Merge branch 'for-linus' into next
[deliverable/linux.git] / drivers / md / dm-thin.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX "thin"
26
27 /*
28 * Tunable constants
29 */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 "A percentage of time allocated for copy on write");
39
40 /*
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
43 */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48 * Device id is restricted to 24 bits.
49 */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
55 *
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
61 * same data blocks.
62 *
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
65 *
66 * Let's say we write to a shared block in what was the origin. The
67 * steps are:
68 *
69 * i) plug io further to this physical block. (see bio_prison code).
70 *
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
73 *
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
76 *
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
84 *
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
87 *
88 * Steps (ii) and (iii) occur in parallel.
89 *
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
93 *
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
97 *
98 * - The snap mapping still points to the old block. As it would after
99 * the commit.
100 *
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
108 */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113 * Key building.
114 */
115 enum lock_space {
116 VIRTUAL,
117 PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 key->virtual = (ls == VIRTUAL);
124 key->dev = dm_thin_dev_id(td);
125 key->block_begin = b;
126 key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 struct dm_cell_key *key)
131 {
132 build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 struct dm_cell_key *key)
137 {
138 build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146 struct rw_semaphore lock;
147 unsigned long threshold;
148 bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153 init_rwsem(&t->lock);
154 t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159 t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164 if (!t->throttle_applied && jiffies > t->threshold) {
165 down_write(&t->lock);
166 t->throttle_applied = true;
167 }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172 if (t->throttle_applied) {
173 t->throttle_applied = false;
174 up_write(&t->lock);
175 }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180 down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185 up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
193 * devices.
194 */
195 struct dm_thin_new_mapping;
196
197 /*
198 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
199 */
200 enum pool_mode {
201 PM_WRITE, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
203 PM_READ_ONLY, /* metadata may not be changed */
204 PM_FAIL, /* all I/O fails */
205 };
206
207 struct pool_features {
208 enum pool_mode mode;
209
210 bool zero_new_blocks:1;
211 bool discard_enabled:1;
212 bool discard_passdown:1;
213 bool error_if_no_space:1;
214 };
215
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220
221 #define CELL_SORT_ARRAY_SIZE 8192
222
223 struct pool {
224 struct list_head list;
225 struct dm_target *ti; /* Only set if a pool target is bound */
226
227 struct mapped_device *pool_md;
228 struct block_device *md_dev;
229 struct dm_pool_metadata *pmd;
230
231 dm_block_t low_water_blocks;
232 uint32_t sectors_per_block;
233 int sectors_per_block_shift;
234
235 struct pool_features pf;
236 bool low_water_triggered:1; /* A dm event has been sent */
237 bool suspended:1;
238 bool out_of_data_space:1;
239
240 struct dm_bio_prison *prison;
241 struct dm_kcopyd_client *copier;
242
243 struct workqueue_struct *wq;
244 struct throttle throttle;
245 struct work_struct worker;
246 struct delayed_work waker;
247 struct delayed_work no_space_timeout;
248
249 unsigned long last_commit_jiffies;
250 unsigned ref_count;
251
252 spinlock_t lock;
253 struct bio_list deferred_flush_bios;
254 struct list_head prepared_mappings;
255 struct list_head prepared_discards;
256 struct list_head active_thins;
257
258 struct dm_deferred_set *shared_read_ds;
259 struct dm_deferred_set *all_io_ds;
260
261 struct dm_thin_new_mapping *next_mapping;
262 mempool_t *mapping_pool;
263
264 process_bio_fn process_bio;
265 process_bio_fn process_discard;
266
267 process_cell_fn process_cell;
268 process_cell_fn process_discard_cell;
269
270 process_mapping_fn process_prepared_mapping;
271 process_mapping_fn process_prepared_discard;
272
273 struct dm_bio_prison_cell **cell_sort_array;
274 };
275
276 static enum pool_mode get_pool_mode(struct pool *pool);
277 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
278
279 /*
280 * Target context for a pool.
281 */
282 struct pool_c {
283 struct dm_target *ti;
284 struct pool *pool;
285 struct dm_dev *data_dev;
286 struct dm_dev *metadata_dev;
287 struct dm_target_callbacks callbacks;
288
289 dm_block_t low_water_blocks;
290 struct pool_features requested_pf; /* Features requested during table load */
291 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
292 };
293
294 /*
295 * Target context for a thin.
296 */
297 struct thin_c {
298 struct list_head list;
299 struct dm_dev *pool_dev;
300 struct dm_dev *origin_dev;
301 sector_t origin_size;
302 dm_thin_id dev_id;
303
304 struct pool *pool;
305 struct dm_thin_device *td;
306 struct mapped_device *thin_md;
307
308 bool requeue_mode:1;
309 spinlock_t lock;
310 struct list_head deferred_cells;
311 struct bio_list deferred_bio_list;
312 struct bio_list retry_on_resume_list;
313 struct rb_root sort_bio_list; /* sorted list of deferred bios */
314
315 /*
316 * Ensures the thin is not destroyed until the worker has finished
317 * iterating the active_thins list.
318 */
319 atomic_t refcount;
320 struct completion can_destroy;
321 };
322
323 /*----------------------------------------------------------------*/
324
325 /**
326 * __blkdev_issue_discard_async - queue a discard with async completion
327 * @bdev: blockdev to issue discard for
328 * @sector: start sector
329 * @nr_sects: number of sectors to discard
330 * @gfp_mask: memory allocation flags (for bio_alloc)
331 * @flags: BLKDEV_IFL_* flags to control behaviour
332 * @parent_bio: parent discard bio that all sub discards get chained to
333 *
334 * Description:
335 * Asynchronously issue a discard request for the sectors in question.
336 */
337 static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector,
338 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags,
339 struct bio *parent_bio)
340 {
341 struct request_queue *q = bdev_get_queue(bdev);
342 int type = REQ_WRITE | REQ_DISCARD;
343 struct bio *bio;
344
345 if (!q || !nr_sects)
346 return -ENXIO;
347
348 if (!blk_queue_discard(q))
349 return -EOPNOTSUPP;
350
351 if (flags & BLKDEV_DISCARD_SECURE) {
352 if (!blk_queue_secdiscard(q))
353 return -EOPNOTSUPP;
354 type |= REQ_SECURE;
355 }
356
357 /*
358 * Required bio_put occurs in bio_endio thanks to bio_chain below
359 */
360 bio = bio_alloc(gfp_mask, 1);
361 if (!bio)
362 return -ENOMEM;
363
364 bio_chain(bio, parent_bio);
365
366 bio->bi_iter.bi_sector = sector;
367 bio->bi_bdev = bdev;
368 bio->bi_iter.bi_size = nr_sects << 9;
369
370 submit_bio(type, bio);
371
372 return 0;
373 }
374
375 static bool block_size_is_power_of_two(struct pool *pool)
376 {
377 return pool->sectors_per_block_shift >= 0;
378 }
379
380 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
381 {
382 return block_size_is_power_of_two(pool) ?
383 (b << pool->sectors_per_block_shift) :
384 (b * pool->sectors_per_block);
385 }
386
387 static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e,
388 struct bio *parent_bio)
389 {
390 sector_t s = block_to_sectors(tc->pool, data_b);
391 sector_t len = block_to_sectors(tc->pool, data_e - data_b);
392
393 return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len,
394 GFP_NOWAIT, 0, parent_bio);
395 }
396
397 /*----------------------------------------------------------------*/
398
399 /*
400 * wake_worker() is used when new work is queued and when pool_resume is
401 * ready to continue deferred IO processing.
402 */
403 static void wake_worker(struct pool *pool)
404 {
405 queue_work(pool->wq, &pool->worker);
406 }
407
408 /*----------------------------------------------------------------*/
409
410 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
411 struct dm_bio_prison_cell **cell_result)
412 {
413 int r;
414 struct dm_bio_prison_cell *cell_prealloc;
415
416 /*
417 * Allocate a cell from the prison's mempool.
418 * This might block but it can't fail.
419 */
420 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
421
422 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
423 if (r)
424 /*
425 * We reused an old cell; we can get rid of
426 * the new one.
427 */
428 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
429
430 return r;
431 }
432
433 static void cell_release(struct pool *pool,
434 struct dm_bio_prison_cell *cell,
435 struct bio_list *bios)
436 {
437 dm_cell_release(pool->prison, cell, bios);
438 dm_bio_prison_free_cell(pool->prison, cell);
439 }
440
441 static void cell_visit_release(struct pool *pool,
442 void (*fn)(void *, struct dm_bio_prison_cell *),
443 void *context,
444 struct dm_bio_prison_cell *cell)
445 {
446 dm_cell_visit_release(pool->prison, fn, context, cell);
447 dm_bio_prison_free_cell(pool->prison, cell);
448 }
449
450 static void cell_release_no_holder(struct pool *pool,
451 struct dm_bio_prison_cell *cell,
452 struct bio_list *bios)
453 {
454 dm_cell_release_no_holder(pool->prison, cell, bios);
455 dm_bio_prison_free_cell(pool->prison, cell);
456 }
457
458 static void cell_error_with_code(struct pool *pool,
459 struct dm_bio_prison_cell *cell, int error_code)
460 {
461 dm_cell_error(pool->prison, cell, error_code);
462 dm_bio_prison_free_cell(pool->prison, cell);
463 }
464
465 static int get_pool_io_error_code(struct pool *pool)
466 {
467 return pool->out_of_data_space ? -ENOSPC : -EIO;
468 }
469
470 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
471 {
472 int error = get_pool_io_error_code(pool);
473
474 cell_error_with_code(pool, cell, error);
475 }
476
477 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
478 {
479 cell_error_with_code(pool, cell, 0);
480 }
481
482 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
483 {
484 cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
485 }
486
487 /*----------------------------------------------------------------*/
488
489 /*
490 * A global list of pools that uses a struct mapped_device as a key.
491 */
492 static struct dm_thin_pool_table {
493 struct mutex mutex;
494 struct list_head pools;
495 } dm_thin_pool_table;
496
497 static void pool_table_init(void)
498 {
499 mutex_init(&dm_thin_pool_table.mutex);
500 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
501 }
502
503 static void __pool_table_insert(struct pool *pool)
504 {
505 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
506 list_add(&pool->list, &dm_thin_pool_table.pools);
507 }
508
509 static void __pool_table_remove(struct pool *pool)
510 {
511 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
512 list_del(&pool->list);
513 }
514
515 static struct pool *__pool_table_lookup(struct mapped_device *md)
516 {
517 struct pool *pool = NULL, *tmp;
518
519 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
520
521 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
522 if (tmp->pool_md == md) {
523 pool = tmp;
524 break;
525 }
526 }
527
528 return pool;
529 }
530
531 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
532 {
533 struct pool *pool = NULL, *tmp;
534
535 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
536
537 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
538 if (tmp->md_dev == md_dev) {
539 pool = tmp;
540 break;
541 }
542 }
543
544 return pool;
545 }
546
547 /*----------------------------------------------------------------*/
548
549 struct dm_thin_endio_hook {
550 struct thin_c *tc;
551 struct dm_deferred_entry *shared_read_entry;
552 struct dm_deferred_entry *all_io_entry;
553 struct dm_thin_new_mapping *overwrite_mapping;
554 struct rb_node rb_node;
555 struct dm_bio_prison_cell *cell;
556 };
557
558 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
559 {
560 bio_list_merge(bios, master);
561 bio_list_init(master);
562 }
563
564 static void error_bio_list(struct bio_list *bios, int error)
565 {
566 struct bio *bio;
567
568 while ((bio = bio_list_pop(bios))) {
569 bio->bi_error = error;
570 bio_endio(bio);
571 }
572 }
573
574 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
575 {
576 struct bio_list bios;
577 unsigned long flags;
578
579 bio_list_init(&bios);
580
581 spin_lock_irqsave(&tc->lock, flags);
582 __merge_bio_list(&bios, master);
583 spin_unlock_irqrestore(&tc->lock, flags);
584
585 error_bio_list(&bios, error);
586 }
587
588 static void requeue_deferred_cells(struct thin_c *tc)
589 {
590 struct pool *pool = tc->pool;
591 unsigned long flags;
592 struct list_head cells;
593 struct dm_bio_prison_cell *cell, *tmp;
594
595 INIT_LIST_HEAD(&cells);
596
597 spin_lock_irqsave(&tc->lock, flags);
598 list_splice_init(&tc->deferred_cells, &cells);
599 spin_unlock_irqrestore(&tc->lock, flags);
600
601 list_for_each_entry_safe(cell, tmp, &cells, user_list)
602 cell_requeue(pool, cell);
603 }
604
605 static void requeue_io(struct thin_c *tc)
606 {
607 struct bio_list bios;
608 unsigned long flags;
609
610 bio_list_init(&bios);
611
612 spin_lock_irqsave(&tc->lock, flags);
613 __merge_bio_list(&bios, &tc->deferred_bio_list);
614 __merge_bio_list(&bios, &tc->retry_on_resume_list);
615 spin_unlock_irqrestore(&tc->lock, flags);
616
617 error_bio_list(&bios, DM_ENDIO_REQUEUE);
618 requeue_deferred_cells(tc);
619 }
620
621 static void error_retry_list_with_code(struct pool *pool, int error)
622 {
623 struct thin_c *tc;
624
625 rcu_read_lock();
626 list_for_each_entry_rcu(tc, &pool->active_thins, list)
627 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
628 rcu_read_unlock();
629 }
630
631 static void error_retry_list(struct pool *pool)
632 {
633 int error = get_pool_io_error_code(pool);
634
635 return error_retry_list_with_code(pool, error);
636 }
637
638 /*
639 * This section of code contains the logic for processing a thin device's IO.
640 * Much of the code depends on pool object resources (lists, workqueues, etc)
641 * but most is exclusively called from the thin target rather than the thin-pool
642 * target.
643 */
644
645 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
646 {
647 struct pool *pool = tc->pool;
648 sector_t block_nr = bio->bi_iter.bi_sector;
649
650 if (block_size_is_power_of_two(pool))
651 block_nr >>= pool->sectors_per_block_shift;
652 else
653 (void) sector_div(block_nr, pool->sectors_per_block);
654
655 return block_nr;
656 }
657
658 /*
659 * Returns the _complete_ blocks that this bio covers.
