
3073 if (!pt->adjusted_pf.discard_enabled) {
3074 /*
3075 * Must explicitly disallow stacking discard limits otherwise the
3076 * block layer will stack them if pool's data device has support.
3077 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3078 * user to see that, so make sure to set all discard limits to 0.
3079 */
3080 limits->discard_granularity = 0;
3081 return;
3082 }
3083
3084 disable_passdown_if_not_supported(pt);
3085
3086 set_discard_limits(pt, limits);
3087 }
3088
3089 static struct target_type pool_target = {
3090 .name = "thin-pool",
3091 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3092 DM_TARGET_IMMUTABLE,
3093 .version = {1, 12, 0},
3094 .module = THIS_MODULE,
3095 .ctr = pool_ctr,
3096 .dtr = pool_dtr,
3097 .map = pool_map,
3098 .postsuspend = pool_postsuspend,
3099 .preresume = pool_preresume,
3100 .resume = pool_resume,
3101 .message = pool_message,
3102 .status = pool_status,
3103 .merge = pool_merge,
3104 .iterate_devices = pool_iterate_devices,
3105 .io_hints = pool_io_hints,
3106 };
3107
3108 /*----------------------------------------------------------------
3109 * Thin target methods
3110 *--------------------------------------------------------------*/
3111 static void thin_get(struct thin_c *tc)
3112 {
3113 atomic_inc(&tc->refcount);
3114 }
3115
3116 static void thin_put(struct thin_c *tc)
3117 {
3118 if (atomic_dec_and_test(&tc->refcount))
3119 complete(&tc->can_destroy);
3120 }
3121
3122 static void thin_dtr(struct dm_target *ti)
3123 {
3124 struct thin_c *tc = ti->private;
3125 unsigned long flags;
3126
3127 thin_put(tc);
3128 wait_for_completion(&tc->can_destroy);
3129
3130 spin_lock_irqsave(&tc->pool->lock, flags);
3131 list_del_rcu(&tc->list);
3132 spin_unlock_irqrestore(&tc->pool->lock, flags);
3133 synchronize_rcu();
3134
3135 mutex_lock(&dm_thin_pool_table.mutex);
3136
3137 __pool_dec(tc->pool);
3138 dm_pool_close_thin_device(tc->td);
3139 dm_put_device(ti, tc->pool_dev);
3140 if (tc->origin_dev)
3141 dm_put_device(ti, tc->origin_dev);
3142 kfree(tc);
3143
3144 mutex_unlock(&dm_thin_pool_table.mutex);
3145 }
3146
3147 /*
3148 * Thin target parameters:
3149 *
3150 * <pool_dev> <dev_id> [origin_dev]
3151 *
3152 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3153 * dev_id: the internal device identifier
3154 * origin_dev: a device external to the pool that should act as the origin
3155 *
3156 * If the pool device has discards disabled, they get disabled for the thin
3157 * device as well.
3158 */
3159 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3160 {
3161 int r;
3162 struct thin_c *tc;
3163 struct dm_dev *pool_dev, *origin_dev;
3164 struct mapped_device *pool_md;
3165 unsigned long flags;
3166
3167 mutex_lock(&dm_thin_pool_table.mutex);
3168
3169 if (argc != 2 && argc != 3) {
3170 ti->error = "Invalid argument count";
3171 r = -EINVAL;
3172 goto out_unlock;
3173 }
3174
3175 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3176 if (!tc) {
3177 ti->error = "Out of memory";
3178 r = -ENOMEM;
3179 goto out_unlock;
3180 }
3181 spin_lock_init(&tc->lock);
3182 bio_list_init(&tc->deferred_bio_list);
3183 bio_list_init(&tc->retry_on_resume_list);
3184 tc->sort_bio_list = RB_ROOT;
3185
3186 if (argc == 3) {
3187 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3188 if (r) {
3189 ti->error = "Error opening origin device";
3190 goto bad_origin_dev;
3191 }
3192 tc->origin_dev = origin_dev;
3193 }
3194
3195 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3196 if (r) {
3197 ti->error = "Error opening pool device";
3198 goto bad_pool_dev;
3199 }
3200 tc->pool_dev = pool_dev;
3201
3202 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3203 ti->error = "Invalid device id";
3204 r = -EINVAL;
3205 goto bad_common;
3206 }
3207
3208 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3209 if (!pool_md) {
3210 ti->error = "Couldn't get pool mapped device";
