7694988fb806a72919110525878b0ee3725d5c88
[deliverable/linux.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/rculist.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/rbtree.h>
20
21 #define DM_MSG_PREFIX "thin"
22
23 /*
24 * Tunable constants
25 */
26 #define ENDIO_HOOK_POOL_SIZE 1024
27 #define MAPPING_POOL_SIZE 1024
28 #define PRISON_CELLS 1024
29 #define COMMIT_PERIOD HZ
30 #define NO_SPACE_TIMEOUT_SECS 60
31
32 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
33
34 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
35 "A percentage of time allocated for copy on write");
36
37 /*
38 * The block size of the device holding pool data must be
39 * between 64KB and 1GB.
40 */
41 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
42 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
43
44 /*
45 * Device id is restricted to 24 bits.
46 */
47 #define MAX_DEV_ID ((1 << 24) - 1)
48
49 /*
50 * How do we handle breaking sharing of data blocks?
51 * =================================================
52 *
53 * We use a standard copy-on-write btree to store the mappings for the
54 * devices (note I'm talking about copy-on-write of the metadata here, not
55 * the data). When you take an internal snapshot you clone the root node
56 * of the origin btree. After this there is no concept of an origin or a
57 * snapshot. They are just two device trees that happen to point to the
58 * same data blocks.
59 *
60 * When we get a write in we decide if it's to a shared data block using
61 * some timestamp magic. If it is, we have to break sharing.
62 *
63 * Let's say we write to a shared block in what was the origin. The
64 * steps are:
65 *
66 * i) plug io further to this physical block. (see bio_prison code).
67 *
68 * ii) quiesce any read io to that shared data block. Obviously
69 * including all devices that share this block. (see dm_deferred_set code)
70 *
71 * iii) copy the data block to a newly allocate block. This step can be
72 * missed out if the io covers the block. (schedule_copy).
73 *
74 * iv) insert the new mapping into the origin's btree
75 * (process_prepared_mapping). This act of inserting breaks some
76 * sharing of btree nodes between the two devices. Breaking sharing only
77 * effects the btree of that specific device. Btrees for the other
78 * devices that share the block never change. The btree for the origin
79 * device as it was after the last commit is untouched, ie. we're using
80 * persistent data structures in the functional programming sense.
81 *
82 * v) unplug io to this physical block, including the io that triggered
83 * the breaking of sharing.
84 *
85 * Steps (ii) and (iii) occur in parallel.
86 *
87 * The metadata _doesn't_ need to be committed before the io continues. We
88 * get away with this because the io is always written to a _new_ block.
89 * If there's a crash, then:
90 *
91 * - The origin mapping will point to the old origin block (the shared
92 * one). This will contain the data as it was before the io that triggered
93 * the breaking of sharing came in.
94 *
95 * - The snap mapping still points to the old block. As it would after
96 * the commit.
97 *
98 * The downside of this scheme is the timestamp magic isn't perfect, and
99 * will continue to think that data block in the snapshot device is shared
100 * even after the write to the origin has broken sharing. I suspect data
101 * blocks will typically be shared by many different devices, so we're
102 * breaking sharing n + 1 times, rather than n, where n is the number of
103 * devices that reference this data block. At the moment I think the
104 * benefits far, far outweigh the disadvantages.
105 */
106
107 /*----------------------------------------------------------------*/
108
109 /*
110 * Key building.
111 */
112 static void build_data_key(struct dm_thin_device *td,
113 dm_block_t b, struct dm_cell_key *key)
114 {
115 key->virtual = 0;
116 key->dev = dm_thin_dev_id(td);
117 key->block = b;
118 }
119
120 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
121 struct dm_cell_key *key)
122 {
123 key->virtual = 1;
124 key->dev = dm_thin_dev_id(td);
125 key->block = b;
126 }
127
128 /*----------------------------------------------------------------*/
129
130 /*
131 * A pool device ties together a metadata device and a data device. It
132 * also provides the interface for creating and destroying internal
133 * devices.
134 */
135 struct dm_thin_new_mapping;
136
137 /*
138 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
139 */
140 enum pool_mode {
141 PM_WRITE, /* metadata may be changed */
142 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
143 PM_READ_ONLY, /* metadata may not be changed */
144 PM_FAIL, /* all I/O fails */
145 };
146
147 struct pool_features {
148 enum pool_mode mode;
149
150 bool zero_new_blocks:1;
151 bool discard_enabled:1;
152 bool discard_passdown:1;
153 bool error_if_no_space:1;
154 };
155
156 struct thin_c;
157 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
158 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
159
160 struct pool {
161 struct list_head list;
162 struct dm_target *ti; /* Only set if a pool target is bound */
163
164 struct mapped_device *pool_md;
165 struct block_device *md_dev;
166 struct dm_pool_metadata *pmd;
167
168 dm_block_t low_water_blocks;
169 uint32_t sectors_per_block;
170 int sectors_per_block_shift;
171
172 struct pool_features pf;
173 bool low_water_triggered:1; /* A dm event has been sent */
174
175 struct dm_bio_prison *prison;
176 struct dm_kcopyd_client *copier;
177
178 struct workqueue_struct *wq;
179 struct work_struct worker;
180 struct delayed_work waker;
181 struct delayed_work no_space_timeout;
182
183 unsigned long last_commit_jiffies;
184 unsigned ref_count;
185
186 spinlock_t lock;
187 struct bio_list deferred_flush_bios;
188 struct list_head prepared_mappings;
189 struct list_head prepared_discards;
190 struct list_head active_thins;
191
192 struct dm_deferred_set *shared_read_ds;
193 struct dm_deferred_set *all_io_ds;
194
195 struct dm_thin_new_mapping *next_mapping;
196 mempool_t *mapping_pool;
197
198 process_bio_fn process_bio;
199 process_bio_fn process_discard;
200
201 process_mapping_fn process_prepared_mapping;
202 process_mapping_fn process_prepared_discard;
203 };
204
205 static enum pool_mode get_pool_mode(struct pool *pool);
206 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
207
208 /*
209 * Target context for a pool.
210 */
211 struct pool_c {
212 struct dm_target *ti;
213 struct pool *pool;
214 struct dm_dev *data_dev;
215 struct dm_dev *metadata_dev;
216 struct dm_target_callbacks callbacks;
217
218 dm_block_t low_water_blocks;
219 struct pool_features requested_pf; /* Features requested during table load */
220 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
221 };
222
223 /*
224 * Target context for a thin.
225 */
226 struct thin_c {
227 struct list_head list;
228 struct dm_dev *pool_dev;
229 struct dm_dev *origin_dev;
230 dm_thin_id dev_id;
231
232 struct pool *pool;
233 struct dm_thin_device *td;
234 bool requeue_mode:1;
235 spinlock_t lock;
236 struct bio_list deferred_bio_list;
237 struct bio_list retry_on_resume_list;
238 struct rb_root sort_bio_list; /* sorted list of deferred bios */
239
240 /*
241 * Ensures the thin is not destroyed until the worker has finished
242 * iterating the active_thins list.
243 */
244 atomic_t refcount;
245 struct completion can_destroy;
246 };
247
248 /*----------------------------------------------------------------*/
249
250 /*
251 * wake_worker() is used when new work is queued and when pool_resume is
252 * ready to continue deferred IO processing.
253 */
254 static void wake_worker(struct pool *pool)
255 {
256 queue_work(pool->wq, &pool->worker);
257 }
258
259 /*----------------------------------------------------------------*/
260
261 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
262 struct dm_bio_prison_cell **cell_result)
263 {
264 int r;
265 struct dm_bio_prison_cell *cell_prealloc;
266
267 /*
268 * Allocate a cell from the prison's mempool.
269 * This might block but it can't fail.
270 */
271 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
272
273 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
274 if (r)
275 /*
276 * We reused an old cell; we can get rid of
277 * the new one.
278 */
279 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
280
281 return r;
282 }
283
284 static void cell_release(struct pool *pool,
285 struct dm_bio_prison_cell *cell,
286 struct bio_list *bios)
287 {
288 dm_cell_release(pool->prison, cell, bios);
289 dm_bio_prison_free_cell(pool->prison, cell);
290 }
291
292 static void cell_release_no_holder(struct pool *pool,
293 struct dm_bio_prison_cell *cell,
294 struct bio_list *bios)
295 {
296 dm_cell_release_no_holder(pool->prison, cell, bios);
297 dm_bio_prison_free_cell(pool->prison, cell);
298 }
299
300 static void cell_defer_no_holder_no_free(struct thin_c *tc,
301 struct dm_bio_prison_cell *cell)
302 {
303 struct pool *pool = tc->pool;
304 unsigned long flags;
305
306 spin_lock_irqsave(&tc->lock, flags);
307 dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list);
308 spin_unlock_irqrestore(&tc->lock, flags);
309
310 wake_worker(pool);
311 }
312
313 static void cell_error(struct pool *pool,
314 struct dm_bio_prison_cell *cell)
315 {
316 dm_cell_error(pool->prison, cell);
317 dm_bio_prison_free_cell(pool->prison, cell);
318 }
319
320 /*----------------------------------------------------------------*/
321
322 /*
323 * A global list of pools that uses a struct mapped_device as a key.
324 */
325 static struct dm_thin_pool_table {
326 struct mutex mutex;
327 struct list_head pools;
328 } dm_thin_pool_table;
329
330 static void pool_table_init(void)
331 {
332 mutex_init(&dm_thin_pool_table.mutex);
333 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
334 }
335
336 static void __pool_table_insert(struct pool *pool)
337 {
338 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
339 list_add(&pool->list, &dm_thin_pool_table.pools);
340 }
341
342 static void __pool_table_remove(struct pool *pool)
343 {
344 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
345 list_del(&pool->list);
346 }
347
348 static struct pool *__pool_table_lookup(struct mapped_device *md)
349 {
350 struct pool *pool = NULL, *tmp;
351
352 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
353
354 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
355 if (tmp->pool_md == md) {
356 pool = tmp;
357 break;
358 }
359 }
360
361 return pool;
362 }
363
364 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
365 {
366 struct pool *pool = NULL, *tmp;
367
368 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
369
370 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
371 if (tmp->md_dev == md_dev) {
372 pool = tmp;
373 break;
374 }
375 }
376
377 return pool;
378 }
379
380 /*----------------------------------------------------------------*/
381
382 struct dm_thin_endio_hook {
383 struct thin_c *tc;
384 struct dm_deferred_entry *shared_read_entry;
385 struct dm_deferred_entry *all_io_entry;
386 struct dm_thin_new_mapping *overwrite_mapping;
387 struct rb_node rb_node;
388 };
389
390 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
391 {
392 struct bio *bio;
393 struct bio_list bios;
394 unsigned long flags;
395
396 bio_list_init(&bios);
397
398 spin_lock_irqsave(&tc->lock, flags);
399 bio_list_merge(&bios, master);
400 bio_list_init(master);
401 spin_unlock_irqrestore(&tc->lock, flags);
402
403 while ((bio = bio_list_pop(&bios)))
404 bio_endio(bio, DM_ENDIO_REQUEUE);
405 }
406
407 static void requeue_io(struct thin_c *tc)
408 {
409 requeue_bio_list(tc, &tc->deferred_bio_list);
410 requeue_bio_list(tc, &tc->retry_on_resume_list);
411 }
412
413 static void error_thin_retry_list(struct thin_c *tc)
414 {
415 struct bio *bio;
416 unsigned long flags;
417 struct bio_list bios;
418
419 bio_list_init(&bios);
420
421 spin_lock_irqsave(&tc->lock, flags);
422 bio_list_merge(&bios, &tc->retry_on_resume_list);
423 bio_list_init(&tc->retry_on_resume_list);
424 spin_unlock_irqrestore(&tc->lock, flags);
425
426 while ((bio = bio_list_pop(&bios)))
427 bio_io_error(bio);
428 }
429
430 static void error_retry_list(struct pool *pool)
431 {
432 struct thin_c *tc;
433
434 rcu_read_lock();
435 list_for_each_entry_rcu(tc, &pool->active_thins, list)
436 error_thin_retry_list(tc);
437 rcu_read_unlock();
438 }
439
440 /*
441 * This section of code contains the logic for processing a thin device's IO.
442 * Much of the code depends on pool object resources (lists, workqueues, etc)
443 * but most is exclusively called from the thin target rather than the thin-pool
444 * target.
