dm thin: eliminate the no_free_space flag
[deliverable/linux.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX "thin"
20
21 /*
22 * Tunable constants
23 */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 "A percentage of time allocated for copy on write");
31
32 /*
33 * The block size of the device holding pool data must be
34 * between 64KB and 1GB.
35 */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40 * Device id is restricted to 24 bits.
41 */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45 * How do we handle breaking sharing of data blocks?
46 * =================================================
47 *
48 * We use a standard copy-on-write btree to store the mappings for the
49 * devices (note I'm talking about copy-on-write of the metadata here, not
50 * the data). When you take an internal snapshot you clone the root node
51 * of the origin btree. After this there is no concept of an origin or a
52 * snapshot. They are just two device trees that happen to point to the
53 * same data blocks.
54 *
55 * When we get a write in we decide if it's to a shared data block using
56 * some timestamp magic. If it is, we have to break sharing.
57 *
58 * Let's say we write to a shared block in what was the origin. The
59 * steps are:
60 *
61 * i) plug io further to this physical block. (see bio_prison code).
62 *
63 * ii) quiesce any read io to that shared data block. Obviously
64 * including all devices that share this block. (see dm_deferred_set code)
65 *
66 * iii) copy the data block to a newly allocate block. This step can be
67 * missed out if the io covers the block. (schedule_copy).
68 *
69 * iv) insert the new mapping into the origin's btree
70 * (process_prepared_mapping). This act of inserting breaks some
71 * sharing of btree nodes between the two devices. Breaking sharing only
72 * effects the btree of that specific device. Btrees for the other
73 * devices that share the block never change. The btree for the origin
74 * device as it was after the last commit is untouched, ie. we're using
75 * persistent data structures in the functional programming sense.
76 *
77 * v) unplug io to this physical block, including the io that triggered
78 * the breaking of sharing.
79 *
80 * Steps (ii) and (iii) occur in parallel.
81 *
82 * The metadata _doesn't_ need to be committed before the io continues. We
83 * get away with this because the io is always written to a _new_ block.
84 * If there's a crash, then:
85 *
86 * - The origin mapping will point to the old origin block (the shared
87 * one). This will contain the data as it was before the io that triggered
88 * the breaking of sharing came in.
89 *
90 * - The snap mapping still points to the old block. As it would after
91 * the commit.
92 *
93 * The downside of this scheme is the timestamp magic isn't perfect, and
94 * will continue to think that data block in the snapshot device is shared
95 * even after the write to the origin has broken sharing. I suspect data
96 * blocks will typically be shared by many different devices, so we're
97 * breaking sharing n + 1 times, rather than n, where n is the number of
98 * devices that reference this data block. At the moment I think the
99 * benefits far, far outweigh the disadvantages.
100 */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105 * Key building.
106 */
107 static void build_data_key(struct dm_thin_device *td,
108 dm_block_t b, struct dm_cell_key *key)
109 {
110 key->virtual = 0;
111 key->dev = dm_thin_dev_id(td);
112 key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 struct dm_cell_key *key)
117 {
118 key->virtual = 1;
119 key->dev = dm_thin_dev_id(td);
120 key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126 * A pool device ties together a metadata device and a data device. It
127 * also provides the interface for creating and destroying internal
128 * devices.
129 */
130 struct dm_thin_new_mapping;
131
132 /*
133 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
134 */
135 enum pool_mode {
136 PM_WRITE, /* metadata may be changed */
137 PM_READ_ONLY, /* metadata may not be changed */
138 PM_FAIL, /* all I/O fails */
139 };
140
141 struct pool_features {
142 enum pool_mode mode;
143
144 bool zero_new_blocks:1;
145 bool discard_enabled:1;
146 bool discard_passdown:1;
147 bool error_if_no_space:1;
148 };
149
150 struct thin_c;
151 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
152 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
153
154 struct pool {
155 struct list_head list;
156 struct dm_target *ti; /* Only set if a pool target is bound */
157
158 struct mapped_device *pool_md;
159 struct block_device *md_dev;
160 struct dm_pool_metadata *pmd;
161
162 dm_block_t low_water_blocks;
163 uint32_t sectors_per_block;
164 int sectors_per_block_shift;
165
166 struct pool_features pf;
167 bool low_water_triggered:1; /* A dm event has been sent */
168
169 struct dm_bio_prison *prison;
170 struct dm_kcopyd_client *copier;
171
172 struct workqueue_struct *wq;
173 struct work_struct worker;
174 struct delayed_work waker;
175
176 unsigned long last_commit_jiffies;
177 unsigned ref_count;
178
179 spinlock_t lock;
180 struct bio_list deferred_bios;
181 struct bio_list deferred_flush_bios;
182 struct list_head prepared_mappings;
183 struct list_head prepared_discards;
184
185 struct bio_list retry_on_resume_list;
186
187 struct dm_deferred_set *shared_read_ds;
188 struct dm_deferred_set *all_io_ds;
189
190 struct dm_thin_new_mapping *next_mapping;
191 mempool_t *mapping_pool;
192
193 process_bio_fn process_bio;
194 process_bio_fn process_discard;
195
196 process_mapping_fn process_prepared_mapping;
197 process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void out_of_data_space(struct pool *pool);
202 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
203
204 /*
205 * Target context for a pool.
206 */
207 struct pool_c {
208 struct dm_target *ti;
209 struct pool *pool;
210 struct dm_dev *data_dev;
211 struct dm_dev *metadata_dev;
212 struct dm_target_callbacks callbacks;
213
214 dm_block_t low_water_blocks;
215 struct pool_features requested_pf; /* Features requested during table load */
216 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
217 };
218
219 /*
220 * Target context for a thin.
221 */
222 struct thin_c {
223 struct dm_dev *pool_dev;
224 struct dm_dev *origin_dev;
225 dm_thin_id dev_id;
226
227 struct pool *pool;
228 struct dm_thin_device *td;
229 };
230
231 /*----------------------------------------------------------------*/
232
233 /*
234 * wake_worker() is used when new work is queued and when pool_resume is
235 * ready to continue deferred IO processing.
236 */
237 static void wake_worker(struct pool *pool)
238 {
239 queue_work(pool->wq, &pool->worker);
240 }
241
242 /*----------------------------------------------------------------*/
243
244 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
245 struct dm_bio_prison_cell **cell_result)
246 {
247 int r;
248 struct dm_bio_prison_cell *cell_prealloc;
249
250 /*
251 * Allocate a cell from the prison's mempool.
252 * This might block but it can't fail.
253 */
254 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
255
256 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
257 if (r)
258 /*
259 * We reused an old cell; we can get rid of
260 * the new one.
261 */
262 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
263
264 return r;
265 }
266
267 static void cell_release(struct pool *pool,
268 struct dm_bio_prison_cell *cell,
269 struct bio_list *bios)
270 {
271 dm_cell_release(pool->prison, cell, bios);
272 dm_bio_prison_free_cell(pool->prison, cell);
273 }
274
275 static void cell_release_no_holder(struct pool *pool,
276 struct dm_bio_prison_cell *cell,
277 struct bio_list *bios)
278 {
279 dm_cell_release_no_holder(pool->prison, cell, bios);
280 dm_bio_prison_free_cell(pool->prison, cell);
281 }
282
283 static void cell_defer_no_holder_no_free(struct thin_c *tc,
284 struct dm_bio_prison_cell *cell)
285 {
286 struct pool *pool = tc->pool;
287 unsigned long flags;
288
289 spin_lock_irqsave(&pool->lock, flags);
290 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
291 spin_unlock_irqrestore(&pool->lock, flags);
292
293 wake_worker(pool);
294 }
295
296 static void cell_error(struct pool *pool,
297 struct dm_bio_prison_cell *cell)
298 {
299 dm_cell_error(pool->prison, cell);
300 dm_bio_prison_free_cell(pool->prison, cell);
301 }
302
303 /*----------------------------------------------------------------*/
304
305 /*
306 * A global list of pools that uses a struct mapped_device as a key.
307 */
308 static struct dm_thin_pool_table {
309 struct mutex mutex;
310 struct list_head pools;
311 } dm_thin_pool_table;
312
313 static void pool_table_init(void)
314 {
315 mutex_init(&dm_thin_pool_table.mutex);
316 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
317 }
318
319 static void __pool_table_insert(struct pool *pool)
320 {
321 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
322 list_add(&pool->list, &dm_thin_pool_table.pools);
323 }
324
325 static void __pool_table_remove(struct pool *pool)
326 {
327 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
328 list_del(&pool->list);
329 }
330
331 static struct pool *__pool_table_lookup(struct mapped_device *md)
332 {
333 struct pool *pool = NULL, *tmp;
334
335 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
336
337 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
338 if (tmp->pool_md == md) {
339 pool = tmp;
340 break;
341 }
342 }
343
344 return pool;
345 }
346
347 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
348 {
349 struct pool *pool = NULL, *tmp;
350
351 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
352
353 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
354 if (tmp->md_dev == md_dev) {
355 pool = tmp;
356 break;
357 }
358 }
359
360 return pool;
361 }
362
363 /*----------------------------------------------------------------*/
364
365 struct dm_thin_endio_hook {
366 struct thin_c *tc;
367 struct dm_deferred_entry *shared_read_entry;
368 struct dm_deferred_entry *all_io_entry;
369 struct dm_thin_new_mapping *overwrite_mapping;
370 };
371
372 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
373 {
374 struct bio *bio;
375 struct bio_list bios;
376
377 bio_list_init(&bios);
378 bio_list_merge(&bios, master);
379 bio_list_init(master);
380
381 while ((bio = bio_list_pop(&bios))) {
382 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
383
384 if (h->tc == tc)
385 bio_endio(bio, DM_ENDIO_REQUEUE);
386 else
387 bio_list_add(master, bio);
388 }
389 }
390
391 static void requeue_io(struct thin_c *tc)
392 {
393 struct pool *pool = tc->pool;
394 unsigned long flags;
395
396 spin_lock_irqsave(&pool->lock, flags);
397 __requeue_bio_list(tc, &pool->deferred_bios);
398 __requeue_bio_list(tc, &pool->retry_on_resume_list);
399 spin_unlock_irqrestore(&pool->lock, flags);
400 }
401
402 /*
403 * This section of code contains the logic for processing a thin device's IO.
404 * Much of the code depends on pool object resources (lists, workqueues, etc)
405 * but most is exclusively called from the thin target rather than the thin-pool
406 * target.
