dm thin: fix deadlock in __requeue_bio_list
[deliverable/linux.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX "thin"
20
21 /*
22 * Tunable constants
23 */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 "A percentage of time allocated for copy on write");
31
32 /*
33 * The block size of the device holding pool data must be
34 * between 64KB and 1GB.
35 */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40 * Device id is restricted to 24 bits.
41 */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45 * How do we handle breaking sharing of data blocks?
46 * =================================================
47 *
48 * We use a standard copy-on-write btree to store the mappings for the
49 * devices (note I'm talking about copy-on-write of the metadata here, not
50 * the data). When you take an internal snapshot you clone the root node
51 * of the origin btree. After this there is no concept of an origin or a
52 * snapshot. They are just two device trees that happen to point to the
53 * same data blocks.
54 *
55 * When we get a write in we decide if it's to a shared data block using
56 * some timestamp magic. If it is, we have to break sharing.
57 *
58 * Let's say we write to a shared block in what was the origin. The
59 * steps are:
60 *
61 * i) plug io further to this physical block. (see bio_prison code).
62 *
63 * ii) quiesce any read io to that shared data block. Obviously
64 * including all devices that share this block. (see dm_deferred_set code)
65 *
66 * iii) copy the data block to a newly allocate block. This step can be
67 * missed out if the io covers the block. (schedule_copy).
68 *
69 * iv) insert the new mapping into the origin's btree
70 * (process_prepared_mapping). This act of inserting breaks some
71 * sharing of btree nodes between the two devices. Breaking sharing only
72 * effects the btree of that specific device. Btrees for the other
73 * devices that share the block never change. The btree for the origin
74 * device as it was after the last commit is untouched, ie. we're using
75 * persistent data structures in the functional programming sense.
76 *
77 * v) unplug io to this physical block, including the io that triggered
78 * the breaking of sharing.
79 *
80 * Steps (ii) and (iii) occur in parallel.
81 *
82 * The metadata _doesn't_ need to be committed before the io continues. We
83 * get away with this because the io is always written to a _new_ block.
84 * If there's a crash, then:
85 *
86 * - The origin mapping will point to the old origin block (the shared
87 * one). This will contain the data as it was before the io that triggered
88 * the breaking of sharing came in.
89 *
90 * - The snap mapping still points to the old block. As it would after
91 * the commit.
92 *
93 * The downside of this scheme is the timestamp magic isn't perfect, and
94 * will continue to think that data block in the snapshot device is shared
95 * even after the write to the origin has broken sharing. I suspect data
96 * blocks will typically be shared by many different devices, so we're
97 * breaking sharing n + 1 times, rather than n, where n is the number of
98 * devices that reference this data block. At the moment I think the
99 * benefits far, far outweigh the disadvantages.
100 */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105 * Key building.
106 */
107 static void build_data_key(struct dm_thin_device *td,
108 dm_block_t b, struct dm_cell_key *key)
109 {
110 key->virtual = 0;
111 key->dev = dm_thin_dev_id(td);
112 key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 struct dm_cell_key *key)
117 {
118 key->virtual = 1;
119 key->dev = dm_thin_dev_id(td);
120 key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126 * A pool device ties together a metadata device and a data device. It
127 * also provides the interface for creating and destroying internal
128 * devices.
129 */
130 struct dm_thin_new_mapping;
131
132 /*
133 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
134 */
135 enum pool_mode {
136 PM_WRITE, /* metadata may be changed */
137 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
138 PM_READ_ONLY, /* metadata may not be changed */
139 PM_FAIL, /* all I/O fails */
140 };
141
142 struct pool_features {
143 enum pool_mode mode;
144
145 bool zero_new_blocks:1;
146 bool discard_enabled:1;
147 bool discard_passdown:1;
148 bool error_if_no_space:1;
149 };
150
151 struct thin_c;
152 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
153 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
154
155 struct pool {
156 struct list_head list;
157 struct dm_target *ti; /* Only set if a pool target is bound */
158
159 struct mapped_device *pool_md;
160 struct block_device *md_dev;
161 struct dm_pool_metadata *pmd;
162
163 dm_block_t low_water_blocks;
164 uint32_t sectors_per_block;
165 int sectors_per_block_shift;
166
167 struct pool_features pf;
168 bool low_water_triggered:1; /* A dm event has been sent */
169
170 struct dm_bio_prison *prison;
171 struct dm_kcopyd_client *copier;
172
173 struct workqueue_struct *wq;
174 struct work_struct worker;
175 struct delayed_work waker;
176
177 unsigned long last_commit_jiffies;
178 unsigned ref_count;
179
180 spinlock_t lock;
181 struct bio_list deferred_bios;
182 struct bio_list deferred_flush_bios;
183 struct list_head prepared_mappings;
184 struct list_head prepared_discards;
185
186 struct bio_list retry_on_resume_list;
187
188 struct dm_deferred_set *shared_read_ds;
189 struct dm_deferred_set *all_io_ds;
190
191 struct dm_thin_new_mapping *next_mapping;
192 mempool_t *mapping_pool;
193
194 process_bio_fn process_bio;
195 process_bio_fn process_discard;
196
197 process_mapping_fn process_prepared_mapping;
198 process_mapping_fn process_prepared_discard;
199 };
200
201 static enum pool_mode get_pool_mode(struct pool *pool);
202 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
203
204 /*
205 * Target context for a pool.
206 */
207 struct pool_c {
208 struct dm_target *ti;
209 struct pool *pool;
210 struct dm_dev *data_dev;
211 struct dm_dev *metadata_dev;
212 struct dm_target_callbacks callbacks;
213
214 dm_block_t low_water_blocks;
215 struct pool_features requested_pf; /* Features requested during table load */
216 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
217 };
218
219 /*
220 * Target context for a thin.
221 */
222 struct thin_c {
223 struct dm_dev *pool_dev;
224 struct dm_dev *origin_dev;
225 dm_thin_id dev_id;
226
227 struct pool *pool;
228 struct dm_thin_device *td;
229 };
230
231 /*----------------------------------------------------------------*/
232
233 /*
234 * wake_worker() is used when new work is queued and when pool_resume is
235 * ready to continue deferred IO processing.
236 */
237 static void wake_worker(struct pool *pool)
238 {
239 queue_work(pool->wq, &pool->worker);
240 }
241
242 /*----------------------------------------------------------------*/
243
244 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
245 struct dm_bio_prison_cell **cell_result)
246 {
247 int r;
248 struct dm_bio_prison_cell *cell_prealloc;
249
250 /*
251 * Allocate a cell from the prison's mempool.
252 * This might block but it can't fail.
253 */
254 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
255
256 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
257 if (r)
258 /*
259 * We reused an old cell; we can get rid of
260 * the new one.
261 */
262 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
263
264 return r;
265 }
266
267 static void cell_release(struct pool *pool,
268 struct dm_bio_prison_cell *cell,
269 struct bio_list *bios)
270 {
271 dm_cell_release(pool->prison, cell, bios);
272 dm_bio_prison_free_cell(pool->prison, cell);
273 }
274
275 static void cell_release_no_holder(struct pool *pool,
276 struct dm_bio_prison_cell *cell,
277 struct bio_list *bios)
278 {
279 dm_cell_release_no_holder(pool->prison, cell, bios);
280 dm_bio_prison_free_cell(pool->prison, cell);
281 }
282
283 static void cell_defer_no_holder_no_free(struct thin_c *tc,
284 struct dm_bio_prison_cell *cell)
285 {
286 struct pool *pool = tc->pool;
287 unsigned long flags;
288
289 spin_lock_irqsave(&pool->lock, flags);
290 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
291 spin_unlock_irqrestore(&pool->lock, flags);
292
293 wake_worker(pool);
294 }
295
296 static void cell_error(struct pool *pool,
297 struct dm_bio_prison_cell *cell)
298 {
299 dm_cell_error(pool->prison, cell);
300 dm_bio_prison_free_cell(pool->prison, cell);
301 }
302
303 /*----------------------------------------------------------------*/
304
305 /*
306 * A global list of pools that uses a struct mapped_device as a key.
307 */
308 static struct dm_thin_pool_table {
309 struct mutex mutex;
310 struct list_head pools;
311 } dm_thin_pool_table;
312
313 static void pool_table_init(void)
314 {
315 mutex_init(&dm_thin_pool_table.mutex);
316 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
317 }
318
319 static void __pool_table_insert(struct pool *pool)
320 {
321 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
322 list_add(&pool->list, &dm_thin_pool_table.pools);
323 }
324
325 static void __pool_table_remove(struct pool *pool)
326 {
327 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
328 list_del(&pool->list);
329 }
330
331 static struct pool *__pool_table_lookup(struct mapped_device *md)
332 {
333 struct pool *pool = NULL, *tmp;
334
335 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
336
337 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
338 if (tmp->pool_md == md) {
339 pool = tmp;
340 break;
341 }
342 }
343
344 return pool;
345 }
346
347 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
348 {
349 struct pool *pool = NULL, *tmp;
350
351 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
352
353 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
354 if (tmp->md_dev == md_dev) {
355 pool = tmp;
356 break;
357 }
358 }
359
360 return pool;
361 }
362
363 /*----------------------------------------------------------------*/
364
365 struct dm_thin_endio_hook {
366 struct thin_c *tc;
367 struct dm_deferred_entry *shared_read_entry;
368 struct dm_deferred_entry *all_io_entry;
369 struct dm_thin_new_mapping *overwrite_mapping;
370 };
371
372 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
373 {
374 struct bio *bio;
375 struct bio_list bios;
376 unsigned long flags;
377
378 bio_list_init(&bios);
379
380 spin_lock_irqsave(&tc->pool->lock, flags);
381 bio_list_merge(&bios, master);
382 bio_list_init(master);
383 spin_unlock_irqrestore(&tc->pool->lock, flags);
384
385 while ((bio = bio_list_pop(&bios))) {
386 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
387
388 if (h->tc == tc)
389 bio_endio(bio, DM_ENDIO_REQUEUE);
390 else
391 bio_list_add(master, bio);
392 }
393 }
394
395 static void requeue_io(struct thin_c *tc)
396 {
397 struct pool *pool = tc->pool;
398
399 requeue_bio_list(tc, &pool->deferred_bios);
400 requeue_bio_list(tc, &pool->retry_on_resume_list);
401 }
402
403 static void error_retry_list(struct pool *pool)
404 {
405 struct bio *bio;
406 unsigned long flags;
407 struct bio_list bios;
408
409 bio_list_init(&bios);
410
411 spin_lock_irqsave(&pool->lock, flags);
412 bio_list_merge(&bios, &pool->retry_on_resume_list);
413 bio_list_init(&pool->retry_on_resume_list);
414 spin_unlock_irqrestore(&pool->lock, flags);
415
416 while ((bio = bio_list_pop(&bios)))
417 bio_io_error(bio);
418 }
419
420 /*
421 * This section of code contains the logic for processing a thin device's IO.
422 * Much of the code depends on pool object resources (lists, workqueues, etc)
423 * but most is exclusively called from the thin target rather than the thin-pool
424 * target.