445 */
446
447 static bool block_size_is_power_of_two(struct pool *pool)
448 {
449 return pool->sectors_per_block_shift >= 0;
450 }
451
452 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
453 {
454 struct pool *pool = tc->pool;
455 sector_t block_nr = bio->bi_iter.bi_sector;
456
457 if (block_size_is_power_of_two(pool))
458 block_nr >>= pool->sectors_per_block_shift;
459 else
460 (void) sector_div(block_nr, pool->sectors_per_block);
461
462 return block_nr;
463 }
464
465 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
466 {
467 struct pool *pool = tc->pool;
468 sector_t bi_sector = bio->bi_iter.bi_sector;
469
470 bio->bi_bdev = tc->pool_dev->bdev;
471 if (block_size_is_power_of_two(pool))
472 bio->bi_iter.bi_sector =
473 (block << pool->sectors_per_block_shift) |
474 (bi_sector & (pool->sectors_per_block - 1));
475 else
476 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
477 sector_div(bi_sector, pool->sectors_per_block);
478 }
479
480 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
481 {
482 bio->bi_bdev = tc->origin_dev->bdev;
483 }
484
485 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
486 {
487 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
488 dm_thin_changed_this_transaction(tc->td);
489 }
490
491 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
492 {
493 struct dm_thin_endio_hook *h;
494
495 if (bio->bi_rw & REQ_DISCARD)
496 return;
497
498 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
499 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
500 }
501
502 static void issue(struct thin_c *tc, struct bio *bio)
503 {
504 struct pool *pool = tc->pool;
505 unsigned long flags;
506
507 if (!bio_triggers_commit(tc, bio)) {
508 generic_make_request(bio);
509 return;
510 }
511
512 /*
513 * Complete bio with an error if earlier I/O caused changes to
514 * the metadata that can't be committed e.g, due to I/O errors
515 * on the metadata device.
516 */
517 if (dm_thin_aborted_changes(tc->td)) {
518 bio_io_error(bio);
519 return;
520 }
521
522 /*
523 * Batch together any bios that trigger commits and then issue a
524 * single commit for them in process_deferred_bios().
525 */
526 spin_lock_irqsave(&pool->lock, flags);
527 bio_list_add(&pool->deferred_flush_bios, bio);
528 spin_unlock_irqrestore(&pool->lock, flags);
529 }
530
531 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
532 {
533 remap_to_origin(tc, bio);
534 issue(tc, bio);
535 }
536
537 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
538 dm_block_t block)
539 {
540 remap(tc, bio, block);
541 issue(tc, bio);
542 }
543
544 /*----------------------------------------------------------------*/
545
546 /*
547 * Bio endio functions.
548 */
549 struct dm_thin_new_mapping {
550 struct list_head list;
551
552 bool quiesced:1;
553 bool prepared:1;
554 bool pass_discard:1;
555 bool definitely_not_shared:1;
556
557 int err;
558 struct thin_c *tc;
559 dm_block_t virt_block;
560 dm_block_t data_block;
561 struct dm_bio_prison_cell *cell, *cell2;
562
563 /*
564 * If the bio covers the whole area of a block then we can avoid
565 * zeroing or copying. Instead this bio is hooked. The bio will
566 * still be in the cell, so care has to be taken to avoid issuing
567 * the bio twice.
568 */
569 struct bio *bio;
570 bio_end_io_t *saved_bi_end_io;
571 };
572
573 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
574 {
575 struct pool *pool = m->tc->pool;
576
577 if (m->quiesced && m->prepared) {
578 list_add_tail(&m->list, &pool->prepared_mappings);
579 wake_worker(pool);
580 }
581 }
582
583 static void copy_complete(int read_err, unsigned long write_err, void *context)
584 {
585 unsigned long flags;
586 struct dm_thin_new_mapping *m = context;
587 struct pool *pool = m->tc->pool;
588
589 m->err = read_err || write_err ? -EIO : 0;
590
591 spin_lock_irqsave(&pool->lock, flags);
592 m->prepared = true;
593 __maybe_add_mapping(m);
594 spin_unlock_irqrestore(&pool->lock, flags);
595 }
596
597 static void overwrite_endio(struct bio *bio, int err)
598 {
599 unsigned long flags;
600 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
601 struct dm_thin_new_mapping *m = h->overwrite_mapping;
602 struct pool *pool = m->tc->pool;
603
604 m->err = err;
605
606 spin_lock_irqsave(&pool->lock, flags);
607 m->prepared = true;
608 __maybe_add_mapping(m);
609 spin_unlock_irqrestore(&pool->lock, flags);
610 }
611
612 /*----------------------------------------------------------------*/
613
614 /*
615 * Workqueue.
616 */
617
618 /*
619 * Prepared mapping jobs.
620 */
621
622 /*
623 * This sends the bios in the cell back to the deferred_bios list.
624 */
625 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
626 {
627 struct pool *pool = tc->pool;
628 unsigned long flags;
629
630 spin_lock_irqsave(&tc->lock, flags);
631 cell_release(pool, cell, &tc->deferred_bio_list);
632 spin_unlock_irqrestore(&tc->lock, flags);
633
634 wake_worker(pool);
635 }
636
637 /*
638 * Same as cell_defer above, except it omits the original holder of the cell.
639 */
640 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
641 {
642 struct pool *pool = tc->pool;
643 unsigned long flags;
644
645 spin_lock_irqsave(&tc->lock, flags);
646 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
647 spin_unlock_irqrestore(&tc->lock, flags);
648
649 wake_worker(pool);
650 }
651
652 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
653 {
654 if (m->bio) {
655 m->bio->bi_end_io = m->saved_bi_end_io;
656 atomic_inc(&m->bio->bi_remaining);
657 }
658 cell_error(m->tc->pool, m->cell);
659 list_del(&m->list);
660 mempool_free(m, m->tc->pool->mapping_pool);
661 }
662
663 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
664 {
665 struct thin_c *tc = m->tc;
666 struct pool *pool = tc->pool;
667 struct bio *bio;
668 int r;
669
670 bio = m->bio;
671 if (bio) {
672 bio->bi_end_io = m->saved_bi_end_io;
673 atomic_inc(&bio->bi_remaining);
674 }
675
676 if (m->err) {
677 cell_error(pool, m->cell);
678 goto out;
679 }
680
681 /*
682 * Commit the prepared block into the mapping btree.
683 * Any I/O for this block arriving after this point will get
684 * remapped to it directly.
685 */
686 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
687 if (r) {
688 metadata_operation_failed(pool, "dm_thin_insert_block", r);
689 cell_error(pool, m->cell);
690 goto out;
691 }
692
693 /*
694 * Release any bios held while the block was being provisioned.
695 * If we are processing a write bio that completely covers the block,
696 * we already processed it so can ignore it now when processing
697 * the bios in the cell.
698 */
699 if (bio) {
700 cell_defer_no_holder(tc, m->cell);
701 bio_endio(bio, 0);
702 } else
703 cell_defer(tc, m->cell);
704
705 out:
706 list_del(&m->list);
707 mempool_free(m, pool->mapping_pool);
708 }
709
710 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
711 {
712 struct thin_c *tc = m->tc;
713
714 bio_io_error(m->bio);
715 cell_defer_no_holder(tc, m->cell);
716 cell_defer_no_holder(tc, m->cell2);
717 mempool_free(m, tc->pool->mapping_pool);
718 }
719
720 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
721 {
722 struct thin_c *tc = m->tc;
723
724 inc_all_io_entry(tc->pool, m->bio);
725 cell_defer_no_holder(tc, m->cell);
726 cell_defer_no_holder(tc, m->cell2);
727
728 if (m->pass_discard)
729 if (m->definitely_not_shared)
730 remap_and_issue(tc, m->bio, m->data_block);
731 else {
732 bool used = false;
733 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
734 bio_endio(m->bio, 0);
735 else
736 remap_and_issue(tc, m->bio, m->data_block);
737 }
738 else
739 bio_endio(m->bio, 0);
740
741 mempool_free(m, tc->pool->mapping_pool);
742 }
743
744 static void process_prepared_discard(struct dm_thin_new_mapping *m)
745 {
746 int r;
747 struct thin_c *tc = m->tc;
748
749 r = dm_thin_remove_block(tc->td, m->virt_block);
750 if (r)
751 DMERR_LIMIT("dm_thin_remove_block() failed");
752
753 process_prepared_discard_passdown(m);
754 }
755
756 static void process_prepared(struct pool *pool, struct list_head *head,
757 process_mapping_fn *fn)
758 {
759 unsigned long flags;
760 struct list_head maps;
761 struct dm_thin_new_mapping *m, *tmp;
762
763 INIT_LIST_HEAD(&maps);
764 spin_lock_irqsave(&pool->lock, flags);
765 list_splice_init(head, &maps);
766 spin_unlock_irqrestore(&pool->lock, flags);
767
768 list_for_each_entry_safe(m, tmp, &maps, list)
769 (*fn)(m);
770 }
771
772 /*
773 * Deferred bio jobs.
774 */
775 static int io_overlaps_block(struct pool *pool, struct bio *bio)
776 {
777 return bio->bi_iter.bi_size ==
778 (pool->sectors_per_block << SECTOR_SHIFT);
779 }
780
781 static int io_overwrites_block(struct pool *pool, struct bio *bio)
782 {
783 return (bio_data_dir(bio) == WRITE) &&
784 io_overlaps_block(pool, bio);
785 }
786
787 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
788 bio_end_io_t *fn)
789 {
790 *save = bio->bi_end_io;
791 bio->bi_end_io = fn;
792 }
793
794 static int ensure_next_mapping(struct pool *pool)
795 {
796 if (pool->next_mapping)
797 return 0;
798
799 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
800
801 return pool->next_mapping ? 0 : -ENOMEM;
802 }
803
804 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
805 {
806 struct dm_thin_new_mapping *m = pool->next_mapping;
807
808 BUG_ON(!pool->next_mapping);
809
810 memset(m, 0, sizeof(struct dm_thin_new_mapping));
811 INIT_LIST_HEAD(&m->list);
812 m->bio = NULL;
813
814 pool->next_mapping = NULL;
815
816 return m;
817 }
818
819 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
820 struct dm_dev *origin, dm_block_t data_origin,
821 dm_block_t data_dest,
822 struct dm_bio_prison_cell *cell, struct bio *bio)
823 {
824 int r;
825 struct pool *pool = tc->pool;
826 struct dm_thin_new_mapping *m = get_next_mapping(pool);
827
828 m->tc = tc;
829 m->virt_block = virt_block;
830 m->data_block = data_dest;
831 m->cell = cell;
832
833 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
834 m->quiesced = true;
835
836 /*
837 * IO to pool_dev remaps to the pool target's data_dev.
838 *
839 * If the whole block of data is being overwritten, we can issue the
840 * bio immediately. Otherwise we use kcopyd to clone the data first.
841 */
842 if (io_overwrites_block(pool, bio)) {
843 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
844
845 h->overwrite_mapping = m;
846 m->bio = bio;
847 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
848 inc_all_io_entry(pool, bio);
849 remap_and_issue(tc, bio, data_dest);
850 } else {
851 struct dm_io_region from, to;
852
853 from.bdev = origin->bdev;
854 from.sector = data_origin * pool->sectors_per_block;
855 from.count = pool->sectors_per_block;
856
857 to.bdev = tc->pool_dev->bdev;
858 to.sector = data_dest * pool->sectors_per_block;
859 to.count = pool->sectors_per_block;
860
861 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
862 0, copy_complete, m);
863 if (r < 0) {
864 mempool_free(m, pool->mapping_pool);
865 DMERR_LIMIT("dm_kcopyd_copy() failed");
866 cell_error(pool, cell);
867 }
868 }
869 }
870
871 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
872 dm_block_t data_origin, dm_block_t data_dest,
873 struct dm_bio_prison_cell *cell, struct bio *bio)
874 {
875 schedule_copy(tc, virt_block, tc->pool_dev,
876 data_origin, data_dest, cell, bio);
877 }
878
879 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
880 dm_block_t data_dest,
881 struct dm_bio_prison_cell *cell, struct bio *bio)
882 {
883 schedule_copy(tc, virt_block, tc->origin_dev,
884 virt_block, data_dest, cell, bio);
885 }
886
887 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
888 dm_block_t data_block, struct dm_bio_prison_cell *cell,
889 struct bio *bio)
890 {
891 struct pool *pool = tc->pool;
892 struct dm_thin_new_mapping *m = get_next_mapping(pool);
893
894 m->quiesced = true;
895 m->prepared = false;
896 m->tc = tc;
897 m->virt_block = virt_block;
898 m->data_block = data_block;
899 m->cell = cell;
900
901 /*
902 * If the whole block of data is being overwritten or we are not
903 * zeroing pre-existing data, we can issue the bio immediately.
904 * Otherwise we use kcopyd to zero the data first.