407 */
408
409 static bool block_size_is_power_of_two(struct pool *pool)
410 {
411 return pool->sectors_per_block_shift >= 0;
412 }
413
414 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
415 {
416 struct pool *pool = tc->pool;
417 sector_t block_nr = bio->bi_sector;
418
419 if (block_size_is_power_of_two(pool))
420 block_nr >>= pool->sectors_per_block_shift;
421 else
422 (void) sector_div(block_nr, pool->sectors_per_block);
423
424 return block_nr;
425 }
426
427 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
428 {
429 struct pool *pool = tc->pool;
430 sector_t bi_sector = bio->bi_sector;
431
432 bio->bi_bdev = tc->pool_dev->bdev;
433 if (block_size_is_power_of_two(pool))
434 bio->bi_sector = (block << pool->sectors_per_block_shift) |
435 (bi_sector & (pool->sectors_per_block - 1));
436 else
437 bio->bi_sector = (block * pool->sectors_per_block) +
438 sector_div(bi_sector, pool->sectors_per_block);
439 }
440
441 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
442 {
443 bio->bi_bdev = tc->origin_dev->bdev;
444 }
445
446 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
447 {
448 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
449 dm_thin_changed_this_transaction(tc->td);
450 }
451
452 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
453 {
454 struct dm_thin_endio_hook *h;
455
456 if (bio->bi_rw & REQ_DISCARD)
457 return;
458
459 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
460 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
461 }
462
463 static void issue(struct thin_c *tc, struct bio *bio)
464 {
465 struct pool *pool = tc->pool;
466 unsigned long flags;
467
468 if (!bio_triggers_commit(tc, bio)) {
469 generic_make_request(bio);
470 return;
471 }
472
473 /*
474 * Complete bio with an error if earlier I/O caused changes to
475 * the metadata that can't be committed e.g, due to I/O errors
476 * on the metadata device.
477 */
478 if (dm_thin_aborted_changes(tc->td)) {
479 bio_io_error(bio);
480 return;
481 }
482
483 /*
484 * Batch together any bios that trigger commits and then issue a
485 * single commit for them in process_deferred_bios().
486 */
487 spin_lock_irqsave(&pool->lock, flags);
488 bio_list_add(&pool->deferred_flush_bios, bio);
489 spin_unlock_irqrestore(&pool->lock, flags);
490 }
491
492 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
493 {
494 remap_to_origin(tc, bio);
495 issue(tc, bio);
496 }
497
498 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
499 dm_block_t block)
500 {
501 remap(tc, bio, block);
502 issue(tc, bio);
503 }
504
505 /*----------------------------------------------------------------*/
506
507 /*
508 * Bio endio functions.
509 */
510 struct dm_thin_new_mapping {
511 struct list_head list;
512
513 bool quiesced:1;
514 bool prepared:1;
515 bool pass_discard:1;
516 bool definitely_not_shared:1;
517
518 int err;
519 struct thin_c *tc;
520 dm_block_t virt_block;
521 dm_block_t data_block;
522 struct dm_bio_prison_cell *cell, *cell2;
523
524 /*
525 * If the bio covers the whole area of a block then we can avoid
526 * zeroing or copying. Instead this bio is hooked. The bio will
527 * still be in the cell, so care has to be taken to avoid issuing
528 * the bio twice.
529 */
530 struct bio *bio;
531 bio_end_io_t *saved_bi_end_io;
532 };
533
534 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
535 {
536 struct pool *pool = m->tc->pool;
537
538 if (m->quiesced && m->prepared) {
539 list_add_tail(&m->list, &pool->prepared_mappings);
540 wake_worker(pool);
541 }
542 }
543
544 static void copy_complete(int read_err, unsigned long write_err, void *context)
545 {
546 unsigned long flags;
547 struct dm_thin_new_mapping *m = context;
548 struct pool *pool = m->tc->pool;
549
550 m->err = read_err || write_err ? -EIO : 0;
551
552 spin_lock_irqsave(&pool->lock, flags);
553 m->prepared = true;
554 __maybe_add_mapping(m);
555 spin_unlock_irqrestore(&pool->lock, flags);
556 }
557
558 static void overwrite_endio(struct bio *bio, int err)
559 {
560 unsigned long flags;
561 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
562 struct dm_thin_new_mapping *m = h->overwrite_mapping;
563 struct pool *pool = m->tc->pool;
564
565 m->err = err;
566
567 spin_lock_irqsave(&pool->lock, flags);
568 m->prepared = true;
569 __maybe_add_mapping(m);
570 spin_unlock_irqrestore(&pool->lock, flags);
571 }
572
573 /*----------------------------------------------------------------*/
574
575 /*
576 * Workqueue.
577 */
578
579 /*
580 * Prepared mapping jobs.
581 */
582
583 /*
584 * This sends the bios in the cell back to the deferred_bios list.
585 */
586 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
587 {
588 struct pool *pool = tc->pool;
589 unsigned long flags;
590
591 spin_lock_irqsave(&pool->lock, flags);
592 cell_release(pool, cell, &pool->deferred_bios);
593 spin_unlock_irqrestore(&tc->pool->lock, flags);
594
595 wake_worker(pool);
596 }
597
598 /*
599 * Same as cell_defer above, except it omits the original holder of the cell.
600 */
601 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
602 {
603 struct pool *pool = tc->pool;
604 unsigned long flags;
605
606 spin_lock_irqsave(&pool->lock, flags);
607 cell_release_no_holder(pool, cell, &pool->deferred_bios);
608 spin_unlock_irqrestore(&pool->lock, flags);
609
610 wake_worker(pool);
611 }
612
613 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
614 {
615 if (m->bio)
616 m->bio->bi_end_io = m->saved_bi_end_io;
617 cell_error(m->tc->pool, m->cell);
618 list_del(&m->list);
619 mempool_free(m, m->tc->pool->mapping_pool);
620 }
621
622 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
623 {
624 struct thin_c *tc = m->tc;
625 struct pool *pool = tc->pool;
626 struct bio *bio;
627 int r;
628
629 bio = m->bio;
630 if (bio)
631 bio->bi_end_io = m->saved_bi_end_io;
632
633 if (m->err) {
634 cell_error(pool, m->cell);
635 goto out;
636 }
637
638 /*
639 * Commit the prepared block into the mapping btree.
640 * Any I/O for this block arriving after this point will get
641 * remapped to it directly.
642 */
643 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
644 if (r) {
645 metadata_operation_failed(pool, "dm_thin_insert_block", r);
646 cell_error(pool, m->cell);
647 goto out;
648 }
649
650 /*
651 * Release any bios held while the block was being provisioned.
652 * If we are processing a write bio that completely covers the block,
653 * we already processed it so can ignore it now when processing
654 * the bios in the cell.
655 */
656 if (bio) {
657 cell_defer_no_holder(tc, m->cell);
658 bio_endio(bio, 0);
659 } else
660 cell_defer(tc, m->cell);
661
662 out:
663 list_del(&m->list);
664 mempool_free(m, pool->mapping_pool);
665 }
666
667 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
668 {
669 struct thin_c *tc = m->tc;
670
671 bio_io_error(m->bio);
672 cell_defer_no_holder(tc, m->cell);
673 cell_defer_no_holder(tc, m->cell2);
674 mempool_free(m, tc->pool->mapping_pool);
675 }
676
677 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
678 {
679 struct thin_c *tc = m->tc;
680
681 inc_all_io_entry(tc->pool, m->bio);
682 cell_defer_no_holder(tc, m->cell);
683 cell_defer_no_holder(tc, m->cell2);
684
685 if (m->pass_discard)
686 if (m->definitely_not_shared)
687 remap_and_issue(tc, m->bio, m->data_block);
688 else {
689 bool used = false;
690 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
691 bio_endio(m->bio, 0);
692 else
693 remap_and_issue(tc, m->bio, m->data_block);
694 }
695 else
696 bio_endio(m->bio, 0);
697
698 mempool_free(m, tc->pool->mapping_pool);
699 }
700
701 static void process_prepared_discard(struct dm_thin_new_mapping *m)
702 {
703 int r;
704 struct thin_c *tc = m->tc;
705
706 r = dm_thin_remove_block(tc->td, m->virt_block);
707 if (r)
708 DMERR_LIMIT("dm_thin_remove_block() failed");
709
710 process_prepared_discard_passdown(m);
711 }
712
713 static void process_prepared(struct pool *pool, struct list_head *head,
714 process_mapping_fn *fn)
715 {
716 unsigned long flags;
717 struct list_head maps;
718 struct dm_thin_new_mapping *m, *tmp;
719
720 INIT_LIST_HEAD(&maps);
721 spin_lock_irqsave(&pool->lock, flags);
722 list_splice_init(head, &maps);
723 spin_unlock_irqrestore(&pool->lock, flags);
724
725 list_for_each_entry_safe(m, tmp, &maps, list)
726 (*fn)(m);
727 }
728
729 /*
730 * Deferred bio jobs.
731 */
732 static int io_overlaps_block(struct pool *pool, struct bio *bio)
733 {
734 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
735 }
736
737 static int io_overwrites_block(struct pool *pool, struct bio *bio)
738 {
739 return (bio_data_dir(bio) == WRITE) &&
740 io_overlaps_block(pool, bio);
741 }
742
743 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
744 bio_end_io_t *fn)
745 {
746 *save = bio->bi_end_io;
747 bio->bi_end_io = fn;
748 }
749
750 static int ensure_next_mapping(struct pool *pool)
751 {
752 if (pool->next_mapping)
753 return 0;
754
755 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
756
757 return pool->next_mapping ? 0 : -ENOMEM;
758 }
759
760 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
761 {
762 struct dm_thin_new_mapping *m = pool->next_mapping;
763
764 BUG_ON(!pool->next_mapping);
765
766 memset(m, 0, sizeof(struct dm_thin_new_mapping));
767 INIT_LIST_HEAD(&m->list);
768 m->bio = NULL;
769
770 pool->next_mapping = NULL;
771
772 return m;
773 }
774
775 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
776 struct dm_dev *origin, dm_block_t data_origin,
777 dm_block_t data_dest,
778 struct dm_bio_prison_cell *cell, struct bio *bio)
779 {
780 int r;
781 struct pool *pool = tc->pool;
782 struct dm_thin_new_mapping *m = get_next_mapping(pool);
783
784 m->tc = tc;
785 m->virt_block = virt_block;
786 m->data_block = data_dest;
787 m->cell = cell;
788
789 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
790 m->quiesced = true;
791
792 /*
793 * IO to pool_dev remaps to the pool target's data_dev.
794 *
795 * If the whole block of data is being overwritten, we can issue the
796 * bio immediately. Otherwise we use kcopyd to clone the data first.
797 */
798 if (io_overwrites_block(pool, bio)) {
799 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
800
801 h->overwrite_mapping = m;
802 m->bio = bio;
803 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
804 inc_all_io_entry(pool, bio);
805 remap_and_issue(tc, bio, data_dest);
806 } else {
807 struct dm_io_region from, to;
808
809 from.bdev = origin->bdev;
810 from.sector = data_origin * pool->sectors_per_block;
811 from.count = pool->sectors_per_block;
812
813 to.bdev = tc->pool_dev->bdev;
814 to.sector = data_dest * pool->sectors_per_block;
815 to.count = pool->sectors_per_block;
816
817 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
818 0, copy_complete, m);
819 if (r < 0) {
820 mempool_free(m, pool->mapping_pool);
821 DMERR_LIMIT("dm_kcopyd_copy() failed");
822 cell_error(pool, cell);
823 }
824 }
825 }
826
827 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
828 dm_block_t data_origin, dm_block_t data_dest,
829 struct dm_bio_prison_cell *cell, struct bio *bio)
830 {
831 schedule_copy(tc, virt_block, tc->pool_dev,
832 data_origin, data_dest, cell, bio);
833 }
834
835 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
836 dm_block_t data_dest,
837 struct dm_bio_prison_cell *cell, struct bio *bio)
838 {
839 schedule_copy(tc, virt_block, tc->origin_dev,
840 virt_block, data_dest, cell, bio);
841 }
842
843 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
844 dm_block_t data_block, struct dm_bio_prison_cell *cell,
845 struct bio *bio)
846 {
847 struct pool *pool = tc->pool;
848 struct dm_thin_new_mapping *m = get_next_mapping(pool);
849
850 m->quiesced = true;
851 m->prepared = false;
852 m->tc = tc;
853 m->virt_block = virt_block;
854 m->data_block = data_block;
855 m->cell = cell;
856
857 /*
858 * If the whole block of data is being overwritten or we are not
859 * zeroing pre-existing data, we can issue the bio immediately.