425 */
426
427 static bool block_size_is_power_of_two(struct pool *pool)
428 {
429 return pool->sectors_per_block_shift >= 0;
430 }
431
432 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
433 {
434 struct pool *pool = tc->pool;
435 sector_t block_nr = bio->bi_iter.bi_sector;
436
437 if (block_size_is_power_of_two(pool))
438 block_nr >>= pool->sectors_per_block_shift;
439 else
440 (void) sector_div(block_nr, pool->sectors_per_block);
441
442 return block_nr;
443 }
444
445 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
446 {
447 struct pool *pool = tc->pool;
448 sector_t bi_sector = bio->bi_iter.bi_sector;
449
450 bio->bi_bdev = tc->pool_dev->bdev;
451 if (block_size_is_power_of_two(pool))
452 bio->bi_iter.bi_sector =
453 (block << pool->sectors_per_block_shift) |
454 (bi_sector & (pool->sectors_per_block - 1));
455 else
456 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
457 sector_div(bi_sector, pool->sectors_per_block);
458 }
459
460 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
461 {
462 bio->bi_bdev = tc->origin_dev->bdev;
463 }
464
465 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
466 {
467 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
468 dm_thin_changed_this_transaction(tc->td);
469 }
470
471 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
472 {
473 struct dm_thin_endio_hook *h;
474
475 if (bio->bi_rw & REQ_DISCARD)
476 return;
477
478 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
479 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
480 }
481
482 static void issue(struct thin_c *tc, struct bio *bio)
483 {
484 struct pool *pool = tc->pool;
485 unsigned long flags;
486
487 if (!bio_triggers_commit(tc, bio)) {
488 generic_make_request(bio);
489 return;
490 }
491
492 /*
493 * Complete bio with an error if earlier I/O caused changes to
494 * the metadata that can't be committed e.g, due to I/O errors
495 * on the metadata device.
496 */
497 if (dm_thin_aborted_changes(tc->td)) {
498 bio_io_error(bio);
499 return;
500 }
501
502 /*
503 * Batch together any bios that trigger commits and then issue a
504 * single commit for them in process_deferred_bios().
505 */
506 spin_lock_irqsave(&pool->lock, flags);
507 bio_list_add(&pool->deferred_flush_bios, bio);
508 spin_unlock_irqrestore(&pool->lock, flags);
509 }
510
511 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
512 {
513 remap_to_origin(tc, bio);
514 issue(tc, bio);
515 }
516
517 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
518 dm_block_t block)
519 {
520 remap(tc, bio, block);
521 issue(tc, bio);
522 }
523
524 /*----------------------------------------------------------------*/
525
526 /*
527 * Bio endio functions.
528 */
529 struct dm_thin_new_mapping {
530 struct list_head list;
531
532 bool quiesced:1;
533 bool prepared:1;
534 bool pass_discard:1;
535 bool definitely_not_shared:1;
536
537 int err;
538 struct thin_c *tc;
539 dm_block_t virt_block;
540 dm_block_t data_block;
541 struct dm_bio_prison_cell *cell, *cell2;
542
543 /*
544 * If the bio covers the whole area of a block then we can avoid
545 * zeroing or copying. Instead this bio is hooked. The bio will
546 * still be in the cell, so care has to be taken to avoid issuing
547 * the bio twice.
548 */
549 struct bio *bio;
550 bio_end_io_t *saved_bi_end_io;
551 };
552
553 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
554 {
555 struct pool *pool = m->tc->pool;
556
557 if (m->quiesced && m->prepared) {
558 list_add_tail(&m->list, &pool->prepared_mappings);
559 wake_worker(pool);
560 }
561 }
562
563 static void copy_complete(int read_err, unsigned long write_err, void *context)
564 {
565 unsigned long flags;
566 struct dm_thin_new_mapping *m = context;
567 struct pool *pool = m->tc->pool;
568
569 m->err = read_err || write_err ? -EIO : 0;
570
571 spin_lock_irqsave(&pool->lock, flags);
572 m->prepared = true;
573 __maybe_add_mapping(m);
574 spin_unlock_irqrestore(&pool->lock, flags);
575 }
576
577 static void overwrite_endio(struct bio *bio, int err)
578 {
579 unsigned long flags;
580 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
581 struct dm_thin_new_mapping *m = h->overwrite_mapping;
582 struct pool *pool = m->tc->pool;
583
584 m->err = err;
585
586 spin_lock_irqsave(&pool->lock, flags);
587 m->prepared = true;
588 __maybe_add_mapping(m);
589 spin_unlock_irqrestore(&pool->lock, flags);
590 }
591
592 /*----------------------------------------------------------------*/
593
594 /*
595 * Workqueue.
596 */
597
598 /*
599 * Prepared mapping jobs.
600 */
601
602 /*
603 * This sends the bios in the cell back to the deferred_bios list.
604 */
605 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
606 {
607 struct pool *pool = tc->pool;
608 unsigned long flags;
609
610 spin_lock_irqsave(&pool->lock, flags);
611 cell_release(pool, cell, &pool->deferred_bios);
612 spin_unlock_irqrestore(&tc->pool->lock, flags);
613
614 wake_worker(pool);
615 }
616
617 /*
618 * Same as cell_defer above, except it omits the original holder of the cell.
619 */
620 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
621 {
622 struct pool *pool = tc->pool;
623 unsigned long flags;
624
625 spin_lock_irqsave(&pool->lock, flags);
626 cell_release_no_holder(pool, cell, &pool->deferred_bios);
627 spin_unlock_irqrestore(&pool->lock, flags);
628
629 wake_worker(pool);
630 }
631
632 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
633 {
634 if (m->bio) {
635 m->bio->bi_end_io = m->saved_bi_end_io;
636 atomic_inc(&m->bio->bi_remaining);
637 }
638 cell_error(m->tc->pool, m->cell);
639 list_del(&m->list);
640 mempool_free(m, m->tc->pool->mapping_pool);
641 }
642
643 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
644 {
645 struct thin_c *tc = m->tc;
646 struct pool *pool = tc->pool;
647 struct bio *bio;
648 int r;
649
650 bio = m->bio;
651 if (bio) {
652 bio->bi_end_io = m->saved_bi_end_io;
653 atomic_inc(&bio->bi_remaining);
654 }
655
656 if (m->err) {
657 cell_error(pool, m->cell);
658 goto out;
659 }
660
661 /*
662 * Commit the prepared block into the mapping btree.
663 * Any I/O for this block arriving after this point will get
664 * remapped to it directly.
665 */
666 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
667 if (r) {
668 metadata_operation_failed(pool, "dm_thin_insert_block", r);
669 cell_error(pool, m->cell);
670 goto out;
671 }
672
673 /*
674 * Release any bios held while the block was being provisioned.
675 * If we are processing a write bio that completely covers the block,
676 * we already processed it so can ignore it now when processing
677 * the bios in the cell.
678 */
679 if (bio) {
680 cell_defer_no_holder(tc, m->cell);
681 bio_endio(bio, 0);
682 } else
683 cell_defer(tc, m->cell);
684
685 out:
686 list_del(&m->list);
687 mempool_free(m, pool->mapping_pool);
688 }
689
690 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
691 {
692 struct thin_c *tc = m->tc;
693
694 bio_io_error(m->bio);
695 cell_defer_no_holder(tc, m->cell);
696 cell_defer_no_holder(tc, m->cell2);
697 mempool_free(m, tc->pool->mapping_pool);
698 }
699
700 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
701 {
702 struct thin_c *tc = m->tc;
703
704 inc_all_io_entry(tc->pool, m->bio);
705 cell_defer_no_holder(tc, m->cell);
706 cell_defer_no_holder(tc, m->cell2);
707
708 if (m->pass_discard)
709 if (m->definitely_not_shared)
710 remap_and_issue(tc, m->bio, m->data_block);
711 else {
712 bool used = false;
713 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
714 bio_endio(m->bio, 0);
715 else
716 remap_and_issue(tc, m->bio, m->data_block);
717 }
718 else
719 bio_endio(m->bio, 0);
720
721 mempool_free(m, tc->pool->mapping_pool);
722 }
723
724 static void process_prepared_discard(struct dm_thin_new_mapping *m)
725 {
726 int r;
727 struct thin_c *tc = m->tc;
728
729 r = dm_thin_remove_block(tc->td, m->virt_block);
730 if (r)
731 DMERR_LIMIT("dm_thin_remove_block() failed");
732
733 process_prepared_discard_passdown(m);
734 }
735
736 static void process_prepared(struct pool *pool, struct list_head *head,
737 process_mapping_fn *fn)
738 {
739 unsigned long flags;
740 struct list_head maps;
741 struct dm_thin_new_mapping *m, *tmp;
742
743 INIT_LIST_HEAD(&maps);
744 spin_lock_irqsave(&pool->lock, flags);
745 list_splice_init(head, &maps);
746 spin_unlock_irqrestore(&pool->lock, flags);
747
748 list_for_each_entry_safe(m, tmp, &maps, list)
749 (*fn)(m);
750 }
751
752 /*
753 * Deferred bio jobs.
754 */
755 static int io_overlaps_block(struct pool *pool, struct bio *bio)
756 {
757 return bio->bi_iter.bi_size ==
758 (pool->sectors_per_block << SECTOR_SHIFT);
759 }
760
761 static int io_overwrites_block(struct pool *pool, struct bio *bio)
762 {
763 return (bio_data_dir(bio) == WRITE) &&
764 io_overlaps_block(pool, bio);
765 }
766
767 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
768 bio_end_io_t *fn)
769 {
770 *save = bio->bi_end_io;
771 bio->bi_end_io = fn;
772 }
773
774 static int ensure_next_mapping(struct pool *pool)
775 {
776 if (pool->next_mapping)
777 return 0;
778
779 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
780
781 return pool->next_mapping ? 0 : -ENOMEM;
782 }
783
784 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
785 {
786 struct dm_thin_new_mapping *m = pool->next_mapping;
787
788 BUG_ON(!pool->next_mapping);
789
790 memset(m, 0, sizeof(struct dm_thin_new_mapping));
791 INIT_LIST_HEAD(&m->list);
792 m->bio = NULL;
793
794 pool->next_mapping = NULL;
795
796 return m;
797 }
798
799 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
800 struct dm_dev *origin, dm_block_t data_origin,
801 dm_block_t data_dest,
802 struct dm_bio_prison_cell *cell, struct bio *bio)
803 {
804 int r;
805 struct pool *pool = tc->pool;
806 struct dm_thin_new_mapping *m = get_next_mapping(pool);
807
808 m->tc = tc;
809 m->virt_block = virt_block;
810 m->data_block = data_dest;
811 m->cell = cell;
812
813 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
814 m->quiesced = true;
815
816 /*
817 * IO to pool_dev remaps to the pool target's data_dev.
818 *
819 * If the whole block of data is being overwritten, we can issue the
820 * bio immediately. Otherwise we use kcopyd to clone the data first.
821 */
822 if (io_overwrites_block(pool, bio)) {
823 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
824
825 h->overwrite_mapping = m;
826 m->bio = bio;
827 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
828 inc_all_io_entry(pool, bio);
829 remap_and_issue(tc, bio, data_dest);
830 } else {
831 struct dm_io_region from, to;
832
833 from.bdev = origin->bdev;
834 from.sector = data_origin * pool->sectors_per_block;
835 from.count = pool->sectors_per_block;
836
837 to.bdev = tc->pool_dev->bdev;
838 to.sector = data_dest * pool->sectors_per_block;
839 to.count = pool->sectors_per_block;
840
841 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
842 0, copy_complete, m);
843 if (r < 0) {
844 mempool_free(m, pool->mapping_pool);
845 DMERR_LIMIT("dm_kcopyd_copy() failed");
846 cell_error(pool, cell);
847 }
848 }
849 }
850
851 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
852 dm_block_t data_origin, dm_block_t data_dest,
853 struct dm_bio_prison_cell *cell, struct bio *bio)
854 {
855 schedule_copy(tc, virt_block, tc->pool_dev,
856 data_origin, data_dest, cell, bio);
857 }
858
859 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
860 dm_block_t data_dest,
861 struct dm_bio_prison_cell *cell, struct bio *bio)
862 {
863 schedule_copy(tc, virt_block, tc->origin_dev,
864 virt_block, data_dest, cell, bio);
865 }
866
867 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
868 dm_block_t data_block, struct dm_bio_prison_cell *cell,
869 struct bio *bio)
870 {
871 struct pool *pool = tc->pool;
872 struct dm_thin_new_mapping *m = get_next_mapping(pool);
873
874 m->quiesced = true;
875 m->prepared = false;
876 m->tc = tc;
877 m->virt_block = virt_block;
878 m->data_block = data_block;
879 m->cell = cell;
880
881 /*
882 * If the whole block of data is being overwritten or we are not
883 * zeroing pre-existing data, we can issue the bio immediately.