3211 r = -EINVAL;
3212 goto bad_common;
3213 }
3214
3215 tc->pool = __pool_table_lookup(pool_md);
3216 if (!tc->pool) {
3217 ti->error = "Couldn't find pool object";
3218 r = -EINVAL;
3219 goto bad_pool_lookup;
3220 }
3221 __pool_inc(tc->pool);
3222
3223 if (get_pool_mode(tc->pool) == PM_FAIL) {
3224 ti->error = "Couldn't open thin device, Pool is in fail mode";
3225 r = -EINVAL;
3226 goto bad_thin_open;
3227 }
3228
3229 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3230 if (r) {
3231 ti->error = "Couldn't open thin internal device";
3232 goto bad_thin_open;
3233 }
3234
3235 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3236 if (r)
3237 goto bad_target_max_io_len;
3238
3239 ti->num_flush_bios = 1;
3240 ti->flush_supported = true;
3241 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3242
3243 /* In case the pool supports discards, pass them on. */
3244 ti->discard_zeroes_data_unsupported = true;
3245 if (tc->pool->pf.discard_enabled) {
3246 ti->discards_supported = true;
3247 ti->num_discard_bios = 1;
3248 /* Discard bios must be split on a block boundary */
3249 ti->split_discard_bios = true;
3250 }
3251
3252 dm_put(pool_md);
3253
3254 mutex_unlock(&dm_thin_pool_table.mutex);
3255
3256 atomic_set(&tc->refcount, 1);
3257 init_completion(&tc->can_destroy);
3258
3259 spin_lock_irqsave(&tc->pool->lock, flags);
3260 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3261 spin_unlock_irqrestore(&tc->pool->lock, flags);
3262 /*
3263 * This synchronize_rcu() call is needed here otherwise we risk a
3264 * wake_worker() call finding no bios to process (because the newly
3265 * added tc isn't yet visible). So this reduces latency since we
3266 * aren't then dependent on the periodic commit to wake_worker().
3267 */
3268 synchronize_rcu();
3269
3270 return 0;
3271
3272 bad_target_max_io_len:
3273 dm_pool_close_thin_device(tc->td);
3274 bad_thin_open:
3275 __pool_dec(tc->pool);
3276 bad_pool_lookup:
3277 dm_put(pool_md);
3278 bad_common:
3279 dm_put_device(ti, tc->pool_dev);
3280 bad_pool_dev:
3281 if (tc->origin_dev)
3282 dm_put_device(ti, tc->origin_dev);
3283 bad_origin_dev:
3284 kfree(tc);
3285 out_unlock:
3286 mutex_unlock(&dm_thin_pool_table.mutex);
3287
3288 return r;
3289 }
3290
3291 static int thin_map(struct dm_target *ti, struct bio *bio)
3292 {
3293 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3294
3295 return thin_bio_map(ti, bio);
3296 }
3297
3298 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3299 {
3300 unsigned long flags;
3301 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3302 struct list_head work;
3303 struct dm_thin_new_mapping *m, *tmp;
3304 struct pool *pool = h->tc->pool;
3305
3306 if (h->shared_read_entry) {
3307 INIT_LIST_HEAD(&work);
3308 dm_deferred_entry_dec(h->shared_read_entry, &work);
3309
3310 spin_lock_irqsave(&pool->lock, flags);
3311 list_for_each_entry_safe(m, tmp, &work, list) {
3312 list_del(&m->list);
3313 m->quiesced = true;
3314 __maybe_add_mapping(m);
3315 }
3316 spin_unlock_irqrestore(&pool->lock, flags);
3317 }
3318
3319 if (h->all_io_entry) {
3320 INIT_LIST_HEAD(&work);
3321 dm_deferred_entry_dec(h->all_io_entry, &work);
3322 if (!list_empty(&work)) {
3323 spin_lock_irqsave(&pool->lock, flags);
3324 list_for_each_entry_safe(m, tmp, &work, list)
3325 list_add_tail(&m->list, &pool->prepared_discards);
3326 spin_unlock_irqrestore(&pool->lock, flags);
3327 wake_worker(pool);
3328 }
3329 }
3330
3331 return 0;
3332 }
3333
3334 static void thin_presuspend(struct dm_target *ti)
3335 {
3336 struct thin_c *tc = ti->private;
3337
3338 if (dm_noflush_suspending(ti))
3339 noflush_work(tc, do_noflush_start);
3340 }
3341
3342 static void thin_postsuspend(struct dm_target *ti)
3343 {
3344 struct thin_c *tc = ti->private;
3345
3346 /*
3347 * The dm_noflush_suspending flag has been cleared by now, so
3348 * unfortunately we must always run this.