660 */
661 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
662 dm_block_t *begin, dm_block_t *end)
663 {
664 struct pool *pool = tc->pool;
665 sector_t b = bio->bi_iter.bi_sector;
666 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
667
668 b += pool->sectors_per_block - 1ull; /* so we round up */
669
670 if (block_size_is_power_of_two(pool)) {
671 b >>= pool->sectors_per_block_shift;
672 e >>= pool->sectors_per_block_shift;
673 } else {
674 (void) sector_div(b, pool->sectors_per_block);
675 (void) sector_div(e, pool->sectors_per_block);
676 }
677
678 if (e < b)
679 /* Can happen if the bio is within a single block. */
680 e = b;
681
682 *begin = b;
683 *end = e;
684 }
685
686 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
687 {
688 struct pool *pool = tc->pool;
689 sector_t bi_sector = bio->bi_iter.bi_sector;
690
691 bio->bi_bdev = tc->pool_dev->bdev;
692 if (block_size_is_power_of_two(pool))
693 bio->bi_iter.bi_sector =
694 (block << pool->sectors_per_block_shift) |
695 (bi_sector & (pool->sectors_per_block - 1));
696 else
697 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
698 sector_div(bi_sector, pool->sectors_per_block);
699 }
700
701 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
702 {
703 bio->bi_bdev = tc->origin_dev->bdev;
704 }
705
706 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
707 {
708 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
709 dm_thin_changed_this_transaction(tc->td);
710 }
711
712 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
713 {
714 struct dm_thin_endio_hook *h;
715
716 if (bio->bi_rw & REQ_DISCARD)
717 return;
718
719 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
720 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
721 }
722
723 static void issue(struct thin_c *tc, struct bio *bio)
724 {
725 struct pool *pool = tc->pool;
726 unsigned long flags;
727
728 if (!bio_triggers_commit(tc, bio)) {
729 generic_make_request(bio);
730 return;
731 }
732
733 /*
734 * Complete bio with an error if earlier I/O caused changes to
735 * the metadata that can't be committed e.g, due to I/O errors
736 * on the metadata device.
737 */
738 if (dm_thin_aborted_changes(tc->td)) {
739 bio_io_error(bio);
740 return;
741 }
742
743 /*
744 * Batch together any bios that trigger commits and then issue a
745 * single commit for them in process_deferred_bios().
746 */
747 spin_lock_irqsave(&pool->lock, flags);
748 bio_list_add(&pool->deferred_flush_bios, bio);
749 spin_unlock_irqrestore(&pool->lock, flags);
750 }
751
752 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
753 {
754 remap_to_origin(tc, bio);
755 issue(tc, bio);
756 }
757
758 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
759 dm_block_t block)
760 {
761 remap(tc, bio, block);
762 issue(tc, bio);
763 }
764
765 /*----------------------------------------------------------------*/
766
767 /*
768 * Bio endio functions.
769 */
770 struct dm_thin_new_mapping {
771 struct list_head list;
772
773 bool pass_discard:1;
774 bool maybe_shared:1;
775
776 /*
777 * Track quiescing, copying and zeroing preparation actions. When this
778 * counter hits zero the block is prepared and can be inserted into the
779 * btree.
780 */
781 atomic_t prepare_actions;
782
783 int err;
784 struct thin_c *tc;
785 dm_block_t virt_begin, virt_end;
786 dm_block_t data_block;
787 struct dm_bio_prison_cell *cell;
788
789 /*
790 * If the bio covers the whole area of a block then we can avoid
791 * zeroing or copying. Instead this bio is hooked. The bio will
792 * still be in the cell, so care has to be taken to avoid issuing
793 * the bio twice.
794 */
795 struct bio *bio;
796 bio_end_io_t *saved_bi_end_io;
797 };
798
799 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
800 {
801 struct pool *pool = m->tc->pool;
802
803 if (atomic_dec_and_test(&m->prepare_actions)) {
804 list_add_tail(&m->list, &pool->prepared_mappings);
805 wake_worker(pool);
806 }
807 }
808
809 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
810 {
811 unsigned long flags;
812 struct pool *pool = m->tc->pool;
813
814 spin_lock_irqsave(&pool->lock, flags);
815 __complete_mapping_preparation(m);
816 spin_unlock_irqrestore(&pool->lock, flags);
817 }
818
819 static void copy_complete(int read_err, unsigned long write_err, void *context)
820 {
821 struct dm_thin_new_mapping *m = context;
822
823 m->err = read_err || write_err ? -EIO : 0;
824 complete_mapping_preparation(m);
825 }
826
827 static void overwrite_endio(struct bio *bio)
828 {
829 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
830 struct dm_thin_new_mapping *m = h->overwrite_mapping;
831
832 bio->bi_end_io = m->saved_bi_end_io;
833
834 m->err = bio->bi_error;
835 complete_mapping_preparation(m);
836 }
837
838 /*----------------------------------------------------------------*/
839
840 /*
841 * Workqueue.
842 */
843
844 /*
845 * Prepared mapping jobs.
846 */
847
848 /*
849 * This sends the bios in the cell, except the original holder, back
850 * to the deferred_bios list.
851 */
852 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
853 {
854 struct pool *pool = tc->pool;
855 unsigned long flags;
856
857 spin_lock_irqsave(&tc->lock, flags);
858 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
859 spin_unlock_irqrestore(&tc->lock, flags);
860
861 wake_worker(pool);
862 }
863
864 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
865
866 struct remap_info {
867 struct thin_c *tc;
868 struct bio_list defer_bios;
869 struct bio_list issue_bios;
870 };
871
872 static void __inc_remap_and_issue_cell(void *context,
873 struct dm_bio_prison_cell *cell)
874 {
875 struct remap_info *info = context;
876 struct bio *bio;
877
878 while ((bio = bio_list_pop(&cell->bios))) {
879 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
880 bio_list_add(&info->defer_bios, bio);
881 else {
882 inc_all_io_entry(info->tc->pool, bio);
883
884 /*
885 * We can't issue the bios with the bio prison lock
886 * held, so we add them to a list to issue on
887 * return from this function.
888 */
889 bio_list_add(&info->issue_bios, bio);
890 }
891 }
892 }
893
894 static void inc_remap_and_issue_cell(struct thin_c *tc,
895 struct dm_bio_prison_cell *cell,
896 dm_block_t block)
897 {
898 struct bio *bio;
899 struct remap_info info;
900
901 info.tc = tc;
902 bio_list_init(&info.defer_bios);
903 bio_list_init(&info.issue_bios);
904
905 /*
906 * We have to be careful to inc any bios we're about to issue
907 * before the cell is released, and avoid a race with new bios
908 * being added to the cell.
909 */
910 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
911 &info, cell);
912
913 while ((bio = bio_list_pop(&info.defer_bios)))
914 thin_defer_bio(tc, bio);
915
916 while ((bio = bio_list_pop(&info.issue_bios)))
917 remap_and_issue(info.tc, bio, block);
918 }
919
920 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
921 {
922 cell_error(m->tc->pool, m->cell);
923 list_del(&m->list);
924 mempool_free(m, m->tc->pool->mapping_pool);
925 }
926
927 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
928 {
929 struct thin_c *tc = m->tc;
930 struct pool *pool = tc->pool;
931 struct bio *bio = m->bio;
932 int r;
933
934 if (m->err) {
935 cell_error(pool, m->cell);
936 goto out;
937 }
938
939 /*
940 * Commit the prepared block into the mapping btree.
941 * Any I/O for this block arriving after this point will get
942 * remapped to it directly.
943 */
944 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
945 if (r) {
946 metadata_operation_failed(pool, "dm_thin_insert_block", r);
947 cell_error(pool, m->cell);
948 goto out;
949 }
950
951 /*
952 * Release any bios held while the block was being provisioned.
953 * If we are processing a write bio that completely covers the block,
954 * we already processed it so can ignore it now when processing
955 * the bios in the cell.
956 */
957 if (bio) {
958 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
959 bio_endio(bio);
960 } else {
961 inc_all_io_entry(tc->pool, m->cell->holder);
962 remap_and_issue(tc, m->cell->holder, m->data_block);
963 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
964 }
965
966 out:
967 list_del(&m->list);
968 mempool_free(m, pool->mapping_pool);
969 }
970
971 /*----------------------------------------------------------------*/
972
973 static void free_discard_mapping(struct dm_thin_new_mapping *m)
974 {
975 struct thin_c *tc = m->tc;
976 if (m->cell)
977 cell_defer_no_holder(tc, m->cell);
978 mempool_free(m, tc->pool->mapping_pool);
979 }
980
981 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
982 {
983 bio_io_error(m->bio);
984 free_discard_mapping(m);
985 }
986
987 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
988 {
989 bio_endio(m->bio);
990 free_discard_mapping(m);
991 }
992
993 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
994 {
995 int r;
996 struct thin_c *tc = m->tc;
997
998 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
999 if (r) {
1000 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1001 bio_io_error(m->bio);
1002 } else
1003 bio_endio(m->bio);
1004
1005 cell_defer_no_holder(tc, m->cell);
1006 mempool_free(m, tc->pool->mapping_pool);
1007 }
1008
1009 static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
1010 {
1011 /*
1012 * We've already unmapped this range of blocks, but before we
1013 * passdown we have to check that these blocks are now unused.
1014 */
1015 int r;
1016 bool used = true;
1017 struct thin_c *tc = m->tc;
1018 struct pool *pool = tc->pool;
1019 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1020
1021 while (b != end) {
1022 /* find start of unmapped run */
1023 for (; b < end; b++) {
1024 r = dm_pool_block_is_used(pool->pmd, b, &used);
1025 if (r)
1026 return r;
1027
1028 if (!used)
1029 break;
1030 }
1031
1032 if (b == end)
1033 break;
1034
1035 /* find end of run */
1036 for (e = b + 1; e != end; e++) {
1037 r = dm_pool_block_is_used(pool->pmd, e, &used);
1038 if (r)
1039 return r;
1040
1041 if (used)
1042 break;
1043 }
1044
1045 r = issue_discard(tc, b, e, m->bio);
1046 if (r)
1047 return r;
1048
1049 b = e;
1050 }
1051
1052 return 0;
1053 }
1054
1055 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1056 {
1057 int r;
1058 struct thin_c *tc = m->tc;
1059 struct pool *pool = tc->pool;
1060
1061 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1062 if (r)
1063 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1064
1065 else if (m->maybe_shared)
1066 r = passdown_double_checking_shared_status(m);
1067 else
1068 r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio);
1069
1070 /*
1071 * Even if r is set, there could be sub discards in flight that we
1072 * need to wait for.
1073 */
1074 m->bio->bi_error = r;
1075 bio_endio(m->bio);
1076 cell_defer_no_holder(tc, m->cell);
1077 mempool_free(m, pool->mapping_pool);
1078 }
1079
1080 static void process_prepared(struct pool *pool, struct list_head *head,
1081 process_mapping_fn *fn)
1082 {
1083 unsigned long flags;
1084 struct list_head maps;
1085 struct dm_thin_new_mapping *m, *tmp;
1086
1087 INIT_LIST_HEAD(&maps);
1088 spin_lock_irqsave(&pool->lock, flags);
1089 list_splice_init(head, &maps);
1090 spin_unlock_irqrestore(&pool->lock, flags);
1091
1092 list_for_each_entry_safe(m, tmp, &maps, list)
1093 (*fn)(m);
1094 }
1095
1096 /*
1097 * Deferred bio jobs.
1098 */
1099 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1100 {
1101 return bio->bi_iter.bi_size ==
1102 (pool->sectors_per_block << SECTOR_SHIFT);
1103 }
1104
1105 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1106 {
1107 return (bio_data_dir(bio) == WRITE) &&
1108 io_overlaps_block(pool, bio);
1109 }
1110
1111 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1112 bio_end_io_t *fn)
1113 {
1114 *save = bio->bi_end_io;
1115 bio->bi_end_io = fn;
1116 }
1117
1118 static int ensure_next_mapping(struct pool *pool)
1119 {
1120 if (pool->next_mapping)
1121 return 0;
1122
1123 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1124
1125 return pool->next_mapping ? 0 : -ENOMEM;
1126 }
1127
1128 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1129 {
1130 struct dm_thin_new_mapping *m = pool->next_mapping;
1131
1132 BUG_ON(!pool->next_mapping);
1133
1134 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1135 INIT_LIST_HEAD(&m->list);
1136 m->bio = NULL;
1137
1138 pool->next_mapping = NULL;
1139
1140 return m;
1141 }
1142
1143 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1144 sector_t begin, sector_t end)
1145 {
1146 int r;
1147 struct dm_io_region to;
1148
1149 to.bdev = tc->pool_dev->bdev;
1150 to.sector = begin;
1151 to.count = end - begin;
1152
1153 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1154 if (r < 0) {
1155 DMERR_LIMIT("dm_kcopyd_zero() failed");
1156 copy_complete(1, 1, m);
1157 }
1158 }
1159
1160 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1161 dm_block_t data_begin,
1162 struct dm_thin_new_mapping *m)
1163 {
1164 struct pool *pool = tc->pool;
1165 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1166
1167 h->overwrite_mapping = m;
1168 m->bio = bio;
1169 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1170 inc_all_io_entry(pool, bio);
1171 remap_and_issue(tc, bio, data_begin);
1172 }
1173
1174 /*
1175 * A partial copy also needs to zero the uncopied region.
1176 */
1177 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1178 struct dm_dev *origin, dm_block_t data_origin,
1179 dm_block_t data_dest,
1180 struct dm_bio_prison_cell *cell, struct bio *bio,
1181 sector_t len)
1182 {
1183 int r;
1184 struct pool *pool = tc->pool;
1185 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1186
1187 m->tc = tc;
1188 m->virt_begin = virt_block;
1189 m->virt_end = virt_block + 1u;
1190 m->data_block = data_dest;
1191 m->cell = cell;
1192
1193 /*
1194 * quiesce action + copy action + an extra reference held for the
1195 * duration of this function (we may need to inc later for a
1196 * partial zero).
1197 */
1198 atomic_set(&m->prepare_actions, 3);
1199
1200 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1201 complete_mapping_preparation(m); /* already quiesced */
1202
1203 /*
1204 * IO to pool_dev remaps to the pool target's data_dev.
1205 *
1206 * If the whole block of data is being overwritten, we can issue the
1207 * bio immediately. Otherwise we use kcopyd to clone the data first.
1208 */
1209 if (io_overwrites_block(pool, bio))
1210 remap_and_issue_overwrite(tc, bio, data_dest, m);
1211 else {
1212 struct dm_io_region from, to;
1213
1214 from.bdev = origin->bdev;
1215 from.sector = data_origin * pool->sectors_per_block;
1216 from.count = len;
1217
1218 to.bdev = tc->pool_dev->bdev;
1219 to.sector = data_dest * pool->sectors_per_block;
1220 to.count = len;
1221
1222 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1223 0, copy_complete, m);
1224 if (r < 0) {
1225 DMERR_LIMIT("dm_kcopyd_copy() failed");
1226 copy_complete(1, 1, m);
1227
1228 /*
1229 * We allow the zero to be issued, to simplify the
1230 * error path. Otherwise we'd need to start
1231 * worrying about decrementing the prepare_actions
1232 * counter.
1233 */
1234 }
1235
1236 /*
1237 * Do we need to zero a tail region?