860 * Otherwise we use kcopyd to zero the data first.
861 */
862 if (!pool->pf.zero_new_blocks)
863 process_prepared_mapping(m);
864
865 else if (io_overwrites_block(pool, bio)) {
866 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
867
868 h->overwrite_mapping = m;
869 m->bio = bio;
870 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
871 inc_all_io_entry(pool, bio);
872 remap_and_issue(tc, bio, data_block);
873 } else {
874 int r;
875 struct dm_io_region to;
876
877 to.bdev = tc->pool_dev->bdev;
878 to.sector = data_block * pool->sectors_per_block;
879 to.count = pool->sectors_per_block;
880
881 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
882 if (r < 0) {
883 mempool_free(m, pool->mapping_pool);
884 DMERR_LIMIT("dm_kcopyd_zero() failed");
885 cell_error(pool, cell);
886 }
887 }
888 }
889
890 /*
891 * A non-zero return indicates read_only or fail_io mode.
892 * Many callers don't care about the return value.
893 */
894 static int commit(struct pool *pool)
895 {
896 int r;
897
898 if (get_pool_mode(pool) != PM_WRITE)
899 return -EINVAL;
900
901 r = dm_pool_commit_metadata(pool->pmd);
902 if (r)
903 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
904
905 return r;
906 }
907
908 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
909 {
910 unsigned long flags;
911
912 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
913 DMWARN("%s: reached low water mark for data device: sending event.",
914 dm_device_name(pool->pool_md));
915 spin_lock_irqsave(&pool->lock, flags);
916 pool->low_water_triggered = true;
917 spin_unlock_irqrestore(&pool->lock, flags);
918 dm_table_event(pool->ti->table);
919 }
920 }
921
922 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
923 {
924 int r;
925 dm_block_t free_blocks;
926 struct pool *pool = tc->pool;
927
928 if (get_pool_mode(pool) != PM_WRITE)
929 return -EINVAL;
930
931 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
932 if (r) {
933 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
934 return r;
935 }
936
937 check_low_water_mark(pool, free_blocks);
938
939 if (!free_blocks) {
940 /*
941 * Try to commit to see if that will free up some
942 * more space.
943 */
944 r = commit(pool);
945 if (r)
946 return r;
947
948 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
949 if (r) {
950 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
951 return r;
952 }
953
954 if (!free_blocks) {
955 out_of_data_space(pool);
956 return -ENOSPC;
957 }
958 }
959
960 r = dm_pool_alloc_data_block(pool->pmd, result);
961 if (r) {
962 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
963 return r;
964 }
965
966 return 0;
967 }
968
969 /*
970 * If we have run out of space, queue bios until the device is
971 * resumed, presumably after having been reloaded with more space.
972 */
973 static void retry_on_resume(struct bio *bio)
974 {
975 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
976 struct thin_c *tc = h->tc;
977 struct pool *pool = tc->pool;
978 unsigned long flags;
979
980 spin_lock_irqsave(&pool->lock, flags);
981 bio_list_add(&pool->retry_on_resume_list, bio);
982 spin_unlock_irqrestore(&pool->lock, flags);
983 }
984
985 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
986 {
987 /*
988 * When pool is read-only, no cell locking is needed because
989 * nothing is changing.
990 */
991 WARN_ON_ONCE(get_pool_mode(pool) != PM_READ_ONLY);
992
993 if (pool->pf.error_if_no_space)
994 bio_io_error(bio);
995 else
996 retry_on_resume(bio);
997 }
998
999 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1000 {
1001 struct bio *bio;
1002 struct bio_list bios;
1003
1004 bio_list_init(&bios);
1005 cell_release(pool, cell, &bios);
1006
1007 while ((bio = bio_list_pop(&bios)))
1008 handle_unserviceable_bio(pool, bio);
1009 }
1010
1011 static void process_discard(struct thin_c *tc, struct bio *bio)
1012 {
1013 int r;
1014 unsigned long flags;
1015 struct pool *pool = tc->pool;
1016 struct dm_bio_prison_cell *cell, *cell2;
1017 struct dm_cell_key key, key2;
1018 dm_block_t block = get_bio_block(tc, bio);
1019 struct dm_thin_lookup_result lookup_result;
1020 struct dm_thin_new_mapping *m;
1021
1022 build_virtual_key(tc->td, block, &key);
1023 if (bio_detain(tc->pool, &key, bio, &cell))
1024 return;
1025
1026 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1027 switch (r) {
1028 case 0:
1029 /*
1030 * Check nobody is fiddling with this pool block. This can
1031 * happen if someone's in the process of breaking sharing
1032 * on this block.
1033 */
1034 build_data_key(tc->td, lookup_result.block, &key2);
1035 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1036 cell_defer_no_holder(tc, cell);
1037 break;
1038 }
1039
1040 if (io_overlaps_block(pool, bio)) {
1041 /*
1042 * IO may still be going to the destination block. We must
1043 * quiesce before we can do the removal.
1044 */
1045 m = get_next_mapping(pool);
1046 m->tc = tc;
1047 m->pass_discard = pool->pf.discard_passdown;
1048 m->definitely_not_shared = !lookup_result.shared;
1049 m->virt_block = block;
1050 m->data_block = lookup_result.block;
1051 m->cell = cell;
1052 m->cell2 = cell2;
1053 m->bio = bio;
1054
1055 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1056 spin_lock_irqsave(&pool->lock, flags);
1057 list_add_tail(&m->list, &pool->prepared_discards);
1058 spin_unlock_irqrestore(&pool->lock, flags);
1059 wake_worker(pool);
1060 }
1061 } else {
1062 inc_all_io_entry(pool, bio);
1063 cell_defer_no_holder(tc, cell);
1064 cell_defer_no_holder(tc, cell2);
1065
1066 /*
1067 * The DM core makes sure that the discard doesn't span
1068 * a block boundary. So we submit the discard of a
1069 * partial block appropriately.
1070 */
1071 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1072 remap_and_issue(tc, bio, lookup_result.block);
1073 else
1074 bio_endio(bio, 0);
1075 }
1076 break;
1077
1078 case -ENODATA:
1079 /*
1080 * It isn't provisioned, just forget it.
1081 */
1082 cell_defer_no_holder(tc, cell);
1083 bio_endio(bio, 0);
1084 break;
1085
1086 default:
1087 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1088 __func__, r);
1089 cell_defer_no_holder(tc, cell);
1090 bio_io_error(bio);
1091 break;
1092 }
1093 }
1094
1095 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1096 struct dm_cell_key *key,
1097 struct dm_thin_lookup_result *lookup_result,
1098 struct dm_bio_prison_cell *cell)
1099 {
1100 int r;
1101 dm_block_t data_block;
1102 struct pool *pool = tc->pool;
1103
1104 r = alloc_data_block(tc, &data_block);
1105 switch (r) {
1106 case 0:
1107 schedule_internal_copy(tc, block, lookup_result->block,
1108 data_block, cell, bio);
1109 break;
1110
1111 case -ENOSPC:
1112 retry_bios_on_resume(pool, cell);
1113 break;
1114
1115 default:
1116 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1117 __func__, r);
1118 cell_error(pool, cell);
1119 break;
1120 }
1121 }
1122
1123 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1124 dm_block_t block,
1125 struct dm_thin_lookup_result *lookup_result)
1126 {
1127 struct dm_bio_prison_cell *cell;
1128 struct pool *pool = tc->pool;
1129 struct dm_cell_key key;
1130
1131 /*
1132 * If cell is already occupied, then sharing is already in the process
1133 * of being broken so we have nothing further to do here.
1134 */
1135 build_data_key(tc->td, lookup_result->block, &key);
1136 if (bio_detain(pool, &key, bio, &cell))
1137 return;
1138
1139 if (bio_data_dir(bio) == WRITE && bio->bi_size)
1140 break_sharing(tc, bio, block, &key, lookup_result, cell);
1141 else {
1142 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1143
1144 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1145 inc_all_io_entry(pool, bio);
1146 cell_defer_no_holder(tc, cell);
1147
1148 remap_and_issue(tc, bio, lookup_result->block);
1149 }
1150 }
1151
1152 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1153 struct dm_bio_prison_cell *cell)
1154 {
1155 int r;
1156 dm_block_t data_block;
1157 struct pool *pool = tc->pool;
1158
1159 /*
1160 * Remap empty bios (flushes) immediately, without provisioning.
1161 */
1162 if (!bio->bi_size) {
1163 inc_all_io_entry(pool, bio);
1164 cell_defer_no_holder(tc, cell);
1165
1166 remap_and_issue(tc, bio, 0);
1167 return;
1168 }
1169
1170 /*
1171 * Fill read bios with zeroes and complete them immediately.
1172 */
1173 if (bio_data_dir(bio) == READ) {
1174 zero_fill_bio(bio);
1175 cell_defer_no_holder(tc, cell);
1176 bio_endio(bio, 0);
1177 return;
1178 }
1179
1180 r = alloc_data_block(tc, &data_block);
1181 switch (r) {
1182 case 0:
1183 if (tc->origin_dev)
1184 schedule_external_copy(tc, block, data_block, cell, bio);
1185 else
1186 schedule_zero(tc, block, data_block, cell, bio);
1187 break;
1188
1189 case -ENOSPC:
1190 retry_bios_on_resume(pool, cell);
1191 break;
1192
1193 default:
1194 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1195 __func__, r);
1196 cell_error(pool, cell);
1197 break;
1198 }
1199 }
1200
1201 static void process_bio(struct thin_c *tc, struct bio *bio)
1202 {
1203 int r;
1204 struct pool *pool = tc->pool;
1205 dm_block_t block = get_bio_block(tc, bio);
1206 struct dm_bio_prison_cell *cell;
1207 struct dm_cell_key key;
1208 struct dm_thin_lookup_result lookup_result;
1209
1210 /*
1211 * If cell is already occupied, then the block is already
1212 * being provisioned so we have nothing further to do here.