905 */
906 if (!pool->pf.zero_new_blocks)
907 process_prepared_mapping(m);
908
909 else if (io_overwrites_block(pool, bio)) {
910 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
911
912 h->overwrite_mapping = m;
913 m->bio = bio;
914 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
915 inc_all_io_entry(pool, bio);
916 remap_and_issue(tc, bio, data_block);
917 } else {
918 int r;
919 struct dm_io_region to;
920
921 to.bdev = tc->pool_dev->bdev;
922 to.sector = data_block * pool->sectors_per_block;
923 to.count = pool->sectors_per_block;
924
925 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
926 if (r < 0) {
927 mempool_free(m, pool->mapping_pool);
928 DMERR_LIMIT("dm_kcopyd_zero() failed");
929 cell_error(pool, cell);
930 }
931 }
932 }
933
934 /*
935 * A non-zero return indicates read_only or fail_io mode.
936 * Many callers don't care about the return value.
937 */
938 static int commit(struct pool *pool)
939 {
940 int r;
941
942 if (get_pool_mode(pool) >= PM_READ_ONLY)
943 return -EINVAL;
944
945 r = dm_pool_commit_metadata(pool->pmd);
946 if (r)
947 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
948
949 return r;
950 }
951
952 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
953 {
954 unsigned long flags;
955
956 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
957 DMWARN("%s: reached low water mark for data device: sending event.",
958 dm_device_name(pool->pool_md));
959 spin_lock_irqsave(&pool->lock, flags);
960 pool->low_water_triggered = true;
961 spin_unlock_irqrestore(&pool->lock, flags);
962 dm_table_event(pool->ti->table);
963 }
964 }
965
966 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
967
968 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
969 {
970 int r;
971 dm_block_t free_blocks;
972 struct pool *pool = tc->pool;
973
974 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
975 return -EINVAL;
976
977 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
978 if (r) {
979 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
980 return r;
981 }
982
983 check_low_water_mark(pool, free_blocks);
984
985 if (!free_blocks) {
986 /*
987 * Try to commit to see if that will free up some
988 * more space.
989 */
990 r = commit(pool);
991 if (r)
992 return r;
993
994 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
995 if (r) {
996 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
997 return r;
998 }
999
1000 if (!free_blocks) {
1001 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1002 return -ENOSPC;
1003 }
1004 }
1005
1006 r = dm_pool_alloc_data_block(pool->pmd, result);
1007 if (r) {
1008 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1009 return r;
1010 }
1011
1012 return 0;
1013 }
1014
1015 /*
1016 * If we have run out of space, queue bios until the device is
1017 * resumed, presumably after having been reloaded with more space.
1018 */
1019 static void retry_on_resume(struct bio *bio)
1020 {
1021 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1022 struct thin_c *tc = h->tc;
1023 unsigned long flags;
1024
1025 spin_lock_irqsave(&tc->lock, flags);
1026 bio_list_add(&tc->retry_on_resume_list, bio);
1027 spin_unlock_irqrestore(&tc->lock, flags);
1028 }
1029
1030 static bool should_error_unserviceable_bio(struct pool *pool)
1031 {
1032 enum pool_mode m = get_pool_mode(pool);
1033
1034 switch (m) {
1035 case PM_WRITE:
1036 /* Shouldn't get here */
1037 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1038 return true;
1039
1040 case PM_OUT_OF_DATA_SPACE:
1041 return pool->pf.error_if_no_space;
1042
1043 case PM_READ_ONLY:
1044 case PM_FAIL:
1045 return true;
1046 default:
1047 /* Shouldn't get here */
1048 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1049 return true;
1050 }
1051 }
1052
1053 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1054 {
1055 if (should_error_unserviceable_bio(pool))
1056 bio_io_error(bio);
1057 else
1058 retry_on_resume(bio);
1059 }
1060
1061 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1062 {
1063 struct bio *bio;
1064 struct bio_list bios;
1065
1066 if (should_error_unserviceable_bio(pool)) {
1067 cell_error(pool, cell);
1068 return;
1069 }
1070
1071 bio_list_init(&bios);
1072 cell_release(pool, cell, &bios);
1073
1074 if (should_error_unserviceable_bio(pool))
1075 while ((bio = bio_list_pop(&bios)))
1076 bio_io_error(bio);
1077 else
1078 while ((bio = bio_list_pop(&bios)))
1079 retry_on_resume(bio);
1080 }
1081
1082 static void process_discard(struct thin_c *tc, struct bio *bio)
1083 {
1084 int r;
1085 unsigned long flags;
1086 struct pool *pool = tc->pool;
1087 struct dm_bio_prison_cell *cell, *cell2;
1088 struct dm_cell_key key, key2;
1089 dm_block_t block = get_bio_block(tc, bio);
1090 struct dm_thin_lookup_result lookup_result;
1091 struct dm_thin_new_mapping *m;
1092
1093 build_virtual_key(tc->td, block, &key);
1094 if (bio_detain(tc->pool, &key, bio, &cell))
1095 return;
1096
1097 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1098 switch (r) {
1099 case 0:
1100 /*
1101 * Check nobody is fiddling with this pool block. This can
1102 * happen if someone's in the process of breaking sharing
1103 * on this block.
1104 */
1105 build_data_key(tc->td, lookup_result.block, &key2);
1106 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1107 cell_defer_no_holder(tc, cell);
1108 break;
1109 }
1110
1111 if (io_overlaps_block(pool, bio)) {
1112 /*
1113 * IO may still be going to the destination block. We must
1114 * quiesce before we can do the removal.
1115 */
1116 m = get_next_mapping(pool);
1117 m->tc = tc;
1118 m->pass_discard = pool->pf.discard_passdown;
1119 m->definitely_not_shared = !lookup_result.shared;
1120 m->virt_block = block;
1121 m->data_block = lookup_result.block;
1122 m->cell = cell;
1123 m->cell2 = cell2;
1124 m->bio = bio;
1125
1126 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1127 spin_lock_irqsave(&pool->lock, flags);
1128 list_add_tail(&m->list, &pool->prepared_discards);
1129 spin_unlock_irqrestore(&pool->lock, flags);
1130 wake_worker(pool);
1131 }
1132 } else {
1133 inc_all_io_entry(pool, bio);
1134 cell_defer_no_holder(tc, cell);
1135 cell_defer_no_holder(tc, cell2);
1136
1137 /*
1138 * The DM core makes sure that the discard doesn't span
1139 * a block boundary. So we submit the discard of a
1140 * partial block appropriately.
1141 */
1142 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1143 remap_and_issue(tc, bio, lookup_result.block);
1144 else
1145 bio_endio(bio, 0);
1146 }
1147 break;
1148
1149 case -ENODATA:
1150 /*
1151 * It isn't provisioned, just forget it.
1152 */
1153 cell_defer_no_holder(tc, cell);
1154 bio_endio(bio, 0);
1155 break;
1156
1157 default:
1158 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1159 __func__, r);
1160 cell_defer_no_holder(tc, cell);
1161 bio_io_error(bio);
1162 break;
1163 }
1164 }
1165
1166 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1167 struct dm_cell_key *key,
1168 struct dm_thin_lookup_result *lookup_result,
1169 struct dm_bio_prison_cell *cell)
1170 {
1171 int r;
1172 dm_block_t data_block;
1173 struct pool *pool = tc->pool;
1174
1175 r = alloc_data_block(tc, &data_block);
1176 switch (r) {
1177 case 0:
1178 schedule_internal_copy(tc, block, lookup_result->block,
1179 data_block, cell, bio);
1180 break;
1181
1182 case -ENOSPC:
1183 retry_bios_on_resume(pool, cell);
1184 break;
1185
1186 default:
1187 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1188 __func__, r);
1189 cell_error(pool, cell);
1190 break;
1191 }
1192 }
1193
1194 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1195 dm_block_t block,
1196 struct dm_thin_lookup_result *lookup_result)
1197 {
1198 struct dm_bio_prison_cell *cell;
1199 struct pool *pool = tc->pool;
1200 struct dm_cell_key key;
1201
1202 /*
1203 * If cell is already occupied, then sharing is already in the process
1204 * of being broken so we have nothing further to do here.
1205 */
1206 build_data_key(tc->td, lookup_result->block, &key);
1207 if (bio_detain(pool, &key, bio, &cell))
1208 return;
1209
1210 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1211 break_sharing(tc, bio, block, &key, lookup_result, cell);
1212 else {
1213 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1214
1215 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1216 inc_all_io_entry(pool, bio);
1217 cell_defer_no_holder(tc, cell);
1218
1219 remap_and_issue(tc, bio, lookup_result->block);
1220 }
1221 }
1222
1223 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1224 struct dm_bio_prison_cell *cell)
1225 {
1226 int r;
1227 dm_block_t data_block;
1228 struct pool *pool = tc->pool;
1229
1230 /*
1231 * Remap empty bios (flushes) immediately, without provisioning.
1232 */
1233 if (!bio->bi_iter.bi_size) {
1234 inc_all_io_entry(pool, bio);
1235 cell_defer_no_holder(tc, cell);
1236
1237 remap_and_issue(tc, bio, 0);
1238 return;
1239 }
1240
1241 /*
1242 * Fill read bios with zeroes and complete them immediately.
1243 */
1244 if (bio_data_dir(bio) == READ) {
1245 zero_fill_bio(bio);
1246 cell_defer_no_holder(tc, cell);
1247 bio_endio(bio, 0);
1248 return;
1249 }
1250
1251 r = alloc_data_block(tc, &data_block);
1252 switch (r) {
1253 case 0:
1254 if (tc->origin_dev)
1255 schedule_external_copy(tc, block, data_block, cell, bio);
1256 else
1257 schedule_zero(tc, block, data_block, cell, bio);
1258 break;
1259
1260 case -ENOSPC:
1261 retry_bios_on_resume(pool, cell);
1262 break;
1263
1264 default:
1265 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1266 __func__, r);
1267 cell_error(pool, cell);
1268 break;
1269 }
1270 }
1271
1272 static void process_bio(struct thin_c *tc, struct bio *bio)
1273 {
1274 int r;
1275 struct pool *pool = tc->pool;
1276 dm_block_t block = get_bio_block(tc, bio);
1277 struct dm_bio_prison_cell *cell;
1278 struct dm_cell_key key;
1279 struct dm_thin_lookup_result lookup_result;
1280
1281 /*
1282 * If cell is already occupied, then the block is already
1283 * being provisioned so we have nothing further to do here.
1284 */
1285 build_virtual_key(tc->td, block, &key);
1286 if (bio_detain(pool, &key, bio, &cell))
1287 return;
1288
1289 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1290 switch (r) {
1291 case 0:
1292 if (lookup_result.shared) {
1293 process_shared_bio(tc, bio, block, &lookup_result);
1294 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1295 } else {
1296 inc_all_io_entry(pool, bio);
1297 cell_defer_no_holder(tc, cell);
1298
1299 remap_and_issue(tc, bio, lookup_result.block);
1300 }
1301 break;
1302
1303 case -ENODATA:
1304 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1305 inc_all_io_entry(pool, bio);
1306 cell_defer_no_holder(tc, cell);
1307
1308 remap_to_origin_and_issue(tc, bio);
1309 } else
1310 provision_block(tc, bio, block, cell);
1311 break;
1312
1313 default:
1314 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1315 __func__, r);
1316 cell_defer_no_holder(tc, cell);
1317 bio_io_error(bio);
1318 break;
1319 }
1320 }
1321
1322 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1323 {
1324 int r;
1325 int rw = bio_data_dir(bio);
1326 dm_block_t block = get_bio_block(tc, bio);
1327 struct dm_thin_lookup_result lookup_result;
1328
1329 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1330 switch (r) {
1331 case 0:
1332 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1333 handle_unserviceable_bio(tc->pool, bio);
1334 else {
1335 inc_all_io_entry(tc->pool, bio);
1336 remap_and_issue(tc, bio, lookup_result.block);
1337 }
1338 break;
1339
1340 case -ENODATA:
1341 if (rw != READ) {
1342 handle_unserviceable_bio(tc->pool, bio);
1343 break;
1344 }
1345
1346 if (tc->origin_dev) {
1347 inc_all_io_entry(tc->pool, bio);
1348 remap_to_origin_and_issue(tc, bio);
1349 break;
1350 }
1351
1352 zero_fill_bio(bio);
1353 bio_endio(bio, 0);
1354 break;
1355
1356 default:
1357 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1358 __func__, r);
1359 bio_io_error(bio);
1360 break;
1361 }
1362 }
1363
1364 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1365 {
1366 bio_endio(bio, 0);
1367 }
1368
1369 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1370 {
1371 bio_io_error(bio);
1372 }
1373
1374 /*
1375 * FIXME: should we also commit due to size of transaction, measured in
1376 * metadata blocks?