884 * Otherwise we use kcopyd to zero the data first.
885 */
886 if (!pool->pf.zero_new_blocks)
887 process_prepared_mapping(m);
888
889 else if (io_overwrites_block(pool, bio)) {
890 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
891
892 h->overwrite_mapping = m;
893 m->bio = bio;
894 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
895 inc_all_io_entry(pool, bio);
896 remap_and_issue(tc, bio, data_block);
897 } else {
898 int r;
899 struct dm_io_region to;
900
901 to.bdev = tc->pool_dev->bdev;
902 to.sector = data_block * pool->sectors_per_block;
903 to.count = pool->sectors_per_block;
904
905 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
906 if (r < 0) {
907 mempool_free(m, pool->mapping_pool);
908 DMERR_LIMIT("dm_kcopyd_zero() failed");
909 cell_error(pool, cell);
910 }
911 }
912 }
913
914 /*
915 * A non-zero return indicates read_only or fail_io mode.
916 * Many callers don't care about the return value.
917 */
918 static int commit(struct pool *pool)
919 {
920 int r;
921
922 if (get_pool_mode(pool) != PM_WRITE)
923 return -EINVAL;
924
925 r = dm_pool_commit_metadata(pool->pmd);
926 if (r)
927 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
928
929 return r;
930 }
931
932 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
933 {
934 unsigned long flags;
935
936 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
937 DMWARN("%s: reached low water mark for data device: sending event.",
938 dm_device_name(pool->pool_md));
939 spin_lock_irqsave(&pool->lock, flags);
940 pool->low_water_triggered = true;
941 spin_unlock_irqrestore(&pool->lock, flags);
942 dm_table_event(pool->ti->table);
943 }
944 }
945
946 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
947
948 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
949 {
950 int r;
951 dm_block_t free_blocks;
952 struct pool *pool = tc->pool;
953
954 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
955 return -EINVAL;
956
957 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
958 if (r) {
959 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
960 return r;
961 }
962
963 check_low_water_mark(pool, free_blocks);
964
965 if (!free_blocks) {
966 /*
967 * Try to commit to see if that will free up some
968 * more space.
969 */
970 r = commit(pool);
971 if (r)
972 return r;
973
974 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
975 if (r) {
976 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
977 return r;
978 }
979
980 if (!free_blocks) {
981 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
982 return -ENOSPC;
983 }
984 }
985
986 r = dm_pool_alloc_data_block(pool->pmd, result);
987 if (r) {
988 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
989 return r;
990 }
991
992 return 0;
993 }
994
995 /*
996 * If we have run out of space, queue bios until the device is
997 * resumed, presumably after having been reloaded with more space.
998 */
999 static void retry_on_resume(struct bio *bio)
1000 {
1001 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1002 struct thin_c *tc = h->tc;
1003 struct pool *pool = tc->pool;
1004 unsigned long flags;
1005
1006 spin_lock_irqsave(&pool->lock, flags);
1007 bio_list_add(&pool->retry_on_resume_list, bio);
1008 spin_unlock_irqrestore(&pool->lock, flags);
1009 }
1010
1011 static bool should_error_unserviceable_bio(struct pool *pool)
1012 {
1013 enum pool_mode m = get_pool_mode(pool);
1014
1015 switch (m) {
1016 case PM_WRITE:
1017 /* Shouldn't get here */
1018 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1019 return true;
1020
1021 case PM_OUT_OF_DATA_SPACE:
1022 return pool->pf.error_if_no_space;
1023
1024 case PM_READ_ONLY:
1025 case PM_FAIL:
1026 return true;
1027 default:
1028 /* Shouldn't get here */
1029 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1030 return true;
1031 }
1032 }
1033
1034 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1035 {
1036 if (should_error_unserviceable_bio(pool))
1037 bio_io_error(bio);
1038 else
1039 retry_on_resume(bio);
1040 }
1041
1042 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1043 {
1044 struct bio *bio;
1045 struct bio_list bios;
1046
1047 if (should_error_unserviceable_bio(pool)) {
1048 cell_error(pool, cell);
1049 return;
1050 }
1051
1052 bio_list_init(&bios);
1053 cell_release(pool, cell, &bios);
1054
1055 if (should_error_unserviceable_bio(pool))
1056 while ((bio = bio_list_pop(&bios)))
1057 bio_io_error(bio);
1058 else
1059 while ((bio = bio_list_pop(&bios)))
1060 retry_on_resume(bio);
1061 }
1062
1063 static void process_discard(struct thin_c *tc, struct bio *bio)
1064 {
1065 int r;
1066 unsigned long flags;
1067 struct pool *pool = tc->pool;
1068 struct dm_bio_prison_cell *cell, *cell2;
1069 struct dm_cell_key key, key2;
1070 dm_block_t block = get_bio_block(tc, bio);
1071 struct dm_thin_lookup_result lookup_result;
1072 struct dm_thin_new_mapping *m;
1073
1074 build_virtual_key(tc->td, block, &key);
1075 if (bio_detain(tc->pool, &key, bio, &cell))
1076 return;
1077
1078 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1079 switch (r) {
1080 case 0:
1081 /*
1082 * Check nobody is fiddling with this pool block. This can
1083 * happen if someone's in the process of breaking sharing
1084 * on this block.
1085 */
1086 build_data_key(tc->td, lookup_result.block, &key2);
1087 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1088 cell_defer_no_holder(tc, cell);
1089 break;
1090 }
1091
1092 if (io_overlaps_block(pool, bio)) {
1093 /*
1094 * IO may still be going to the destination block. We must
1095 * quiesce before we can do the removal.
1096 */
1097 m = get_next_mapping(pool);
1098 m->tc = tc;
1099 m->pass_discard = pool->pf.discard_passdown;
1100 m->definitely_not_shared = !lookup_result.shared;
1101 m->virt_block = block;
1102 m->data_block = lookup_result.block;
1103 m->cell = cell;
1104 m->cell2 = cell2;
1105 m->bio = bio;
1106
1107 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1108 spin_lock_irqsave(&pool->lock, flags);
1109 list_add_tail(&m->list, &pool->prepared_discards);
1110 spin_unlock_irqrestore(&pool->lock, flags);
1111 wake_worker(pool);
1112 }
1113 } else {
1114 inc_all_io_entry(pool, bio);
1115 cell_defer_no_holder(tc, cell);
1116 cell_defer_no_holder(tc, cell2);
1117
1118 /*
1119 * The DM core makes sure that the discard doesn't span
1120 * a block boundary. So we submit the discard of a
1121 * partial block appropriately.
1122 */
1123 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1124 remap_and_issue(tc, bio, lookup_result.block);
1125 else
1126 bio_endio(bio, 0);
1127 }
1128 break;
1129
1130 case -ENODATA:
1131 /*
1132 * It isn't provisioned, just forget it.
1133 */
1134 cell_defer_no_holder(tc, cell);
1135 bio_endio(bio, 0);
1136 break;
1137
1138 default:
1139 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1140 __func__, r);
1141 cell_defer_no_holder(tc, cell);
1142 bio_io_error(bio);
1143 break;
1144 }
1145 }
1146
1147 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1148 struct dm_cell_key *key,
1149 struct dm_thin_lookup_result *lookup_result,
1150 struct dm_bio_prison_cell *cell)
1151 {
1152 int r;
1153 dm_block_t data_block;
1154 struct pool *pool = tc->pool;
1155
1156 r = alloc_data_block(tc, &data_block);
1157 switch (r) {
1158 case 0:
1159 schedule_internal_copy(tc, block, lookup_result->block,
1160 data_block, cell, bio);
1161 break;
1162
1163 case -ENOSPC:
1164 retry_bios_on_resume(pool, cell);
1165 break;
1166
1167 default:
1168 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1169 __func__, r);
1170 cell_error(pool, cell);
1171 break;
1172 }
1173 }
1174
1175 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1176 dm_block_t block,
1177 struct dm_thin_lookup_result *lookup_result)
1178 {
1179 struct dm_bio_prison_cell *cell;
1180 struct pool *pool = tc->pool;
1181 struct dm_cell_key key;
1182
1183 /*
1184 * If cell is already occupied, then sharing is already in the process
1185 * of being broken so we have nothing further to do here.
1186 */
1187 build_data_key(tc->td, lookup_result->block, &key);
1188 if (bio_detain(pool, &key, bio, &cell))
1189 return;
1190
1191 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1192 break_sharing(tc, bio, block, &key, lookup_result, cell);
1193 else {
1194 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1195
1196 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1197 inc_all_io_entry(pool, bio);
1198 cell_defer_no_holder(tc, cell);
1199
1200 remap_and_issue(tc, bio, lookup_result->block);
1201 }
1202 }
1203
1204 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1205 struct dm_bio_prison_cell *cell)
1206 {
1207 int r;
1208 dm_block_t data_block;
1209 struct pool *pool = tc->pool;
1210
1211 /*
1212 * Remap empty bios (flushes) immediately, without provisioning.
1213 */
1214 if (!bio->bi_iter.bi_size) {
1215 inc_all_io_entry(pool, bio);
1216 cell_defer_no_holder(tc, cell);
1217
1218 remap_and_issue(tc, bio, 0);
1219 return;
1220 }
1221
1222 /*
1223 * Fill read bios with zeroes and complete them immediately.
1224 */
1225 if (bio_data_dir(bio) == READ) {
1226 zero_fill_bio(bio);
1227 cell_defer_no_holder(tc, cell);
1228 bio_endio(bio, 0);
1229 return;
1230 }
1231
1232 r = alloc_data_block(tc, &data_block);
1233 switch (r) {
1234 case 0:
1235 if (tc->origin_dev)
1236 schedule_external_copy(tc, block, data_block, cell, bio);
1237 else
1238 schedule_zero(tc, block, data_block, cell, bio);
1239 break;
1240
1241 case -ENOSPC:
1242 retry_bios_on_resume(pool, cell);
1243 break;
1244
1245 default:
1246 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1247 __func__, r);
1248 cell_error(pool, cell);
1249 break;
1250 }
1251 }
1252
1253 static void process_bio(struct thin_c *tc, struct bio *bio)
1254 {
1255 int r;
1256 struct pool *pool = tc->pool;
1257 dm_block_t block = get_bio_block(tc, bio);
1258 struct dm_bio_prison_cell *cell;
1259 struct dm_cell_key key;
1260 struct dm_thin_lookup_result lookup_result;
1261
1262 /*
1263 * If cell is already occupied, then the block is already
1264 * being provisioned so we have nothing further to do here.