1213 */
1214 build_virtual_key(tc->td, block, &key);
1215 if (bio_detain(pool, &key, bio, &cell))
1216 return;
1217
1218 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1219 switch (r) {
1220 case 0:
1221 if (lookup_result.shared) {
1222 process_shared_bio(tc, bio, block, &lookup_result);
1223 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1224 } else {
1225 inc_all_io_entry(pool, bio);
1226 cell_defer_no_holder(tc, cell);
1227
1228 remap_and_issue(tc, bio, lookup_result.block);
1229 }
1230 break;
1231
1232 case -ENODATA:
1233 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1234 inc_all_io_entry(pool, bio);
1235 cell_defer_no_holder(tc, cell);
1236
1237 remap_to_origin_and_issue(tc, bio);
1238 } else
1239 provision_block(tc, bio, block, cell);
1240 break;
1241
1242 default:
1243 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1244 __func__, r);
1245 cell_defer_no_holder(tc, cell);
1246 bio_io_error(bio);
1247 break;
1248 }
1249 }
1250
1251 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1252 {
1253 int r;
1254 int rw = bio_data_dir(bio);
1255 dm_block_t block = get_bio_block(tc, bio);
1256 struct dm_thin_lookup_result lookup_result;
1257
1258 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1259 switch (r) {
1260 case 0:
1261 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1262 handle_unserviceable_bio(tc->pool, bio);
1263 else {
1264 inc_all_io_entry(tc->pool, bio);
1265 remap_and_issue(tc, bio, lookup_result.block);
1266 }
1267 break;
1268
1269 case -ENODATA:
1270 if (rw != READ) {
1271 handle_unserviceable_bio(tc->pool, bio);
1272 break;
1273 }
1274
1275 if (tc->origin_dev) {
1276 inc_all_io_entry(tc->pool, bio);
1277 remap_to_origin_and_issue(tc, bio);
1278 break;
1279 }
1280
1281 zero_fill_bio(bio);
1282 bio_endio(bio, 0);
1283 break;
1284
1285 default:
1286 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1287 __func__, r);
1288 bio_io_error(bio);
1289 break;
1290 }
1291 }
1292
1293 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1294 {
1295 bio_io_error(bio);
1296 }
1297
1298 /*
1299 * FIXME: should we also commit due to size of transaction, measured in
1300 * metadata blocks?
1301 */
1302 static int need_commit_due_to_time(struct pool *pool)
1303 {
1304 return jiffies < pool->last_commit_jiffies ||
1305 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1306 }
1307
1308 static void process_deferred_bios(struct pool *pool)
1309 {
1310 unsigned long flags;
1311 struct bio *bio;
1312 struct bio_list bios;
1313
1314 bio_list_init(&bios);
1315
1316 spin_lock_irqsave(&pool->lock, flags);
1317 bio_list_merge(&bios, &pool->deferred_bios);
1318 bio_list_init(&pool->deferred_bios);
1319 spin_unlock_irqrestore(&pool->lock, flags);
1320
1321 while ((bio = bio_list_pop(&bios))) {
1322 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1323 struct thin_c *tc = h->tc;
1324
1325 /*
1326 * If we've got no free new_mapping structs, and processing
1327 * this bio might require one, we pause until there are some
1328 * prepared mappings to process.
1329 */
1330 if (ensure_next_mapping(pool)) {
1331 spin_lock_irqsave(&pool->lock, flags);
1332 bio_list_merge(&pool->deferred_bios, &bios);
1333 spin_unlock_irqrestore(&pool->lock, flags);
1334
1335 break;
1336 }
1337
1338 if (bio->bi_rw & REQ_DISCARD)
1339 pool->process_discard(tc, bio);
1340 else
1341 pool->process_bio(tc, bio);
1342 }
1343
1344 /*
1345 * If there are any deferred flush bios, we must commit
1346 * the metadata before issuing them.
1347 */
1348 bio_list_init(&bios);
1349 spin_lock_irqsave(&pool->lock, flags);
1350 bio_list_merge(&bios, &pool->deferred_flush_bios);
1351 bio_list_init(&pool->deferred_flush_bios);
1352 spin_unlock_irqrestore(&pool->lock, flags);
1353
1354 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1355 return;
1356
1357 if (commit(pool)) {
1358 while ((bio = bio_list_pop(&bios)))
1359 bio_io_error(bio);
1360 return;
1361 }
1362 pool->last_commit_jiffies = jiffies;
1363
1364 while ((bio = bio_list_pop(&bios)))
1365 generic_make_request(bio);
1366 }
1367
1368 static void do_worker(struct work_struct *ws)
1369 {
1370 struct pool *pool = container_of(ws, struct pool, worker);
1371
1372 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1373 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1374 process_deferred_bios(pool);
1375 }
1376
1377 /*
1378 * We want to commit periodically so that not too much
1379 * unwritten data builds up.
1380 */
1381 static void do_waker(struct work_struct *ws)
1382 {
1383 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1384 wake_worker(pool);
1385 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1386 }
1387
1388 /*----------------------------------------------------------------*/
1389
1390 static enum pool_mode get_pool_mode(struct pool *pool)
1391 {
1392 return pool->pf.mode;
1393 }
1394
1395 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1396 {
1397 int r;
1398
1399 pool->pf.mode = mode;
1400
1401 switch (mode) {
1402 case PM_FAIL:
1403 DMERR("%s: switching pool to failure mode",
1404 dm_device_name(pool->pool_md));
1405 dm_pool_metadata_read_only(pool->pmd);
1406 pool->process_bio = process_bio_fail;
1407 pool->process_discard = process_bio_fail;
1408 pool->process_prepared_mapping = process_prepared_mapping_fail;
1409 pool->process_prepared_discard = process_prepared_discard_fail;
1410 break;
1411
1412 case PM_READ_ONLY:
1413 DMERR("%s: switching pool to read-only mode",
1414 dm_device_name(pool->pool_md));
1415 r = dm_pool_abort_metadata(pool->pmd);
1416 if (r) {
1417 DMERR("%s: aborting transaction failed",
1418 dm_device_name(pool->pool_md));
1419 set_pool_mode(pool, PM_FAIL);
1420 } else {
1421 dm_pool_metadata_read_only(pool->pmd);
1422 pool->process_bio = process_bio_read_only;
1423 pool->process_discard = process_discard;
1424 pool->process_prepared_mapping = process_prepared_mapping_fail;
1425 pool->process_prepared_discard = process_prepared_discard_passdown;
1426 }
1427 break;
1428
1429 case PM_WRITE:
1430 dm_pool_metadata_read_write(pool->pmd);
1431 pool->process_bio = process_bio;
1432 pool->process_discard = process_discard;
1433 pool->process_prepared_mapping = process_prepared_mapping;
1434 pool->process_prepared_discard = process_prepared_discard;
1435 break;
1436 }
1437 }
1438
1439 /*
1440 * Rather than calling set_pool_mode directly, use these which describe the
1441 * reason for mode degradation.
1442 */
1443 static void out_of_data_space(struct pool *pool)
1444 {
1445 DMERR_LIMIT("%s: no free data space available.",
1446 dm_device_name(pool->pool_md));
1447 set_pool_mode(pool, PM_READ_ONLY);
1448 }
1449
1450 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1451 {
1452 dm_block_t free_blocks;
1453
1454 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1455 dm_device_name(pool->pool_md), op, r);
1456
1457 if (r == -ENOSPC &&
1458 !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
1459 !free_blocks)
1460 DMERR_LIMIT("%s: no free metadata space available.",
1461 dm_device_name(pool->pool_md));
1462
1463 set_pool_mode(pool, PM_READ_ONLY);
1464 }
1465
1466 /*----------------------------------------------------------------*/
1467
1468 /*
1469 * Mapping functions.
1470 */
1471
1472 /*
1473 * Called only while mapping a thin bio to hand it over to the workqueue.
1474 */
1475 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1476 {
1477 unsigned long flags;
1478 struct pool *pool = tc->pool;
1479
1480 spin_lock_irqsave(&pool->lock, flags);
1481 bio_list_add(&pool->deferred_bios, bio);
1482 spin_unlock_irqrestore(&pool->lock, flags);
1483
1484 wake_worker(pool);
1485 }
1486
1487 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1488 {
1489 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1490
1491 h->tc = tc;
1492 h->shared_read_entry = NULL;
1493 h->all_io_entry = NULL;
1494 h->overwrite_mapping = NULL;
1495 }
1496
1497 /*
1498 * Non-blocking function called from the thin target's map function.
1499 */
1500 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1501 {
1502 int r;
1503 struct thin_c *tc = ti->private;
1504 dm_block_t block = get_bio_block(tc, bio);
1505 struct dm_thin_device *td = tc->td;
1506 struct dm_thin_lookup_result result;
1507 struct dm_bio_prison_cell cell1, cell2;
1508 struct dm_bio_prison_cell *cell_result;
1509 struct dm_cell_key key;
1510
1511 thin_hook_bio(tc, bio);
1512
1513 if (get_pool_mode(tc->pool) == PM_FAIL) {
1514 bio_io_error(bio);
1515 return DM_MAPIO_SUBMITTED;
1516 }
1517
1518 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1519 thin_defer_bio(tc, bio);
1520 return DM_MAPIO_SUBMITTED;
1521 }
1522
1523 r = dm_thin_find_block(td, block, 0, &result);
1524
1525 /*
1526 * Note that we defer readahead too.
1527 */
1528 switch (r) {
1529 case 0:
1530 if (unlikely(result.shared)) {
1531 /*
1532 * We have a race condition here between the
1533 * result.shared value returned by the lookup and
1534 * snapshot creation, which may cause new
1535 * sharing.
1536 *
1537 * To avoid this always quiesce the origin before
1538 * taking the snap. You want to do this anyway to
1539 * ensure a consistent application view
1540 * (i.e. lockfs).
1541 *
1542 * More distant ancestors are irrelevant. The
1543 * shared flag will be set in their case.
1544 */
1545 thin_defer_bio(tc, bio);
1546 return DM_MAPIO_SUBMITTED;
1547 }
1548
1549 build_virtual_key(tc->td, block, &key);
1550 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1551 return DM_MAPIO_SUBMITTED;
1552
1553 build_data_key(tc->td, result.block, &key);
1554 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1555 cell_defer_no_holder_no_free(tc, &cell1);
1556 return DM_MAPIO_SUBMITTED;
1557 }
1558
1559 inc_all_io_entry(tc->pool, bio);
1560 cell_defer_no_holder_no_free(tc, &cell2);
1561 cell_defer_no_holder_no_free(tc, &cell1);
1562
1563 remap(tc, bio, result.block);
1564 return DM_MAPIO_REMAPPED;
1565
1566 case -ENODATA:
1567 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1568 /*
1569 * This block isn't provisioned, and we have no way
1570 * of doing so.
1571 */
1572 handle_unserviceable_bio(tc->pool, bio);
1573 return DM_MAPIO_SUBMITTED;
1574 }
1575 /* fall through */
1576
1577 case -EWOULDBLOCK:
1578 /*
1579 * In future, the failed dm_thin_find_block above could
1580 * provide the hint to load the metadata into cache.