1238 */
1239 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1240 atomic_inc(&m->prepare_actions);
1241 ll_zero(tc, m,
1242 data_dest * pool->sectors_per_block + len,
1243 (data_dest + 1) * pool->sectors_per_block);
1244 }
1245 }
1246
1247 complete_mapping_preparation(m); /* drop our ref */
1248 }
1249
1250 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1251 dm_block_t data_origin, dm_block_t data_dest,
1252 struct dm_bio_prison_cell *cell, struct bio *bio)
1253 {
1254 schedule_copy(tc, virt_block, tc->pool_dev,
1255 data_origin, data_dest, cell, bio,
1256 tc->pool->sectors_per_block);
1257 }
1258
1259 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1260 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1261 struct bio *bio)
1262 {
1263 struct pool *pool = tc->pool;
1264 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1265
1266 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1267 m->tc = tc;
1268 m->virt_begin = virt_block;
1269 m->virt_end = virt_block + 1u;
1270 m->data_block = data_block;
1271 m->cell = cell;
1272
1273 /*
1274 * If the whole block of data is being overwritten or we are not
1275 * zeroing pre-existing data, we can issue the bio immediately.
1276 * Otherwise we use kcopyd to zero the data first.
1277 */
1278 if (pool->pf.zero_new_blocks) {
1279 if (io_overwrites_block(pool, bio))
1280 remap_and_issue_overwrite(tc, bio, data_block, m);
1281 else
1282 ll_zero(tc, m, data_block * pool->sectors_per_block,
1283 (data_block + 1) * pool->sectors_per_block);
1284 } else
1285 process_prepared_mapping(m);
1286 }
1287
1288 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1289 dm_block_t data_dest,
1290 struct dm_bio_prison_cell *cell, struct bio *bio)
1291 {
1292 struct pool *pool = tc->pool;
1293 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1294 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1295
1296 if (virt_block_end <= tc->origin_size)
1297 schedule_copy(tc, virt_block, tc->origin_dev,
1298 virt_block, data_dest, cell, bio,
1299 pool->sectors_per_block);
1300
1301 else if (virt_block_begin < tc->origin_size)
1302 schedule_copy(tc, virt_block, tc->origin_dev,
1303 virt_block, data_dest, cell, bio,
1304 tc->origin_size - virt_block_begin);
1305
1306 else
1307 schedule_zero(tc, virt_block, data_dest, cell, bio);
1308 }
1309
1310 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1311
1312 static void check_for_space(struct pool *pool)
1313 {
1314 int r;
1315 dm_block_t nr_free;
1316
1317 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1318 return;
1319
1320 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1321 if (r)
1322 return;
1323
1324 if (nr_free)
1325 set_pool_mode(pool, PM_WRITE);
1326 }
1327
1328 /*
1329 * A non-zero return indicates read_only or fail_io mode.
1330 * Many callers don't care about the return value.
1331 */
1332 static int commit(struct pool *pool)
1333 {
1334 int r;
1335
1336 if (get_pool_mode(pool) >= PM_READ_ONLY)
1337 return -EINVAL;
1338
1339 r = dm_pool_commit_metadata(pool->pmd);
1340 if (r)
1341 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1342 else
1343 check_for_space(pool);
1344
1345 return r;
1346 }
1347
1348 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1349 {
1350 unsigned long flags;
1351
1352 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1353 DMWARN("%s: reached low water mark for data device: sending event.",
1354 dm_device_name(pool->pool_md));
1355 spin_lock_irqsave(&pool->lock, flags);
1356 pool->low_water_triggered = true;
1357 spin_unlock_irqrestore(&pool->lock, flags);
1358 dm_table_event(pool->ti->table);
1359 }
1360 }
1361
1362 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1363 {
1364 int r;
1365 dm_block_t free_blocks;
1366 struct pool *pool = tc->pool;
1367
1368 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1369 return -EINVAL;
1370
1371 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1372 if (r) {
1373 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1374 return r;
1375 }
1376
1377 check_low_water_mark(pool, free_blocks);
1378
1379 if (!free_blocks) {
1380 /*
1381 * Try to commit to see if that will free up some
1382 * more space.
1383 */
1384 r = commit(pool);
1385 if (r)
1386 return r;
1387
1388 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1389 if (r) {
1390 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1391 return r;
1392 }
1393
1394 if (!free_blocks) {
1395 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1396 return -ENOSPC;
1397 }
1398 }
1399
1400 r = dm_pool_alloc_data_block(pool->pmd, result);
1401 if (r) {
1402 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1403 return r;
1404 }
1405
1406 return 0;
1407 }
1408
1409 /*
1410 * If we have run out of space, queue bios until the device is
1411 * resumed, presumably after having been reloaded with more space.
1412 */
1413 static void retry_on_resume(struct bio *bio)
1414 {
1415 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1416 struct thin_c *tc = h->tc;
1417 unsigned long flags;
1418
1419 spin_lock_irqsave(&tc->lock, flags);
1420 bio_list_add(&tc->retry_on_resume_list, bio);
1421 spin_unlock_irqrestore(&tc->lock, flags);
1422 }
1423
1424 static int should_error_unserviceable_bio(struct pool *pool)
1425 {
1426 enum pool_mode m = get_pool_mode(pool);
1427
1428 switch (m) {
1429 case PM_WRITE:
1430 /* Shouldn't get here */
1431 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1432 return -EIO;
1433
1434 case PM_OUT_OF_DATA_SPACE:
1435 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1436
1437 case PM_READ_ONLY:
1438 case PM_FAIL:
1439 return -EIO;
1440 default:
1441 /* Shouldn't get here */
1442 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1443 return -EIO;
1444 }
1445 }
1446
1447 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1448 {
1449 int error = should_error_unserviceable_bio(pool);
1450
1451 if (error) {
1452 bio->bi_error = error;
1453 bio_endio(bio);
1454 } else
1455 retry_on_resume(bio);
1456 }
1457
1458 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1459 {
1460 struct bio *bio;
1461 struct bio_list bios;
1462 int error;
1463
1464 error = should_error_unserviceable_bio(pool);
1465 if (error) {
1466 cell_error_with_code(pool, cell, error);
1467 return;
1468 }
1469
1470 bio_list_init(&bios);
1471 cell_release(pool, cell, &bios);
1472
1473 while ((bio = bio_list_pop(&bios)))
1474 retry_on_resume(bio);
1475 }
1476
1477 static void process_discard_cell_no_passdown(struct thin_c *tc,
1478 struct dm_bio_prison_cell *virt_cell)
1479 {
1480 struct pool *pool = tc->pool;
1481 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1482
1483 /*
1484 * We don't need to lock the data blocks, since there's no
1485 * passdown. We only lock data blocks for allocation and breaking sharing.
1486 */
1487 m->tc = tc;
1488 m->virt_begin = virt_cell->key.block_begin;
1489 m->virt_end = virt_cell->key.block_end;
1490 m->cell = virt_cell;
1491 m->bio = virt_cell->holder;
1492
1493 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1494 pool->process_prepared_discard(m);
1495 }
1496
1497 /*
1498 * __bio_inc_remaining() is used to defer parent bios's end_io until
1499 * we _know_ all chained sub range discard bios have completed.
1500 */
1501 static inline void __bio_inc_remaining(struct bio *bio)
1502 {
1503 bio->bi_flags |= (1 << BIO_CHAIN);
1504 smp_mb__before_atomic();
1505 atomic_inc(&bio->__bi_remaining);
1506 }
1507
1508 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1509 struct bio *bio)
1510 {
1511 struct pool *pool = tc->pool;
1512
1513 int r;
1514 bool maybe_shared;
1515 struct dm_cell_key data_key;
1516 struct dm_bio_prison_cell *data_cell;
1517 struct dm_thin_new_mapping *m;
1518 dm_block_t virt_begin, virt_end, data_begin;
1519
1520 while (begin != end) {
1521 r = ensure_next_mapping(pool);
1522 if (r)
1523 /* we did our best */
1524 return;
1525
1526 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1527 &data_begin, &maybe_shared);
1528 if (r)
1529 /*
1530 * Silently fail, letting any mappings we've
1531 * created complete.
1532 */
1533 break;
1534
1535 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1536 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1537 /* contention, we'll give up with this range */
1538 begin = virt_end;
1539 continue;
1540 }
1541
1542 /*
1543 * IO may still be going to the destination block. We must
1544 * quiesce before we can do the removal.
1545 */
1546 m = get_next_mapping(pool);
1547 m->tc = tc;
1548 m->maybe_shared = maybe_shared;
1549 m->virt_begin = virt_begin;
1550 m->virt_end = virt_end;
1551 m->data_block = data_begin;
1552 m->cell = data_cell;
1553 m->bio = bio;
1554
1555 /*
1556 * The parent bio must not complete before sub discard bios are
1557 * chained to it (see __blkdev_issue_discard_async's bio_chain)!
1558 *
1559 * This per-mapping bi_remaining increment is paired with
1560 * the implicit decrement that occurs via bio_endio() in
1561 * process_prepared_discard_{passdown,no_passdown}.
1562 */
1563 __bio_inc_remaining(bio);
1564 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1565 pool->process_prepared_discard(m);
1566
1567 begin = virt_end;
1568 }
1569 }
1570
1571 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1572 {
1573 struct bio *bio = virt_cell->holder;
1574 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1575
1576 /*
1577 * The virt_cell will only get freed once the origin bio completes.
1578 * This means it will remain locked while all the individual
1579 * passdown bios are in flight.
1580 */
1581 h->cell = virt_cell;
1582 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1583
1584 /*
1585 * We complete the bio now, knowing that the bi_remaining field
1586 * will prevent completion until the sub range discards have
1587 * completed.
1588 */
1589 bio_endio(bio);
1590 }
1591
1592 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1593 {
1594 dm_block_t begin, end;
1595 struct dm_cell_key virt_key;
1596 struct dm_bio_prison_cell *virt_cell;
1597
1598 get_bio_block_range(tc, bio, &begin, &end);
1599 if (begin == end) {
1600 /*
1601 * The discard covers less than a block.
1602 */
1603 bio_endio(bio);
1604 return;
1605 }
1606
1607 build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1608 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1609 /*
1610 * Potential starvation issue: We're relying on the
1611 * fs/application being well behaved, and not trying to
1612 * send IO to a region at the same time as discarding it.
1613 * If they do this persistently then it's possible this
1614 * cell will never be granted.
1615 */
1616 return;
1617
1618 tc->pool->process_discard_cell(tc, virt_cell);
1619 }
1620
1621 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1622 struct dm_cell_key *key,
1623 struct dm_thin_lookup_result *lookup_result,
1624 struct dm_bio_prison_cell *cell)
1625 {
1626 int r;
1627 dm_block_t data_block;
1628 struct pool *pool = tc->pool;
1629
1630 r = alloc_data_block(tc, &data_block);
1631 switch (r) {
1632 case 0:
1633 schedule_internal_copy(tc, block, lookup_result->block,
1634 data_block, cell, bio);
1635 break;
1636
1637 case -ENOSPC:
1638 retry_bios_on_resume(pool, cell);
1639 break;
1640
1641 default:
1642 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1643 __func__, r);
1644 cell_error(pool, cell);
1645 break;
1646 }
1647 }
1648
1649 static void __remap_and_issue_shared_cell(void *context,
1650 struct dm_bio_prison_cell *cell)
1651 {
1652 struct remap_info *info = context;
1653 struct bio *bio;
1654
1655 while ((bio = bio_list_pop(&cell->bios))) {
1656 if ((bio_data_dir(bio) == WRITE) ||
1657 (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1658 bio_list_add(&info->defer_bios, bio);
1659 else {
1660 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1661
1662 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1663 inc_all_io_entry(info->tc->pool, bio);
1664 bio_list_add(&info->issue_bios, bio);
1665 }
1666 }
1667 }
1668
1669 static void remap_and_issue_shared_cell(struct thin_c *tc,
1670 struct dm_bio_prison_cell *cell,
1671 dm_block_t block)
1672 {
1673 struct bio *bio;
1674 struct remap_info info;
1675
1676 info.tc = tc;
1677 bio_list_init(&info.defer_bios);
1678 bio_list_init(&info.issue_bios);
1679
1680 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1681 &info, cell);
1682
1683 while ((bio = bio_list_pop(&info.defer_bios)))
1684 thin_defer_bio(tc, bio);
1685
1686 while ((bio = bio_list_pop(&info.issue_bios)))
1687 remap_and_issue(tc, bio, block);
1688 }
1689
1690 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1691 dm_block_t block,
1692 struct dm_thin_lookup_result *lookup_result,
1693 struct dm_bio_prison_cell *virt_cell)
1694 {
1695 struct dm_bio_prison_cell *data_cell;
1696 struct pool *pool = tc->pool;
1697 struct dm_cell_key key;
1698
1699 /*
1700 * If cell is already occupied, then sharing is already in the process
1701 * of being broken so we have nothing further to do here.
1702 */
1703 build_data_key(tc->td, lookup_result->block, &key);
1704 if (bio_detain(pool, &key, bio, &data_cell)) {
1705 cell_defer_no_holder(tc, virt_cell);
1706 return;
1707 }
1708
1709 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1710 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1711 cell_defer_no_holder(tc, virt_cell);
1712 } else {
1713 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1714
1715 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1716 inc_all_io_entry(pool, bio);
1717 remap_and_issue(tc, bio, lookup_result->block);
1718
1719 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1720 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1721 }
1722 }
1723
1724 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1725 struct dm_bio_prison_cell *cell)
1726 {
1727 int r;
1728 dm_block_t data_block;
1729 struct pool *pool = tc->pool;
1730
1731 /*
1732 * Remap empty bios (flushes) immediately, without provisioning.
1733 */
1734 if (!bio->bi_iter.bi_size) {
1735 inc_all_io_entry(pool, bio);
1736 cell_defer_no_holder(tc, cell);
1737
1738 remap_and_issue(tc, bio, 0);
1739 return;
1740 }
1741
1742 /*
1743 * Fill read bios with zeroes and complete them immediately.