1265 */
1266 build_virtual_key(tc->td, block, &key);
1267 if (bio_detain(pool, &key, bio, &cell))
1268 return;
1269
1270 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1271 switch (r) {
1272 case 0:
1273 if (lookup_result.shared) {
1274 process_shared_bio(tc, bio, block, &lookup_result);
1275 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1276 } else {
1277 inc_all_io_entry(pool, bio);
1278 cell_defer_no_holder(tc, cell);
1279
1280 remap_and_issue(tc, bio, lookup_result.block);
1281 }
1282 break;
1283
1284 case -ENODATA:
1285 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1286 inc_all_io_entry(pool, bio);
1287 cell_defer_no_holder(tc, cell);
1288
1289 remap_to_origin_and_issue(tc, bio);
1290 } else
1291 provision_block(tc, bio, block, cell);
1292 break;
1293
1294 default:
1295 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1296 __func__, r);
1297 cell_defer_no_holder(tc, cell);
1298 bio_io_error(bio);
1299 break;
1300 }
1301 }
1302
1303 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1304 {
1305 int r;
1306 int rw = bio_data_dir(bio);
1307 dm_block_t block = get_bio_block(tc, bio);
1308 struct dm_thin_lookup_result lookup_result;
1309
1310 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1311 switch (r) {
1312 case 0:
1313 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1314 handle_unserviceable_bio(tc->pool, bio);
1315 else {
1316 inc_all_io_entry(tc->pool, bio);
1317 remap_and_issue(tc, bio, lookup_result.block);
1318 }
1319 break;
1320
1321 case -ENODATA:
1322 if (rw != READ) {
1323 handle_unserviceable_bio(tc->pool, bio);
1324 break;
1325 }
1326
1327 if (tc->origin_dev) {
1328 inc_all_io_entry(tc->pool, bio);
1329 remap_to_origin_and_issue(tc, bio);
1330 break;
1331 }
1332
1333 zero_fill_bio(bio);
1334 bio_endio(bio, 0);
1335 break;
1336
1337 default:
1338 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1339 __func__, r);
1340 bio_io_error(bio);
1341 break;
1342 }
1343 }
1344
1345 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1346 {
1347 bio_endio(bio, 0);
1348 }
1349
1350 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1351 {
1352 bio_io_error(bio);
1353 }
1354
1355 /*
1356 * FIXME: should we also commit due to size of transaction, measured in
1357 * metadata blocks?
1358 */
1359 static int need_commit_due_to_time(struct pool *pool)
1360 {
1361 return jiffies < pool->last_commit_jiffies ||
1362 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1363 }
1364
1365 static void process_deferred_bios(struct pool *pool)
1366 {
1367 unsigned long flags;
1368 struct bio *bio;
1369 struct bio_list bios;
1370
1371 bio_list_init(&bios);
1372
1373 spin_lock_irqsave(&pool->lock, flags);
1374 bio_list_merge(&bios, &pool->deferred_bios);
1375 bio_list_init(&pool->deferred_bios);
1376 spin_unlock_irqrestore(&pool->lock, flags);
1377
1378 while ((bio = bio_list_pop(&bios))) {
1379 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1380 struct thin_c *tc = h->tc;
1381
1382 /*
1383 * If we've got no free new_mapping structs, and processing
1384 * this bio might require one, we pause until there are some
1385 * prepared mappings to process.
1386 */
1387 if (ensure_next_mapping(pool)) {
1388 spin_lock_irqsave(&pool->lock, flags);
1389 bio_list_merge(&pool->deferred_bios, &bios);
1390 spin_unlock_irqrestore(&pool->lock, flags);
1391
1392 break;
1393 }
1394
1395 if (bio->bi_rw & REQ_DISCARD)
1396 pool->process_discard(tc, bio);
1397 else
1398 pool->process_bio(tc, bio);
1399 }
1400
1401 /*
1402 * If there are any deferred flush bios, we must commit
1403 * the metadata before issuing them.
1404 */
1405 bio_list_init(&bios);
1406 spin_lock_irqsave(&pool->lock, flags);
1407 bio_list_merge(&bios, &pool->deferred_flush_bios);
1408 bio_list_init(&pool->deferred_flush_bios);
1409 spin_unlock_irqrestore(&pool->lock, flags);
1410
1411 if (bio_list_empty(&bios) &&
1412 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1413 return;
1414
1415 if (commit(pool)) {
1416 while ((bio = bio_list_pop(&bios)))
1417 bio_io_error(bio);
1418 return;
1419 }
1420 pool->last_commit_jiffies = jiffies;
1421
1422 while ((bio = bio_list_pop(&bios)))
1423 generic_make_request(bio);
1424 }
1425
1426 static void do_worker(struct work_struct *ws)
1427 {
1428 struct pool *pool = container_of(ws, struct pool, worker);
1429
1430 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1431 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1432 process_deferred_bios(pool);
1433 }
1434
1435 /*
1436 * We want to commit periodically so that not too much
1437 * unwritten data builds up.
1438 */
1439 static void do_waker(struct work_struct *ws)
1440 {
1441 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1442 wake_worker(pool);
1443 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1444 }
1445
1446 /*----------------------------------------------------------------*/
1447
1448 static enum pool_mode get_pool_mode(struct pool *pool)
1449 {
1450 return pool->pf.mode;
1451 }
1452
1453 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1454 {
1455 dm_table_event(pool->ti->table);
1456 DMINFO("%s: switching pool to %s mode",
1457 dm_device_name(pool->pool_md), new_mode);
1458 }
1459
1460 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1461 {
1462 struct pool_c *pt = pool->ti->private;
1463 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1464 enum pool_mode old_mode = get_pool_mode(pool);
1465
1466 /*
1467 * Never allow the pool to transition to PM_WRITE mode if user
1468 * intervention is required to verify metadata and data consistency.
1469 */
1470 if (new_mode == PM_WRITE && needs_check) {
1471 DMERR("%s: unable to switch pool to write mode until repaired.",
1472 dm_device_name(pool->pool_md));
1473 if (old_mode != new_mode)
1474 new_mode = old_mode;
1475 else
1476 new_mode = PM_READ_ONLY;
1477 }
1478 /*
1479 * If we were in PM_FAIL mode, rollback of metadata failed. We're
1480 * not going to recover without a thin_repair. So we never let the
1481 * pool move out of the old mode.
1482 */
1483 if (old_mode == PM_FAIL)
1484 new_mode = old_mode;
1485
1486 switch (new_mode) {
1487 case PM_FAIL:
1488 if (old_mode != new_mode)
1489 notify_of_pool_mode_change(pool, "failure");
1490 dm_pool_metadata_read_only(pool->pmd);
1491 pool->process_bio = process_bio_fail;
1492 pool->process_discard = process_bio_fail;
1493 pool->process_prepared_mapping = process_prepared_mapping_fail;
1494 pool->process_prepared_discard = process_prepared_discard_fail;
1495
1496 error_retry_list(pool);
1497 break;
1498
1499 case PM_READ_ONLY:
1500 if (old_mode != new_mode)
1501 notify_of_pool_mode_change(pool, "read-only");
1502 dm_pool_metadata_read_only(pool->pmd);
1503 pool->process_bio = process_bio_read_only;
1504 pool->process_discard = process_bio_success;
1505 pool->process_prepared_mapping = process_prepared_mapping_fail;
1506 pool->process_prepared_discard = process_prepared_discard_passdown;
1507
1508 error_retry_list(pool);
1509 break;
1510
1511 case PM_OUT_OF_DATA_SPACE:
1512 /*
1513 * Ideally we'd never hit this state; the low water mark
1514 * would trigger userland to extend the pool before we
1515 * completely run out of data space. However, many small
1516 * IOs to unprovisioned space can consume data space at an
1517 * alarming rate. Adjust your low water mark if you're
1518 * frequently seeing this mode.
1519 */
1520 if (old_mode != new_mode)
1521 notify_of_pool_mode_change(pool, "out-of-data-space");
1522 pool->process_bio = process_bio_read_only;
1523 pool->process_discard = process_discard;
1524 pool->process_prepared_mapping = process_prepared_mapping;
1525 pool->process_prepared_discard = process_prepared_discard_passdown;
1526 break;
1527
1528 case PM_WRITE:
1529 if (old_mode != new_mode)
1530 notify_of_pool_mode_change(pool, "write");
1531 dm_pool_metadata_read_write(pool->pmd);
1532 pool->process_bio = process_bio;
1533 pool->process_discard = process_discard;
1534 pool->process_prepared_mapping = process_prepared_mapping;
1535 pool->process_prepared_discard = process_prepared_discard;
1536 break;
1537 }
1538
1539 pool->pf.mode = new_mode;
1540 /*
1541 * The pool mode may have changed, sync it so bind_control_target()
1542 * doesn't cause an unexpected mode transition on resume.
1543 */
1544 pt->adjusted_pf.mode = new_mode;
1545 }
1546
1547 static void abort_transaction(struct pool *pool)
1548 {
1549 const char *dev_name = dm_device_name(pool->pool_md);
1550
1551 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1552 if (dm_pool_abort_metadata(pool->pmd)) {
1553 DMERR("%s: failed to abort metadata transaction", dev_name);
1554 set_pool_mode(pool, PM_FAIL);
1555 }
1556
1557 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1558 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1559 set_pool_mode(pool, PM_FAIL);
1560 }
1561 }
1562
1563 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1564 {
1565 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1566 dm_device_name(pool->pool_md), op, r);
1567
1568 abort_transaction(pool);
1569 set_pool_mode(pool, PM_READ_ONLY);
1570 }
1571
1572 /*----------------------------------------------------------------*/
1573
1574 /*
1575 * Mapping functions.
1576 */
1577
1578 /*
1579 * Called only while mapping a thin bio to hand it over to the workqueue.
1580 */
1581 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1582 {
1583 unsigned long flags;
1584 struct pool *pool = tc->pool;
1585
1586 spin_lock_irqsave(&pool->lock, flags);
1587 bio_list_add(&pool->deferred_bios, bio);
1588 spin_unlock_irqrestore(&pool->lock, flags);
1589
1590 wake_worker(pool);
1591 }
1592
1593 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1594 {
1595 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1596
1597 h->tc = tc;
1598 h->shared_read_entry = NULL;
1599 h->all_io_entry = NULL;
1600 h->overwrite_mapping = NULL;
1601 }
1602
1603 /*
1604 * Non-blocking function called from the thin target's map function.
1605 */
1606 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1607 {
1608 int r;
1609 struct thin_c *tc = ti->private;
1610 dm_block_t block = get_bio_block(tc, bio);
1611 struct dm_thin_device *td = tc->td;
1612 struct dm_thin_lookup_result result;
1613 struct dm_bio_prison_cell cell1, cell2;
1614 struct dm_bio_prison_cell *cell_result;
1615 struct dm_cell_key key;
1616
1617 thin_hook_bio(tc, bio);
1618
1619 if (get_pool_mode(tc->pool) == PM_FAIL) {
1620 bio_io_error(bio);
1621 return DM_MAPIO_SUBMITTED;
1622 }
1623
1624 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1625 thin_defer_bio(tc, bio);
1626 return DM_MAPIO_SUBMITTED;
1627 }
1628
1629 r = dm_thin_find_block(td, block, 0, &result);
1630
1631 /*
1632 * Note that we defer readahead too.
1633 */
1634 switch (r) {
1635 case 0:
1636 if (unlikely(result.shared)) {
1637 /*
1638 * We have a race condition here between the
1639 * result.shared value returned by the lookup and
1640 * snapshot creation, which may cause new
1641 * sharing.
1642 *
1643 * To avoid this always quiesce the origin before
1644 * taking the snap. You want to do this anyway to
1645 * ensure a consistent application view
1646 * (i.e. lockfs).
1647 *
1648 * More distant ancestors are irrelevant. The
1649 * shared flag will be set in their case.