3349 */
3350 noflush_work(tc, do_noflush_stop);
3351 }
3352
3353 /*
3354 * <nr mapped sectors> <highest mapped sector>
3355 */
3356 static void thin_status(struct dm_target *ti, status_type_t type,
3357 unsigned status_flags, char *result, unsigned maxlen)
3358 {
3359 int r;
3360 ssize_t sz = 0;
3361 dm_block_t mapped, highest;
3362 char buf[BDEVNAME_SIZE];
3363 struct thin_c *tc = ti->private;
3364
3365 if (get_pool_mode(tc->pool) == PM_FAIL) {
3366 DMEMIT("Fail");
3367 return;
3368 }
3369
3370 if (!tc->td)
3371 DMEMIT("-");
3372 else {
3373 switch (type) {
3374 case STATUSTYPE_INFO:
3375 r = dm_thin_get_mapped_count(tc->td, &mapped);
3376 if (r) {
3377 DMERR("dm_thin_get_mapped_count returned %d", r);
3378 goto err;
3379 }
3380
3381 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3382 if (r < 0) {
3383 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3384 goto err;
3385 }
3386
3387 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3388 if (r)
3389 DMEMIT("%llu", ((highest + 1) *
3390 tc->pool->sectors_per_block) - 1);
3391 else
3392 DMEMIT("-");
3393 break;
3394
3395 case STATUSTYPE_TABLE:
3396 DMEMIT("%s %lu",
3397 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3398 (unsigned long) tc->dev_id);
3399 if (tc->origin_dev)
3400 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3401 break;
3402 }
3403 }
3404
3405 return;
3406
3407 err:
3408 DMEMIT("Error");
3409 }
3410
3411 static int thin_iterate_devices(struct dm_target *ti,
3412 iterate_devices_callout_fn fn, void *data)
3413 {
3414 sector_t blocks;
3415 struct thin_c *tc = ti->private;
3416 struct pool *pool = tc->pool;
3417
3418 /*
3419 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3420 * we follow a more convoluted path through to the pool's target.
3421 */
3422 if (!pool->ti)
3423 return 0; /* nothing is bound */
3424
3425 blocks = pool->ti->len;
3426 (void) sector_div(blocks, pool->sectors_per_block);
3427 if (blocks)
3428 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3429
3430 return 0;
3431 }
3432
3433 static struct target_type thin_target = {
3434 .name = "thin",
3435 .version = {1, 12, 0},
3436 .module = THIS_MODULE,
3437 .ctr = thin_ctr,
3438 .dtr = thin_dtr,
3439 .map = thin_map,
3440 .end_io = thin_endio,
3441 .presuspend = thin_presuspend,
3442 .postsuspend = thin_postsuspend,
3443 .status = thin_status,
3444 .iterate_devices = thin_iterate_devices,
3445 };
3446
3447 /*----------------------------------------------------------------*/
3448
3449 static int __init dm_thin_init(void)
3450 {
3451 int r;
3452
3453 pool_table_init();
3454
3455 r = dm_register_target(&thin_target);
3456 if (r)
3457 return r;
3458
3459 r = dm_register_target(&pool_target);
3460 if (r)
3461 goto bad_pool_target;
3462
3463 r = -ENOMEM;
3464
3465 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3466 if (!_new_mapping_cache)
3467 goto bad_new_mapping_cache;
3468
3469 return 0;
3470
3471 bad_new_mapping_cache:
3472 dm_unregister_target(&pool_target);
3473 bad_pool_target:
3474 dm_unregister_target(&thin_target);
3475
3476 return r;
3477 }
3478
3479 static void dm_thin_exit(void)
3480 {
3481 dm_unregister_target(&thin_target);
3482 dm_unregister_target(&pool_target);
3483
3484 kmem_cache_destroy(_new_mapping_cache);
3485 }
3486
3487 module_init(dm_thin_init);
3488 module_exit(dm_thin_exit);
3489
3490 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3491 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3492 MODULE_LICENSE("GPL");
This page took 0.167694 seconds and 5 git commands to generate.