1744 */
1745 if (bio_data_dir(bio) == READ) {
1746 zero_fill_bio(bio);
1747 cell_defer_no_holder(tc, cell);
1748 bio_endio(bio);
1749 return;
1750 }
1751
1752 r = alloc_data_block(tc, &data_block);
1753 switch (r) {
1754 case 0:
1755 if (tc->origin_dev)
1756 schedule_external_copy(tc, block, data_block, cell, bio);
1757 else
1758 schedule_zero(tc, block, data_block, cell, bio);
1759 break;
1760
1761 case -ENOSPC:
1762 retry_bios_on_resume(pool, cell);
1763 break;
1764
1765 default:
1766 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1767 __func__, r);
1768 cell_error(pool, cell);
1769 break;
1770 }
1771 }
1772
1773 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1774 {
1775 int r;
1776 struct pool *pool = tc->pool;
1777 struct bio *bio = cell->holder;
1778 dm_block_t block = get_bio_block(tc, bio);
1779 struct dm_thin_lookup_result lookup_result;
1780
1781 if (tc->requeue_mode) {
1782 cell_requeue(pool, cell);
1783 return;
1784 }
1785
1786 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1787 switch (r) {
1788 case 0:
1789 if (lookup_result.shared)
1790 process_shared_bio(tc, bio, block, &lookup_result, cell);
1791 else {
1792 inc_all_io_entry(pool, bio);
1793 remap_and_issue(tc, bio, lookup_result.block);
1794 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1795 }
1796 break;
1797
1798 case -ENODATA:
1799 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1800 inc_all_io_entry(pool, bio);
1801 cell_defer_no_holder(tc, cell);
1802
1803 if (bio_end_sector(bio) <= tc->origin_size)
1804 remap_to_origin_and_issue(tc, bio);
1805
1806 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1807 zero_fill_bio(bio);
1808 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1809 remap_to_origin_and_issue(tc, bio);
1810
1811 } else {
1812 zero_fill_bio(bio);
1813 bio_endio(bio);
1814 }
1815 } else
1816 provision_block(tc, bio, block, cell);
1817 break;
1818
1819 default:
1820 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1821 __func__, r);
1822 cell_defer_no_holder(tc, cell);
1823 bio_io_error(bio);
1824 break;
1825 }
1826 }
1827
1828 static void process_bio(struct thin_c *tc, struct bio *bio)
1829 {
1830 struct pool *pool = tc->pool;
1831 dm_block_t block = get_bio_block(tc, bio);
1832 struct dm_bio_prison_cell *cell;
1833 struct dm_cell_key key;
1834
1835 /*
1836 * If cell is already occupied, then the block is already
1837 * being provisioned so we have nothing further to do here.
1838 */
1839 build_virtual_key(tc->td, block, &key);
1840 if (bio_detain(pool, &key, bio, &cell))
1841 return;
1842
1843 process_cell(tc, cell);
1844 }
1845
1846 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1847 struct dm_bio_prison_cell *cell)
1848 {
1849 int r;
1850 int rw = bio_data_dir(bio);
1851 dm_block_t block = get_bio_block(tc, bio);
1852 struct dm_thin_lookup_result lookup_result;
1853
1854 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1855 switch (r) {
1856 case 0:
1857 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1858 handle_unserviceable_bio(tc->pool, bio);
1859 if (cell)
1860 cell_defer_no_holder(tc, cell);
1861 } else {
1862 inc_all_io_entry(tc->pool, bio);
1863 remap_and_issue(tc, bio, lookup_result.block);
1864 if (cell)
1865 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1866 }
1867 break;
1868
1869 case -ENODATA:
1870 if (cell)
1871 cell_defer_no_holder(tc, cell);
1872 if (rw != READ) {
1873 handle_unserviceable_bio(tc->pool, bio);
1874 break;
1875 }
1876
1877 if (tc->origin_dev) {
1878 inc_all_io_entry(tc->pool, bio);
1879 remap_to_origin_and_issue(tc, bio);
1880 break;
1881 }
1882
1883 zero_fill_bio(bio);
1884 bio_endio(bio);
1885 break;
1886
1887 default:
1888 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1889 __func__, r);
1890 if (cell)
1891 cell_defer_no_holder(tc, cell);
1892 bio_io_error(bio);
1893 break;
1894 }
1895 }
1896
1897 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1898 {
1899 __process_bio_read_only(tc, bio, NULL);
1900 }
1901
1902 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1903 {
1904 __process_bio_read_only(tc, cell->holder, cell);
1905 }
1906
1907 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1908 {
1909 bio_endio(bio);
1910 }
1911
1912 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1913 {
1914 bio_io_error(bio);
1915 }
1916
1917 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1918 {
1919 cell_success(tc->pool, cell);
1920 }
1921
1922 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1923 {
1924 cell_error(tc->pool, cell);
1925 }
1926
1927 /*
1928 * FIXME: should we also commit due to size of transaction, measured in
1929 * metadata blocks?
1930 */
1931 static int need_commit_due_to_time(struct pool *pool)
1932 {
1933 return !time_in_range(jiffies, pool->last_commit_jiffies,
1934 pool->last_commit_jiffies + COMMIT_PERIOD);
1935 }
1936
1937 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1938 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1939
1940 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1941 {
1942 struct rb_node **rbp, *parent;
1943 struct dm_thin_endio_hook *pbd;
1944 sector_t bi_sector = bio->bi_iter.bi_sector;
1945
1946 rbp = &tc->sort_bio_list.rb_node;
1947 parent = NULL;
1948 while (*rbp) {
1949 parent = *rbp;
1950 pbd = thin_pbd(parent);
1951
1952 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1953 rbp = &(*rbp)->rb_left;
1954 else
1955 rbp = &(*rbp)->rb_right;
1956 }
1957
1958 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1959 rb_link_node(&pbd->rb_node, parent, rbp);
1960 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1961 }
1962
1963 static void __extract_sorted_bios(struct thin_c *tc)
1964 {
1965 struct rb_node *node;
1966 struct dm_thin_endio_hook *pbd;
1967 struct bio *bio;
1968
1969 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1970 pbd = thin_pbd(node);
1971 bio = thin_bio(pbd);
1972
1973 bio_list_add(&tc->deferred_bio_list, bio);
1974 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1975 }
1976
1977 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1978 }
1979
1980 static void __sort_thin_deferred_bios(struct thin_c *tc)
1981 {
1982 struct bio *bio;
1983 struct bio_list bios;
1984
1985 bio_list_init(&bios);
1986 bio_list_merge(&bios, &tc->deferred_bio_list);
1987 bio_list_init(&tc->deferred_bio_list);
1988
1989 /* Sort deferred_bio_list using rb-tree */
1990 while ((bio = bio_list_pop(&bios)))
1991 __thin_bio_rb_add(tc, bio);
1992
1993 /*
1994 * Transfer the sorted bios in sort_bio_list back to
1995 * deferred_bio_list to allow lockless submission of
1996 * all bios.
1997 */
1998 __extract_sorted_bios(tc);
1999 }
2000
2001 static void process_thin_deferred_bios(struct thin_c *tc)
2002 {
2003 struct pool *pool = tc->pool;
2004 unsigned long flags;
2005 struct bio *bio;
2006 struct bio_list bios;
2007 struct blk_plug plug;
2008 unsigned count = 0;
2009
2010 if (tc->requeue_mode) {
2011 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2012 return;
2013 }
2014
2015 bio_list_init(&bios);
2016
2017 spin_lock_irqsave(&tc->lock, flags);
2018
2019 if (bio_list_empty(&tc->deferred_bio_list)) {
2020 spin_unlock_irqrestore(&tc->lock, flags);
2021 return;
2022 }
2023
2024 __sort_thin_deferred_bios(tc);
2025
2026 bio_list_merge(&bios, &tc->deferred_bio_list);
2027 bio_list_init(&tc->deferred_bio_list);
2028
2029 spin_unlock_irqrestore(&tc->lock, flags);
2030
2031 blk_start_plug(&plug);
2032 while ((bio = bio_list_pop(&bios))) {
2033 /*
2034 * If we've got no free new_mapping structs, and processing
2035 * this bio might require one, we pause until there are some
2036 * prepared mappings to process.
2037 */
2038 if (ensure_next_mapping(pool)) {
2039 spin_lock_irqsave(&tc->lock, flags);
2040 bio_list_add(&tc->deferred_bio_list, bio);
2041 bio_list_merge(&tc->deferred_bio_list, &bios);
2042 spin_unlock_irqrestore(&tc->lock, flags);
2043 break;
2044 }
2045
2046 if (bio->bi_rw & REQ_DISCARD)
2047 pool->process_discard(tc, bio);
2048 else
2049 pool->process_bio(tc, bio);
2050
2051 if ((count++ & 127) == 0) {
2052 throttle_work_update(&pool->throttle);
2053 dm_pool_issue_prefetches(pool->pmd);
2054 }
2055 }
2056 blk_finish_plug(&plug);
2057 }
2058
2059 static int cmp_cells(const void *lhs, const void *rhs)
2060 {
2061 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2062 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2063
2064 BUG_ON(!lhs_cell->holder);
2065 BUG_ON(!rhs_cell->holder);
2066
2067 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2068 return -1;
2069
2070 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2071 return 1;
2072
2073 return 0;
2074 }
2075
2076 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2077 {
2078 unsigned count = 0;
2079 struct dm_bio_prison_cell *cell, *tmp;
2080
2081 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2082 if (count >= CELL_SORT_ARRAY_SIZE)
2083 break;
2084
2085 pool->cell_sort_array[count++] = cell;
2086 list_del(&cell->user_list);
2087 }
2088
2089 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2090
2091 return count;
2092 }
2093
2094 static void process_thin_deferred_cells(struct thin_c *tc)
2095 {
2096 struct pool *pool = tc->pool;
2097 unsigned long flags;
2098 struct list_head cells;
2099 struct dm_bio_prison_cell *cell;
2100 unsigned i, j, count;
2101
2102 INIT_LIST_HEAD(&cells);
2103
2104 spin_lock_irqsave(&tc->lock, flags);
2105 list_splice_init(&tc->deferred_cells, &cells);
2106 spin_unlock_irqrestore(&tc->lock, flags);
2107
2108 if (list_empty(&cells))
2109 return;
2110
2111 do {
2112 count = sort_cells(tc->pool, &cells);
2113
2114 for (i = 0; i < count; i++) {
2115 cell = pool->cell_sort_array[i];
2116 BUG_ON(!cell->holder);
2117
2118 /*
2119 * If we've got no free new_mapping structs, and processing
2120 * this bio might require one, we pause until there are some
2121 * prepared mappings to process.
2122 */
2123 if (ensure_next_mapping(pool)) {
2124 for (j = i; j < count; j++)
2125 list_add(&pool->cell_sort_array[j]->user_list, &cells);
2126
2127 spin_lock_irqsave(&tc->lock, flags);
2128 list_splice(&cells, &tc->deferred_cells);
2129 spin_unlock_irqrestore(&tc->lock, flags);
2130 return;
2131 }
2132
2133 if (cell->holder->bi_rw & REQ_DISCARD)
2134 pool->process_discard_cell(tc, cell);
2135 else
2136 pool->process_cell(tc, cell);
2137 }
2138 } while (!list_empty(&cells));
2139 }
2140
2141 static void thin_get(struct thin_c *tc);
2142 static void thin_put(struct thin_c *tc);
2143
2144 /*
2145 * We can't hold rcu_read_lock() around code that can block. So we
2146 * find a thin with the rcu lock held; bump a refcount; then drop
2147 * the lock.
2148 */
2149 static struct thin_c *get_first_thin(struct pool *pool)
2150 {
2151 struct thin_c *tc = NULL;
2152
2153 rcu_read_lock();
2154 if (!list_empty(&pool->active_thins)) {
2155 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2156 thin_get(tc);
2157 }
2158 rcu_read_unlock();
2159
2160 return tc;
2161 }
2162
2163 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2164 {
2165 struct thin_c *old_tc = tc;
2166
2167 rcu_read_lock();
2168 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2169 thin_get(tc);
2170 thin_put(old_tc);
2171 rcu_read_unlock();
2172 return tc;
2173 }
2174 thin_put(old_tc);
2175 rcu_read_unlock();
2176
2177 return NULL;
2178 }
2179
2180 static void process_deferred_bios(struct pool *pool)
2181 {
2182 unsigned long flags;
2183 struct bio *bio;
2184 struct bio_list bios;
2185 struct thin_c *tc;
2186
2187 tc = get_first_thin(pool);
2188 while (tc) {
2189 process_thin_deferred_cells(tc);
2190 process_thin_deferred_bios(tc);
2191 tc = get_next_thin(pool, tc);
2192 }
2193
2194 /*
2195 * If there are any deferred flush bios, we must commit
2196 * the metadata before issuing them.
2197 */
2198 bio_list_init(&bios);
2199 spin_lock_irqsave(&pool->lock, flags);
2200 bio_list_merge(&bios, &pool->deferred_flush_bios);
2201 bio_list_init(&pool->deferred_flush_bios);
2202 spin_unlock_irqrestore(&pool->lock, flags);
2203
2204 if (bio_list_empty(&bios) &&
2205 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2206 return;
2207
2208 if (commit(pool)) {
2209 while ((bio = bio_list_pop(&bios)))
2210 bio_io_error(bio);
2211 return;
2212 }
2213 pool->last_commit_jiffies = jiffies;
2214
2215 while ((bio = bio_list_pop(&bios)))
2216 generic_make_request(bio);
2217 }
2218
2219 static void do_worker(struct work_struct *ws)
2220 {
2221 struct pool *pool = container_of(ws, struct pool, worker);
2222
2223 throttle_work_start(&pool->throttle);
2224 dm_pool_issue_prefetches(pool->pmd);
2225 throttle_work_update(&pool->throttle);
2226 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2227 throttle_work_update(&pool->throttle);
2228 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2229 throttle_work_update(&pool->throttle);
2230 process_deferred_bios(pool);
2231 throttle_work_complete(&pool->throttle);
2232 }
2233
2234 /*
2235 * We want to commit periodically so that not too much
2236 * unwritten data builds up.