1650 */
1651 thin_defer_bio(tc, bio);
1652 return DM_MAPIO_SUBMITTED;
1653 }
1654
1655 build_virtual_key(tc->td, block, &key);
1656 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1657 return DM_MAPIO_SUBMITTED;
1658
1659 build_data_key(tc->td, result.block, &key);
1660 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1661 cell_defer_no_holder_no_free(tc, &cell1);
1662 return DM_MAPIO_SUBMITTED;
1663 }
1664
1665 inc_all_io_entry(tc->pool, bio);
1666 cell_defer_no_holder_no_free(tc, &cell2);
1667 cell_defer_no_holder_no_free(tc, &cell1);
1668
1669 remap(tc, bio, result.block);
1670 return DM_MAPIO_REMAPPED;
1671
1672 case -ENODATA:
1673 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1674 /*
1675 * This block isn't provisioned, and we have no way
1676 * of doing so.
1677 */
1678 handle_unserviceable_bio(tc->pool, bio);
1679 return DM_MAPIO_SUBMITTED;
1680 }
1681 /* fall through */
1682
1683 case -EWOULDBLOCK:
1684 /*
1685 * In future, the failed dm_thin_find_block above could
1686 * provide the hint to load the metadata into cache.
1687 */
1688 thin_defer_bio(tc, bio);
1689 return DM_MAPIO_SUBMITTED;
1690
1691 default:
1692 /*
1693 * Must always call bio_io_error on failure.
1694 * dm_thin_find_block can fail with -EINVAL if the
1695 * pool is switched to fail-io mode.
1696 */
1697 bio_io_error(bio);
1698 return DM_MAPIO_SUBMITTED;
1699 }
1700 }
1701
1702 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1703 {
1704 int r;
1705 unsigned long flags;
1706 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1707
1708 spin_lock_irqsave(&pt->pool->lock, flags);
1709 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1710 spin_unlock_irqrestore(&pt->pool->lock, flags);
1711
1712 if (!r) {
1713 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1714 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1715 }
1716
1717 return r;
1718 }
1719
1720 static void __requeue_bios(struct pool *pool)
1721 {
1722 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1723 bio_list_init(&pool->retry_on_resume_list);
1724 }
1725
1726 /*----------------------------------------------------------------
1727 * Binding of control targets to a pool object
1728 *--------------------------------------------------------------*/
1729 static bool data_dev_supports_discard(struct pool_c *pt)
1730 {
1731 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1732
1733 return q && blk_queue_discard(q);
1734 }
1735
1736 static bool is_factor(sector_t block_size, uint32_t n)
1737 {
1738 return !sector_div(block_size, n);
1739 }
1740
1741 /*
1742 * If discard_passdown was enabled verify that the data device
1743 * supports discards. Disable discard_passdown if not.
1744 */
1745 static void disable_passdown_if_not_supported(struct pool_c *pt)
1746 {
1747 struct pool *pool = pt->pool;
1748 struct block_device *data_bdev = pt->data_dev->bdev;
1749 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1750 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1751 const char *reason = NULL;
1752 char buf[BDEVNAME_SIZE];
1753
1754 if (!pt->adjusted_pf.discard_passdown)
1755 return;
1756
1757 if (!data_dev_supports_discard(pt))
1758 reason = "discard unsupported";
1759
1760 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1761 reason = "max discard sectors smaller than a block";
1762
1763 else if (data_limits->discard_granularity > block_size)
1764 reason = "discard granularity larger than a block";
1765
1766 else if (!is_factor(block_size, data_limits->discard_granularity))
1767 reason = "discard granularity not a factor of block size";
1768
1769 if (reason) {
1770 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1771 pt->adjusted_pf.discard_passdown = false;
1772 }
1773 }
1774
1775 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1776 {
1777 struct pool_c *pt = ti->private;
1778
1779 /*
1780 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1781 */
1782 enum pool_mode old_mode = get_pool_mode(pool);
1783 enum pool_mode new_mode = pt->adjusted_pf.mode;
1784
1785 /*
1786 * Don't change the pool's mode until set_pool_mode() below.
1787 * Otherwise the pool's process_* function pointers may
1788 * not match the desired pool mode.
1789 */
1790 pt->adjusted_pf.mode = old_mode;
1791
1792 pool->ti = ti;
1793 pool->pf = pt->adjusted_pf;
1794 pool->low_water_blocks = pt->low_water_blocks;
1795
1796 set_pool_mode(pool, new_mode);
1797
1798 return 0;
1799 }
1800
1801 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1802 {
1803 if (pool->ti == ti)
1804 pool->ti = NULL;
1805 }
1806
1807 /*----------------------------------------------------------------
1808 * Pool creation
1809 *--------------------------------------------------------------*/
1810 /* Initialize pool features. */
1811 static void pool_features_init(struct pool_features *pf)
1812 {
1813 pf->mode = PM_WRITE;
1814 pf->zero_new_blocks = true;
1815 pf->discard_enabled = true;
1816 pf->discard_passdown = true;
1817 pf->error_if_no_space = false;
1818 }
1819
1820 static void __pool_destroy(struct pool *pool)
1821 {
1822 __pool_table_remove(pool);
1823
1824 if (dm_pool_metadata_close(pool->pmd) < 0)
1825 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1826
1827 dm_bio_prison_destroy(pool->prison);
1828 dm_kcopyd_client_destroy(pool->copier);
1829
1830 if (pool->wq)
1831 destroy_workqueue(pool->wq);
1832
1833 if (pool->next_mapping)
1834 mempool_free(pool->next_mapping, pool->mapping_pool);
1835 mempool_destroy(pool->mapping_pool);
1836 dm_deferred_set_destroy(pool->shared_read_ds);
1837 dm_deferred_set_destroy(pool->all_io_ds);
1838 kfree(pool);
1839 }
1840
1841 static struct kmem_cache *_new_mapping_cache;
1842
1843 static struct pool *pool_create(struct mapped_device *pool_md,
1844 struct block_device *metadata_dev,
1845 unsigned long block_size,
1846 int read_only, char **error)
1847 {
1848 int r;
1849 void *err_p;
1850 struct pool *pool;
1851 struct dm_pool_metadata *pmd;
1852 bool format_device = read_only ? false : true;
1853
1854 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1855 if (IS_ERR(pmd)) {
1856 *error = "Error creating metadata object";
1857 return (struct pool *)pmd;
1858 }
1859
1860 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1861 if (!pool) {
1862 *error = "Error allocating memory for pool";
1863 err_p = ERR_PTR(-ENOMEM);
1864 goto bad_pool;
1865 }
1866
1867 pool->pmd = pmd;
1868 pool->sectors_per_block = block_size;
1869 if (block_size & (block_size - 1))
1870 pool->sectors_per_block_shift = -1;
1871 else
1872 pool->sectors_per_block_shift = __ffs(block_size);
1873 pool->low_water_blocks = 0;
1874 pool_features_init(&pool->pf);
1875 pool->prison = dm_bio_prison_create(PRISON_CELLS);
1876 if (!pool->prison) {
1877 *error = "Error creating pool's bio prison";
1878 err_p = ERR_PTR(-ENOMEM);
1879 goto bad_prison;
1880 }
1881
1882 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1883 if (IS_ERR(pool->copier)) {
1884 r = PTR_ERR(pool->copier);
1885 *error = "Error creating pool's kcopyd client";
1886 err_p = ERR_PTR(r);
1887 goto bad_kcopyd_client;
1888 }
1889
1890 /*
1891 * Create singlethreaded workqueue that will service all devices
1892 * that use this metadata.
1893 */
1894 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1895 if (!pool->wq) {
1896 *error = "Error creating pool's workqueue";
1897 err_p = ERR_PTR(-ENOMEM);
1898 goto bad_wq;
1899 }
1900
1901 INIT_WORK(&pool->worker, do_worker);
1902 INIT_DELAYED_WORK(&pool->waker, do_waker);
1903 spin_lock_init(&pool->lock);
1904 bio_list_init(&pool->deferred_bios);
1905 bio_list_init(&pool->deferred_flush_bios);
1906 INIT_LIST_HEAD(&pool->prepared_mappings);
1907 INIT_LIST_HEAD(&pool->prepared_discards);
1908 pool->low_water_triggered = false;
1909 bio_list_init(&pool->retry_on_resume_list);
1910
1911 pool->shared_read_ds = dm_deferred_set_create();
1912 if (!pool->shared_read_ds) {
1913 *error = "Error creating pool's shared read deferred set";
1914 err_p = ERR_PTR(-ENOMEM);
1915 goto bad_shared_read_ds;
1916 }
1917
1918 pool->all_io_ds = dm_deferred_set_create();
1919 if (!pool->all_io_ds) {
1920 *error = "Error creating pool's all io deferred set";
1921 err_p = ERR_PTR(-ENOMEM);
1922 goto bad_all_io_ds;
1923 }
1924
1925 pool->next_mapping = NULL;
1926 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1927 _new_mapping_cache);
1928 if (!pool->mapping_pool) {
1929 *error = "Error creating pool's mapping mempool";
1930 err_p = ERR_PTR(-ENOMEM);
1931 goto bad_mapping_pool;
1932 }
1933
1934 pool->ref_count = 1;
1935 pool->last_commit_jiffies = jiffies;
1936 pool->pool_md = pool_md;
1937 pool->md_dev = metadata_dev;
1938 __pool_table_insert(pool);
1939
1940 return pool;
1941
1942 bad_mapping_pool:
1943 dm_deferred_set_destroy(pool->all_io_ds);
1944 bad_all_io_ds:
1945 dm_deferred_set_destroy(pool->shared_read_ds);
1946 bad_shared_read_ds:
1947 destroy_workqueue(pool->wq);
1948 bad_wq:
1949 dm_kcopyd_client_destroy(pool->copier);
1950 bad_kcopyd_client:
1951 dm_bio_prison_destroy(pool->prison);
1952 bad_prison:
1953 kfree(pool);
1954 bad_pool:
1955 if (dm_pool_metadata_close(pmd))
1956 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1957
1958 return err_p;
1959 }
1960
1961 static void __pool_inc(struct pool *pool)
1962 {
1963 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1964 pool->ref_count++;
1965 }
1966
1967 static void __pool_dec(struct pool *pool)
1968 {
1969 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1970 BUG_ON(!pool->ref_count);
1971 if (!--pool->ref_count)
1972 __pool_destroy(pool);
1973 }
1974
1975 static struct pool *__pool_find(struct mapped_device *pool_md,
1976 struct block_device *metadata_dev,
1977 unsigned long block_size, int read_only,
1978 char **error, int *created)
1979 {
1980 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1981
1982 if (pool) {
1983 if (pool->pool_md != pool_md) {
1984 *error = "metadata device already in use by a pool";
1985 return ERR_PTR(-EBUSY);
1986 }
1987 __pool_inc(pool);
1988
1989 } else {
1990 pool = __pool_table_lookup(pool_md);
1991 if (pool) {
1992 if (pool->md_dev != metadata_dev) {
1993 *error = "different pool cannot replace a pool";
1994 return ERR_PTR(-EINVAL);
1995 }
1996 __pool_inc(pool);
1997
1998 } else {
1999 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2000 *created = 1;
2001 }
2002 }
2003
2004 return pool;
2005 }
2006
2007 /*----------------------------------------------------------------
2008 * Pool target methods
2009 *--------------------------------------------------------------*/
2010 static void pool_dtr(struct dm_target *ti)
2011 {
2012 struct pool_c *pt = ti->private;
2013
2014 mutex_lock(&dm_thin_pool_table.mutex);
2015
2016 unbind_control_target(pt->pool, ti);
2017 __pool_dec(pt->pool);
2018 dm_put_device(ti, pt->metadata_dev);
2019 dm_put_device(ti, pt->data_dev);
2020 kfree(pt);
2021
2022 mutex_unlock(&dm_thin_pool_table.mutex);
2023 }
2024
2025 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2026 struct dm_target *ti)
2027 {
2028 int r;
2029 unsigned argc;
2030 const char *arg_name;
2031
2032 static struct dm_arg _args[] = {
2033 {0, 4, "Invalid number of pool feature arguments"},
2034 };
2035
2036 /*
2037 * No feature arguments supplied.