1581 */
1582 thin_defer_bio(tc, bio);
1583 return DM_MAPIO_SUBMITTED;
1584
1585 default:
1586 /*
1587 * Must always call bio_io_error on failure.
1588 * dm_thin_find_block can fail with -EINVAL if the
1589 * pool is switched to fail-io mode.
1590 */
1591 bio_io_error(bio);
1592 return DM_MAPIO_SUBMITTED;
1593 }
1594 }
1595
1596 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1597 {
1598 int r;
1599 unsigned long flags;
1600 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1601
1602 spin_lock_irqsave(&pt->pool->lock, flags);
1603 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1604 spin_unlock_irqrestore(&pt->pool->lock, flags);
1605
1606 if (!r) {
1607 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1608 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1609 }
1610
1611 return r;
1612 }
1613
1614 static void __requeue_bios(struct pool *pool)
1615 {
1616 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1617 bio_list_init(&pool->retry_on_resume_list);
1618 }
1619
1620 /*----------------------------------------------------------------
1621 * Binding of control targets to a pool object
1622 *--------------------------------------------------------------*/
1623 static bool data_dev_supports_discard(struct pool_c *pt)
1624 {
1625 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1626
1627 return q && blk_queue_discard(q);
1628 }
1629
1630 static bool is_factor(sector_t block_size, uint32_t n)
1631 {
1632 return !sector_div(block_size, n);
1633 }
1634
1635 /*
1636 * If discard_passdown was enabled verify that the data device
1637 * supports discards. Disable discard_passdown if not.
1638 */
1639 static void disable_passdown_if_not_supported(struct pool_c *pt)
1640 {
1641 struct pool *pool = pt->pool;
1642 struct block_device *data_bdev = pt->data_dev->bdev;
1643 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1644 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1645 const char *reason = NULL;
1646 char buf[BDEVNAME_SIZE];
1647
1648 if (!pt->adjusted_pf.discard_passdown)
1649 return;
1650
1651 if (!data_dev_supports_discard(pt))
1652 reason = "discard unsupported";
1653
1654 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1655 reason = "max discard sectors smaller than a block";
1656
1657 else if (data_limits->discard_granularity > block_size)
1658 reason = "discard granularity larger than a block";
1659
1660 else if (!is_factor(block_size, data_limits->discard_granularity))
1661 reason = "discard granularity not a factor of block size";
1662
1663 if (reason) {
1664 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1665 pt->adjusted_pf.discard_passdown = false;
1666 }
1667 }
1668
1669 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1670 {
1671 struct pool_c *pt = ti->private;
1672
1673 /*
1674 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1675 */
1676 enum pool_mode old_mode = pool->pf.mode;
1677 enum pool_mode new_mode = pt->adjusted_pf.mode;
1678
1679 /*
1680 * If we were in PM_FAIL mode, rollback of metadata failed. We're
1681 * not going to recover without a thin_repair. So we never let the
1682 * pool move out of the old mode. On the other hand a PM_READ_ONLY
1683 * may have been due to a lack of metadata or data space, and may
1684 * now work (ie. if the underlying devices have been resized).
1685 */
1686 if (old_mode == PM_FAIL)
1687 new_mode = old_mode;
1688
1689 pool->ti = ti;
1690 pool->low_water_blocks = pt->low_water_blocks;
1691 pool->pf = pt->adjusted_pf;
1692
1693 set_pool_mode(pool, new_mode);
1694
1695 return 0;
1696 }
1697
1698 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1699 {
1700 if (pool->ti == ti)
1701 pool->ti = NULL;
1702 }
1703
1704 /*----------------------------------------------------------------
1705 * Pool creation
1706 *--------------------------------------------------------------*/
1707 /* Initialize pool features. */
1708 static void pool_features_init(struct pool_features *pf)
1709 {
1710 pf->mode = PM_WRITE;
1711 pf->zero_new_blocks = true;
1712 pf->discard_enabled = true;
1713 pf->discard_passdown = true;
1714 pf->error_if_no_space = false;
1715 }
1716
1717 static void __pool_destroy(struct pool *pool)
1718 {
1719 __pool_table_remove(pool);
1720
1721 if (dm_pool_metadata_close(pool->pmd) < 0)
1722 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1723
1724 dm_bio_prison_destroy(pool->prison);
1725 dm_kcopyd_client_destroy(pool->copier);
1726
1727 if (pool->wq)
1728 destroy_workqueue(pool->wq);
1729
1730 if (pool->next_mapping)
1731 mempool_free(pool->next_mapping, pool->mapping_pool);
1732 mempool_destroy(pool->mapping_pool);
1733 dm_deferred_set_destroy(pool->shared_read_ds);
1734 dm_deferred_set_destroy(pool->all_io_ds);
1735 kfree(pool);
1736 }
1737
1738 static struct kmem_cache *_new_mapping_cache;
1739
1740 static struct pool *pool_create(struct mapped_device *pool_md,
1741 struct block_device *metadata_dev,
1742 unsigned long block_size,
1743 int read_only, char **error)
1744 {
1745 int r;
1746 void *err_p;
1747 struct pool *pool;
1748 struct dm_pool_metadata *pmd;
1749 bool format_device = read_only ? false : true;
1750
1751 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1752 if (IS_ERR(pmd)) {
1753 *error = "Error creating metadata object";
1754 return (struct pool *)pmd;
1755 }
1756
1757 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1758 if (!pool) {
1759 *error = "Error allocating memory for pool";
1760 err_p = ERR_PTR(-ENOMEM);
1761 goto bad_pool;
1762 }
1763
1764 pool->pmd = pmd;
1765 pool->sectors_per_block = block_size;
1766 if (block_size & (block_size - 1))
1767 pool->sectors_per_block_shift = -1;
1768 else
1769 pool->sectors_per_block_shift = __ffs(block_size);
1770 pool->low_water_blocks = 0;
1771 pool_features_init(&pool->pf);
1772 pool->prison = dm_bio_prison_create(PRISON_CELLS);
1773 if (!pool->prison) {
1774 *error = "Error creating pool's bio prison";
1775 err_p = ERR_PTR(-ENOMEM);
1776 goto bad_prison;
1777 }
1778
1779 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1780 if (IS_ERR(pool->copier)) {
1781 r = PTR_ERR(pool->copier);
1782 *error = "Error creating pool's kcopyd client";
1783 err_p = ERR_PTR(r);
1784 goto bad_kcopyd_client;
1785 }
1786
1787 /*
1788 * Create singlethreaded workqueue that will service all devices
1789 * that use this metadata.
1790 */
1791 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1792 if (!pool->wq) {
1793 *error = "Error creating pool's workqueue";
1794 err_p = ERR_PTR(-ENOMEM);
1795 goto bad_wq;
1796 }
1797
1798 INIT_WORK(&pool->worker, do_worker);
1799 INIT_DELAYED_WORK(&pool->waker, do_waker);
1800 spin_lock_init(&pool->lock);
1801 bio_list_init(&pool->deferred_bios);
1802 bio_list_init(&pool->deferred_flush_bios);
1803 INIT_LIST_HEAD(&pool->prepared_mappings);
1804 INIT_LIST_HEAD(&pool->prepared_discards);
1805 pool->low_water_triggered = false;
1806 bio_list_init(&pool->retry_on_resume_list);
1807
1808 pool->shared_read_ds = dm_deferred_set_create();
1809 if (!pool->shared_read_ds) {
1810 *error = "Error creating pool's shared read deferred set";
1811 err_p = ERR_PTR(-ENOMEM);
1812 goto bad_shared_read_ds;
1813 }
1814
1815 pool->all_io_ds = dm_deferred_set_create();
1816 if (!pool->all_io_ds) {
1817 *error = "Error creating pool's all io deferred set";
1818 err_p = ERR_PTR(-ENOMEM);
1819 goto bad_all_io_ds;
1820 }
1821
1822 pool->next_mapping = NULL;
1823 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1824 _new_mapping_cache);
1825 if (!pool->mapping_pool) {
1826 *error = "Error creating pool's mapping mempool";
1827 err_p = ERR_PTR(-ENOMEM);
1828 goto bad_mapping_pool;
1829 }
1830
1831 pool->ref_count = 1;
1832 pool->last_commit_jiffies = jiffies;
1833 pool->pool_md = pool_md;
1834 pool->md_dev = metadata_dev;
1835 __pool_table_insert(pool);
1836
1837 return pool;
1838
1839 bad_mapping_pool:
1840 dm_deferred_set_destroy(pool->all_io_ds);
1841 bad_all_io_ds:
1842 dm_deferred_set_destroy(pool->shared_read_ds);
1843 bad_shared_read_ds:
1844 destroy_workqueue(pool->wq);
1845 bad_wq:
1846 dm_kcopyd_client_destroy(pool->copier);
1847 bad_kcopyd_client:
1848 dm_bio_prison_destroy(pool->prison);
1849 bad_prison:
1850 kfree(pool);
1851 bad_pool:
1852 if (dm_pool_metadata_close(pmd))
1853 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1854
1855 return err_p;
1856 }
1857
1858 static void __pool_inc(struct pool *pool)
1859 {
1860 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1861 pool->ref_count++;
1862 }
1863
1864 static void __pool_dec(struct pool *pool)
1865 {
1866 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1867 BUG_ON(!pool->ref_count);
1868 if (!--pool->ref_count)
1869 __pool_destroy(pool);
1870 }
1871
1872 static struct pool *__pool_find(struct mapped_device *pool_md,
1873 struct block_device *metadata_dev,
1874 unsigned long block_size, int read_only,
1875 char **error, int *created)
1876 {
1877 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1878
1879 if (pool) {
1880 if (pool->pool_md != pool_md) {
1881 *error = "metadata device already in use by a pool";
1882 return ERR_PTR(-EBUSY);
1883 }
1884 __pool_inc(pool);
1885
1886 } else {
1887 pool = __pool_table_lookup(pool_md);
1888 if (pool) {
1889 if (pool->md_dev != metadata_dev) {
1890 *error = "different pool cannot replace a pool";
1891 return ERR_PTR(-EINVAL);
1892 }
1893 __pool_inc(pool);
1894
1895 } else {
1896 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1897 *created = 1;
1898 }
1899 }
1900
1901 return pool;
1902 }
1903
1904 /*----------------------------------------------------------------
1905 * Pool target methods
1906 *--------------------------------------------------------------*/
1907 static void pool_dtr(struct dm_target *ti)
1908 {
1909 struct pool_c *pt = ti->private;
1910
1911 mutex_lock(&dm_thin_pool_table.mutex);
1912
1913 unbind_control_target(pt->pool, ti);
1914 __pool_dec(pt->pool);
1915 dm_put_device(ti, pt->metadata_dev);
1916 dm_put_device(ti, pt->data_dev);
1917 kfree(pt);
1918
1919 mutex_unlock(&dm_thin_pool_table.mutex);
1920 }
1921
1922 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1923 struct dm_target *ti)
1924 {
1925 int r;
1926 unsigned argc;
1927 const char *arg_name;
1928
1929 static struct dm_arg _args[] = {
1930 {0, 3, "Invalid number of pool feature arguments"},
1931 };
1932
1933 /*
1934 * No feature arguments supplied.