2237 */
2238 static void do_waker(struct work_struct *ws)
2239 {
2240 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2241 wake_worker(pool);
2242 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2243 }
2244
2245 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2246
2247 /*
2248 * We're holding onto IO to allow userland time to react. After the
2249 * timeout either the pool will have been resized (and thus back in
2250 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2251 */
2252 static void do_no_space_timeout(struct work_struct *ws)
2253 {
2254 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2255 no_space_timeout);
2256
2257 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2258 pool->pf.error_if_no_space = true;
2259 notify_of_pool_mode_change_to_oods(pool);
2260 error_retry_list_with_code(pool, -ENOSPC);
2261 }
2262 }
2263
2264 /*----------------------------------------------------------------*/
2265
2266 struct pool_work {
2267 struct work_struct worker;
2268 struct completion complete;
2269 };
2270
2271 static struct pool_work *to_pool_work(struct work_struct *ws)
2272 {
2273 return container_of(ws, struct pool_work, worker);
2274 }
2275
2276 static void pool_work_complete(struct pool_work *pw)
2277 {
2278 complete(&pw->complete);
2279 }
2280
2281 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2282 void (*fn)(struct work_struct *))
2283 {
2284 INIT_WORK_ONSTACK(&pw->worker, fn);
2285 init_completion(&pw->complete);
2286 queue_work(pool->wq, &pw->worker);
2287 wait_for_completion(&pw->complete);
2288 }
2289
2290 /*----------------------------------------------------------------*/
2291
2292 struct noflush_work {
2293 struct pool_work pw;
2294 struct thin_c *tc;
2295 };
2296
2297 static struct noflush_work *to_noflush(struct work_struct *ws)
2298 {
2299 return container_of(to_pool_work(ws), struct noflush_work, pw);
2300 }
2301
2302 static void do_noflush_start(struct work_struct *ws)
2303 {
2304 struct noflush_work *w = to_noflush(ws);
2305 w->tc->requeue_mode = true;
2306 requeue_io(w->tc);
2307 pool_work_complete(&w->pw);
2308 }
2309
2310 static void do_noflush_stop(struct work_struct *ws)
2311 {
2312 struct noflush_work *w = to_noflush(ws);
2313 w->tc->requeue_mode = false;
2314 pool_work_complete(&w->pw);
2315 }
2316
2317 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2318 {
2319 struct noflush_work w;
2320
2321 w.tc = tc;
2322 pool_work_wait(&w.pw, tc->pool, fn);
2323 }
2324
2325 /*----------------------------------------------------------------*/
2326
2327 static enum pool_mode get_pool_mode(struct pool *pool)
2328 {
2329 return pool->pf.mode;
2330 }
2331
2332 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2333 {
2334 dm_table_event(pool->ti->table);
2335 DMINFO("%s: switching pool to %s mode",
2336 dm_device_name(pool->pool_md), new_mode);
2337 }
2338
2339 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2340 {
2341 if (!pool->pf.error_if_no_space)
2342 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2343 else
2344 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2345 }
2346
2347 static bool passdown_enabled(struct pool_c *pt)
2348 {
2349 return pt->adjusted_pf.discard_passdown;
2350 }
2351
2352 static void set_discard_callbacks(struct pool *pool)
2353 {
2354 struct pool_c *pt = pool->ti->private;
2355
2356 if (passdown_enabled(pt)) {
2357 pool->process_discard_cell = process_discard_cell_passdown;
2358 pool->process_prepared_discard = process_prepared_discard_passdown;
2359 } else {
2360 pool->process_discard_cell = process_discard_cell_no_passdown;
2361 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2362 }
2363 }
2364
2365 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2366 {
2367 struct pool_c *pt = pool->ti->private;
2368 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2369 enum pool_mode old_mode = get_pool_mode(pool);
2370 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2371
2372 /*
2373 * Never allow the pool to transition to PM_WRITE mode if user
2374 * intervention is required to verify metadata and data consistency.
2375 */
2376 if (new_mode == PM_WRITE && needs_check) {
2377 DMERR("%s: unable to switch pool to write mode until repaired.",
2378 dm_device_name(pool->pool_md));
2379 if (old_mode != new_mode)
2380 new_mode = old_mode;
2381 else
2382 new_mode = PM_READ_ONLY;
2383 }
2384 /*
2385 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2386 * not going to recover without a thin_repair. So we never let the
2387 * pool move out of the old mode.
2388 */
2389 if (old_mode == PM_FAIL)
2390 new_mode = old_mode;
2391
2392 switch (new_mode) {
2393 case PM_FAIL:
2394 if (old_mode != new_mode)
2395 notify_of_pool_mode_change(pool, "failure");
2396 dm_pool_metadata_read_only(pool->pmd);
2397 pool->process_bio = process_bio_fail;
2398 pool->process_discard = process_bio_fail;
2399 pool->process_cell = process_cell_fail;
2400 pool->process_discard_cell = process_cell_fail;
2401 pool->process_prepared_mapping = process_prepared_mapping_fail;
2402 pool->process_prepared_discard = process_prepared_discard_fail;
2403
2404 error_retry_list(pool);
2405 break;
2406
2407 case PM_READ_ONLY:
2408 if (old_mode != new_mode)
2409 notify_of_pool_mode_change(pool, "read-only");
2410 dm_pool_metadata_read_only(pool->pmd);
2411 pool->process_bio = process_bio_read_only;
2412 pool->process_discard = process_bio_success;
2413 pool->process_cell = process_cell_read_only;
2414 pool->process_discard_cell = process_cell_success;
2415 pool->process_prepared_mapping = process_prepared_mapping_fail;
2416 pool->process_prepared_discard = process_prepared_discard_success;
2417
2418 error_retry_list(pool);
2419 break;
2420
2421 case PM_OUT_OF_DATA_SPACE:
2422 /*
2423 * Ideally we'd never hit this state; the low water mark
2424 * would trigger userland to extend the pool before we
2425 * completely run out of data space. However, many small
2426 * IOs to unprovisioned space can consume data space at an
2427 * alarming rate. Adjust your low water mark if you're
2428 * frequently seeing this mode.
2429 */
2430 if (old_mode != new_mode)
2431 notify_of_pool_mode_change_to_oods(pool);
2432 pool->out_of_data_space = true;
2433 pool->process_bio = process_bio_read_only;
2434 pool->process_discard = process_discard_bio;
2435 pool->process_cell = process_cell_read_only;
2436 pool->process_prepared_mapping = process_prepared_mapping;
2437 set_discard_callbacks(pool);
2438
2439 if (!pool->pf.error_if_no_space && no_space_timeout)
2440 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2441 break;
2442
2443 case PM_WRITE:
2444 if (old_mode != new_mode)
2445 notify_of_pool_mode_change(pool, "write");
2446 pool->out_of_data_space = false;
2447 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2448 dm_pool_metadata_read_write(pool->pmd);
2449 pool->process_bio = process_bio;
2450 pool->process_discard = process_discard_bio;
2451 pool->process_cell = process_cell;
2452 pool->process_prepared_mapping = process_prepared_mapping;
2453 set_discard_callbacks(pool);
2454 break;
2455 }
2456
2457 pool->pf.mode = new_mode;
2458 /*
2459 * The pool mode may have changed, sync it so bind_control_target()
2460 * doesn't cause an unexpected mode transition on resume.
2461 */
2462 pt->adjusted_pf.mode = new_mode;
2463 }
2464
2465 static void abort_transaction(struct pool *pool)
2466 {
2467 const char *dev_name = dm_device_name(pool->pool_md);
2468
2469 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2470 if (dm_pool_abort_metadata(pool->pmd)) {
2471 DMERR("%s: failed to abort metadata transaction", dev_name);
2472 set_pool_mode(pool, PM_FAIL);
2473 }
2474
2475 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2476 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2477 set_pool_mode(pool, PM_FAIL);
2478 }
2479 }
2480
2481 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2482 {
2483 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2484 dm_device_name(pool->pool_md), op, r);
2485
2486 abort_transaction(pool);
2487 set_pool_mode(pool, PM_READ_ONLY);
2488 }
2489
2490 /*----------------------------------------------------------------*/
2491
2492 /*
2493 * Mapping functions.
2494 */
2495
2496 /*
2497 * Called only while mapping a thin bio to hand it over to the workqueue.
2498 */
2499 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2500 {
2501 unsigned long flags;
2502 struct pool *pool = tc->pool;
2503
2504 spin_lock_irqsave(&tc->lock, flags);
2505 bio_list_add(&tc->deferred_bio_list, bio);
2506 spin_unlock_irqrestore(&tc->lock, flags);
2507
2508 wake_worker(pool);
2509 }
2510
2511 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2512 {
2513 struct pool *pool = tc->pool;
2514
2515 throttle_lock(&pool->throttle);
2516 thin_defer_bio(tc, bio);
2517 throttle_unlock(&pool->throttle);
2518 }
2519
2520 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2521 {
2522 unsigned long flags;
2523 struct pool *pool = tc->pool;
2524
2525 throttle_lock(&pool->throttle);
2526 spin_lock_irqsave(&tc->lock, flags);
2527 list_add_tail(&cell->user_list, &tc->deferred_cells);
2528 spin_unlock_irqrestore(&tc->lock, flags);
2529 throttle_unlock(&pool->throttle);
2530
2531 wake_worker(pool);
2532 }
2533
2534 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2535 {
2536 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2537
2538 h->tc = tc;
2539 h->shared_read_entry = NULL;
2540 h->all_io_entry = NULL;
2541 h->overwrite_mapping = NULL;
2542 h->cell = NULL;
2543 }
2544
2545 /*
2546 * Non-blocking function called from the thin target's map function.
2547 */
2548 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2549 {
2550 int r;
2551 struct thin_c *tc = ti->private;
2552 dm_block_t block = get_bio_block(tc, bio);
2553 struct dm_thin_device *td = tc->td;
2554 struct dm_thin_lookup_result result;
2555 struct dm_bio_prison_cell *virt_cell, *data_cell;
2556 struct dm_cell_key key;
2557
2558 thin_hook_bio(tc, bio);
2559
2560 if (tc->requeue_mode) {
2561 bio->bi_error = DM_ENDIO_REQUEUE;
2562 bio_endio(bio);
2563 return DM_MAPIO_SUBMITTED;
2564 }
2565
2566 if (get_pool_mode(tc->pool) == PM_FAIL) {
2567 bio_io_error(bio);
2568 return DM_MAPIO_SUBMITTED;
2569 }
2570
2571 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2572 thin_defer_bio_with_throttle(tc, bio);
2573 return DM_MAPIO_SUBMITTED;
2574 }
2575
2576 /*
2577 * We must hold the virtual cell before doing the lookup, otherwise
2578 * there's a race with discard.
2579 */
2580 build_virtual_key(tc->td, block, &key);
2581 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2582 return DM_MAPIO_SUBMITTED;
2583
2584 r = dm_thin_find_block(td, block, 0, &result);
2585
2586 /*
2587 * Note that we defer readahead too.
2588 */
2589 switch (r) {
2590 case 0:
2591 if (unlikely(result.shared)) {
2592 /*
2593 * We have a race condition here between the
2594 * result.shared value returned by the lookup and
2595 * snapshot creation, which may cause new
2596 * sharing.
2597 *
2598 * To avoid this always quiesce the origin before
2599 * taking the snap. You want to do this anyway to
2600 * ensure a consistent application view
2601 * (i.e. lockfs).
2602 *
2603 * More distant ancestors are irrelevant. The
2604 * shared flag will be set in their case.
2605 */
2606 thin_defer_cell(tc, virt_cell);
2607 return DM_MAPIO_SUBMITTED;
2608 }
2609
2610 build_data_key(tc->td, result.block, &key);
2611 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2612 cell_defer_no_holder(tc, virt_cell);
2613 return DM_MAPIO_SUBMITTED;
2614 }
2615
2616 inc_all_io_entry(tc->pool, bio);
2617 cell_defer_no_holder(tc, data_cell);
2618 cell_defer_no_holder(tc, virt_cell);
2619
2620 remap(tc, bio, result.block);
2621 return DM_MAPIO_REMAPPED;
2622
2623 case -ENODATA:
2624 case -EWOULDBLOCK:
2625 thin_defer_cell(tc, virt_cell);
2626 return DM_MAPIO_SUBMITTED;
2627
2628 default:
2629 /*
2630 * Must always call bio_io_error on failure.
2631 * dm_thin_find_block can fail with -EINVAL if the
2632 * pool is switched to fail-io mode.
2633 */
2634 bio_io_error(bio);
2635 cell_defer_no_holder(tc, virt_cell);
2636 return DM_MAPIO_SUBMITTED;
2637 }
2638 }
2639
2640 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2641 {
2642 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2643 struct request_queue *q;
2644
2645 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2646 return 1;
2647
2648 q = bdev_get_queue(pt->data_dev->bdev);
2649 return bdi_congested(&q->backing_dev_info, bdi_bits);
2650 }
2651
2652 static void requeue_bios(struct pool *pool)
2653 {
2654 unsigned long flags;
2655 struct thin_c *tc;
2656
2657 rcu_read_lock();
2658 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2659 spin_lock_irqsave(&tc->lock, flags);
2660 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2661 bio_list_init(&tc->retry_on_resume_list);
2662 spin_unlock_irqrestore(&tc->lock, flags);
2663 }
2664 rcu_read_unlock();
2665 }
2666
2667 /*----------------------------------------------------------------
2668 * Binding of control targets to a pool object
2669 *--------------------------------------------------------------*/
2670 static bool data_dev_supports_discard(struct pool_c *pt)
2671 {
2672 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2673
2674 return q && blk_queue_discard(q);
2675 }
2676
2677 static bool is_factor(sector_t block_size, uint32_t n)
2678 {
2679 return !sector_div(block_size, n);
2680 }
2681
2682 /*
2683 * If discard_passdown was enabled verify that the data device
2684 * supports discards. Disable discard_passdown if not.
2685 */
2686 static void disable_passdown_if_not_supported(struct pool_c *pt)
2687 {
2688 struct pool *pool = pt->pool;
2689 struct block_device *data_bdev = pt->data_dev->bdev;
2690 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2691 const char *reason = NULL;
2692 char buf[BDEVNAME_SIZE];
2693
2694 if (!pt->adjusted_pf.discard_passdown)
2695 return;
2696
2697 if (!data_dev_supports_discard(pt))
2698 reason = "discard unsupported";
2699
2700 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2701 reason = "max discard sectors smaller than a block";
2702
2703 if (reason) {
2704 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2705 pt->adjusted_pf.discard_passdown = false;
2706 }
2707 }
2708
2709 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2710 {
2711 struct pool_c *pt = ti->private;
2712
2713 /*
2714 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2715 */
2716 enum pool_mode old_mode = get_pool_mode(pool);
2717 enum pool_mode new_mode = pt->adjusted_pf.mode;
2718
2719 /*
2720 * Don't change the pool's mode until set_pool_mode() below.
2721 * Otherwise the pool's process_* function pointers may
2722 * not match the desired pool mode.