2038 */
2039 if (!as->argc)
2040 return 0;
2041
2042 r = dm_read_arg_group(_args, as, &argc, &ti->error);
2043 if (r)
2044 return -EINVAL;
2045
2046 while (argc && !r) {
2047 arg_name = dm_shift_arg(as);
2048 argc--;
2049
2050 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2051 pf->zero_new_blocks = false;
2052
2053 else if (!strcasecmp(arg_name, "ignore_discard"))
2054 pf->discard_enabled = false;
2055
2056 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2057 pf->discard_passdown = false;
2058
2059 else if (!strcasecmp(arg_name, "read_only"))
2060 pf->mode = PM_READ_ONLY;
2061
2062 else if (!strcasecmp(arg_name, "error_if_no_space"))
2063 pf->error_if_no_space = true;
2064
2065 else {
2066 ti->error = "Unrecognised pool feature requested";
2067 r = -EINVAL;
2068 break;
2069 }
2070 }
2071
2072 return r;
2073 }
2074
2075 static void metadata_low_callback(void *context)
2076 {
2077 struct pool *pool = context;
2078
2079 DMWARN("%s: reached low water mark for metadata device: sending event.",
2080 dm_device_name(pool->pool_md));
2081
2082 dm_table_event(pool->ti->table);
2083 }
2084
2085 static sector_t get_dev_size(struct block_device *bdev)
2086 {
2087 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2088 }
2089
2090 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2091 {
2092 sector_t metadata_dev_size = get_dev_size(bdev);
2093 char buffer[BDEVNAME_SIZE];
2094
2095 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2096 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2097 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2098 }
2099
2100 static sector_t get_metadata_dev_size(struct block_device *bdev)
2101 {
2102 sector_t metadata_dev_size = get_dev_size(bdev);
2103
2104 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2105 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2106
2107 return metadata_dev_size;
2108 }
2109
2110 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2111 {
2112 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2113
2114 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2115
2116 return metadata_dev_size;
2117 }
2118
2119 /*
2120 * When a metadata threshold is crossed a dm event is triggered, and
2121 * userland should respond by growing the metadata device. We could let
2122 * userland set the threshold, like we do with the data threshold, but I'm
2123 * not sure they know enough to do this well.
2124 */
2125 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2126 {
2127 /*
2128 * 4M is ample for all ops with the possible exception of thin
2129 * device deletion which is harmless if it fails (just retry the
2130 * delete after you've grown the device).
2131 */
2132 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2133 return min((dm_block_t)1024ULL /* 4M */, quarter);
2134 }
2135
2136 /*
2137 * thin-pool <metadata dev> <data dev>
2138 * <data block size (sectors)>
2139 * <low water mark (blocks)>
2140 * [<#feature args> [<arg>]*]
2141 *
2142 * Optional feature arguments are:
2143 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2144 * ignore_discard: disable discard
2145 * no_discard_passdown: don't pass discards down to the data device
2146 * read_only: Don't allow any changes to be made to the pool metadata.
2147 * error_if_no_space: error IOs, instead of queueing, if no space.
2148 */
2149 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2150 {
2151 int r, pool_created = 0;
2152 struct pool_c *pt;
2153 struct pool *pool;
2154 struct pool_features pf;
2155 struct dm_arg_set as;
2156 struct dm_dev *data_dev;
2157 unsigned long block_size;
2158 dm_block_t low_water_blocks;
2159 struct dm_dev *metadata_dev;
2160 fmode_t metadata_mode;
2161
2162 /*
2163 * FIXME Remove validation from scope of lock.
2164 */
2165 mutex_lock(&dm_thin_pool_table.mutex);
2166
2167 if (argc < 4) {
2168 ti->error = "Invalid argument count";
2169 r = -EINVAL;
2170 goto out_unlock;
2171 }
2172
2173 as.argc = argc;
2174 as.argv = argv;
2175
2176 /*
2177 * Set default pool features.
2178 */
2179 pool_features_init(&pf);
2180
2181 dm_consume_args(&as, 4);
2182 r = parse_pool_features(&as, &pf, ti);
2183 if (r)
2184 goto out_unlock;
2185
2186 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2187 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2188 if (r) {
2189 ti->error = "Error opening metadata block device";
2190 goto out_unlock;
2191 }
2192 warn_if_metadata_device_too_big(metadata_dev->bdev);
2193
2194 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2195 if (r) {
2196 ti->error = "Error getting data device";
2197 goto out_metadata;
2198 }
2199
2200 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2201 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2202 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2203 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2204 ti->error = "Invalid block size";
2205 r = -EINVAL;
2206 goto out;
2207 }
2208
2209 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2210 ti->error = "Invalid low water mark";
2211 r = -EINVAL;
2212 goto out;
2213 }
2214
2215 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2216 if (!pt) {
2217 r = -ENOMEM;
2218 goto out;
2219 }
2220
2221 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2222 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2223 if (IS_ERR(pool)) {
2224 r = PTR_ERR(pool);
2225 goto out_free_pt;
2226 }
2227
2228 /*
2229 * 'pool_created' reflects whether this is the first table load.
2230 * Top level discard support is not allowed to be changed after
2231 * initial load. This would require a pool reload to trigger thin
2232 * device changes.
2233 */
2234 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2235 ti->error = "Discard support cannot be disabled once enabled";
2236 r = -EINVAL;
2237 goto out_flags_changed;
2238 }
2239
2240 pt->pool = pool;
2241 pt->ti = ti;
2242 pt->metadata_dev = metadata_dev;
2243 pt->data_dev = data_dev;
2244 pt->low_water_blocks = low_water_blocks;
2245 pt->adjusted_pf = pt->requested_pf = pf;
2246 ti->num_flush_bios = 1;
2247
2248 /*
2249 * Only need to enable discards if the pool should pass
2250 * them down to the data device. The thin device's discard
2251 * processing will cause mappings to be removed from the btree.
2252 */
2253 ti->discard_zeroes_data_unsupported = true;
2254 if (pf.discard_enabled && pf.discard_passdown) {
2255 ti->num_discard_bios = 1;
2256
2257 /*
2258 * Setting 'discards_supported' circumvents the normal
2259 * stacking of discard limits (this keeps the pool and
2260 * thin devices' discard limits consistent).
2261 */
2262 ti->discards_supported = true;
2263 }
2264 ti->private = pt;
2265
2266 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2267 calc_metadata_threshold(pt),
2268 metadata_low_callback,
2269 pool);
2270 if (r)
2271 goto out_free_pt;
2272
2273 pt->callbacks.congested_fn = pool_is_congested;
2274 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2275
2276 mutex_unlock(&dm_thin_pool_table.mutex);
2277
2278 return 0;
2279
2280 out_flags_changed:
2281 __pool_dec(pool);
2282 out_free_pt:
2283 kfree(pt);
2284 out:
2285 dm_put_device(ti, data_dev);
2286 out_metadata:
2287 dm_put_device(ti, metadata_dev);
2288 out_unlock:
2289 mutex_unlock(&dm_thin_pool_table.mutex);
2290
2291 return r;
2292 }
2293
2294 static int pool_map(struct dm_target *ti, struct bio *bio)
2295 {
2296 int r;
2297 struct pool_c *pt = ti->private;
2298 struct pool *pool = pt->pool;
2299 unsigned long flags;
2300
2301 /*
2302 * As this is a singleton target, ti->begin is always zero.
2303 */
2304 spin_lock_irqsave(&pool->lock, flags);
2305 bio->bi_bdev = pt->data_dev->bdev;
2306 r = DM_MAPIO_REMAPPED;
2307 spin_unlock_irqrestore(&pool->lock, flags);
2308
2309 return r;
2310 }
2311
2312 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2313 {
2314 int r;
2315 struct pool_c *pt = ti->private;
2316 struct pool *pool = pt->pool;
2317 sector_t data_size = ti->len;
2318 dm_block_t sb_data_size;
2319
2320 *need_commit = false;
2321
2322 (void) sector_div(data_size, pool->sectors_per_block);
2323
2324 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2325 if (r) {
2326 DMERR("%s: failed to retrieve data device size",
2327 dm_device_name(pool->pool_md));
2328 return r;
2329 }
2330
2331 if (data_size < sb_data_size) {
2332 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2333 dm_device_name(pool->pool_md),
2334 (unsigned long long)data_size, sb_data_size);
2335 return -EINVAL;
2336
2337 } else if (data_size > sb_data_size) {
2338 if (dm_pool_metadata_needs_check(pool->pmd)) {
2339 DMERR("%s: unable to grow the data device until repaired.",
2340 dm_device_name(pool->pool_md));
2341 return 0;
2342 }
2343
2344 if (sb_data_size)
2345 DMINFO("%s: growing the data device from %llu to %llu blocks",
2346 dm_device_name(pool->pool_md),
2347 sb_data_size, (unsigned long long)data_size);
2348 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2349 if (r) {
2350 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2351 return r;
2352 }
2353
2354 *need_commit = true;
2355 }
2356
2357 return 0;
2358 }
2359
2360 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2361 {
2362 int r;
2363 struct pool_c *pt = ti->private;
2364 struct pool *pool = pt->pool;
2365 dm_block_t metadata_dev_size, sb_metadata_dev_size;
2366
2367 *need_commit = false;
2368
2369 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2370
2371 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2372 if (r) {
2373 DMERR("%s: failed to retrieve metadata device size",
2374 dm_device_name(pool->pool_md));
2375 return r;
2376 }
2377
2378 if (metadata_dev_size < sb_metadata_dev_size) {
2379 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2380 dm_device_name(pool->pool_md),
2381 metadata_dev_size, sb_metadata_dev_size);
2382 return -EINVAL;
2383
2384 } else if (metadata_dev_size > sb_metadata_dev_size) {
2385 if (dm_pool_metadata_needs_check(pool->pmd)) {
2386 DMERR("%s: unable to grow the metadata device until repaired.",
2387 dm_device_name(pool->pool_md));
2388 return 0;
2389 }
2390
2391 warn_if_metadata_device_too_big(pool->md_dev);
2392 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2393 dm_device_name(pool->pool_md),
2394 sb_metadata_dev_size, metadata_dev_size);
2395 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2396 if (r) {
2397 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2398 return r;
2399 }
2400
2401 *need_commit = true;
2402 }
2403
2404 return 0;
2405 }
2406
2407 /*
2408 * Retrieves the number of blocks of the data device from
2409 * the superblock and compares it to the actual device size,
2410 * thus resizing the data device in case it has grown.
2411 *
2412 * This both copes with opening preallocated data devices in the ctr
2413 * being followed by a resume
2414 * -and-
2415 * calling the resume method individually after userspace has
2416 * grown the data device in reaction to a table event.
2417 */
2418 static int pool_preresume(struct dm_target *ti)
2419 {
2420 int r;
2421 bool need_commit1, need_commit2;
2422 struct pool_c *pt = ti->private;
2423 struct pool *pool = pt->pool;
2424
2425 /*
2426 * Take control of the pool object.