1377 */
1378 static int need_commit_due_to_time(struct pool *pool)
1379 {
1380 return jiffies < pool->last_commit_jiffies ||
1381 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1382 }
1383
1384 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1385 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1386
1387 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1388 {
1389 struct rb_node **rbp, *parent;
1390 struct dm_thin_endio_hook *pbd;
1391 sector_t bi_sector = bio->bi_iter.bi_sector;
1392
1393 rbp = &tc->sort_bio_list.rb_node;
1394 parent = NULL;
1395 while (*rbp) {
1396 parent = *rbp;
1397 pbd = thin_pbd(parent);
1398
1399 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1400 rbp = &(*rbp)->rb_left;
1401 else
1402 rbp = &(*rbp)->rb_right;
1403 }
1404
1405 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1406 rb_link_node(&pbd->rb_node, parent, rbp);
1407 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1408 }
1409
1410 static void __extract_sorted_bios(struct thin_c *tc)
1411 {
1412 struct rb_node *node;
1413 struct dm_thin_endio_hook *pbd;
1414 struct bio *bio;
1415
1416 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1417 pbd = thin_pbd(node);
1418 bio = thin_bio(pbd);
1419
1420 bio_list_add(&tc->deferred_bio_list, bio);
1421 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1422 }
1423
1424 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1425 }
1426
1427 static void __sort_thin_deferred_bios(struct thin_c *tc)
1428 {
1429 struct bio *bio;
1430 struct bio_list bios;
1431
1432 bio_list_init(&bios);
1433 bio_list_merge(&bios, &tc->deferred_bio_list);
1434 bio_list_init(&tc->deferred_bio_list);
1435
1436 /* Sort deferred_bio_list using rb-tree */
1437 while ((bio = bio_list_pop(&bios)))
1438 __thin_bio_rb_add(tc, bio);
1439
1440 /*
1441 * Transfer the sorted bios in sort_bio_list back to
1442 * deferred_bio_list to allow lockless submission of
1443 * all bios.
1444 */
1445 __extract_sorted_bios(tc);
1446 }
1447
1448 static void process_thin_deferred_bios(struct thin_c *tc)
1449 {
1450 struct pool *pool = tc->pool;
1451 unsigned long flags;
1452 struct bio *bio;
1453 struct bio_list bios;
1454 struct blk_plug plug;
1455
1456 if (tc->requeue_mode) {
1457 requeue_bio_list(tc, &tc->deferred_bio_list);
1458 return;
1459 }
1460
1461 bio_list_init(&bios);
1462
1463 spin_lock_irqsave(&tc->lock, flags);
1464
1465 if (bio_list_empty(&tc->deferred_bio_list)) {
1466 spin_unlock_irqrestore(&tc->lock, flags);
1467 return;
1468 }
1469
1470 __sort_thin_deferred_bios(tc);
1471
1472 bio_list_merge(&bios, &tc->deferred_bio_list);
1473 bio_list_init(&tc->deferred_bio_list);
1474
1475 spin_unlock_irqrestore(&tc->lock, flags);
1476
1477 blk_start_plug(&plug);
1478 while ((bio = bio_list_pop(&bios))) {
1479 /*
1480 * If we've got no free new_mapping structs, and processing
1481 * this bio might require one, we pause until there are some
1482 * prepared mappings to process.
1483 */
1484 if (ensure_next_mapping(pool)) {
1485 spin_lock_irqsave(&tc->lock, flags);
1486 bio_list_add(&tc->deferred_bio_list, bio);
1487 bio_list_merge(&tc->deferred_bio_list, &bios);
1488 spin_unlock_irqrestore(&tc->lock, flags);
1489 break;
1490 }
1491
1492 if (bio->bi_rw & REQ_DISCARD)
1493 pool->process_discard(tc, bio);
1494 else
1495 pool->process_bio(tc, bio);
1496 }
1497 blk_finish_plug(&plug);
1498 }
1499
1500 static void thin_get(struct thin_c *tc);
1501 static void thin_put(struct thin_c *tc);
1502
1503 /*
1504 * We can't hold rcu_read_lock() around code that can block. So we
1505 * find a thin with the rcu lock held; bump a refcount; then drop
1506 * the lock.
1507 */
1508 static struct thin_c *get_first_thin(struct pool *pool)
1509 {
1510 struct thin_c *tc = NULL;
1511
1512 rcu_read_lock();
1513 if (!list_empty(&pool->active_thins)) {
1514 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1515 thin_get(tc);
1516 }
1517 rcu_read_unlock();
1518
1519 return tc;
1520 }
1521
1522 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1523 {
1524 struct thin_c *old_tc = tc;
1525
1526 rcu_read_lock();
1527 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1528 thin_get(tc);
1529 thin_put(old_tc);
1530 rcu_read_unlock();
1531 return tc;
1532 }
1533 thin_put(old_tc);
1534 rcu_read_unlock();
1535
1536 return NULL;
1537 }
1538
1539 static void process_deferred_bios(struct pool *pool)
1540 {
1541 unsigned long flags;
1542 struct bio *bio;
1543 struct bio_list bios;
1544 struct thin_c *tc;
1545
1546 tc = get_first_thin(pool);
1547 while (tc) {
1548 process_thin_deferred_bios(tc);
1549 tc = get_next_thin(pool, tc);
1550 }
1551
1552 /*
1553 * If there are any deferred flush bios, we must commit
1554 * the metadata before issuing them.
1555 */
1556 bio_list_init(&bios);
1557 spin_lock_irqsave(&pool->lock, flags);
1558 bio_list_merge(&bios, &pool->deferred_flush_bios);
1559 bio_list_init(&pool->deferred_flush_bios);
1560 spin_unlock_irqrestore(&pool->lock, flags);
1561
1562 if (bio_list_empty(&bios) &&
1563 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1564 return;
1565
1566 if (commit(pool)) {
1567 while ((bio = bio_list_pop(&bios)))
1568 bio_io_error(bio);
1569 return;
1570 }
1571 pool->last_commit_jiffies = jiffies;
1572
1573 while ((bio = bio_list_pop(&bios)))
1574 generic_make_request(bio);
1575 }
1576
1577 static void do_worker(struct work_struct *ws)
1578 {
1579 struct pool *pool = container_of(ws, struct pool, worker);
1580
1581 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1582 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1583 process_deferred_bios(pool);
1584 }
1585
1586 /*
1587 * We want to commit periodically so that not too much
1588 * unwritten data builds up.
1589 */
1590 static void do_waker(struct work_struct *ws)
1591 {
1592 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1593 wake_worker(pool);
1594 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1595 }
1596
1597 /*
1598 * We're holding onto IO to allow userland time to react. After the
1599 * timeout either the pool will have been resized (and thus back in
1600 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
1601 */
1602 static void do_no_space_timeout(struct work_struct *ws)
1603 {
1604 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
1605 no_space_timeout);
1606
1607 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
1608 set_pool_mode(pool, PM_READ_ONLY);
1609 }
1610
1611 /*----------------------------------------------------------------*/
1612
1613 struct pool_work {
1614 struct work_struct worker;
1615 struct completion complete;
1616 };
1617
1618 static struct pool_work *to_pool_work(struct work_struct *ws)
1619 {
1620 return container_of(ws, struct pool_work, worker);
1621 }
1622
1623 static void pool_work_complete(struct pool_work *pw)
1624 {
1625 complete(&pw->complete);
1626 }
1627
1628 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
1629 void (*fn)(struct work_struct *))
1630 {
1631 INIT_WORK_ONSTACK(&pw->worker, fn);
1632 init_completion(&pw->complete);
1633 queue_work(pool->wq, &pw->worker);
1634 wait_for_completion(&pw->complete);
1635 }
1636
1637 /*----------------------------------------------------------------*/
1638
1639 struct noflush_work {
1640 struct pool_work pw;
1641 struct thin_c *tc;
1642 };
1643
1644 static struct noflush_work *to_noflush(struct work_struct *ws)
1645 {
1646 return container_of(to_pool_work(ws), struct noflush_work, pw);
1647 }
1648
1649 static void do_noflush_start(struct work_struct *ws)
1650 {
1651 struct noflush_work *w = to_noflush(ws);
1652 w->tc->requeue_mode = true;
1653 requeue_io(w->tc);
1654 pool_work_complete(&w->pw);
1655 }
1656
1657 static void do_noflush_stop(struct work_struct *ws)
1658 {
1659 struct noflush_work *w = to_noflush(ws);
1660 w->tc->requeue_mode = false;
1661 pool_work_complete(&w->pw);
1662 }
1663
1664 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1665 {
1666 struct noflush_work w;
1667
1668 w.tc = tc;
1669 pool_work_wait(&w.pw, tc->pool, fn);
1670 }
1671
1672 /*----------------------------------------------------------------*/
1673
1674 static enum pool_mode get_pool_mode(struct pool *pool)
1675 {
1676 return pool->pf.mode;
1677 }
1678
1679 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1680 {
1681 dm_table_event(pool->ti->table);
1682 DMINFO("%s: switching pool to %s mode",
1683 dm_device_name(pool->pool_md), new_mode);
1684 }
1685
1686 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1687 {
1688 struct pool_c *pt = pool->ti->private;
1689 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1690 enum pool_mode old_mode = get_pool_mode(pool);
1691 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
1692
1693 /*
1694 * Never allow the pool to transition to PM_WRITE mode if user
1695 * intervention is required to verify metadata and data consistency.
1696 */
1697 if (new_mode == PM_WRITE && needs_check) {
1698 DMERR("%s: unable to switch pool to write mode until repaired.",
1699 dm_device_name(pool->pool_md));
1700 if (old_mode != new_mode)
1701 new_mode = old_mode;
1702 else
1703 new_mode = PM_READ_ONLY;
1704 }
1705 /*
1706 * If we were in PM_FAIL mode, rollback of metadata failed. We're
1707 * not going to recover without a thin_repair. So we never let the
1708 * pool move out of the old mode.
1709 */
1710 if (old_mode == PM_FAIL)
1711 new_mode = old_mode;
1712
1713 switch (new_mode) {
1714 case PM_FAIL:
1715 if (old_mode != new_mode)
1716 notify_of_pool_mode_change(pool, "failure");
1717 dm_pool_metadata_read_only(pool->pmd);
1718 pool->process_bio = process_bio_fail;
1719 pool->process_discard = process_bio_fail;
1720 pool->process_prepared_mapping = process_prepared_mapping_fail;
1721 pool->process_prepared_discard = process_prepared_discard_fail;
1722
1723 error_retry_list(pool);
1724 break;
1725
1726 case PM_READ_ONLY:
1727 if (old_mode != new_mode)
1728 notify_of_pool_mode_change(pool, "read-only");
1729 dm_pool_metadata_read_only(pool->pmd);
1730 pool->process_bio = process_bio_read_only;
1731 pool->process_discard = process_bio_success;
1732 pool->process_prepared_mapping = process_prepared_mapping_fail;
1733 pool->process_prepared_discard = process_prepared_discard_passdown;
1734
1735 error_retry_list(pool);
1736 break;
1737
1738 case PM_OUT_OF_DATA_SPACE:
1739 /*
1740 * Ideally we'd never hit this state; the low water mark
1741 * would trigger userland to extend the pool before we
1742 * completely run out of data space. However, many small
1743 * IOs to unprovisioned space can consume data space at an
1744 * alarming rate. Adjust your low water mark if you're
1745 * frequently seeing this mode.
1746 */
1747 if (old_mode != new_mode)
1748 notify_of_pool_mode_change(pool, "out-of-data-space");
1749 pool->process_bio = process_bio_read_only;
1750 pool->process_discard = process_discard;
1751 pool->process_prepared_mapping = process_prepared_mapping;
1752 pool->process_prepared_discard = process_prepared_discard_passdown;
1753
1754 if (!pool->pf.error_if_no_space && no_space_timeout)
1755 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
1756 break;
1757
1758 case PM_WRITE:
1759 if (old_mode != new_mode)
1760 notify_of_pool_mode_change(pool, "write");
1761 dm_pool_metadata_read_write(pool->pmd);
1762 pool->process_bio = process_bio;
1763 pool->process_discard = process_discard;
1764 pool->process_prepared_mapping = process_prepared_mapping;
1765 pool->process_prepared_discard = process_prepared_discard;
1766 break;
1767 }
1768
1769 pool->pf.mode = new_mode;
1770 /*
1771 * The pool mode may have changed, sync it so bind_control_target()
1772 * doesn't cause an unexpected mode transition on resume.
1773 */
1774 pt->adjusted_pf.mode = new_mode;
1775 }
1776
1777 static void abort_transaction(struct pool *pool)
1778 {
1779 const char *dev_name = dm_device_name(pool->pool_md);
1780
1781 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1782 if (dm_pool_abort_metadata(pool->pmd)) {
1783 DMERR("%s: failed to abort metadata transaction", dev_name);
1784 set_pool_mode(pool, PM_FAIL);
1785 }
1786
1787 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1788 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1789 set_pool_mode(pool, PM_FAIL);
1790 }
1791 }
1792
1793 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1794 {
1795 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1796 dm_device_name(pool->pool_md), op, r);
1797
1798 abort_transaction(pool);
1799 set_pool_mode(pool, PM_READ_ONLY);
1800 }
1801
1802 /*----------------------------------------------------------------*/
1803
1804 /*
1805 * Mapping functions.