2723 */
2724 pt->adjusted_pf.mode = old_mode;
2725
2726 pool->ti = ti;
2727 pool->pf = pt->adjusted_pf;
2728 pool->low_water_blocks = pt->low_water_blocks;
2729
2730 set_pool_mode(pool, new_mode);
2731
2732 return 0;
2733 }
2734
2735 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2736 {
2737 if (pool->ti == ti)
2738 pool->ti = NULL;
2739 }
2740
2741 /*----------------------------------------------------------------
2742 * Pool creation
2743 *--------------------------------------------------------------*/
2744 /* Initialize pool features. */
2745 static void pool_features_init(struct pool_features *pf)
2746 {
2747 pf->mode = PM_WRITE;
2748 pf->zero_new_blocks = true;
2749 pf->discard_enabled = true;
2750 pf->discard_passdown = true;
2751 pf->error_if_no_space = false;
2752 }
2753
2754 static void __pool_destroy(struct pool *pool)
2755 {
2756 __pool_table_remove(pool);
2757
2758 vfree(pool->cell_sort_array);
2759 if (dm_pool_metadata_close(pool->pmd) < 0)
2760 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2761
2762 dm_bio_prison_destroy(pool->prison);
2763 dm_kcopyd_client_destroy(pool->copier);
2764
2765 if (pool->wq)
2766 destroy_workqueue(pool->wq);
2767
2768 if (pool->next_mapping)
2769 mempool_free(pool->next_mapping, pool->mapping_pool);
2770 mempool_destroy(pool->mapping_pool);
2771 dm_deferred_set_destroy(pool->shared_read_ds);
2772 dm_deferred_set_destroy(pool->all_io_ds);
2773 kfree(pool);
2774 }
2775
2776 static struct kmem_cache *_new_mapping_cache;
2777
2778 static struct pool *pool_create(struct mapped_device *pool_md,
2779 struct block_device *metadata_dev,
2780 unsigned long block_size,
2781 int read_only, char **error)
2782 {
2783 int r;
2784 void *err_p;
2785 struct pool *pool;
2786 struct dm_pool_metadata *pmd;
2787 bool format_device = read_only ? false : true;
2788
2789 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2790 if (IS_ERR(pmd)) {
2791 *error = "Error creating metadata object";
2792 return (struct pool *)pmd;
2793 }
2794
2795 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2796 if (!pool) {
2797 *error = "Error allocating memory for pool";
2798 err_p = ERR_PTR(-ENOMEM);
2799 goto bad_pool;
2800 }
2801
2802 pool->pmd = pmd;
2803 pool->sectors_per_block = block_size;
2804 if (block_size & (block_size - 1))
2805 pool->sectors_per_block_shift = -1;
2806 else
2807 pool->sectors_per_block_shift = __ffs(block_size);
2808 pool->low_water_blocks = 0;
2809 pool_features_init(&pool->pf);
2810 pool->prison = dm_bio_prison_create();
2811 if (!pool->prison) {
2812 *error = "Error creating pool's bio prison";
2813 err_p = ERR_PTR(-ENOMEM);
2814 goto bad_prison;
2815 }
2816
2817 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2818 if (IS_ERR(pool->copier)) {
2819 r = PTR_ERR(pool->copier);
2820 *error = "Error creating pool's kcopyd client";
2821 err_p = ERR_PTR(r);
2822 goto bad_kcopyd_client;
2823 }
2824
2825 /*
2826 * Create singlethreaded workqueue that will service all devices
2827 * that use this metadata.
2828 */
2829 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2830 if (!pool->wq) {
2831 *error = "Error creating pool's workqueue";
2832 err_p = ERR_PTR(-ENOMEM);
2833 goto bad_wq;
2834 }
2835
2836 throttle_init(&pool->throttle);
2837 INIT_WORK(&pool->worker, do_worker);
2838 INIT_DELAYED_WORK(&pool->waker, do_waker);
2839 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2840 spin_lock_init(&pool->lock);
2841 bio_list_init(&pool->deferred_flush_bios);
2842 INIT_LIST_HEAD(&pool->prepared_mappings);
2843 INIT_LIST_HEAD(&pool->prepared_discards);
2844 INIT_LIST_HEAD(&pool->active_thins);
2845 pool->low_water_triggered = false;
2846 pool->suspended = true;
2847 pool->out_of_data_space = false;
2848
2849 pool->shared_read_ds = dm_deferred_set_create();
2850 if (!pool->shared_read_ds) {
2851 *error = "Error creating pool's shared read deferred set";
2852 err_p = ERR_PTR(-ENOMEM);
2853 goto bad_shared_read_ds;
2854 }
2855
2856 pool->all_io_ds = dm_deferred_set_create();
2857 if (!pool->all_io_ds) {
2858 *error = "Error creating pool's all io deferred set";
2859 err_p = ERR_PTR(-ENOMEM);
2860 goto bad_all_io_ds;
2861 }
2862
2863 pool->next_mapping = NULL;
2864 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2865 _new_mapping_cache);
2866 if (!pool->mapping_pool) {
2867 *error = "Error creating pool's mapping mempool";
2868 err_p = ERR_PTR(-ENOMEM);
2869 goto bad_mapping_pool;
2870 }
2871
2872 pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2873 if (!pool->cell_sort_array) {
2874 *error = "Error allocating cell sort array";
2875 err_p = ERR_PTR(-ENOMEM);
2876 goto bad_sort_array;
2877 }
2878
2879 pool->ref_count = 1;
2880 pool->last_commit_jiffies = jiffies;
2881 pool->pool_md = pool_md;
2882 pool->md_dev = metadata_dev;
2883 __pool_table_insert(pool);
2884
2885 return pool;
2886
2887 bad_sort_array:
2888 mempool_destroy(pool->mapping_pool);
2889 bad_mapping_pool:
2890 dm_deferred_set_destroy(pool->all_io_ds);
2891 bad_all_io_ds:
2892 dm_deferred_set_destroy(pool->shared_read_ds);
2893 bad_shared_read_ds:
2894 destroy_workqueue(pool->wq);
2895 bad_wq:
2896 dm_kcopyd_client_destroy(pool->copier);
2897 bad_kcopyd_client:
2898 dm_bio_prison_destroy(pool->prison);
2899 bad_prison:
2900 kfree(pool);
2901 bad_pool:
2902 if (dm_pool_metadata_close(pmd))
2903 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2904
2905 return err_p;
2906 }
2907
2908 static void __pool_inc(struct pool *pool)
2909 {
2910 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2911 pool->ref_count++;
2912 }
2913
2914 static void __pool_dec(struct pool *pool)
2915 {
2916 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2917 BUG_ON(!pool->ref_count);
2918 if (!--pool->ref_count)
2919 __pool_destroy(pool);
2920 }
2921
2922 static struct pool *__pool_find(struct mapped_device *pool_md,
2923 struct block_device *metadata_dev,
2924 unsigned long block_size, int read_only,
2925 char **error, int *created)
2926 {
2927 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2928
2929 if (pool) {
2930 if (pool->pool_md != pool_md) {
2931 *error = "metadata device already in use by a pool";
2932 return ERR_PTR(-EBUSY);
2933 }
2934 __pool_inc(pool);
2935
2936 } else {
2937 pool = __pool_table_lookup(pool_md);
2938 if (pool) {
2939 if (pool->md_dev != metadata_dev) {
2940 *error = "different pool cannot replace a pool";
2941 return ERR_PTR(-EINVAL);
2942 }
2943 __pool_inc(pool);
2944
2945 } else {
2946 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2947 *created = 1;
2948 }
2949 }
2950
2951 return pool;
2952 }
2953
2954 /*----------------------------------------------------------------
2955 * Pool target methods
2956 *--------------------------------------------------------------*/
2957 static void pool_dtr(struct dm_target *ti)
2958 {
2959 struct pool_c *pt = ti->private;
2960
2961 mutex_lock(&dm_thin_pool_table.mutex);
2962
2963 unbind_control_target(pt->pool, ti);
2964 __pool_dec(pt->pool);
2965 dm_put_device(ti, pt->metadata_dev);
2966 dm_put_device(ti, pt->data_dev);
2967 kfree(pt);
2968
2969 mutex_unlock(&dm_thin_pool_table.mutex);
2970 }
2971
2972 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2973 struct dm_target *ti)
2974 {
2975 int r;
2976 unsigned argc;
2977 const char *arg_name;
2978
2979 static struct dm_arg _args[] = {
2980 {0, 4, "Invalid number of pool feature arguments"},
2981 };
2982
2983 /*
2984 * No feature arguments supplied.
2985 */
2986 if (!as->argc)
2987 return 0;
2988
2989 r = dm_read_arg_group(_args, as, &argc, &ti->error);
2990 if (r)
2991 return -EINVAL;
2992
2993 while (argc && !r) {
2994 arg_name = dm_shift_arg(as);
2995 argc--;
2996
2997 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2998 pf->zero_new_blocks = false;
2999
3000 else if (!strcasecmp(arg_name, "ignore_discard"))
3001 pf->discard_enabled = false;
3002
3003 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3004 pf->discard_passdown = false;
3005
3006 else if (!strcasecmp(arg_name, "read_only"))
3007 pf->mode = PM_READ_ONLY;
3008
3009 else if (!strcasecmp(arg_name, "error_if_no_space"))
3010 pf->error_if_no_space = true;
3011
3012 else {
3013 ti->error = "Unrecognised pool feature requested";
3014 r = -EINVAL;
3015 break;
3016 }
3017 }
3018
3019 return r;
3020 }
3021
3022 static void metadata_low_callback(void *context)
3023 {
3024 struct pool *pool = context;
3025
3026 DMWARN("%s: reached low water mark for metadata device: sending event.",
3027 dm_device_name(pool->pool_md));
3028
3029 dm_table_event(pool->ti->table);
3030 }
3031
3032 static sector_t get_dev_size(struct block_device *bdev)
3033 {
3034 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3035 }
3036
3037 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3038 {
3039 sector_t metadata_dev_size = get_dev_size(bdev);
3040 char buffer[BDEVNAME_SIZE];
3041
3042 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3043 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3044 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3045 }
3046
3047 static sector_t get_metadata_dev_size(struct block_device *bdev)
3048 {
3049 sector_t metadata_dev_size = get_dev_size(bdev);
3050
3051 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3052 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3053
3054 return metadata_dev_size;
3055 }
3056
3057 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3058 {
3059 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3060
3061 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3062
3063 return metadata_dev_size;
3064 }
3065
3066 /*
3067 * When a metadata threshold is crossed a dm event is triggered, and
3068 * userland should respond by growing the metadata device. We could let
3069 * userland set the threshold, like we do with the data threshold, but I'm
3070 * not sure they know enough to do this well.
3071 */
3072 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3073 {
3074 /*
3075 * 4M is ample for all ops with the possible exception of thin
3076 * device deletion which is harmless if it fails (just retry the
3077 * delete after you've grown the device).
3078 */
3079 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3080 return min((dm_block_t)1024ULL /* 4M */, quarter);
3081 }
3082
3083 /*
3084 * thin-pool <metadata dev> <data dev>
3085 * <data block size (sectors)>
3086 * <low water mark (blocks)>
3087 * [<#feature args> [<arg>]*]
3088 *
3089 * Optional feature arguments are:
3090 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3091 * ignore_discard: disable discard
3092 * no_discard_passdown: don't pass discards down to the data device
3093 * read_only: Don't allow any changes to be made to the pool metadata.
3094 * error_if_no_space: error IOs, instead of queueing, if no space.
3095 */
3096 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3097 {
3098 int r, pool_created = 0;
3099 struct pool_c *pt;
3100 struct pool *pool;
3101 struct pool_features pf;
3102 struct dm_arg_set as;
3103 struct dm_dev *data_dev;
3104 unsigned long block_size;
3105 dm_block_t low_water_blocks;
3106 struct dm_dev *metadata_dev;
3107 fmode_t metadata_mode;
3108
3109 /*
3110 * FIXME Remove validation from scope of lock.
3111 */
3112 mutex_lock(&dm_thin_pool_table.mutex);
3113
3114 if (argc < 4) {
3115 ti->error = "Invalid argument count";
3116 r = -EINVAL;
3117 goto out_unlock;
3118 }
3119
3120 as.argc = argc;
3121 as.argv = argv;
3122
3123 /*
3124 * Set default pool features.
3125 */
3126 pool_features_init(&pf);
3127
3128 dm_consume_args(&as, 4);
3129 r = parse_pool_features(&as, &pf, ti);
3130 if (r)
3131 goto out_unlock;
3132
3133 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3134 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3135 if (r) {
3136 ti->error = "Error opening metadata block device";
3137 goto out_unlock;
3138 }
3139 warn_if_metadata_device_too_big(metadata_dev->bdev);
3140
3141 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3142 if (r) {
3143 ti->error = "Error getting data device";
3144 goto out_metadata;
3145 }
3146
3147 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3148 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3149 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3150 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3151 ti->error = "Invalid block size";
3152 r = -EINVAL;
3153 goto out;
3154 }
3155
3156 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3157 ti->error = "Invalid low water mark";
3158 r = -EINVAL;
3159 goto out;
3160 }
3161
3162 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3163 if (!pt) {
3164 r = -ENOMEM;
3165 goto out;
3166 }
3167
3168 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3169 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3170 if (IS_ERR(pool)) {
3171 r = PTR_ERR(pool);
3172 goto out_free_pt;
3173 }
3174
3175 /*
3176 * 'pool_created' reflects whether this is the first table load.
3177 * Top level discard support is not allowed to be changed after
3178 * initial load. This would require a pool reload to trigger thin
3179 * device changes.
3180 */
3181 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3182 ti->error = "Discard support cannot be disabled once enabled";
3183 r = -EINVAL;
3184 goto out_flags_changed;
3185 }
3186
3187 pt->pool = pool;
3188 pt->ti = ti;
3189 pt->metadata_dev = metadata_dev;
3190 pt->data_dev = data_dev;
3191 pt->low_water_blocks = low_water_blocks;
3192 pt->adjusted_pf = pt->requested_pf = pf;
3193 ti->num_flush_bios = 1;
3194
3195 /*
3196 * Only need to enable discards if the pool should pass
3197 * them down to the data device. The thin device's discard
3198 * processing will cause mappings to be removed from the btree.
3199 */
3200 ti->discard_zeroes_data_unsupported = true;
3201 if (pf.discard_enabled && pf.discard_passdown) {
3202 ti->num_discard_bios = 1;
3203
3204 /*
3205 * Setting 'discards_supported' circumvents the normal
3206 * stacking of discard limits (this keeps the pool and
3207 * thin devices' discard limits consistent).
3208 */
3209 ti->discards_supported = true;
3210 }
3211 ti->private = pt;
3212
3213 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3214 calc_metadata_threshold(pt),
3215 metadata_low_callback,
3216 pool);
3217 if (r)
3218 goto out_flags_changed;
3219
3220 pt->callbacks.congested_fn = pool_is_congested;
3221 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3222
3223 mutex_unlock(&dm_thin_pool_table.mutex);
3224
3225 return 0;
3226
3227 out_flags_changed:
3228 __pool_dec(pool);
3229 out_free_pt:
3230 kfree(pt);
3231 out:
3232 dm_put_device(ti, data_dev);
3233 out_metadata:
3234 dm_put_device(ti, metadata_dev);
3235 out_unlock:
3236 mutex_unlock(&dm_thin_pool_table.mutex);
3237
3238 return r;
3239 }
3240
3241 static int pool_map(struct dm_target *ti, struct bio *bio)
3242 {
3243 int r;
3244 struct pool_c *pt = ti->private;
3245 struct pool *pool = pt->pool;
3246 unsigned long flags;
3247
3248 /*
3249 * As this is a singleton target, ti->begin is always zero.