1935 */
1936 if (!as->argc)
1937 return 0;
1938
1939 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1940 if (r)
1941 return -EINVAL;
1942
1943 while (argc && !r) {
1944 arg_name = dm_shift_arg(as);
1945 argc--;
1946
1947 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1948 pf->zero_new_blocks = false;
1949
1950 else if (!strcasecmp(arg_name, "ignore_discard"))
1951 pf->discard_enabled = false;
1952
1953 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1954 pf->discard_passdown = false;
1955
1956 else if (!strcasecmp(arg_name, "read_only"))
1957 pf->mode = PM_READ_ONLY;
1958
1959 else if (!strcasecmp(arg_name, "error_if_no_space"))
1960 pf->error_if_no_space = true;
1961
1962 else {
1963 ti->error = "Unrecognised pool feature requested";
1964 r = -EINVAL;
1965 break;
1966 }
1967 }
1968
1969 return r;
1970 }
1971
1972 static void metadata_low_callback(void *context)
1973 {
1974 struct pool *pool = context;
1975
1976 DMWARN("%s: reached low water mark for metadata device: sending event.",
1977 dm_device_name(pool->pool_md));
1978
1979 dm_table_event(pool->ti->table);
1980 }
1981
1982 static sector_t get_metadata_dev_size(struct block_device *bdev)
1983 {
1984 sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
1985 char buffer[BDEVNAME_SIZE];
1986
1987 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
1988 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1989 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
1990 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
1991 }
1992
1993 return metadata_dev_size;
1994 }
1995
1996 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
1997 {
1998 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
1999
2000 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
2001
2002 return metadata_dev_size;
2003 }
2004
2005 /*
2006 * When a metadata threshold is crossed a dm event is triggered, and
2007 * userland should respond by growing the metadata device. We could let
2008 * userland set the threshold, like we do with the data threshold, but I'm
2009 * not sure they know enough to do this well.
2010 */
2011 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2012 {
2013 /*
2014 * 4M is ample for all ops with the possible exception of thin
2015 * device deletion which is harmless if it fails (just retry the
2016 * delete after you've grown the device).
2017 */
2018 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2019 return min((dm_block_t)1024ULL /* 4M */, quarter);
2020 }
2021
2022 /*
2023 * thin-pool <metadata dev> <data dev>
2024 * <data block size (sectors)>
2025 * <low water mark (blocks)>
2026 * [<#feature args> [<arg>]*]
2027 *
2028 * Optional feature arguments are:
2029 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2030 * ignore_discard: disable discard
2031 * no_discard_passdown: don't pass discards down to the data device
2032 * read_only: Don't allow any changes to be made to the pool metadata.
2033 * error_if_no_space: error IOs, instead of queueing, if no space.
2034 */
2035 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2036 {
2037 int r, pool_created = 0;
2038 struct pool_c *pt;
2039 struct pool *pool;
2040 struct pool_features pf;
2041 struct dm_arg_set as;
2042 struct dm_dev *data_dev;
2043 unsigned long block_size;
2044 dm_block_t low_water_blocks;
2045 struct dm_dev *metadata_dev;
2046 fmode_t metadata_mode;
2047
2048 /*
2049 * FIXME Remove validation from scope of lock.
2050 */
2051 mutex_lock(&dm_thin_pool_table.mutex);
2052
2053 if (argc < 4) {
2054 ti->error = "Invalid argument count";
2055 r = -EINVAL;
2056 goto out_unlock;
2057 }
2058
2059 as.argc = argc;
2060 as.argv = argv;
2061
2062 /*
2063 * Set default pool features.
2064 */
2065 pool_features_init(&pf);
2066
2067 dm_consume_args(&as, 4);
2068 r = parse_pool_features(&as, &pf, ti);
2069 if (r)
2070 goto out_unlock;
2071
2072 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2073 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2074 if (r) {
2075 ti->error = "Error opening metadata block device";
2076 goto out_unlock;
2077 }
2078
2079 /*
2080 * Run for the side-effect of possibly issuing a warning if the
2081 * device is too big.
2082 */
2083 (void) get_metadata_dev_size(metadata_dev->bdev);
2084
2085 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2086 if (r) {
2087 ti->error = "Error getting data device";
2088 goto out_metadata;
2089 }
2090
2091 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2092 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2093 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2094 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2095 ti->error = "Invalid block size";
2096 r = -EINVAL;
2097 goto out;
2098 }
2099
2100 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2101 ti->error = "Invalid low water mark";
2102 r = -EINVAL;
2103 goto out;
2104 }
2105
2106 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2107 if (!pt) {
2108 r = -ENOMEM;
2109 goto out;
2110 }
2111
2112 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2113 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2114 if (IS_ERR(pool)) {
2115 r = PTR_ERR(pool);
2116 goto out_free_pt;
2117 }
2118
2119 /*
2120 * 'pool_created' reflects whether this is the first table load.
2121 * Top level discard support is not allowed to be changed after
2122 * initial load. This would require a pool reload to trigger thin
2123 * device changes.
2124 */
2125 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2126 ti->error = "Discard support cannot be disabled once enabled";
2127 r = -EINVAL;
2128 goto out_flags_changed;
2129 }
2130
2131 pt->pool = pool;
2132 pt->ti = ti;
2133 pt->metadata_dev = metadata_dev;
2134 pt->data_dev = data_dev;
2135 pt->low_water_blocks = low_water_blocks;
2136 pt->adjusted_pf = pt->requested_pf = pf;
2137 ti->num_flush_bios = 1;
2138
2139 /*
2140 * Only need to enable discards if the pool should pass
2141 * them down to the data device. The thin device's discard
2142 * processing will cause mappings to be removed from the btree.
2143 */
2144 ti->discard_zeroes_data_unsupported = true;
2145 if (pf.discard_enabled && pf.discard_passdown) {
2146 ti->num_discard_bios = 1;
2147
2148 /*
2149 * Setting 'discards_supported' circumvents the normal
2150 * stacking of discard limits (this keeps the pool and
2151 * thin devices' discard limits consistent).
2152 */
2153 ti->discards_supported = true;
2154 }
2155 ti->private = pt;
2156
2157 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2158 calc_metadata_threshold(pt),
2159 metadata_low_callback,
2160 pool);
2161 if (r)
2162 goto out_free_pt;
2163
2164 pt->callbacks.congested_fn = pool_is_congested;
2165 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2166
2167 mutex_unlock(&dm_thin_pool_table.mutex);
2168
2169 return 0;
2170
2171 out_flags_changed:
2172 __pool_dec(pool);
2173 out_free_pt:
2174 kfree(pt);
2175 out:
2176 dm_put_device(ti, data_dev);
2177 out_metadata:
2178 dm_put_device(ti, metadata_dev);
2179 out_unlock:
2180 mutex_unlock(&dm_thin_pool_table.mutex);
2181
2182 return r;
2183 }
2184
2185 static int pool_map(struct dm_target *ti, struct bio *bio)
2186 {
2187 int r;
2188 struct pool_c *pt = ti->private;
2189 struct pool *pool = pt->pool;
2190 unsigned long flags;
2191
2192 /*
2193 * As this is a singleton target, ti->begin is always zero.
2194 */
2195 spin_lock_irqsave(&pool->lock, flags);
2196 bio->bi_bdev = pt->data_dev->bdev;
2197 r = DM_MAPIO_REMAPPED;
2198 spin_unlock_irqrestore(&pool->lock, flags);
2199
2200 return r;
2201 }
2202
2203 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2204 {
2205 int r;
2206 struct pool_c *pt = ti->private;
2207 struct pool *pool = pt->pool;
2208 sector_t data_size = ti->len;
2209 dm_block_t sb_data_size;
2210
2211 *need_commit = false;
2212
2213 (void) sector_div(data_size, pool->sectors_per_block);
2214
2215 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2216 if (r) {
2217 DMERR("%s: failed to retrieve data device size",
2218 dm_device_name(pool->pool_md));
2219 return r;
2220 }
2221
2222 if (data_size < sb_data_size) {
2223 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2224 dm_device_name(pool->pool_md),
2225 (unsigned long long)data_size, sb_data_size);
2226 return -EINVAL;
2227
2228 } else if (data_size > sb_data_size) {
2229 if (sb_data_size)
2230 DMINFO("%s: growing the data device from %llu to %llu blocks",
2231 dm_device_name(pool->pool_md),
2232 sb_data_size, (unsigned long long)data_size);
2233 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2234 if (r) {
2235 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2236 return r;
2237 }
2238
2239 *need_commit = true;
2240 }
2241
2242 return 0;
2243 }
2244
2245 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2246 {
2247 int r;
2248 struct pool_c *pt = ti->private;
2249 struct pool *pool = pt->pool;
2250 dm_block_t metadata_dev_size, sb_metadata_dev_size;
2251
2252 *need_commit = false;
2253
2254 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2255
2256 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2257 if (r) {
2258 DMERR("%s: failed to retrieve metadata device size",
2259 dm_device_name(pool->pool_md));
2260 return r;
2261 }
2262
2263 if (metadata_dev_size < sb_metadata_dev_size) {
2264 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2265 dm_device_name(pool->pool_md),
2266 metadata_dev_size, sb_metadata_dev_size);
2267 return -EINVAL;
2268
2269 } else if (metadata_dev_size > sb_metadata_dev_size) {
2270 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2271 dm_device_name(pool->pool_md),
2272 sb_metadata_dev_size, metadata_dev_size);
2273 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2274 if (r) {
2275 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2276 return r;
2277 }
2278
2279 *need_commit = true;
2280 }
2281
2282 return 0;
2283 }
2284
2285 /*
2286 * Retrieves the number of blocks of the data device from
2287 * the superblock and compares it to the actual device size,
2288 * thus resizing the data device in case it has grown.
2289 *
2290 * This both copes with opening preallocated data devices in the ctr
2291 * being followed by a resume
2292 * -and-
2293 * calling the resume method individually after userspace has
2294 * grown the data device in reaction to a table event.
2295 */
2296 static int pool_preresume(struct dm_target *ti)
2297 {
2298 int r;
2299 bool need_commit1, need_commit2;
2300 struct pool_c *pt = ti->private;
2301 struct pool *pool = pt->pool;
2302
2303 /*
2304 * Take control of the pool object.