1806 */
1807
1808 /*
1809 * Called only while mapping a thin bio to hand it over to the workqueue.
1810 */
1811 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1812 {
1813 unsigned long flags;
1814 struct pool *pool = tc->pool;
1815
1816 spin_lock_irqsave(&tc->lock, flags);
1817 bio_list_add(&tc->deferred_bio_list, bio);
1818 spin_unlock_irqrestore(&tc->lock, flags);
1819
1820 wake_worker(pool);
1821 }
1822
1823 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1824 {
1825 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1826
1827 h->tc = tc;
1828 h->shared_read_entry = NULL;
1829 h->all_io_entry = NULL;
1830 h->overwrite_mapping = NULL;
1831 }
1832
1833 /*
1834 * Non-blocking function called from the thin target's map function.
1835 */
1836 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1837 {
1838 int r;
1839 struct thin_c *tc = ti->private;
1840 dm_block_t block = get_bio_block(tc, bio);
1841 struct dm_thin_device *td = tc->td;
1842 struct dm_thin_lookup_result result;
1843 struct dm_bio_prison_cell cell1, cell2;
1844 struct dm_bio_prison_cell *cell_result;
1845 struct dm_cell_key key;
1846
1847 thin_hook_bio(tc, bio);
1848
1849 if (tc->requeue_mode) {
1850 bio_endio(bio, DM_ENDIO_REQUEUE);
1851 return DM_MAPIO_SUBMITTED;
1852 }
1853
1854 if (get_pool_mode(tc->pool) == PM_FAIL) {
1855 bio_io_error(bio);
1856 return DM_MAPIO_SUBMITTED;
1857 }
1858
1859 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1860 thin_defer_bio(tc, bio);
1861 return DM_MAPIO_SUBMITTED;
1862 }
1863
1864 r = dm_thin_find_block(td, block, 0, &result);
1865
1866 /*
1867 * Note that we defer readahead too.
1868 */
1869 switch (r) {
1870 case 0:
1871 if (unlikely(result.shared)) {
1872 /*
1873 * We have a race condition here between the
1874 * result.shared value returned by the lookup and
1875 * snapshot creation, which may cause new
1876 * sharing.
1877 *
1878 * To avoid this always quiesce the origin before
1879 * taking the snap. You want to do this anyway to
1880 * ensure a consistent application view
1881 * (i.e. lockfs).
1882 *
1883 * More distant ancestors are irrelevant. The
1884 * shared flag will be set in their case.
1885 */
1886 thin_defer_bio(tc, bio);
1887 return DM_MAPIO_SUBMITTED;
1888 }
1889
1890 build_virtual_key(tc->td, block, &key);
1891 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1892 return DM_MAPIO_SUBMITTED;
1893
1894 build_data_key(tc->td, result.block, &key);
1895 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1896 cell_defer_no_holder_no_free(tc, &cell1);
1897 return DM_MAPIO_SUBMITTED;
1898 }
1899
1900 inc_all_io_entry(tc->pool, bio);
1901 cell_defer_no_holder_no_free(tc, &cell2);
1902 cell_defer_no_holder_no_free(tc, &cell1);
1903
1904 remap(tc, bio, result.block);
1905 return DM_MAPIO_REMAPPED;
1906
1907 case -ENODATA:
1908 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1909 /*
1910 * This block isn't provisioned, and we have no way
1911 * of doing so.
1912 */
1913 handle_unserviceable_bio(tc->pool, bio);
1914 return DM_MAPIO_SUBMITTED;
1915 }
1916 /* fall through */
1917
1918 case -EWOULDBLOCK:
1919 /*
1920 * In future, the failed dm_thin_find_block above could
1921 * provide the hint to load the metadata into cache.
1922 */
1923 thin_defer_bio(tc, bio);
1924 return DM_MAPIO_SUBMITTED;
1925
1926 default:
1927 /*
1928 * Must always call bio_io_error on failure.
1929 * dm_thin_find_block can fail with -EINVAL if the
1930 * pool is switched to fail-io mode.
1931 */
1932 bio_io_error(bio);
1933 return DM_MAPIO_SUBMITTED;
1934 }
1935 }
1936
1937 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1938 {
1939 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1940 struct request_queue *q;
1941
1942 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
1943 return 1;
1944
1945 q = bdev_get_queue(pt->data_dev->bdev);
1946 return bdi_congested(&q->backing_dev_info, bdi_bits);
1947 }
1948
1949 static void requeue_bios(struct pool *pool)
1950 {
1951 unsigned long flags;
1952 struct thin_c *tc;
1953
1954 rcu_read_lock();
1955 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
1956 spin_lock_irqsave(&tc->lock, flags);
1957 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
1958 bio_list_init(&tc->retry_on_resume_list);
1959 spin_unlock_irqrestore(&tc->lock, flags);
1960 }
1961 rcu_read_unlock();
1962 }
1963
1964 /*----------------------------------------------------------------
1965 * Binding of control targets to a pool object
1966 *--------------------------------------------------------------*/
1967 static bool data_dev_supports_discard(struct pool_c *pt)
1968 {
1969 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1970
1971 return q && blk_queue_discard(q);
1972 }
1973
1974 static bool is_factor(sector_t block_size, uint32_t n)
1975 {
1976 return !sector_div(block_size, n);
1977 }
1978
1979 /*
1980 * If discard_passdown was enabled verify that the data device
1981 * supports discards. Disable discard_passdown if not.
1982 */
1983 static void disable_passdown_if_not_supported(struct pool_c *pt)
1984 {
1985 struct pool *pool = pt->pool;
1986 struct block_device *data_bdev = pt->data_dev->bdev;
1987 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1988 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1989 const char *reason = NULL;
1990 char buf[BDEVNAME_SIZE];
1991
1992 if (!pt->adjusted_pf.discard_passdown)
1993 return;
1994
1995 if (!data_dev_supports_discard(pt))
1996 reason = "discard unsupported";
1997
1998 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1999 reason = "max discard sectors smaller than a block";
2000
2001 else if (data_limits->discard_granularity > block_size)
2002 reason = "discard granularity larger than a block";
2003
2004 else if (!is_factor(block_size, data_limits->discard_granularity))
2005 reason = "discard granularity not a factor of block size";
2006
2007 if (reason) {
2008 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2009 pt->adjusted_pf.discard_passdown = false;
2010 }
2011 }
2012
2013 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2014 {
2015 struct pool_c *pt = ti->private;
2016
2017 /*
2018 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2019 */
2020 enum pool_mode old_mode = get_pool_mode(pool);
2021 enum pool_mode new_mode = pt->adjusted_pf.mode;
2022
2023 /*
2024 * Don't change the pool's mode until set_pool_mode() below.
2025 * Otherwise the pool's process_* function pointers may
2026 * not match the desired pool mode.
2027 */
2028 pt->adjusted_pf.mode = old_mode;
2029
2030 pool->ti = ti;
2031 pool->pf = pt->adjusted_pf;
2032 pool->low_water_blocks = pt->low_water_blocks;
2033
2034 set_pool_mode(pool, new_mode);
2035
2036 return 0;
2037 }
2038
2039 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2040 {
2041 if (pool->ti == ti)
2042 pool->ti = NULL;
2043 }
2044
2045 /*----------------------------------------------------------------
2046 * Pool creation
2047 *--------------------------------------------------------------*/
2048 /* Initialize pool features. */
2049 static void pool_features_init(struct pool_features *pf)
2050 {
2051 pf->mode = PM_WRITE;
2052 pf->zero_new_blocks = true;
2053 pf->discard_enabled = true;
2054 pf->discard_passdown = true;
2055 pf->error_if_no_space = false;
2056 }
2057
2058 static void __pool_destroy(struct pool *pool)
2059 {
2060 __pool_table_remove(pool);
2061
2062 if (dm_pool_metadata_close(pool->pmd) < 0)
2063 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2064
2065 dm_bio_prison_destroy(pool->prison);
2066 dm_kcopyd_client_destroy(pool->copier);
2067
2068 if (pool->wq)
2069 destroy_workqueue(pool->wq);
2070
2071 if (pool->next_mapping)
2072 mempool_free(pool->next_mapping, pool->mapping_pool);
2073 mempool_destroy(pool->mapping_pool);
2074 dm_deferred_set_destroy(pool->shared_read_ds);
2075 dm_deferred_set_destroy(pool->all_io_ds);
2076 kfree(pool);
2077 }
2078
2079 static struct kmem_cache *_new_mapping_cache;
2080
2081 static struct pool *pool_create(struct mapped_device *pool_md,
2082 struct block_device *metadata_dev,
2083 unsigned long block_size,
2084 int read_only, char **error)
2085 {
2086 int r;
2087 void *err_p;
2088 struct pool *pool;
2089 struct dm_pool_metadata *pmd;
2090 bool format_device = read_only ? false : true;
2091
2092 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2093 if (IS_ERR(pmd)) {
2094 *error = "Error creating metadata object";
2095 return (struct pool *)pmd;
2096 }
2097
2098 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2099 if (!pool) {
2100 *error = "Error allocating memory for pool";
2101 err_p = ERR_PTR(-ENOMEM);
2102 goto bad_pool;
2103 }
2104
2105 pool->pmd = pmd;
2106 pool->sectors_per_block = block_size;
2107 if (block_size & (block_size - 1))
2108 pool->sectors_per_block_shift = -1;
2109 else
2110 pool->sectors_per_block_shift = __ffs(block_size);
2111 pool->low_water_blocks = 0;
2112 pool_features_init(&pool->pf);
2113 pool->prison = dm_bio_prison_create(PRISON_CELLS);
2114 if (!pool->prison) {
2115 *error = "Error creating pool's bio prison";
2116 err_p = ERR_PTR(-ENOMEM);
2117 goto bad_prison;
2118 }
2119
2120 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2121 if (IS_ERR(pool->copier)) {
2122 r = PTR_ERR(pool->copier);
2123 *error = "Error creating pool's kcopyd client";
2124 err_p = ERR_PTR(r);
2125 goto bad_kcopyd_client;
2126 }
2127
2128 /*
2129 * Create singlethreaded workqueue that will service all devices
2130 * that use this metadata.