3250 */
3251 spin_lock_irqsave(&pool->lock, flags);
3252 bio->bi_bdev = pt->data_dev->bdev;
3253 r = DM_MAPIO_REMAPPED;
3254 spin_unlock_irqrestore(&pool->lock, flags);
3255
3256 return r;
3257 }
3258
3259 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3260 {
3261 int r;
3262 struct pool_c *pt = ti->private;
3263 struct pool *pool = pt->pool;
3264 sector_t data_size = ti->len;
3265 dm_block_t sb_data_size;
3266
3267 *need_commit = false;
3268
3269 (void) sector_div(data_size, pool->sectors_per_block);
3270
3271 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3272 if (r) {
3273 DMERR("%s: failed to retrieve data device size",
3274 dm_device_name(pool->pool_md));
3275 return r;
3276 }
3277
3278 if (data_size < sb_data_size) {
3279 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3280 dm_device_name(pool->pool_md),
3281 (unsigned long long)data_size, sb_data_size);
3282 return -EINVAL;
3283
3284 } else if (data_size > sb_data_size) {
3285 if (dm_pool_metadata_needs_check(pool->pmd)) {
3286 DMERR("%s: unable to grow the data device until repaired.",
3287 dm_device_name(pool->pool_md));
3288 return 0;
3289 }
3290
3291 if (sb_data_size)
3292 DMINFO("%s: growing the data device from %llu to %llu blocks",
3293 dm_device_name(pool->pool_md),
3294 sb_data_size, (unsigned long long)data_size);
3295 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3296 if (r) {
3297 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3298 return r;
3299 }
3300
3301 *need_commit = true;
3302 }
3303
3304 return 0;
3305 }
3306
3307 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3308 {
3309 int r;
3310 struct pool_c *pt = ti->private;
3311 struct pool *pool = pt->pool;
3312 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3313
3314 *need_commit = false;
3315
3316 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3317
3318 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3319 if (r) {
3320 DMERR("%s: failed to retrieve metadata device size",
3321 dm_device_name(pool->pool_md));
3322 return r;
3323 }
3324
3325 if (metadata_dev_size < sb_metadata_dev_size) {
3326 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3327 dm_device_name(pool->pool_md),
3328 metadata_dev_size, sb_metadata_dev_size);
3329 return -EINVAL;
3330
3331 } else if (metadata_dev_size > sb_metadata_dev_size) {
3332 if (dm_pool_metadata_needs_check(pool->pmd)) {
3333 DMERR("%s: unable to grow the metadata device until repaired.",
3334 dm_device_name(pool->pool_md));
3335 return 0;
3336 }
3337
3338 warn_if_metadata_device_too_big(pool->md_dev);
3339 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3340 dm_device_name(pool->pool_md),
3341 sb_metadata_dev_size, metadata_dev_size);
3342 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3343 if (r) {
3344 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3345 return r;
3346 }
3347
3348 *need_commit = true;
3349 }
3350
3351 return 0;
3352 }
3353
3354 /*
3355 * Retrieves the number of blocks of the data device from
3356 * the superblock and compares it to the actual device size,
3357 * thus resizing the data device in case it has grown.
3358 *
3359 * This both copes with opening preallocated data devices in the ctr
3360 * being followed by a resume
3361 * -and-
3362 * calling the resume method individually after userspace has
3363 * grown the data device in reaction to a table event.
3364 */
3365 static int pool_preresume(struct dm_target *ti)
3366 {
3367 int r;
3368 bool need_commit1, need_commit2;
3369 struct pool_c *pt = ti->private;
3370 struct pool *pool = pt->pool;
3371
3372 /*
3373 * Take control of the pool object.
3374 */
3375 r = bind_control_target(pool, ti);
3376 if (r)
3377 return r;
3378
3379 r = maybe_resize_data_dev(ti, &need_commit1);
3380 if (r)
3381 return r;
3382
3383 r = maybe_resize_metadata_dev(ti, &need_commit2);
3384 if (r)
3385 return r;
3386
3387 if (need_commit1 || need_commit2)
3388 (void) commit(pool);
3389
3390 return 0;
3391 }
3392
3393 static void pool_suspend_active_thins(struct pool *pool)
3394 {
3395 struct thin_c *tc;
3396
3397 /* Suspend all active thin devices */
3398 tc = get_first_thin(pool);
3399 while (tc) {
3400 dm_internal_suspend_noflush(tc->thin_md);
3401 tc = get_next_thin(pool, tc);
3402 }
3403 }
3404
3405 static void pool_resume_active_thins(struct pool *pool)
3406 {
3407 struct thin_c *tc;
3408
3409 /* Resume all active thin devices */
3410 tc = get_first_thin(pool);
3411 while (tc) {
3412 dm_internal_resume(tc->thin_md);
3413 tc = get_next_thin(pool, tc);
3414 }
3415 }
3416
3417 static void pool_resume(struct dm_target *ti)
3418 {
3419 struct pool_c *pt = ti->private;
3420 struct pool *pool = pt->pool;
3421 unsigned long flags;
3422
3423 /*
3424 * Must requeue active_thins' bios and then resume
3425 * active_thins _before_ clearing 'suspend' flag.
3426 */
3427 requeue_bios(pool);
3428 pool_resume_active_thins(pool);
3429
3430 spin_lock_irqsave(&pool->lock, flags);
3431 pool->low_water_triggered = false;
3432 pool->suspended = false;
3433 spin_unlock_irqrestore(&pool->lock, flags);
3434
3435 do_waker(&pool->waker.work);
3436 }
3437
3438 static void pool_presuspend(struct dm_target *ti)
3439 {
3440 struct pool_c *pt = ti->private;
3441 struct pool *pool = pt->pool;
3442 unsigned long flags;
3443
3444 spin_lock_irqsave(&pool->lock, flags);
3445 pool->suspended = true;
3446 spin_unlock_irqrestore(&pool->lock, flags);
3447
3448 pool_suspend_active_thins(pool);
3449 }
3450
3451 static void pool_presuspend_undo(struct dm_target *ti)
3452 {
3453 struct pool_c *pt = ti->private;
3454 struct pool *pool = pt->pool;
3455 unsigned long flags;
3456
3457 pool_resume_active_thins(pool);
3458
3459 spin_lock_irqsave(&pool->lock, flags);
3460 pool->suspended = false;
3461 spin_unlock_irqrestore(&pool->lock, flags);
3462 }
3463
3464 static void pool_postsuspend(struct dm_target *ti)
3465 {
3466 struct pool_c *pt = ti->private;
3467 struct pool *pool = pt->pool;
3468
3469 cancel_delayed_work_sync(&pool->waker);
3470 cancel_delayed_work_sync(&pool->no_space_timeout);
3471 flush_workqueue(pool->wq);
3472 (void) commit(pool);
3473 }
3474
3475 static int check_arg_count(unsigned argc, unsigned args_required)
3476 {
3477 if (argc != args_required) {
3478 DMWARN("Message received with %u arguments instead of %u.",
3479 argc, args_required);
3480 return -EINVAL;
3481 }
3482
3483 return 0;
3484 }
3485
3486 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3487 {
3488 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3489 *dev_id <= MAX_DEV_ID)
3490 return 0;
3491
3492 if (warning)
3493 DMWARN("Message received with invalid device id: %s", arg);
3494
3495 return -EINVAL;
3496 }
3497
3498 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3499 {
3500 dm_thin_id dev_id;
3501 int r;
3502
3503 r = check_arg_count(argc, 2);
3504 if (r)
3505 return r;
3506
3507 r = read_dev_id(argv[1], &dev_id, 1);
3508 if (r)
3509 return r;
3510
3511 r = dm_pool_create_thin(pool->pmd, dev_id);
3512 if (r) {
3513 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3514 argv[1]);
3515 return r;
3516 }
3517
3518 return 0;
3519 }
3520
3521 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3522 {
3523 dm_thin_id dev_id;
3524 dm_thin_id origin_dev_id;
3525 int r;
3526
3527 r = check_arg_count(argc, 3);
3528 if (r)
3529 return r;
3530
3531 r = read_dev_id(argv[1], &dev_id, 1);
3532 if (r)
3533 return r;
3534
3535 r = read_dev_id(argv[2], &origin_dev_id, 1);
3536 if (r)
3537 return r;
3538
3539 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3540 if (r) {
3541 DMWARN("Creation of new snapshot %s of device %s failed.",
3542 argv[1], argv[2]);
3543 return r;
3544 }
3545
3546 return 0;
3547 }
3548
3549 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3550 {
3551 dm_thin_id dev_id;
3552 int r;
3553
3554 r = check_arg_count(argc, 2);
3555 if (r)
3556 return r;
3557
3558 r = read_dev_id(argv[1], &dev_id, 1);
3559 if (r)
3560 return r;
3561
3562 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3563 if (r)
3564 DMWARN("Deletion of thin device %s failed.", argv[1]);
3565
3566 return r;
3567 }
3568
3569 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3570 {
3571 dm_thin_id old_id, new_id;
3572 int r;
3573
3574 r = check_arg_count(argc, 3);
3575 if (r)
3576 return r;
3577
3578 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3579 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3580 return -EINVAL;
3581 }
3582
3583 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3584 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3585 return -EINVAL;
3586 }
3587
3588 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3589 if (r) {
3590 DMWARN("Failed to change transaction id from %s to %s.",
3591 argv[1], argv[2]);
3592 return r;
3593 }
3594
3595 return 0;
3596 }
3597
3598 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3599 {
3600 int r;
3601
3602 r = check_arg_count(argc, 1);
3603 if (r)
3604 return r;
3605
3606 (void) commit(pool);
3607
3608 r = dm_pool_reserve_metadata_snap(pool->pmd);
3609 if (r)
3610 DMWARN("reserve_metadata_snap message failed.");
3611
3612 return r;
3613 }
3614
3615 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3616 {
3617 int r;
3618
3619 r = check_arg_count(argc, 1);
3620 if (r)
3621 return r;
3622
3623 r = dm_pool_release_metadata_snap(pool->pmd);
3624 if (r)
3625 DMWARN("release_metadata_snap message failed.");
3626
3627 return r;
3628 }
3629
3630 /*
3631 * Messages supported:
3632 * create_thin <dev_id>
3633 * create_snap <dev_id> <origin_id>
3634 * delete <dev_id>
3635 * set_transaction_id <current_trans_id> <new_trans_id>
3636 * reserve_metadata_snap
3637 * release_metadata_snap
3638 */
3639 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3640 {
3641 int r = -EINVAL;
3642 struct pool_c *pt = ti->private;
3643 struct pool *pool = pt->pool;
3644
3645 if (get_pool_mode(pool) >= PM_READ_ONLY) {
3646 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3647 dm_device_name(pool->pool_md));
3648 return -EOPNOTSUPP;
3649 }
3650
3651 if (!strcasecmp(argv[0], "create_thin"))
3652 r = process_create_thin_mesg(argc, argv, pool);
3653
3654 else if (!strcasecmp(argv[0], "create_snap"))
3655 r = process_create_snap_mesg(argc, argv, pool);
3656
3657 else if (!strcasecmp(argv[0], "delete"))
3658 r = process_delete_mesg(argc, argv, pool);
3659
3660 else if (!strcasecmp(argv[0], "set_transaction_id"))
3661 r = process_set_transaction_id_mesg(argc, argv, pool);
3662
3663 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3664 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3665
3666 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3667 r = process_release_metadata_snap_mesg(argc, argv, pool);
3668
3669 else
3670 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3671
3672 if (!r)
3673 (void) commit(pool);
3674
3675 return r;
3676 }
3677
3678 static void emit_flags(struct pool_features *pf, char *result,
3679 unsigned sz, unsigned maxlen)
3680 {
3681 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3682 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3683 pf->error_if_no_space;
3684 DMEMIT("%u ", count);
3685
3686 if (!pf->zero_new_blocks)
3687 DMEMIT("skip_block_zeroing ");
3688
3689 if (!pf->discard_enabled)
3690 DMEMIT("ignore_discard ");
3691
3692 if (!pf->discard_passdown)
3693 DMEMIT("no_discard_passdown ");
3694
3695 if (pf->mode == PM_READ_ONLY)
3696 DMEMIT("read_only ");
3697
3698 if (pf->error_if_no_space)
3699 DMEMIT("error_if_no_space ");
3700 }
3701
3702 /*
3703 * Status line is:
3704 * <transaction id> <used metadata sectors>/<total metadata sectors>
3705 * <used data sectors>/<total data sectors> <held metadata root>
3706 * <pool mode> <discard config> <no space config> <needs_check>
3707 */
3708 static void pool_status(struct dm_target *ti, status_type_t type,
3709 unsigned status_flags, char *result, unsigned maxlen)
3710 {
3711 int r;
3712 unsigned sz = 0;
3713 uint64_t transaction_id;
3714 dm_block_t nr_free_blocks_data;
3715 dm_block_t nr_free_blocks_metadata;
3716 dm_block_t nr_blocks_data;
3717 dm_block_t nr_blocks_metadata;
3718 dm_block_t held_root;
3719 char buf[BDEVNAME_SIZE];
3720 char buf2[BDEVNAME_SIZE];
3721 struct pool_c *pt = ti->private;
3722 struct pool *pool = pt->pool;
3723
3724 switch (type) {
3725 case STATUSTYPE_INFO:
3726 if (get_pool_mode(pool) == PM_FAIL) {
3727 DMEMIT("Fail");
3728 break;
3729 }
3730
3731 /* Commit to ensure statistics aren't out-of-date */
3732 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3733 (void) commit(pool);
3734
3735 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3736 if (r) {
3737 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3738 dm_device_name(pool->pool_md), r);
3739 goto err;
3740 }
3741
3742 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3743 if (r) {
3744 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3745 dm_device_name(pool->pool_md), r);
3746 goto err;
3747 }
3748
3749 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3750 if (r) {
3751 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3752 dm_device_name(pool->pool_md), r);
3753 goto err;
3754 }
3755
3756 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3757 if (r) {
3758 DMERR("%s: dm_pool_get_free_block_count returned %d",
3759 dm_device_name(pool->pool_md), r);
3760 goto err;
3761 }
3762
3763 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3764 if (r) {
3765 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3766 dm_device_name(pool->pool_md), r);
3767 goto err;
3768 }
3769
3770 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3771 if (r) {
3772 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3773 dm_device_name(pool->pool_md), r);
3774 goto err;
3775 }
3776
3777 DMEMIT("%llu %llu/%llu %llu/%llu ",
3778 (unsigned long long)transaction_id,
3779 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3780 (unsigned long long)nr_blocks_metadata,
3781 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3782 (unsigned long long)nr_blocks_data);
3783
3784 if (held_root)
3785 DMEMIT("%llu ", held_root);
3786 else
3787 DMEMIT("- ");
3788
3789 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3790 DMEMIT("out_of_data_space ");
3791 else if (pool->pf.mode == PM_READ_ONLY)
3792 DMEMIT("ro ");
3793 else
3794 DMEMIT("rw ");
3795
3796 if (!pool->pf.discard_enabled)
3797 DMEMIT("ignore_discard ");
3798 else if (pool->pf.discard_passdown)
3799 DMEMIT("discard_passdown ");
3800 else
3801 DMEMIT("no_discard_passdown ");
3802
3803 if (pool->pf.error_if_no_space)
3804 DMEMIT("error_if_no_space ");
3805 else
3806 DMEMIT("queue_if_no_space ");
3807
3808 if (dm_pool_metadata_needs_check(pool->pmd))
3809 DMEMIT("needs_check ");
3810 else
3811 DMEMIT("- ");
3812
3813 break;
3814
3815 case STATUSTYPE_TABLE:
3816 DMEMIT("%s %s %lu %llu ",
3817 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3818 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3819 (unsigned long)pool->sectors_per_block,
3820 (unsigned long long)pt->low_water_blocks);
3821 emit_flags(&pt->requested_pf, result, sz, maxlen);
3822 break;
3823 }
3824 return;
3825
3826 err:
3827 DMEMIT("Error");
3828 }
3829
3830 static int pool_iterate_devices(struct dm_target *ti,
3831 iterate_devices_callout_fn fn, void *data)
3832 {
3833 struct pool_c *pt = ti->private;
3834
3835 return fn(ti, pt->data_dev, 0, ti->len, data);
3836 }
3837
3838 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3839 {
3840 struct pool_c *pt = ti->private;
3841 struct pool *pool = pt->pool;
3842 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3843
3844 /*
3845 * If max_sectors is smaller than pool->sectors_per_block adjust it
3846 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3847 * This is especially beneficial when the pool's data device is a RAID
3848 * device that has a full stripe width that matches pool->sectors_per_block
3849 * -- because even though partial RAID stripe-sized IOs will be issued to a
3850 * single RAID stripe; when aggregated they will end on a full RAID stripe
3851 * boundary.. which avoids additional partial RAID stripe writes cascading
3852 */
3853 if (limits->max_sectors < pool->sectors_per_block) {
3854 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3855 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3856 limits->max_sectors--;
3857 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3858 }
3859 }
3860
3861 /*
3862 * If the system-determined stacked limits are compatible with the
3863 * pool's blocksize (io_opt is a factor) do not override them.