2305 */
2306 r = bind_control_target(pool, ti);
2307 if (r)
2308 return r;
2309
2310 r = maybe_resize_data_dev(ti, &need_commit1);
2311 if (r)
2312 return r;
2313
2314 r = maybe_resize_metadata_dev(ti, &need_commit2);
2315 if (r)
2316 return r;
2317
2318 if (need_commit1 || need_commit2)
2319 (void) commit(pool);
2320
2321 return 0;
2322 }
2323
2324 static void pool_resume(struct dm_target *ti)
2325 {
2326 struct pool_c *pt = ti->private;
2327 struct pool *pool = pt->pool;
2328 unsigned long flags;
2329
2330 spin_lock_irqsave(&pool->lock, flags);
2331 pool->low_water_triggered = false;
2332 __requeue_bios(pool);
2333 spin_unlock_irqrestore(&pool->lock, flags);
2334
2335 do_waker(&pool->waker.work);
2336 }
2337
2338 static void pool_postsuspend(struct dm_target *ti)
2339 {
2340 struct pool_c *pt = ti->private;
2341 struct pool *pool = pt->pool;
2342
2343 cancel_delayed_work(&pool->waker);
2344 flush_workqueue(pool->wq);
2345 (void) commit(pool);
2346 }
2347
2348 static int check_arg_count(unsigned argc, unsigned args_required)
2349 {
2350 if (argc != args_required) {
2351 DMWARN("Message received with %u arguments instead of %u.",
2352 argc, args_required);
2353 return -EINVAL;
2354 }
2355
2356 return 0;
2357 }
2358
2359 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2360 {
2361 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2362 *dev_id <= MAX_DEV_ID)
2363 return 0;
2364
2365 if (warning)
2366 DMWARN("Message received with invalid device id: %s", arg);
2367
2368 return -EINVAL;
2369 }
2370
2371 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2372 {
2373 dm_thin_id dev_id;
2374 int r;
2375
2376 r = check_arg_count(argc, 2);
2377 if (r)
2378 return r;
2379
2380 r = read_dev_id(argv[1], &dev_id, 1);
2381 if (r)
2382 return r;
2383
2384 r = dm_pool_create_thin(pool->pmd, dev_id);
2385 if (r) {
2386 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2387 argv[1]);
2388 return r;
2389 }
2390
2391 return 0;
2392 }
2393
2394 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2395 {
2396 dm_thin_id dev_id;
2397 dm_thin_id origin_dev_id;
2398 int r;
2399
2400 r = check_arg_count(argc, 3);
2401 if (r)
2402 return r;
2403
2404 r = read_dev_id(argv[1], &dev_id, 1);
2405 if (r)
2406 return r;
2407
2408 r = read_dev_id(argv[2], &origin_dev_id, 1);
2409 if (r)
2410 return r;
2411
2412 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2413 if (r) {
2414 DMWARN("Creation of new snapshot %s of device %s failed.",
2415 argv[1], argv[2]);
2416 return r;
2417 }
2418
2419 return 0;
2420 }
2421
2422 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2423 {
2424 dm_thin_id dev_id;
2425 int r;
2426
2427 r = check_arg_count(argc, 2);
2428 if (r)
2429 return r;
2430
2431 r = read_dev_id(argv[1], &dev_id, 1);
2432 if (r)
2433 return r;
2434
2435 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2436 if (r)
2437 DMWARN("Deletion of thin device %s failed.", argv[1]);
2438
2439 return r;
2440 }
2441
2442 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2443 {
2444 dm_thin_id old_id, new_id;
2445 int r;
2446
2447 r = check_arg_count(argc, 3);
2448 if (r)
2449 return r;
2450
2451 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2452 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2453 return -EINVAL;
2454 }
2455
2456 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2457 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2458 return -EINVAL;
2459 }
2460
2461 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2462 if (r) {
2463 DMWARN("Failed to change transaction id from %s to %s.",
2464 argv[1], argv[2]);
2465 return r;
2466 }
2467
2468 return 0;
2469 }
2470
2471 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2472 {
2473 int r;
2474
2475 r = check_arg_count(argc, 1);
2476 if (r)
2477 return r;
2478
2479 (void) commit(pool);
2480
2481 r = dm_pool_reserve_metadata_snap(pool->pmd);
2482 if (r)
2483 DMWARN("reserve_metadata_snap message failed.");
2484
2485 return r;
2486 }
2487
2488 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2489 {
2490 int r;
2491
2492 r = check_arg_count(argc, 1);
2493 if (r)
2494 return r;
2495
2496 r = dm_pool_release_metadata_snap(pool->pmd);
2497 if (r)
2498 DMWARN("release_metadata_snap message failed.");
2499
2500 return r;
2501 }
2502
2503 /*
2504 * Messages supported:
2505 * create_thin <dev_id>
2506 * create_snap <dev_id> <origin_id>
2507 * delete <dev_id>
2508 * trim <dev_id> <new_size_in_sectors>
2509 * set_transaction_id <current_trans_id> <new_trans_id>
2510 * reserve_metadata_snap
2511 * release_metadata_snap
2512 */
2513 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2514 {
2515 int r = -EINVAL;
2516 struct pool_c *pt = ti->private;
2517 struct pool *pool = pt->pool;
2518
2519 if (!strcasecmp(argv[0], "create_thin"))
2520 r = process_create_thin_mesg(argc, argv, pool);
2521
2522 else if (!strcasecmp(argv[0], "create_snap"))
2523 r = process_create_snap_mesg(argc, argv, pool);
2524
2525 else if (!strcasecmp(argv[0], "delete"))
2526 r = process_delete_mesg(argc, argv, pool);
2527
2528 else if (!strcasecmp(argv[0], "set_transaction_id"))
2529 r = process_set_transaction_id_mesg(argc, argv, pool);
2530
2531 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2532 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2533
2534 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2535 r = process_release_metadata_snap_mesg(argc, argv, pool);
2536
2537 else
2538 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2539
2540 if (!r)
2541 (void) commit(pool);
2542
2543 return r;
2544 }
2545
2546 static void emit_flags(struct pool_features *pf, char *result,
2547 unsigned sz, unsigned maxlen)
2548 {
2549 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2550 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2551 pf->error_if_no_space;
2552 DMEMIT("%u ", count);
2553
2554 if (!pf->zero_new_blocks)
2555 DMEMIT("skip_block_zeroing ");
2556
2557 if (!pf->discard_enabled)
2558 DMEMIT("ignore_discard ");
2559
2560 if (!pf->discard_passdown)
2561 DMEMIT("no_discard_passdown ");
2562
2563 if (pf->mode == PM_READ_ONLY)
2564 DMEMIT("read_only ");
2565
2566 if (pf->error_if_no_space)
2567 DMEMIT("error_if_no_space ");
2568 }
2569
2570 /*
2571 * Status line is:
2572 * <transaction id> <used metadata sectors>/<total metadata sectors>
2573 * <used data sectors>/<total data sectors> <held metadata root>
2574 */
2575 static void pool_status(struct dm_target *ti, status_type_t type,
2576 unsigned status_flags, char *result, unsigned maxlen)
2577 {
2578 int r;
2579 unsigned sz = 0;
2580 uint64_t transaction_id;
2581 dm_block_t nr_free_blocks_data;
2582 dm_block_t nr_free_blocks_metadata;
2583 dm_block_t nr_blocks_data;
2584 dm_block_t nr_blocks_metadata;
2585 dm_block_t held_root;
2586 char buf[BDEVNAME_SIZE];
2587 char buf2[BDEVNAME_SIZE];
2588 struct pool_c *pt = ti->private;
2589 struct pool *pool = pt->pool;
2590
2591 switch (type) {
2592 case STATUSTYPE_INFO:
2593 if (get_pool_mode(pool) == PM_FAIL) {
2594 DMEMIT("Fail");
2595 break;
2596 }
2597
2598 /* Commit to ensure statistics aren't out-of-date */
2599 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2600 (void) commit(pool);
2601
2602 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2603 if (r) {
2604 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2605 dm_device_name(pool->pool_md), r);
2606 goto err;
2607 }
2608
2609 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2610 if (r) {
2611 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2612 dm_device_name(pool->pool_md), r);
2613 goto err;
2614 }
2615
2616 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2617 if (r) {
2618 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2619 dm_device_name(pool->pool_md), r);
2620 goto err;
2621 }
2622
2623 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2624 if (r) {
2625 DMERR("%s: dm_pool_get_free_block_count returned %d",
2626 dm_device_name(pool->pool_md), r);
2627 goto err;
2628 }
2629
2630 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2631 if (r) {
2632 DMERR("%s: dm_pool_get_data_dev_size returned %d",
2633 dm_device_name(pool->pool_md), r);
2634 goto err;
2635 }
2636
2637 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2638 if (r) {
2639 DMERR("%s: dm_pool_get_metadata_snap returned %d",
2640 dm_device_name(pool->pool_md), r);
2641 goto err;
2642 }
2643
2644 DMEMIT("%llu %llu/%llu %llu/%llu ",
2645 (unsigned long long)transaction_id,
2646 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2647 (unsigned long long)nr_blocks_metadata,
2648 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2649 (unsigned long long)nr_blocks_data);
2650
2651 if (held_root)
2652 DMEMIT("%llu ", held_root);
2653 else
2654 DMEMIT("- ");
2655
2656 if (pool->pf.mode == PM_READ_ONLY)
2657 DMEMIT("ro ");
2658 else
2659 DMEMIT("rw ");
2660
2661 if (!pool->pf.discard_enabled)
2662 DMEMIT("ignore_discard ");
2663 else if (pool->pf.discard_passdown)
2664 DMEMIT("discard_passdown ");
2665 else
2666 DMEMIT("no_discard_passdown ");
2667
2668 if (pool->pf.error_if_no_space)
2669 DMEMIT("error_if_no_space ");
2670 else
2671 DMEMIT("queue_if_no_space ");
2672
2673 break;
2674
2675 case STATUSTYPE_TABLE:
2676 DMEMIT("%s %s %lu %llu ",
2677 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2678 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2679 (unsigned long)pool->sectors_per_block,
2680 (unsigned long long)pt->low_water_blocks);
2681 emit_flags(&pt->requested_pf, result, sz, maxlen);
2682 break;
2683 }
2684 return;
2685
2686 err:
2687 DMEMIT("Error");
2688 }
2689
2690 static int pool_iterate_devices(struct dm_target *ti,
2691 iterate_devices_callout_fn fn, void *data)
2692 {
2693 struct pool_c *pt = ti->private;
2694
2695 return fn(ti, pt->data_dev, 0, ti->len, data);
2696 }
2697
2698 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2699 struct bio_vec *biovec, int max_size)
2700 {
2701 struct pool_c *pt = ti->private;
2702 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2703
2704 if (!q->merge_bvec_fn)
2705 return max_size;
2706
2707 bvm->bi_bdev = pt->data_dev->bdev;
2708
2709 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2710 }
2711
2712 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2713 {
2714 struct pool *pool = pt->pool;
2715 struct queue_limits *data_limits;
2716
2717 limits->max_discard_sectors = pool->sectors_per_block;
2718
2719 /*
2720 * discard_granularity is just a hint, and not enforced.
2721 */
2722 if (pt->adjusted_pf.discard_passdown) {
2723 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2724 limits->discard_granularity = data_limits->discard_granularity;
2725 } else
2726 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2727 }
2728
2729 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2730 {
2731 struct pool_c *pt = ti->private;
2732 struct pool *pool = pt->pool;
2733 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2734
2735 /*
2736 * If the system-determined stacked limits are compatible with the
2737 * pool's blocksize (io_opt is a factor) do not override them.
2738 */
2739 if (io_opt_sectors < pool->sectors_per_block ||
2740 do_div(io_opt_sectors, pool->sectors_per_block)) {
2741 blk_limits_io_min(limits, 0);
2742 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2743 }
2744
2745 /*
2746 * pt->adjusted_pf is a staging area for the actual features to use.