2131 */
2132 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2133 if (!pool->wq) {
2134 *error = "Error creating pool's workqueue";
2135 err_p = ERR_PTR(-ENOMEM);
2136 goto bad_wq;
2137 }
2138
2139 INIT_WORK(&pool->worker, do_worker);
2140 INIT_DELAYED_WORK(&pool->waker, do_waker);
2141 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2142 spin_lock_init(&pool->lock);
2143 bio_list_init(&pool->deferred_flush_bios);
2144 INIT_LIST_HEAD(&pool->prepared_mappings);
2145 INIT_LIST_HEAD(&pool->prepared_discards);
2146 INIT_LIST_HEAD(&pool->active_thins);
2147 pool->low_water_triggered = false;
2148
2149 pool->shared_read_ds = dm_deferred_set_create();
2150 if (!pool->shared_read_ds) {
2151 *error = "Error creating pool's shared read deferred set";
2152 err_p = ERR_PTR(-ENOMEM);
2153 goto bad_shared_read_ds;
2154 }
2155
2156 pool->all_io_ds = dm_deferred_set_create();
2157 if (!pool->all_io_ds) {
2158 *error = "Error creating pool's all io deferred set";
2159 err_p = ERR_PTR(-ENOMEM);
2160 goto bad_all_io_ds;
2161 }
2162
2163 pool->next_mapping = NULL;
2164 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2165 _new_mapping_cache);
2166 if (!pool->mapping_pool) {
2167 *error = "Error creating pool's mapping mempool";
2168 err_p = ERR_PTR(-ENOMEM);
2169 goto bad_mapping_pool;
2170 }
2171
2172 pool->ref_count = 1;
2173 pool->last_commit_jiffies = jiffies;
2174 pool->pool_md = pool_md;
2175 pool->md_dev = metadata_dev;
2176 __pool_table_insert(pool);
2177
2178 return pool;
2179
2180 bad_mapping_pool:
2181 dm_deferred_set_destroy(pool->all_io_ds);
2182 bad_all_io_ds:
2183 dm_deferred_set_destroy(pool->shared_read_ds);
2184 bad_shared_read_ds:
2185 destroy_workqueue(pool->wq);
2186 bad_wq:
2187 dm_kcopyd_client_destroy(pool->copier);
2188 bad_kcopyd_client:
2189 dm_bio_prison_destroy(pool->prison);
2190 bad_prison:
2191 kfree(pool);
2192 bad_pool:
2193 if (dm_pool_metadata_close(pmd))
2194 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2195
2196 return err_p;
2197 }
2198
2199 static void __pool_inc(struct pool *pool)
2200 {
2201 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2202 pool->ref_count++;
2203 }
2204
2205 static void __pool_dec(struct pool *pool)
2206 {
2207 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2208 BUG_ON(!pool->ref_count);
2209 if (!--pool->ref_count)
2210 __pool_destroy(pool);
2211 }
2212
2213 static struct pool *__pool_find(struct mapped_device *pool_md,
2214 struct block_device *metadata_dev,
2215 unsigned long block_size, int read_only,
2216 char **error, int *created)
2217 {
2218 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2219
2220 if (pool) {
2221 if (pool->pool_md != pool_md) {
2222 *error = "metadata device already in use by a pool";
2223 return ERR_PTR(-EBUSY);
2224 }
2225 __pool_inc(pool);
2226
2227 } else {
2228 pool = __pool_table_lookup(pool_md);
2229 if (pool) {
2230 if (pool->md_dev != metadata_dev) {
2231 *error = "different pool cannot replace a pool";
2232 return ERR_PTR(-EINVAL);
2233 }
2234 __pool_inc(pool);
2235
2236 } else {
2237 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2238 *created = 1;
2239 }
2240 }
2241
2242 return pool;
2243 }
2244
2245 /*----------------------------------------------------------------
2246 * Pool target methods
2247 *--------------------------------------------------------------*/
2248 static void pool_dtr(struct dm_target *ti)
2249 {
2250 struct pool_c *pt = ti->private;
2251
2252 mutex_lock(&dm_thin_pool_table.mutex);
2253
2254 unbind_control_target(pt->pool, ti);
2255 __pool_dec(pt->pool);
2256 dm_put_device(ti, pt->metadata_dev);
2257 dm_put_device(ti, pt->data_dev);
2258 kfree(pt);
2259
2260 mutex_unlock(&dm_thin_pool_table.mutex);
2261 }
2262
2263 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2264 struct dm_target *ti)
2265 {
2266 int r;
2267 unsigned argc;
2268 const char *arg_name;
2269
2270 static struct dm_arg _args[] = {
2271 {0, 4, "Invalid number of pool feature arguments"},
2272 };
2273
2274 /*
2275 * No feature arguments supplied.
2276 */
2277 if (!as->argc)
2278 return 0;
2279
2280 r = dm_read_arg_group(_args, as, &argc, &ti->error);
2281 if (r)
2282 return -EINVAL;
2283
2284 while (argc && !r) {
2285 arg_name = dm_shift_arg(as);
2286 argc--;
2287
2288 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2289 pf->zero_new_blocks = false;
2290
2291 else if (!strcasecmp(arg_name, "ignore_discard"))
2292 pf->discard_enabled = false;
2293
2294 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2295 pf->discard_passdown = false;
2296
2297 else if (!strcasecmp(arg_name, "read_only"))
2298 pf->mode = PM_READ_ONLY;
2299
2300 else if (!strcasecmp(arg_name, "error_if_no_space"))
2301 pf->error_if_no_space = true;
2302
2303 else {
2304 ti->error = "Unrecognised pool feature requested";
2305 r = -EINVAL;
2306 break;
2307 }
2308 }
2309
2310 return r;
2311 }
2312
2313 static void metadata_low_callback(void *context)
2314 {
2315 struct pool *pool = context;
2316
2317 DMWARN("%s: reached low water mark for metadata device: sending event.",
2318 dm_device_name(pool->pool_md));
2319
2320 dm_table_event(pool->ti->table);
2321 }
2322
2323 static sector_t get_dev_size(struct block_device *bdev)
2324 {
2325 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2326 }
2327
2328 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2329 {
2330 sector_t metadata_dev_size = get_dev_size(bdev);
2331 char buffer[BDEVNAME_SIZE];
2332
2333 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2334 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2335 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2336 }
2337
2338 static sector_t get_metadata_dev_size(struct block_device *bdev)
2339 {
2340 sector_t metadata_dev_size = get_dev_size(bdev);
2341
2342 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2343 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2344
2345 return metadata_dev_size;
2346 }
2347
2348 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2349 {
2350 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2351
2352 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2353
2354 return metadata_dev_size;
2355 }
2356
2357 /*
2358 * When a metadata threshold is crossed a dm event is triggered, and
2359 * userland should respond by growing the metadata device. We could let
2360 * userland set the threshold, like we do with the data threshold, but I'm
2361 * not sure they know enough to do this well.
2362 */
2363 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2364 {
2365 /*
2366 * 4M is ample for all ops with the possible exception of thin
2367 * device deletion which is harmless if it fails (just retry the
2368 * delete after you've grown the device).
2369 */
2370 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2371 return min((dm_block_t)1024ULL /* 4M */, quarter);
2372 }
2373
2374 /*
2375 * thin-pool <metadata dev> <data dev>
2376 * <data block size (sectors)>
2377 * <low water mark (blocks)>
2378 * [<#feature args> [<arg>]*]
2379 *
2380 * Optional feature arguments are:
2381 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2382 * ignore_discard: disable discard
2383 * no_discard_passdown: don't pass discards down to the data device
2384 * read_only: Don't allow any changes to be made to the pool metadata.
2385 * error_if_no_space: error IOs, instead of queueing, if no space.
2386 */
2387 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2388 {
2389 int r, pool_created = 0;
2390 struct pool_c *pt;
2391 struct pool *pool;
2392 struct pool_features pf;
2393 struct dm_arg_set as;
2394 struct dm_dev *data_dev;
2395 unsigned long block_size;
2396 dm_block_t low_water_blocks;
2397 struct dm_dev *metadata_dev;
2398 fmode_t metadata_mode;
2399
2400 /*
2401 * FIXME Remove validation from scope of lock.
2402 */
2403 mutex_lock(&dm_thin_pool_table.mutex);
2404
2405 if (argc < 4) {
2406 ti->error = "Invalid argument count";
2407 r = -EINVAL;
2408 goto out_unlock;
2409 }
2410
2411 as.argc = argc;
2412 as.argv = argv;
2413
2414 /*
2415 * Set default pool features.
2416 */
2417 pool_features_init(&pf);
2418
2419 dm_consume_args(&as, 4);
2420 r = parse_pool_features(&as, &pf, ti);
2421 if (r)
2422 goto out_unlock;
2423
2424 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2425 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2426 if (r) {
2427 ti->error = "Error opening metadata block device";
2428 goto out_unlock;
2429 }
2430 warn_if_metadata_device_too_big(metadata_dev->bdev);
2431
2432 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2433 if (r) {
2434 ti->error = "Error getting data device";
2435 goto out_metadata;
2436 }
2437
2438 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2439 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2440 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2441 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2442 ti->error = "Invalid block size";
2443 r = -EINVAL;
2444 goto out;
2445 }
2446
2447 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2448 ti->error = "Invalid low water mark";
2449 r = -EINVAL;
2450 goto out;
2451 }
2452
2453 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2454 if (!pt) {
2455 r = -ENOMEM;
2456 goto out;
2457 }
2458
2459 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2460 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2461 if (IS_ERR(pool)) {
2462 r = PTR_ERR(pool);
2463 goto out_free_pt;
2464 }
2465
2466 /*
2467 * 'pool_created' reflects whether this is the first table load.
2468 * Top level discard support is not allowed to be changed after
2469 * initial load. This would require a pool reload to trigger thin
2470 * device changes.
2471 */
2472 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2473 ti->error = "Discard support cannot be disabled once enabled";
2474 r = -EINVAL;
2475 goto out_flags_changed;
2476 }
2477
2478 pt->pool = pool;
2479 pt->ti = ti;
2480 pt->metadata_dev = metadata_dev;
2481 pt->data_dev = data_dev;
2482 pt->low_water_blocks = low_water_blocks;
2483 pt->adjusted_pf = pt->requested_pf = pf;
2484 ti->num_flush_bios = 1;
2485
2486 /*
2487 * Only need to enable discards if the pool should pass
2488 * them down to the data device. The thin device's discard
2489 * processing will cause mappings to be removed from the btree.
2490 */
2491 ti->discard_zeroes_data_unsupported = true;
2492 if (pf.discard_enabled && pf.discard_passdown) {
2493 ti->num_discard_bios = 1;
2494
2495 /*
2496 * Setting 'discards_supported' circumvents the normal
2497 * stacking of discard limits (this keeps the pool and
2498 * thin devices' discard limits consistent).
2499 */
2500 ti->discards_supported = true;
2501 }
2502 ti->private = pt;
2503
2504 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2505 calc_metadata_threshold(pt),
2506 metadata_low_callback,
2507 pool);
2508 if (r)
2509 goto out_free_pt;
2510
2511 pt->callbacks.congested_fn = pool_is_congested;
2512 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2513
2514 mutex_unlock(&dm_thin_pool_table.mutex);
2515
2516 return 0;
2517
2518 out_flags_changed:
2519 __pool_dec(pool);
2520 out_free_pt:
2521 kfree(pt);
2522 out:
2523 dm_put_device(ti, data_dev);
2524 out_metadata:
2525 dm_put_device(ti, metadata_dev);
2526 out_unlock:
2527 mutex_unlock(&dm_thin_pool_table.mutex);
2528
2529 return r;
2530 }
2531
2532 static int pool_map(struct dm_target *ti, struct bio *bio)
2533 {
2534 int r;
2535 struct pool_c *pt = ti->private;
2536 struct pool *pool = pt->pool;
2537 unsigned long flags;
2538
2539 /*
2540 * As this is a singleton target, ti->begin is always zero.
2541 */
2542 spin_lock_irqsave(&pool->lock, flags);
2543 bio->bi_bdev = pt->data_dev->bdev;
2544 r = DM_MAPIO_REMAPPED;
2545 spin_unlock_irqrestore(&pool->lock, flags);
2546
2547 return r;
2548 }
2549
2550 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2551 {
2552 int r;
2553 struct pool_c *pt = ti->private;
2554 struct pool *pool = pt->pool;
2555 sector_t data_size = ti->len;
2556 dm_block_t sb_data_size;
2557
2558 *need_commit = false;
2559
2560 (void) sector_div(data_size, pool->sectors_per_block);
2561
2562 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2563 if (r) {
2564 DMERR("%s: failed to retrieve data device size",
2565 dm_device_name(pool->pool_md));
2566 return r;
2567 }
2568
2569 if (data_size < sb_data_size) {
2570 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2571 dm_device_name(pool->pool_md),
2572 (unsigned long long)data_size, sb_data_size);
2573 return -EINVAL;
2574
2575 } else if (data_size > sb_data_size) {
2576 if (dm_pool_metadata_needs_check(pool->pmd)) {
2577 DMERR("%s: unable to grow the data device until repaired.",
2578 dm_device_name(pool->pool_md));
2579 return 0;
2580 }
2581
2582 if (sb_data_size)
2583 DMINFO("%s: growing the data device from %llu to %llu blocks",
2584 dm_device_name(pool->pool_md),
2585 sb_data_size, (unsigned long long)data_size);
2586 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2587 if (r) {
2588 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2589 return r;
2590 }
2591
2592 *need_commit = true;
2593 }
2594
2595 return 0;
2596 }
2597
2598 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2599 {
2600 int r;
2601 struct pool_c *pt = ti->private;
2602 struct pool *pool = pt->pool;
2603 dm_block_t metadata_dev_size, sb_metadata_dev_size;
2604
2605 *need_commit = false;
2606
2607 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2608
2609 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2610 if (r) {
2611 DMERR("%s: failed to retrieve metadata device size",
2612 dm_device_name(pool->pool_md));
2613 return r;
2614 }
2615
2616 if (metadata_dev_size < sb_metadata_dev_size) {
2617 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2618 dm_device_name(pool->pool_md),
2619 metadata_dev_size, sb_metadata_dev_size);
2620 return -EINVAL;
2621
2622 } else if (metadata_dev_size > sb_metadata_dev_size) {
2623 if (dm_pool_metadata_needs_check(pool->pmd)) {
2624 DMERR("%s: unable to grow the metadata device until repaired.",
2625 dm_device_name(pool->pool_md));
2626 return 0;
2627 }
2628
2629 warn_if_metadata_device_too_big(pool->md_dev);
2630 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2631 dm_device_name(pool->pool_md),
2632 sb_metadata_dev_size, metadata_dev_size);
2633 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2634 if (r) {
2635 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2636 return r;
2637 }
2638
2639 *need_commit = true;
2640 }
2641
2642 return 0;
2643 }
2644
2645 /*
2646 * Retrieves the number of blocks of the data device from
2647 * the superblock and compares it to the actual device size,
2648 * thus resizing the data device in case it has grown.