2427 */
2428 r = bind_control_target(pool, ti);
2429 if (r)
2430 return r;
2431
2432 r = maybe_resize_data_dev(ti, &need_commit1);
2433 if (r)
2434 return r;
2435
2436 r = maybe_resize_metadata_dev(ti, &need_commit2);
2437 if (r)
2438 return r;
2439
2440 if (need_commit1 || need_commit2)
2441 (void) commit(pool);
2442
2443 return 0;
2444 }
2445
2446 static void pool_resume(struct dm_target *ti)
2447 {
2448 struct pool_c *pt = ti->private;
2449 struct pool *pool = pt->pool;
2450 unsigned long flags;
2451
2452 spin_lock_irqsave(&pool->lock, flags);
2453 pool->low_water_triggered = false;
2454 __requeue_bios(pool);
2455 spin_unlock_irqrestore(&pool->lock, flags);
2456
2457 do_waker(&pool->waker.work);
2458 }
2459
2460 static void pool_postsuspend(struct dm_target *ti)
2461 {
2462 struct pool_c *pt = ti->private;
2463 struct pool *pool = pt->pool;
2464
2465 cancel_delayed_work(&pool->waker);
2466 flush_workqueue(pool->wq);
2467 (void) commit(pool);
2468 }
2469
2470 static int check_arg_count(unsigned argc, unsigned args_required)
2471 {
2472 if (argc != args_required) {
2473 DMWARN("Message received with %u arguments instead of %u.",
2474 argc, args_required);
2475 return -EINVAL;
2476 }
2477
2478 return 0;
2479 }
2480
2481 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2482 {
2483 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2484 *dev_id <= MAX_DEV_ID)
2485 return 0;
2486
2487 if (warning)
2488 DMWARN("Message received with invalid device id: %s", arg);
2489
2490 return -EINVAL;
2491 }
2492
2493 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2494 {
2495 dm_thin_id dev_id;
2496 int r;
2497
2498 r = check_arg_count(argc, 2);
2499 if (r)
2500 return r;
2501
2502 r = read_dev_id(argv[1], &dev_id, 1);
2503 if (r)
2504 return r;
2505
2506 r = dm_pool_create_thin(pool->pmd, dev_id);
2507 if (r) {
2508 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2509 argv[1]);
2510 return r;
2511 }
2512
2513 return 0;
2514 }
2515
2516 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2517 {
2518 dm_thin_id dev_id;
2519 dm_thin_id origin_dev_id;
2520 int r;
2521
2522 r = check_arg_count(argc, 3);
2523 if (r)
2524 return r;
2525
2526 r = read_dev_id(argv[1], &dev_id, 1);
2527 if (r)
2528 return r;
2529
2530 r = read_dev_id(argv[2], &origin_dev_id, 1);
2531 if (r)
2532 return r;
2533
2534 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2535 if (r) {
2536 DMWARN("Creation of new snapshot %s of device %s failed.",
2537 argv[1], argv[2]);
2538 return r;
2539 }
2540
2541 return 0;
2542 }
2543
2544 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2545 {
2546 dm_thin_id dev_id;
2547 int r;
2548
2549 r = check_arg_count(argc, 2);
2550 if (r)
2551 return r;
2552
2553 r = read_dev_id(argv[1], &dev_id, 1);
2554 if (r)
2555 return r;
2556
2557 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2558 if (r)
2559 DMWARN("Deletion of thin device %s failed.", argv[1]);
2560
2561 return r;
2562 }
2563
2564 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2565 {
2566 dm_thin_id old_id, new_id;
2567 int r;
2568
2569 r = check_arg_count(argc, 3);
2570 if (r)
2571 return r;
2572
2573 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2574 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2575 return -EINVAL;
2576 }
2577
2578 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2579 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2580 return -EINVAL;
2581 }
2582
2583 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2584 if (r) {
2585 DMWARN("Failed to change transaction id from %s to %s.",
2586 argv[1], argv[2]);
2587 return r;
2588 }
2589
2590 return 0;
2591 }
2592
2593 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2594 {
2595 int r;
2596
2597 r = check_arg_count(argc, 1);
2598 if (r)
2599 return r;
2600
2601 (void) commit(pool);
2602
2603 r = dm_pool_reserve_metadata_snap(pool->pmd);
2604 if (r)
2605 DMWARN("reserve_metadata_snap message failed.");
2606
2607 return r;
2608 }
2609
2610 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2611 {
2612 int r;
2613
2614 r = check_arg_count(argc, 1);
2615 if (r)
2616 return r;
2617
2618 r = dm_pool_release_metadata_snap(pool->pmd);
2619 if (r)
2620 DMWARN("release_metadata_snap message failed.");
2621
2622 return r;
2623 }
2624
2625 /*
2626 * Messages supported:
2627 * create_thin <dev_id>
2628 * create_snap <dev_id> <origin_id>
2629 * delete <dev_id>
2630 * trim <dev_id> <new_size_in_sectors>
2631 * set_transaction_id <current_trans_id> <new_trans_id>
2632 * reserve_metadata_snap
2633 * release_metadata_snap
2634 */
2635 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2636 {
2637 int r = -EINVAL;
2638 struct pool_c *pt = ti->private;
2639 struct pool *pool = pt->pool;
2640
2641 if (!strcasecmp(argv[0], "create_thin"))
2642 r = process_create_thin_mesg(argc, argv, pool);
2643
2644 else if (!strcasecmp(argv[0], "create_snap"))
2645 r = process_create_snap_mesg(argc, argv, pool);
2646
2647 else if (!strcasecmp(argv[0], "delete"))
2648 r = process_delete_mesg(argc, argv, pool);
2649
2650 else if (!strcasecmp(argv[0], "set_transaction_id"))
2651 r = process_set_transaction_id_mesg(argc, argv, pool);
2652
2653 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2654 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2655
2656 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2657 r = process_release_metadata_snap_mesg(argc, argv, pool);
2658
2659 else
2660 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2661
2662 if (!r)
2663 (void) commit(pool);
2664
2665 return r;
2666 }
2667
2668 static void emit_flags(struct pool_features *pf, char *result,
2669 unsigned sz, unsigned maxlen)
2670 {
2671 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2672 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2673 pf->error_if_no_space;
2674 DMEMIT("%u ", count);
2675
2676 if (!pf->zero_new_blocks)
2677 DMEMIT("skip_block_zeroing ");
2678
2679 if (!pf->discard_enabled)
2680 DMEMIT("ignore_discard ");
2681
2682 if (!pf->discard_passdown)
2683 DMEMIT("no_discard_passdown ");
2684
2685 if (pf->mode == PM_READ_ONLY)
2686 DMEMIT("read_only ");
2687
2688 if (pf->error_if_no_space)
2689 DMEMIT("error_if_no_space ");
2690 }
2691
2692 /*
2693 * Status line is:
2694 * <transaction id> <used metadata sectors>/<total metadata sectors>
2695 * <used data sectors>/<total data sectors> <held metadata root>
2696 */
2697 static void pool_status(struct dm_target *ti, status_type_t type,
2698 unsigned status_flags, char *result, unsigned maxlen)
2699 {
2700 int r;
2701 unsigned sz = 0;
2702 uint64_t transaction_id;
2703 dm_block_t nr_free_blocks_data;
2704 dm_block_t nr_free_blocks_metadata;
2705 dm_block_t nr_blocks_data;
2706 dm_block_t nr_blocks_metadata;
2707 dm_block_t held_root;
2708 char buf[BDEVNAME_SIZE];
2709 char buf2[BDEVNAME_SIZE];
2710 struct pool_c *pt = ti->private;
2711 struct pool *pool = pt->pool;
2712
2713 switch (type) {
2714 case STATUSTYPE_INFO:
2715 if (get_pool_mode(pool) == PM_FAIL) {
2716 DMEMIT("Fail");
2717 break;
2718 }
2719
2720 /* Commit to ensure statistics aren't out-of-date */
2721 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2722 (void) commit(pool);
2723
2724 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2725 if (r) {
2726 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2727 dm_device_name(pool->pool_md), r);
2728 goto err;
2729 }
2730
2731 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2732 if (r) {
2733 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2734 dm_device_name(pool->pool_md), r);
2735 goto err;
2736 }
2737
2738 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2739 if (r) {
2740 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2741 dm_device_name(pool->pool_md), r);
2742 goto err;
2743 }
2744
2745 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2746 if (r) {
2747 DMERR("%s: dm_pool_get_free_block_count returned %d",
2748 dm_device_name(pool->pool_md), r);
2749 goto err;
2750 }
2751
2752 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2753 if (r) {
2754 DMERR("%s: dm_pool_get_data_dev_size returned %d",
2755 dm_device_name(pool->pool_md), r);
2756 goto err;
2757 }
2758
2759 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2760 if (r) {
2761 DMERR("%s: dm_pool_get_metadata_snap returned %d",
2762 dm_device_name(pool->pool_md), r);
2763 goto err;
2764 }
2765
2766 DMEMIT("%llu %llu/%llu %llu/%llu ",
2767 (unsigned long long)transaction_id,
2768 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2769 (unsigned long long)nr_blocks_metadata,
2770 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2771 (unsigned long long)nr_blocks_data);
2772
2773 if (held_root)
2774 DMEMIT("%llu ", held_root);
2775 else
2776 DMEMIT("- ");
2777
2778 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
2779 DMEMIT("out_of_data_space ");
2780 else if (pool->pf.mode == PM_READ_ONLY)
2781 DMEMIT("ro ");
2782 else
2783 DMEMIT("rw ");
2784
2785 if (!pool->pf.discard_enabled)
2786 DMEMIT("ignore_discard ");
2787 else if (pool->pf.discard_passdown)
2788 DMEMIT("discard_passdown ");
2789 else
2790 DMEMIT("no_discard_passdown ");
2791
2792 if (pool->pf.error_if_no_space)
2793 DMEMIT("error_if_no_space ");
2794 else
2795 DMEMIT("queue_if_no_space ");
2796
2797 break;
2798
2799 case STATUSTYPE_TABLE:
2800 DMEMIT("%s %s %lu %llu ",
2801 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2802 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2803 (unsigned long)pool->sectors_per_block,
2804 (unsigned long long)pt->low_water_blocks);
2805 emit_flags(&pt->requested_pf, result, sz, maxlen);
2806 break;
2807 }
2808 return;
2809
2810 err:
2811 DMEMIT("Error");
2812 }
2813
2814 static int pool_iterate_devices(struct dm_target *ti,
2815 iterate_devices_callout_fn fn, void *data)
2816 {
2817 struct pool_c *pt = ti->private;
2818
2819 return fn(ti, pt->data_dev, 0, ti->len, data);
2820 }
2821
2822 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2823 struct bio_vec *biovec, int max_size)
2824 {
2825 struct pool_c *pt = ti->private;
2826 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2827
2828 if (!q->merge_bvec_fn)
2829 return max_size;
2830
2831 bvm->bi_bdev = pt->data_dev->bdev;
2832
2833 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2834 }
2835
2836 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2837 {
2838 struct pool *pool = pt->pool;
2839 struct queue_limits *data_limits;
2840
2841 limits->max_discard_sectors = pool->sectors_per_block;
2842
2843 /*
2844 * discard_granularity is just a hint, and not enforced.
2845 */
2846 if (pt->adjusted_pf.discard_passdown) {
2847 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2848 limits->discard_granularity = data_limits->discard_granularity;
2849 } else
2850 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2851 }
2852
2853 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2854 {
2855 struct pool_c *pt = ti->private;
2856 struct pool *pool = pt->pool;
2857 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2858
2859 /*
2860 * If the system-determined stacked limits are compatible with the
2861 * pool's blocksize (io_opt is a factor) do not override them.