2747 * They get transferred to the live pool in bind_control_target()
2748 * called from pool_preresume().
2749 */
2750 if (!pt->adjusted_pf.discard_enabled) {
2751 /*
2752 * Must explicitly disallow stacking discard limits otherwise the
2753 * block layer will stack them if pool's data device has support.
2754 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2755 * user to see that, so make sure to set all discard limits to 0.
2756 */
2757 limits->discard_granularity = 0;
2758 return;
2759 }
2760
2761 disable_passdown_if_not_supported(pt);
2762
2763 set_discard_limits(pt, limits);
2764 }
2765
2766 static struct target_type pool_target = {
2767 .name = "thin-pool",
2768 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2769 DM_TARGET_IMMUTABLE,
2770 .version = {1, 10, 0},
2771 .module = THIS_MODULE,
2772 .ctr = pool_ctr,
2773 .dtr = pool_dtr,
2774 .map = pool_map,
2775 .postsuspend = pool_postsuspend,
2776 .preresume = pool_preresume,
2777 .resume = pool_resume,
2778 .message = pool_message,
2779 .status = pool_status,
2780 .merge = pool_merge,
2781 .iterate_devices = pool_iterate_devices,
2782 .io_hints = pool_io_hints,
2783 };
2784
2785 /*----------------------------------------------------------------
2786 * Thin target methods
2787 *--------------------------------------------------------------*/
2788 static void thin_dtr(struct dm_target *ti)
2789 {
2790 struct thin_c *tc = ti->private;
2791
2792 mutex_lock(&dm_thin_pool_table.mutex);
2793
2794 __pool_dec(tc->pool);
2795 dm_pool_close_thin_device(tc->td);
2796 dm_put_device(ti, tc->pool_dev);
2797 if (tc->origin_dev)
2798 dm_put_device(ti, tc->origin_dev);
2799 kfree(tc);
2800
2801 mutex_unlock(&dm_thin_pool_table.mutex);
2802 }
2803
2804 /*
2805 * Thin target parameters:
2806 *
2807 * <pool_dev> <dev_id> [origin_dev]
2808 *
2809 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2810 * dev_id: the internal device identifier
2811 * origin_dev: a device external to the pool that should act as the origin
2812 *
2813 * If the pool device has discards disabled, they get disabled for the thin
2814 * device as well.
2815 */
2816 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2817 {
2818 int r;
2819 struct thin_c *tc;
2820 struct dm_dev *pool_dev, *origin_dev;
2821 struct mapped_device *pool_md;
2822
2823 mutex_lock(&dm_thin_pool_table.mutex);
2824
2825 if (argc != 2 && argc != 3) {
2826 ti->error = "Invalid argument count";
2827 r = -EINVAL;
2828 goto out_unlock;
2829 }
2830
2831 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2832 if (!tc) {
2833 ti->error = "Out of memory";
2834 r = -ENOMEM;
2835 goto out_unlock;
2836 }
2837
2838 if (argc == 3) {
2839 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2840 if (r) {
2841 ti->error = "Error opening origin device";
2842 goto bad_origin_dev;
2843 }
2844 tc->origin_dev = origin_dev;
2845 }
2846
2847 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2848 if (r) {
2849 ti->error = "Error opening pool device";
2850 goto bad_pool_dev;
2851 }
2852 tc->pool_dev = pool_dev;
2853
2854 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2855 ti->error = "Invalid device id";
2856 r = -EINVAL;
2857 goto bad_common;
2858 }
2859
2860 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2861 if (!pool_md) {
2862 ti->error = "Couldn't get pool mapped device";
2863 r = -EINVAL;
2864 goto bad_common;
2865 }
2866
2867 tc->pool = __pool_table_lookup(pool_md);
2868 if (!tc->pool) {
2869 ti->error = "Couldn't find pool object";
2870 r = -EINVAL;
2871 goto bad_pool_lookup;
2872 }
2873 __pool_inc(tc->pool);
2874
2875 if (get_pool_mode(tc->pool) == PM_FAIL) {
2876 ti->error = "Couldn't open thin device, Pool is in fail mode";
2877 goto bad_thin_open;
2878 }
2879
2880 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2881 if (r) {
2882 ti->error = "Couldn't open thin internal device";
2883 goto bad_thin_open;
2884 }
2885
2886 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2887 if (r)
2888 goto bad_thin_open;
2889
2890 ti->num_flush_bios = 1;
2891 ti->flush_supported = true;
2892 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2893
2894 /* In case the pool supports discards, pass them on. */
2895 ti->discard_zeroes_data_unsupported = true;
2896 if (tc->pool->pf.discard_enabled) {
2897 ti->discards_supported = true;
2898 ti->num_discard_bios = 1;
2899 /* Discard bios must be split on a block boundary */
2900 ti->split_discard_bios = true;
2901 }
2902
2903 dm_put(pool_md);
2904
2905 mutex_unlock(&dm_thin_pool_table.mutex);
2906
2907 return 0;
2908
2909 bad_thin_open:
2910 __pool_dec(tc->pool);
2911 bad_pool_lookup:
2912 dm_put(pool_md);
2913 bad_common:
2914 dm_put_device(ti, tc->pool_dev);
2915 bad_pool_dev:
2916 if (tc->origin_dev)
2917 dm_put_device(ti, tc->origin_dev);
2918 bad_origin_dev:
2919 kfree(tc);
2920 out_unlock:
2921 mutex_unlock(&dm_thin_pool_table.mutex);
2922
2923 return r;
2924 }
2925
2926 static int thin_map(struct dm_target *ti, struct bio *bio)
2927 {
2928 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2929
2930 return thin_bio_map(ti, bio);
2931 }
2932
2933 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2934 {
2935 unsigned long flags;
2936 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2937 struct list_head work;
2938 struct dm_thin_new_mapping *m, *tmp;
2939 struct pool *pool = h->tc->pool;
2940
2941 if (h->shared_read_entry) {
2942 INIT_LIST_HEAD(&work);
2943 dm_deferred_entry_dec(h->shared_read_entry, &work);
2944
2945 spin_lock_irqsave(&pool->lock, flags);
2946 list_for_each_entry_safe(m, tmp, &work, list) {
2947 list_del(&m->list);
2948 m->quiesced = true;
2949 __maybe_add_mapping(m);
2950 }
2951 spin_unlock_irqrestore(&pool->lock, flags);
2952 }
2953
2954 if (h->all_io_entry) {
2955 INIT_LIST_HEAD(&work);
2956 dm_deferred_entry_dec(h->all_io_entry, &work);
2957 if (!list_empty(&work)) {
2958 spin_lock_irqsave(&pool->lock, flags);
2959 list_for_each_entry_safe(m, tmp, &work, list)
2960 list_add_tail(&m->list, &pool->prepared_discards);
2961 spin_unlock_irqrestore(&pool->lock, flags);
2962 wake_worker(pool);
2963 }
2964 }
2965
2966 return 0;
2967 }
2968
2969 static void thin_postsuspend(struct dm_target *ti)
2970 {
2971 if (dm_noflush_suspending(ti))
2972 requeue_io((struct thin_c *)ti->private);
2973 }
2974
2975 /*
2976 * <nr mapped sectors> <highest mapped sector>
2977 */
2978 static void thin_status(struct dm_target *ti, status_type_t type,
2979 unsigned status_flags, char *result, unsigned maxlen)
2980 {
2981 int r;
2982 ssize_t sz = 0;
2983 dm_block_t mapped, highest;
2984 char buf[BDEVNAME_SIZE];
2985 struct thin_c *tc = ti->private;
2986
2987 if (get_pool_mode(tc->pool) == PM_FAIL) {
2988 DMEMIT("Fail");
2989 return;
2990 }
2991
2992 if (!tc->td)
2993 DMEMIT("-");
2994 else {
2995 switch (type) {
2996 case STATUSTYPE_INFO:
2997 r = dm_thin_get_mapped_count(tc->td, &mapped);
2998 if (r) {
2999 DMERR("dm_thin_get_mapped_count returned %d", r);
3000 goto err;
3001 }
3002
3003 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3004 if (r < 0) {
3005 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3006 goto err;
3007 }
3008
3009 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3010 if (r)
3011 DMEMIT("%llu", ((highest + 1) *
3012 tc->pool->sectors_per_block) - 1);
3013 else
3014 DMEMIT("-");
3015 break;
3016
3017 case STATUSTYPE_TABLE:
3018 DMEMIT("%s %lu",
3019 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3020 (unsigned long) tc->dev_id);
3021 if (tc->origin_dev)
3022 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3023 break;
3024 }
3025 }
3026
3027 return;
3028
3029 err:
3030 DMEMIT("Error");
3031 }
3032
3033 static int thin_iterate_devices(struct dm_target *ti,
3034 iterate_devices_callout_fn fn, void *data)
3035 {
3036 sector_t blocks;
3037 struct thin_c *tc = ti->private;
3038 struct pool *pool = tc->pool;
3039
3040 /*
3041 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3042 * we follow a more convoluted path through to the pool's target.
3043 */
3044 if (!pool->ti)
3045 return 0; /* nothing is bound */
3046
3047 blocks = pool->ti->len;
3048 (void) sector_div(blocks, pool->sectors_per_block);
3049 if (blocks)
3050 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3051
3052 return 0;
3053 }
3054
3055 static struct target_type thin_target = {
3056 .name = "thin",
3057 .version = {1, 10, 0},
3058 .module = THIS_MODULE,
3059 .ctr = thin_ctr,
3060 .dtr = thin_dtr,
3061 .map = thin_map,
3062 .end_io = thin_endio,
3063 .postsuspend = thin_postsuspend,
3064 .status = thin_status,
3065 .iterate_devices = thin_iterate_devices,
3066 };
3067
3068 /*----------------------------------------------------------------*/
3069
3070 static int __init dm_thin_init(void)
3071 {
3072 int r;
3073
3074 pool_table_init();
3075
3076 r = dm_register_target(&thin_target);
3077 if (r)
3078 return r;
3079
3080 r = dm_register_target(&pool_target);
3081 if (r)
3082 goto bad_pool_target;
3083
3084 r = -ENOMEM;
3085
3086 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3087 if (!_new_mapping_cache)
3088 goto bad_new_mapping_cache;
3089
3090 return 0;
3091
3092 bad_new_mapping_cache:
3093 dm_unregister_target(&pool_target);
3094 bad_pool_target:
3095 dm_unregister_target(&thin_target);
3096
3097 return r;
3098 }
3099
3100 static void dm_thin_exit(void)
3101 {
3102 dm_unregister_target(&thin_target);
3103 dm_unregister_target(&pool_target);
3104
3105 kmem_cache_destroy(_new_mapping_cache);
3106 }
3107
3108 module_init(dm_thin_init);
3109 module_exit(dm_thin_exit);
3110
3111 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3112 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3113 MODULE_LICENSE("GPL");
This page took 0.10173 seconds and 5 git commands to generate.