2649 *
2650 * This both copes with opening preallocated data devices in the ctr
2651 * being followed by a resume
2652 * -and-
2653 * calling the resume method individually after userspace has
2654 * grown the data device in reaction to a table event.
2655 */
2656 static int pool_preresume(struct dm_target *ti)
2657 {
2658 int r;
2659 bool need_commit1, need_commit2;
2660 struct pool_c *pt = ti->private;
2661 struct pool *pool = pt->pool;
2662
2663 /*
2664 * Take control of the pool object.
2665 */
2666 r = bind_control_target(pool, ti);
2667 if (r)
2668 return r;
2669
2670 r = maybe_resize_data_dev(ti, &need_commit1);
2671 if (r)
2672 return r;
2673
2674 r = maybe_resize_metadata_dev(ti, &need_commit2);
2675 if (r)
2676 return r;
2677
2678 if (need_commit1 || need_commit2)
2679 (void) commit(pool);
2680
2681 return 0;
2682 }
2683
2684 static void pool_resume(struct dm_target *ti)
2685 {
2686 struct pool_c *pt = ti->private;
2687 struct pool *pool = pt->pool;
2688 unsigned long flags;
2689
2690 spin_lock_irqsave(&pool->lock, flags);
2691 pool->low_water_triggered = false;
2692 spin_unlock_irqrestore(&pool->lock, flags);
2693 requeue_bios(pool);
2694
2695 do_waker(&pool->waker.work);
2696 }
2697
2698 static void pool_postsuspend(struct dm_target *ti)
2699 {
2700 struct pool_c *pt = ti->private;
2701 struct pool *pool = pt->pool;
2702
2703 cancel_delayed_work(&pool->waker);
2704 cancel_delayed_work(&pool->no_space_timeout);
2705 flush_workqueue(pool->wq);
2706 (void) commit(pool);
2707 }
2708
2709 static int check_arg_count(unsigned argc, unsigned args_required)
2710 {
2711 if (argc != args_required) {
2712 DMWARN("Message received with %u arguments instead of %u.",
2713 argc, args_required);
2714 return -EINVAL;
2715 }
2716
2717 return 0;
2718 }
2719
2720 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2721 {
2722 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2723 *dev_id <= MAX_DEV_ID)
2724 return 0;
2725
2726 if (warning)
2727 DMWARN("Message received with invalid device id: %s", arg);
2728
2729 return -EINVAL;
2730 }
2731
2732 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2733 {
2734 dm_thin_id dev_id;
2735 int r;
2736
2737 r = check_arg_count(argc, 2);
2738 if (r)
2739 return r;
2740
2741 r = read_dev_id(argv[1], &dev_id, 1);
2742 if (r)
2743 return r;
2744
2745 r = dm_pool_create_thin(pool->pmd, dev_id);
2746 if (r) {
2747 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2748 argv[1]);
2749 return r;
2750 }
2751
2752 return 0;
2753 }
2754
2755 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2756 {
2757 dm_thin_id dev_id;
2758 dm_thin_id origin_dev_id;
2759 int r;
2760
2761 r = check_arg_count(argc, 3);
2762 if (r)
2763 return r;
2764
2765 r = read_dev_id(argv[1], &dev_id, 1);
2766 if (r)
2767 return r;
2768
2769 r = read_dev_id(argv[2], &origin_dev_id, 1);
2770 if (r)
2771 return r;
2772
2773 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2774 if (r) {
2775 DMWARN("Creation of new snapshot %s of device %s failed.",
2776 argv[1], argv[2]);
2777 return r;
2778 }
2779
2780 return 0;
2781 }
2782
2783 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2784 {
2785 dm_thin_id dev_id;
2786 int r;
2787
2788 r = check_arg_count(argc, 2);
2789 if (r)
2790 return r;
2791
2792 r = read_dev_id(argv[1], &dev_id, 1);
2793 if (r)
2794 return r;
2795
2796 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2797 if (r)
2798 DMWARN("Deletion of thin device %s failed.", argv[1]);
2799
2800 return r;
2801 }
2802
2803 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2804 {
2805 dm_thin_id old_id, new_id;
2806 int r;
2807
2808 r = check_arg_count(argc, 3);
2809 if (r)
2810 return r;
2811
2812 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2813 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2814 return -EINVAL;
2815 }
2816
2817 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2818 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2819 return -EINVAL;
2820 }
2821
2822 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2823 if (r) {
2824 DMWARN("Failed to change transaction id from %s to %s.",
2825 argv[1], argv[2]);
2826 return r;
2827 }
2828
2829 return 0;
2830 }
2831
2832 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2833 {
2834 int r;
2835
2836 r = check_arg_count(argc, 1);
2837 if (r)
2838 return r;
2839
2840 (void) commit(pool);
2841
2842 r = dm_pool_reserve_metadata_snap(pool->pmd);
2843 if (r)
2844 DMWARN("reserve_metadata_snap message failed.");
2845
2846 return r;
2847 }
2848
2849 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2850 {
2851 int r;
2852
2853 r = check_arg_count(argc, 1);
2854 if (r)
2855 return r;
2856
2857 r = dm_pool_release_metadata_snap(pool->pmd);
2858 if (r)
2859 DMWARN("release_metadata_snap message failed.");
2860
2861 return r;
2862 }
2863
2864 /*
2865 * Messages supported:
2866 * create_thin <dev_id>
2867 * create_snap <dev_id> <origin_id>
2868 * delete <dev_id>
2869 * trim <dev_id> <new_size_in_sectors>
2870 * set_transaction_id <current_trans_id> <new_trans_id>
2871 * reserve_metadata_snap
2872 * release_metadata_snap
2873 */
2874 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2875 {
2876 int r = -EINVAL;
2877 struct pool_c *pt = ti->private;
2878 struct pool *pool = pt->pool;
2879
2880 if (!strcasecmp(argv[0], "create_thin"))
2881 r = process_create_thin_mesg(argc, argv, pool);
2882
2883 else if (!strcasecmp(argv[0], "create_snap"))
2884 r = process_create_snap_mesg(argc, argv, pool);
2885
2886 else if (!strcasecmp(argv[0], "delete"))
2887 r = process_delete_mesg(argc, argv, pool);
2888
2889 else if (!strcasecmp(argv[0], "set_transaction_id"))
2890 r = process_set_transaction_id_mesg(argc, argv, pool);
2891
2892 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2893 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2894
2895 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2896 r = process_release_metadata_snap_mesg(argc, argv, pool);
2897
2898 else
2899 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2900
2901 if (!r)
2902 (void) commit(pool);
2903
2904 return r;
2905 }
2906
2907 static void emit_flags(struct pool_features *pf, char *result,
2908 unsigned sz, unsigned maxlen)
2909 {
2910 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2911 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2912 pf->error_if_no_space;
2913 DMEMIT("%u ", count);
2914
2915 if (!pf->zero_new_blocks)
2916 DMEMIT("skip_block_zeroing ");
2917
2918 if (!pf->discard_enabled)
2919 DMEMIT("ignore_discard ");
2920
2921 if (!pf->discard_passdown)
2922 DMEMIT("no_discard_passdown ");
2923
2924 if (pf->mode == PM_READ_ONLY)
2925 DMEMIT("read_only ");
2926
2927 if (pf->error_if_no_space)
2928 DMEMIT("error_if_no_space ");
2929 }
2930
2931 /*
2932 * Status line is:
2933 * <transaction id> <used metadata sectors>/<total metadata sectors>
2934 * <used data sectors>/<total data sectors> <held metadata root>
2935 */
2936 static void pool_status(struct dm_target *ti, status_type_t type,
2937 unsigned status_flags, char *result, unsigned maxlen)
2938 {
2939 int r;
2940 unsigned sz = 0;
2941 uint64_t transaction_id;
2942 dm_block_t nr_free_blocks_data;
2943 dm_block_t nr_free_blocks_metadata;
2944 dm_block_t nr_blocks_data;
2945 dm_block_t nr_blocks_metadata;
2946 dm_block_t held_root;
2947 char buf[BDEVNAME_SIZE];
2948 char buf2[BDEVNAME_SIZE];
2949 struct pool_c *pt = ti->private;
2950 struct pool *pool = pt->pool;
2951
2952 switch (type) {
2953 case STATUSTYPE_INFO:
2954 if (get_pool_mode(pool) == PM_FAIL) {
2955 DMEMIT("Fail");
2956 break;
2957 }
2958
2959 /* Commit to ensure statistics aren't out-of-date */
2960 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2961 (void) commit(pool);
2962
2963 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2964 if (r) {
2965 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2966 dm_device_name(pool->pool_md), r);
2967 goto err;
2968 }
2969
2970 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2971 if (r) {
2972 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2973 dm_device_name(pool->pool_md), r);
2974 goto err;
2975 }
2976
2977 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2978 if (r) {
2979 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2980 dm_device_name(pool->pool_md), r);
2981 goto err;
2982 }
2983
2984 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2985 if (r) {
2986 DMERR("%s: dm_pool_get_free_block_count returned %d",
2987 dm_device_name(pool->pool_md), r);
2988 goto err;
2989 }
2990
2991 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2992 if (r) {
2993 DMERR("%s: dm_pool_get_data_dev_size returned %d",
2994 dm_device_name(pool->pool_md), r);
2995 goto err;
2996 }
2997
2998 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2999 if (r) {
3000 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3001 dm_device_name(pool->pool_md), r);
3002 goto err;
3003 }
3004
3005 DMEMIT("%llu %llu/%llu %llu/%llu ",
3006 (unsigned long long)transaction_id,
3007 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3008 (unsigned long long)nr_blocks_metadata,
3009 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3010 (unsigned long long)nr_blocks_data);
3011
3012 if (held_root)
3013 DMEMIT("%llu ", held_root);
3014 else
3015 DMEMIT("- ");
3016
3017 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3018 DMEMIT("out_of_data_space ");
3019 else if (pool->pf.mode == PM_READ_ONLY)
3020 DMEMIT("ro ");
3021 else
3022 DMEMIT("rw ");
3023
3024 if (!pool->pf.discard_enabled)
3025 DMEMIT("ignore_discard ");
3026 else if (pool->pf.discard_passdown)
3027 DMEMIT("discard_passdown ");
3028 else
3029 DMEMIT("no_discard_passdown ");
3030
3031 if (pool->pf.error_if_no_space)
3032 DMEMIT("error_if_no_space ");
3033 else
3034 DMEMIT("queue_if_no_space ");
3035
3036 break;
3037
3038 case STATUSTYPE_TABLE:
3039 DMEMIT("%s %s %lu %llu ",
3040 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3041 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3042 (unsigned long)pool->sectors_per_block,
3043 (unsigned long long)pt->low_water_blocks);
3044 emit_flags(&pt->requested_pf, result, sz, maxlen);
3045 break;
3046 }
3047 return;
3048
3049 err:
3050 DMEMIT("Error");
3051 }
3052
3053 static int pool_iterate_devices(struct dm_target *ti,
3054 iterate_devices_callout_fn fn, void *data)
3055 {
3056 struct pool_c *pt = ti->private;
3057
3058 return fn(ti, pt->data_dev, 0, ti->len, data);
3059 }
3060
3061 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3062 struct bio_vec *biovec, int max_size)
3063 {
3064 struct pool_c *pt = ti->private;
3065 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3066
3067 if (!q->merge_bvec_fn)
3068 return max_size;
3069
3070 bvm->bi_bdev = pt->data_dev->bdev;
3071
3072 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3073 }
3074
3075 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3076 {
3077 struct pool *pool = pt->pool;
3078 struct queue_limits *data_limits;
3079
3080 limits->max_discard_sectors = pool->sectors_per_block;
3081
3082 /*
3083 * discard_granularity is just a hint, and not enforced.
3084 */
3085 if (pt->adjusted_pf.discard_passdown) {
3086 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3087 limits->discard_granularity = data_limits->discard_granularity;
3088 } else
3089 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3090 }
3091
3092 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3093 {
3094 struct pool_c *pt = ti->private;
3095 struct pool *pool = pt->pool;
3096 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3097
3098 /*
3099 * If the system-determined stacked limits are compatible with the
3100 * pool's blocksize (io_opt is a factor) do not override them.
3101 */
3102 if (io_opt_sectors < pool->sectors_per_block ||
3103 do_div(io_opt_sectors, pool->sectors_per_block)) {
3104 blk_limits_io_min(limits, 0);
3105 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3106 }
3107
3108 /*
3109 * pt->adjusted_pf is a staging area for the actual features to use.
3110 * They get transferred to the live pool in bind_control_target()
3111 * called from pool_preresume().
3112 */
3113 if (!pt->adjusted_pf.discard_enabled) {
3114 /*
3115 * Must explicitly disallow stacking discard limits otherwise the
3116 * block layer will stack them if pool's data device has support.