2862 */
2863 if (io_opt_sectors < pool->sectors_per_block ||
2864 do_div(io_opt_sectors, pool->sectors_per_block)) {
2865 blk_limits_io_min(limits, 0);
2866 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2867 }
2868
2869 /*
2870 * pt->adjusted_pf is a staging area for the actual features to use.
2871 * They get transferred to the live pool in bind_control_target()
2872 * called from pool_preresume().
2873 */
2874 if (!pt->adjusted_pf.discard_enabled) {
2875 /*
2876 * Must explicitly disallow stacking discard limits otherwise the
2877 * block layer will stack them if pool's data device has support.
2878 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2879 * user to see that, so make sure to set all discard limits to 0.
2880 */
2881 limits->discard_granularity = 0;
2882 return;
2883 }
2884
2885 disable_passdown_if_not_supported(pt);
2886
2887 set_discard_limits(pt, limits);
2888 }
2889
2890 static struct target_type pool_target = {
2891 .name = "thin-pool",
2892 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2893 DM_TARGET_IMMUTABLE,
2894 .version = {1, 11, 0},
2895 .module = THIS_MODULE,
2896 .ctr = pool_ctr,
2897 .dtr = pool_dtr,
2898 .map = pool_map,
2899 .postsuspend = pool_postsuspend,
2900 .preresume = pool_preresume,
2901 .resume = pool_resume,
2902 .message = pool_message,
2903 .status = pool_status,
2904 .merge = pool_merge,
2905 .iterate_devices = pool_iterate_devices,
2906 .io_hints = pool_io_hints,
2907 };
2908
2909 /*----------------------------------------------------------------
2910 * Thin target methods
2911 *--------------------------------------------------------------*/
2912 static void thin_dtr(struct dm_target *ti)
2913 {
2914 struct thin_c *tc = ti->private;
2915
2916 mutex_lock(&dm_thin_pool_table.mutex);
2917
2918 __pool_dec(tc->pool);
2919 dm_pool_close_thin_device(tc->td);
2920 dm_put_device(ti, tc->pool_dev);
2921 if (tc->origin_dev)
2922 dm_put_device(ti, tc->origin_dev);
2923 kfree(tc);
2924
2925 mutex_unlock(&dm_thin_pool_table.mutex);
2926 }
2927
2928 /*
2929 * Thin target parameters:
2930 *
2931 * <pool_dev> <dev_id> [origin_dev]
2932 *
2933 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2934 * dev_id: the internal device identifier
2935 * origin_dev: a device external to the pool that should act as the origin
2936 *
2937 * If the pool device has discards disabled, they get disabled for the thin
2938 * device as well.
2939 */
2940 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2941 {
2942 int r;
2943 struct thin_c *tc;
2944 struct dm_dev *pool_dev, *origin_dev;
2945 struct mapped_device *pool_md;
2946
2947 mutex_lock(&dm_thin_pool_table.mutex);
2948
2949 if (argc != 2 && argc != 3) {
2950 ti->error = "Invalid argument count";
2951 r = -EINVAL;
2952 goto out_unlock;
2953 }
2954
2955 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2956 if (!tc) {
2957 ti->error = "Out of memory";
2958 r = -ENOMEM;
2959 goto out_unlock;
2960 }
2961
2962 if (argc == 3) {
2963 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2964 if (r) {
2965 ti->error = "Error opening origin device";
2966 goto bad_origin_dev;
2967 }
2968 tc->origin_dev = origin_dev;
2969 }
2970
2971 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2972 if (r) {
2973 ti->error = "Error opening pool device";
2974 goto bad_pool_dev;
2975 }
2976 tc->pool_dev = pool_dev;
2977
2978 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2979 ti->error = "Invalid device id";
2980 r = -EINVAL;
2981 goto bad_common;
2982 }
2983
2984 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2985 if (!pool_md) {
2986 ti->error = "Couldn't get pool mapped device";
2987 r = -EINVAL;
2988 goto bad_common;
2989 }
2990
2991 tc->pool = __pool_table_lookup(pool_md);
2992 if (!tc->pool) {
2993 ti->error = "Couldn't find pool object";
2994 r = -EINVAL;
2995 goto bad_pool_lookup;
2996 }
2997 __pool_inc(tc->pool);
2998
2999 if (get_pool_mode(tc->pool) == PM_FAIL) {
3000 ti->error = "Couldn't open thin device, Pool is in fail mode";
3001 r = -EINVAL;
3002 goto bad_thin_open;
3003 }
3004
3005 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3006 if (r) {
3007 ti->error = "Couldn't open thin internal device";
3008 goto bad_thin_open;
3009 }
3010
3011 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3012 if (r)
3013 goto bad_target_max_io_len;
3014
3015 ti->num_flush_bios = 1;
3016 ti->flush_supported = true;
3017 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3018
3019 /* In case the pool supports discards, pass them on. */
3020 ti->discard_zeroes_data_unsupported = true;
3021 if (tc->pool->pf.discard_enabled) {
3022 ti->discards_supported = true;
3023 ti->num_discard_bios = 1;
3024 /* Discard bios must be split on a block boundary */
3025 ti->split_discard_bios = true;
3026 }
3027
3028 dm_put(pool_md);
3029
3030 mutex_unlock(&dm_thin_pool_table.mutex);
3031
3032 return 0;
3033
3034 bad_target_max_io_len:
3035 dm_pool_close_thin_device(tc->td);
3036 bad_thin_open:
3037 __pool_dec(tc->pool);
3038 bad_pool_lookup:
3039 dm_put(pool_md);
3040 bad_common:
3041 dm_put_device(ti, tc->pool_dev);
3042 bad_pool_dev:
3043 if (tc->origin_dev)
3044 dm_put_device(ti, tc->origin_dev);
3045 bad_origin_dev:
3046 kfree(tc);
3047 out_unlock:
3048 mutex_unlock(&dm_thin_pool_table.mutex);
3049
3050 return r;
3051 }
3052
3053 static int thin_map(struct dm_target *ti, struct bio *bio)
3054 {
3055 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3056
3057 return thin_bio_map(ti, bio);
3058 }
3059
3060 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3061 {
3062 unsigned long flags;
3063 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3064 struct list_head work;
3065 struct dm_thin_new_mapping *m, *tmp;
3066 struct pool *pool = h->tc->pool;
3067
3068 if (h->shared_read_entry) {
3069 INIT_LIST_HEAD(&work);
3070 dm_deferred_entry_dec(h->shared_read_entry, &work);
3071
3072 spin_lock_irqsave(&pool->lock, flags);
3073 list_for_each_entry_safe(m, tmp, &work, list) {
3074 list_del(&m->list);
3075 m->quiesced = true;
3076 __maybe_add_mapping(m);
3077 }
3078 spin_unlock_irqrestore(&pool->lock, flags);
3079 }
3080
3081 if (h->all_io_entry) {
3082 INIT_LIST_HEAD(&work);
3083 dm_deferred_entry_dec(h->all_io_entry, &work);
3084 if (!list_empty(&work)) {
3085 spin_lock_irqsave(&pool->lock, flags);
3086 list_for_each_entry_safe(m, tmp, &work, list)
3087 list_add_tail(&m->list, &pool->prepared_discards);
3088 spin_unlock_irqrestore(&pool->lock, flags);
3089 wake_worker(pool);
3090 }
3091 }
3092
3093 return 0;
3094 }
3095
3096 static void thin_postsuspend(struct dm_target *ti)
3097 {
3098 if (dm_noflush_suspending(ti))
3099 requeue_io((struct thin_c *)ti->private);
3100 }
3101
3102 /*
3103 * <nr mapped sectors> <highest mapped sector>
3104 */
3105 static void thin_status(struct dm_target *ti, status_type_t type,
3106 unsigned status_flags, char *result, unsigned maxlen)
3107 {
3108 int r;
3109 ssize_t sz = 0;
3110 dm_block_t mapped, highest;
3111 char buf[BDEVNAME_SIZE];
3112 struct thin_c *tc = ti->private;
3113
3114 if (get_pool_mode(tc->pool) == PM_FAIL) {
3115 DMEMIT("Fail");
3116 return;
3117 }
3118
3119 if (!tc->td)
3120 DMEMIT("-");
3121 else {
3122 switch (type) {
3123 case STATUSTYPE_INFO:
3124 r = dm_thin_get_mapped_count(tc->td, &mapped);
3125 if (r) {
3126 DMERR("dm_thin_get_mapped_count returned %d", r);
3127 goto err;
3128 }
3129
3130 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3131 if (r < 0) {
3132 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3133 goto err;
3134 }
3135
3136 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3137 if (r)
3138 DMEMIT("%llu", ((highest + 1) *
3139 tc->pool->sectors_per_block) - 1);
3140 else
3141 DMEMIT("-");
3142 break;
3143
3144 case STATUSTYPE_TABLE:
3145 DMEMIT("%s %lu",
3146 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3147 (unsigned long) tc->dev_id);
3148 if (tc->origin_dev)
3149 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3150 break;
3151 }
3152 }
3153
3154 return;
3155
3156 err:
3157 DMEMIT("Error");
3158 }
3159
3160 static int thin_iterate_devices(struct dm_target *ti,
3161 iterate_devices_callout_fn fn, void *data)
3162 {
3163 sector_t blocks;
3164 struct thin_c *tc = ti->private;
3165 struct pool *pool = tc->pool;
3166
3167 /*
3168 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3169 * we follow a more convoluted path through to the pool's target.
3170 */
3171 if (!pool->ti)
3172 return 0; /* nothing is bound */
3173
3174 blocks = pool->ti->len;
3175 (void) sector_div(blocks, pool->sectors_per_block);
3176 if (blocks)
3177 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3178
3179 return 0;
3180 }
3181
3182 static struct target_type thin_target = {
3183 .name = "thin",
3184 .version = {1, 11, 0},
3185 .module = THIS_MODULE,
3186 .ctr = thin_ctr,
3187 .dtr = thin_dtr,
3188 .map = thin_map,
3189 .end_io = thin_endio,
3190 .postsuspend = thin_postsuspend,
3191 .status = thin_status,
3192 .iterate_devices = thin_iterate_devices,
3193 };
3194
3195 /*----------------------------------------------------------------*/
3196
3197 static int __init dm_thin_init(void)
3198 {
3199 int r;
3200
3201 pool_table_init();
3202
3203 r = dm_register_target(&thin_target);
3204 if (r)
3205 return r;
3206
3207 r = dm_register_target(&pool_target);
3208 if (r)
3209 goto bad_pool_target;
3210
3211 r = -ENOMEM;
3212
3213 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3214 if (!_new_mapping_cache)
3215 goto bad_new_mapping_cache;
3216
3217 return 0;
3218
3219 bad_new_mapping_cache:
3220 dm_unregister_target(&pool_target);
3221 bad_pool_target:
3222 dm_unregister_target(&thin_target);
3223
3224 return r;
3225 }
3226
3227 static void dm_thin_exit(void)
3228 {
3229 dm_unregister_target(&thin_target);
3230 dm_unregister_target(&pool_target);
3231
3232 kmem_cache_destroy(_new_mapping_cache);
3233 }
3234
3235 module_init(dm_thin_init);
3236 module_exit(dm_thin_exit);
3237
3238 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3239 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3240 MODULE_LICENSE("GPL");
This page took 0.101428 seconds and 5 git commands to generate.