3117 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3118 * user to see that, so make sure to set all discard limits to 0.
3119 */
3120 limits->discard_granularity = 0;
3121 return;
3122 }
3123
3124 disable_passdown_if_not_supported(pt);
3125
3126 set_discard_limits(pt, limits);
3127 }
3128
3129 static struct target_type pool_target = {
3130 .name = "thin-pool",
3131 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3132 DM_TARGET_IMMUTABLE,
3133 .version = {1, 12, 0},
3134 .module = THIS_MODULE,
3135 .ctr = pool_ctr,
3136 .dtr = pool_dtr,
3137 .map = pool_map,
3138 .postsuspend = pool_postsuspend,
3139 .preresume = pool_preresume,
3140 .resume = pool_resume,
3141 .message = pool_message,
3142 .status = pool_status,
3143 .merge = pool_merge,
3144 .iterate_devices = pool_iterate_devices,
3145 .io_hints = pool_io_hints,
3146 };
3147
3148 /*----------------------------------------------------------------
3149 * Thin target methods
3150 *--------------------------------------------------------------*/
3151 static void thin_get(struct thin_c *tc)
3152 {
3153 atomic_inc(&tc->refcount);
3154 }
3155
3156 static void thin_put(struct thin_c *tc)
3157 {
3158 if (atomic_dec_and_test(&tc->refcount))
3159 complete(&tc->can_destroy);
3160 }
3161
3162 static void thin_dtr(struct dm_target *ti)
3163 {
3164 struct thin_c *tc = ti->private;
3165 unsigned long flags;
3166
3167 thin_put(tc);
3168 wait_for_completion(&tc->can_destroy);
3169
3170 spin_lock_irqsave(&tc->pool->lock, flags);
3171 list_del_rcu(&tc->list);
3172 spin_unlock_irqrestore(&tc->pool->lock, flags);
3173 synchronize_rcu();
3174
3175 mutex_lock(&dm_thin_pool_table.mutex);
3176
3177 __pool_dec(tc->pool);
3178 dm_pool_close_thin_device(tc->td);
3179 dm_put_device(ti, tc->pool_dev);
3180 if (tc->origin_dev)
3181 dm_put_device(ti, tc->origin_dev);
3182 kfree(tc);
3183
3184 mutex_unlock(&dm_thin_pool_table.mutex);
3185 }
3186
3187 /*
3188 * Thin target parameters:
3189 *
3190 * <pool_dev> <dev_id> [origin_dev]
3191 *
3192 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3193 * dev_id: the internal device identifier
3194 * origin_dev: a device external to the pool that should act as the origin
3195 *
3196 * If the pool device has discards disabled, they get disabled for the thin
3197 * device as well.
3198 */
3199 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3200 {
3201 int r;
3202 struct thin_c *tc;
3203 struct dm_dev *pool_dev, *origin_dev;
3204 struct mapped_device *pool_md;
3205 unsigned long flags;
3206
3207 mutex_lock(&dm_thin_pool_table.mutex);
3208
3209 if (argc != 2 && argc != 3) {
3210 ti->error = "Invalid argument count";
3211 r = -EINVAL;
3212 goto out_unlock;
3213 }
3214
3215 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3216 if (!tc) {
3217 ti->error = "Out of memory";
3218 r = -ENOMEM;
3219 goto out_unlock;
3220 }
3221 spin_lock_init(&tc->lock);
3222 bio_list_init(&tc->deferred_bio_list);
3223 bio_list_init(&tc->retry_on_resume_list);
3224 tc->sort_bio_list = RB_ROOT;
3225
3226 if (argc == 3) {
3227 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3228 if (r) {
3229 ti->error = "Error opening origin device";
3230 goto bad_origin_dev;
3231 }
3232 tc->origin_dev = origin_dev;
3233 }
3234
3235 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3236 if (r) {
3237 ti->error = "Error opening pool device";
3238 goto bad_pool_dev;
3239 }
3240 tc->pool_dev = pool_dev;
3241
3242 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3243 ti->error = "Invalid device id";
3244 r = -EINVAL;
3245 goto bad_common;
3246 }
3247
3248 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3249 if (!pool_md) {
3250 ti->error = "Couldn't get pool mapped device";
3251 r = -EINVAL;
3252 goto bad_common;
3253 }
3254
3255 tc->pool = __pool_table_lookup(pool_md);
3256 if (!tc->pool) {
3257 ti->error = "Couldn't find pool object";
3258 r = -EINVAL;
3259 goto bad_pool_lookup;
3260 }
3261 __pool_inc(tc->pool);
3262
3263 if (get_pool_mode(tc->pool) == PM_FAIL) {
3264 ti->error = "Couldn't open thin device, Pool is in fail mode";
3265 r = -EINVAL;
3266 goto bad_thin_open;
3267 }
3268
3269 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3270 if (r) {
3271 ti->error = "Couldn't open thin internal device";
3272 goto bad_thin_open;
3273 }
3274
3275 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3276 if (r)
3277 goto bad_target_max_io_len;
3278
3279 ti->num_flush_bios = 1;
3280 ti->flush_supported = true;
3281 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3282
3283 /* In case the pool supports discards, pass them on. */
3284 ti->discard_zeroes_data_unsupported = true;
3285 if (tc->pool->pf.discard_enabled) {
3286 ti->discards_supported = true;
3287 ti->num_discard_bios = 1;
3288 /* Discard bios must be split on a block boundary */
3289 ti->split_discard_bios = true;
3290 }
3291
3292 dm_put(pool_md);
3293
3294 mutex_unlock(&dm_thin_pool_table.mutex);
3295
3296 atomic_set(&tc->refcount, 1);
3297 init_completion(&tc->can_destroy);
3298
3299 spin_lock_irqsave(&tc->pool->lock, flags);
3300 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3301 spin_unlock_irqrestore(&tc->pool->lock, flags);
3302 /*
3303 * This synchronize_rcu() call is needed here otherwise we risk a
3304 * wake_worker() call finding no bios to process (because the newly
3305 * added tc isn't yet visible). So this reduces latency since we
3306 * aren't then dependent on the periodic commit to wake_worker().
3307 */
3308 synchronize_rcu();
3309
3310 return 0;
3311
3312 bad_target_max_io_len:
3313 dm_pool_close_thin_device(tc->td);
3314 bad_thin_open:
3315 __pool_dec(tc->pool);
3316 bad_pool_lookup:
3317 dm_put(pool_md);
3318 bad_common:
3319 dm_put_device(ti, tc->pool_dev);
3320 bad_pool_dev:
3321 if (tc->origin_dev)
3322 dm_put_device(ti, tc->origin_dev);
3323 bad_origin_dev:
3324 kfree(tc);
3325 out_unlock:
3326 mutex_unlock(&dm_thin_pool_table.mutex);
3327
3328 return r;
3329 }
3330
3331 static int thin_map(struct dm_target *ti, struct bio *bio)
3332 {
3333 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3334
3335 return thin_bio_map(ti, bio);
3336 }
3337
3338 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3339 {
3340 unsigned long flags;
3341 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3342 struct list_head work;
3343 struct dm_thin_new_mapping *m, *tmp;
3344 struct pool *pool = h->tc->pool;
3345
3346 if (h->shared_read_entry) {
3347 INIT_LIST_HEAD(&work);
3348 dm_deferred_entry_dec(h->shared_read_entry, &work);
3349
3350 spin_lock_irqsave(&pool->lock, flags);
3351 list_for_each_entry_safe(m, tmp, &work, list) {
3352 list_del(&m->list);
3353 m->quiesced = true;
3354 __maybe_add_mapping(m);
3355 }
3356 spin_unlock_irqrestore(&pool->lock, flags);
3357 }
3358
3359 if (h->all_io_entry) {
3360 INIT_LIST_HEAD(&work);
3361 dm_deferred_entry_dec(h->all_io_entry, &work);
3362 if (!list_empty(&work)) {
3363 spin_lock_irqsave(&pool->lock, flags);
3364 list_for_each_entry_safe(m, tmp, &work, list)
3365 list_add_tail(&m->list, &pool->prepared_discards);
3366 spin_unlock_irqrestore(&pool->lock, flags);
3367 wake_worker(pool);
3368 }
3369 }
3370
3371 return 0;
3372 }
3373
3374 static void thin_presuspend(struct dm_target *ti)
3375 {
3376 struct thin_c *tc = ti->private;
3377
3378 if (dm_noflush_suspending(ti))
3379 noflush_work(tc, do_noflush_start);
3380 }
3381
3382 static void thin_postsuspend(struct dm_target *ti)
3383 {
3384 struct thin_c *tc = ti->private;
3385
3386 /*
3387 * The dm_noflush_suspending flag has been cleared by now, so
3388 * unfortunately we must always run this.
3389 */
3390 noflush_work(tc, do_noflush_stop);
3391 }
3392
3393 /*
3394 * <nr mapped sectors> <highest mapped sector>
3395 */
3396 static void thin_status(struct dm_target *ti, status_type_t type,
3397 unsigned status_flags, char *result, unsigned maxlen)
3398 {
3399 int r;
3400 ssize_t sz = 0;
3401 dm_block_t mapped, highest;
3402 char buf[BDEVNAME_SIZE];
3403 struct thin_c *tc = ti->private;
3404
3405 if (get_pool_mode(tc->pool) == PM_FAIL) {
3406 DMEMIT("Fail");
3407 return;
3408 }
3409
3410 if (!tc->td)
3411 DMEMIT("-");
3412 else {
3413 switch (type) {
3414 case STATUSTYPE_INFO:
3415 r = dm_thin_get_mapped_count(tc->td, &mapped);
3416 if (r) {
3417 DMERR("dm_thin_get_mapped_count returned %d", r);
3418 goto err;
3419 }
3420
3421 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3422 if (r < 0) {
3423 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3424 goto err;
3425 }
3426
3427 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3428 if (r)
3429 DMEMIT("%llu", ((highest + 1) *
3430 tc->pool->sectors_per_block) - 1);
3431 else
3432 DMEMIT("-");
3433 break;
3434
3435 case STATUSTYPE_TABLE:
3436 DMEMIT("%s %lu",
3437 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3438 (unsigned long) tc->dev_id);
3439 if (tc->origin_dev)
3440 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3441 break;
3442 }
3443 }
3444
3445 return;
3446
3447 err:
3448 DMEMIT("Error");
3449 }
3450
3451 static int thin_iterate_devices(struct dm_target *ti,
3452 iterate_devices_callout_fn fn, void *data)
3453 {
3454 sector_t blocks;
3455 struct thin_c *tc = ti->private;
3456 struct pool *pool = tc->pool;
3457
3458 /*
3459 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3460 * we follow a more convoluted path through to the pool's target.
3461 */
3462 if (!pool->ti)
3463 return 0; /* nothing is bound */
3464
3465 blocks = pool->ti->len;
3466 (void) sector_div(blocks, pool->sectors_per_block);
3467 if (blocks)
3468 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3469
3470 return 0;
3471 }
3472
3473 static struct target_type thin_target = {
3474 .name = "thin",
3475 .version = {1, 12, 0},
3476 .module = THIS_MODULE,
3477 .ctr = thin_ctr,
3478 .dtr = thin_dtr,
3479 .map = thin_map,
3480 .end_io = thin_endio,
3481 .presuspend = thin_presuspend,
3482 .postsuspend = thin_postsuspend,
3483 .status = thin_status,
3484 .iterate_devices = thin_iterate_devices,
3485 };
3486
3487 /*----------------------------------------------------------------*/
3488
3489 static int __init dm_thin_init(void)
3490 {
3491 int r;
3492
3493 pool_table_init();
3494
3495 r = dm_register_target(&thin_target);
3496 if (r)
3497 return r;
3498
3499 r = dm_register_target(&pool_target);
3500 if (r)
3501 goto bad_pool_target;
3502
3503 r = -ENOMEM;
3504
3505 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3506 if (!_new_mapping_cache)
3507 goto bad_new_mapping_cache;
3508
3509 return 0;
3510
3511 bad_new_mapping_cache:
3512 dm_unregister_target(&pool_target);
3513 bad_pool_target:
3514 dm_unregister_target(&thin_target);
3515
3516 return r;
3517 }
3518
3519 static void dm_thin_exit(void)
3520 {
3521 dm_unregister_target(&thin_target);
3522 dm_unregister_target(&pool_target);
3523
3524 kmem_cache_destroy(_new_mapping_cache);
3525 }
3526
3527 module_init(dm_thin_init);
3528 module_exit(dm_thin_exit);
3529
3530 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
3531 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
3532
3533 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3534 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3535 MODULE_LICENSE("GPL");
This page took 0.186267 seconds and 4 git commands to generate.