3864 */
3865 if (io_opt_sectors < pool->sectors_per_block ||
3866 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3867 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3868 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3869 else
3870 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3871 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3872 }
3873
3874 /*
3875 * pt->adjusted_pf is a staging area for the actual features to use.
3876 * They get transferred to the live pool in bind_control_target()
3877 * called from pool_preresume().
3878 */
3879 if (!pt->adjusted_pf.discard_enabled) {
3880 /*
3881 * Must explicitly disallow stacking discard limits otherwise the
3882 * block layer will stack them if pool's data device has support.
3883 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3884 * user to see that, so make sure to set all discard limits to 0.
3885 */
3886 limits->discard_granularity = 0;
3887 return;
3888 }
3889
3890 disable_passdown_if_not_supported(pt);
3891
3892 /*
3893 * The pool uses the same discard limits as the underlying data
3894 * device. DM core has already set this up.
3895 */
3896 }
3897
3898 static struct target_type pool_target = {
3899 .name = "thin-pool",
3900 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3901 DM_TARGET_IMMUTABLE,
3902 .version = {1, 18, 0},
3903 .module = THIS_MODULE,
3904 .ctr = pool_ctr,
3905 .dtr = pool_dtr,
3906 .map = pool_map,
3907 .presuspend = pool_presuspend,
3908 .presuspend_undo = pool_presuspend_undo,
3909 .postsuspend = pool_postsuspend,
3910 .preresume = pool_preresume,
3911 .resume = pool_resume,
3912 .message = pool_message,
3913 .status = pool_status,
3914 .iterate_devices = pool_iterate_devices,
3915 .io_hints = pool_io_hints,
3916 };
3917
3918 /*----------------------------------------------------------------
3919 * Thin target methods
3920 *--------------------------------------------------------------*/
3921 static void thin_get(struct thin_c *tc)
3922 {
3923 atomic_inc(&tc->refcount);
3924 }
3925
3926 static void thin_put(struct thin_c *tc)
3927 {
3928 if (atomic_dec_and_test(&tc->refcount))
3929 complete(&tc->can_destroy);
3930 }
3931
3932 static void thin_dtr(struct dm_target *ti)
3933 {
3934 struct thin_c *tc = ti->private;
3935 unsigned long flags;
3936
3937 spin_lock_irqsave(&tc->pool->lock, flags);
3938 list_del_rcu(&tc->list);
3939 spin_unlock_irqrestore(&tc->pool->lock, flags);
3940 synchronize_rcu();
3941
3942 thin_put(tc);
3943 wait_for_completion(&tc->can_destroy);
3944
3945 mutex_lock(&dm_thin_pool_table.mutex);
3946
3947 __pool_dec(tc->pool);
3948 dm_pool_close_thin_device(tc->td);
3949 dm_put_device(ti, tc->pool_dev);
3950 if (tc->origin_dev)
3951 dm_put_device(ti, tc->origin_dev);
3952 kfree(tc);
3953
3954 mutex_unlock(&dm_thin_pool_table.mutex);
3955 }
3956
3957 /*
3958 * Thin target parameters:
3959 *
3960 * <pool_dev> <dev_id> [origin_dev]
3961 *
3962 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3963 * dev_id: the internal device identifier
3964 * origin_dev: a device external to the pool that should act as the origin
3965 *
3966 * If the pool device has discards disabled, they get disabled for the thin
3967 * device as well.
3968 */
3969 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3970 {
3971 int r;
3972 struct thin_c *tc;
3973 struct dm_dev *pool_dev, *origin_dev;
3974 struct mapped_device *pool_md;
3975 unsigned long flags;
3976
3977 mutex_lock(&dm_thin_pool_table.mutex);
3978
3979 if (argc != 2 && argc != 3) {
3980 ti->error = "Invalid argument count";
3981 r = -EINVAL;
3982 goto out_unlock;
3983 }
3984
3985 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3986 if (!tc) {
3987 ti->error = "Out of memory";
3988 r = -ENOMEM;
3989 goto out_unlock;
3990 }
3991 tc->thin_md = dm_table_get_md(ti->table);
3992 spin_lock_init(&tc->lock);
3993 INIT_LIST_HEAD(&tc->deferred_cells);
3994 bio_list_init(&tc->deferred_bio_list);
3995 bio_list_init(&tc->retry_on_resume_list);
3996 tc->sort_bio_list = RB_ROOT;
3997
3998 if (argc == 3) {
3999 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4000 if (r) {
4001 ti->error = "Error opening origin device";
4002 goto bad_origin_dev;
4003 }
4004 tc->origin_dev = origin_dev;
4005 }
4006
4007 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4008 if (r) {
4009 ti->error = "Error opening pool device";
4010 goto bad_pool_dev;
4011 }
4012 tc->pool_dev = pool_dev;
4013
4014 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4015 ti->error = "Invalid device id";
4016 r = -EINVAL;
4017 goto bad_common;
4018 }
4019
4020 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4021 if (!pool_md) {
4022 ti->error = "Couldn't get pool mapped device";
4023 r = -EINVAL;
4024 goto bad_common;
4025 }
4026
4027 tc->pool = __pool_table_lookup(pool_md);
4028 if (!tc->pool) {
4029 ti->error = "Couldn't find pool object";
4030 r = -EINVAL;
4031 goto bad_pool_lookup;
4032 }
4033 __pool_inc(tc->pool);
4034
4035 if (get_pool_mode(tc->pool) == PM_FAIL) {
4036 ti->error = "Couldn't open thin device, Pool is in fail mode";
4037 r = -EINVAL;
4038 goto bad_pool;
4039 }
4040
4041 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4042 if (r) {
4043 ti->error = "Couldn't open thin internal device";
4044 goto bad_pool;
4045 }
4046
4047 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4048 if (r)
4049 goto bad;
4050
4051 ti->num_flush_bios = 1;
4052 ti->flush_supported = true;
4053 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4054
4055 /* In case the pool supports discards, pass them on. */
4056 ti->discard_zeroes_data_unsupported = true;
4057 if (tc->pool->pf.discard_enabled) {
4058 ti->discards_supported = true;
4059 ti->num_discard_bios = 1;
4060 ti->split_discard_bios = false;
4061 }
4062
4063 mutex_unlock(&dm_thin_pool_table.mutex);
4064
4065 spin_lock_irqsave(&tc->pool->lock, flags);
4066 if (tc->pool->suspended) {
4067 spin_unlock_irqrestore(&tc->pool->lock, flags);
4068 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4069 ti->error = "Unable to activate thin device while pool is suspended";
4070 r = -EINVAL;
4071 goto bad;
4072 }
4073 atomic_set(&tc->refcount, 1);
4074 init_completion(&tc->can_destroy);
4075 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4076 spin_unlock_irqrestore(&tc->pool->lock, flags);
4077 /*
4078 * This synchronize_rcu() call is needed here otherwise we risk a
4079 * wake_worker() call finding no bios to process (because the newly
4080 * added tc isn't yet visible). So this reduces latency since we
4081 * aren't then dependent on the periodic commit to wake_worker().
4082 */
4083 synchronize_rcu();
4084
4085 dm_put(pool_md);
4086
4087 return 0;
4088
4089 bad:
4090 dm_pool_close_thin_device(tc->td);
4091 bad_pool:
4092 __pool_dec(tc->pool);
4093 bad_pool_lookup:
4094 dm_put(pool_md);
4095 bad_common:
4096 dm_put_device(ti, tc->pool_dev);
4097 bad_pool_dev:
4098 if (tc->origin_dev)
4099 dm_put_device(ti, tc->origin_dev);
4100 bad_origin_dev:
4101 kfree(tc);
4102 out_unlock:
4103 mutex_unlock(&dm_thin_pool_table.mutex);
4104
4105 return r;
4106 }
4107
4108 static int thin_map(struct dm_target *ti, struct bio *bio)
4109 {
4110 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4111
4112 return thin_bio_map(ti, bio);
4113 }
4114
4115 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4116 {
4117 unsigned long flags;
4118 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4119 struct list_head work;
4120 struct dm_thin_new_mapping *m, *tmp;
4121 struct pool *pool = h->tc->pool;
4122
4123 if (h->shared_read_entry) {
4124 INIT_LIST_HEAD(&work);
4125 dm_deferred_entry_dec(h->shared_read_entry, &work);
4126
4127 spin_lock_irqsave(&pool->lock, flags);
4128 list_for_each_entry_safe(m, tmp, &work, list) {
4129 list_del(&m->list);
4130 __complete_mapping_preparation(m);
4131 }
4132 spin_unlock_irqrestore(&pool->lock, flags);
4133 }
4134
4135 if (h->all_io_entry) {
4136 INIT_LIST_HEAD(&work);
4137 dm_deferred_entry_dec(h->all_io_entry, &work);
4138 if (!list_empty(&work)) {
4139 spin_lock_irqsave(&pool->lock, flags);
4140 list_for_each_entry_safe(m, tmp, &work, list)
4141 list_add_tail(&m->list, &pool->prepared_discards);
4142 spin_unlock_irqrestore(&pool->lock, flags);
4143 wake_worker(pool);
4144 }
4145 }
4146
4147 if (h->cell)
4148 cell_defer_no_holder(h->tc, h->cell);
4149
4150 return 0;
4151 }
4152
4153 static void thin_presuspend(struct dm_target *ti)
4154 {
4155 struct thin_c *tc = ti->private;
4156
4157 if (dm_noflush_suspending(ti))
4158 noflush_work(tc, do_noflush_start);
4159 }
4160
4161 static void thin_postsuspend(struct dm_target *ti)
4162 {
4163 struct thin_c *tc = ti->private;
4164
4165 /*
4166 * The dm_noflush_suspending flag has been cleared by now, so
4167 * unfortunately we must always run this.
4168 */
4169 noflush_work(tc, do_noflush_stop);
4170 }
4171
4172 static int thin_preresume(struct dm_target *ti)
4173 {
4174 struct thin_c *tc = ti->private;
4175
4176 if (tc->origin_dev)
4177 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4178
4179 return 0;
4180 }
4181
4182 /*
4183 * <nr mapped sectors> <highest mapped sector>
4184 */
4185 static void thin_status(struct dm_target *ti, status_type_t type,
4186 unsigned status_flags, char *result, unsigned maxlen)
4187 {
4188 int r;
4189 ssize_t sz = 0;
4190 dm_block_t mapped, highest;
4191 char buf[BDEVNAME_SIZE];
4192 struct thin_c *tc = ti->private;
4193
4194 if (get_pool_mode(tc->pool) == PM_FAIL) {
4195 DMEMIT("Fail");
4196 return;
4197 }
4198
4199 if (!tc->td)
4200 DMEMIT("-");
4201 else {
4202 switch (type) {
4203 case STATUSTYPE_INFO:
4204 r = dm_thin_get_mapped_count(tc->td, &mapped);
4205 if (r) {
4206 DMERR("dm_thin_get_mapped_count returned %d", r);
4207 goto err;
4208 }
4209
4210 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4211 if (r < 0) {
4212 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4213 goto err;
4214 }
4215
4216 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4217 if (r)
4218 DMEMIT("%llu", ((highest + 1) *
4219 tc->pool->sectors_per_block) - 1);
4220 else
4221 DMEMIT("-");
4222 break;
4223
4224 case STATUSTYPE_TABLE:
4225 DMEMIT("%s %lu",
4226 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4227 (unsigned long) tc->dev_id);
4228 if (tc->origin_dev)
4229 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4230 break;
4231 }
4232 }
4233
4234 return;
4235
4236 err:
4237 DMEMIT("Error");
4238 }
4239
4240 static int thin_iterate_devices(struct dm_target *ti,
4241 iterate_devices_callout_fn fn, void *data)
4242 {
4243 sector_t blocks;
4244 struct thin_c *tc = ti->private;
4245 struct pool *pool = tc->pool;
4246
4247 /*
4248 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4249 * we follow a more convoluted path through to the pool's target.
4250 */
4251 if (!pool->ti)
4252 return 0; /* nothing is bound */
4253
4254 blocks = pool->ti->len;
4255 (void) sector_div(blocks, pool->sectors_per_block);
4256 if (blocks)
4257 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4258
4259 return 0;
4260 }
4261
4262 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4263 {
4264 struct thin_c *tc = ti->private;
4265 struct pool *pool = tc->pool;
4266
4267 if (!pool->pf.discard_enabled)
4268 return;
4269
4270 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4271 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4272 }
4273
4274 static struct target_type thin_target = {
4275 .name = "thin",
4276 .version = {1, 18, 0},
4277 .module = THIS_MODULE,
4278 .ctr = thin_ctr,
4279 .dtr = thin_dtr,
4280 .map = thin_map,
4281 .end_io = thin_endio,
4282 .preresume = thin_preresume,
4283 .presuspend = thin_presuspend,
4284 .postsuspend = thin_postsuspend,
4285 .status = thin_status,
4286 .iterate_devices = thin_iterate_devices,
4287 .io_hints = thin_io_hints,
4288 };
4289
4290 /*----------------------------------------------------------------*/
4291
4292 static int __init dm_thin_init(void)
4293 {
4294 int r;
4295
4296 pool_table_init();
4297
4298 r = dm_register_target(&thin_target);
4299 if (r)
4300 return r;
4301
4302 r = dm_register_target(&pool_target);
4303 if (r)
4304 goto bad_pool_target;
4305
4306 r = -ENOMEM;
4307
4308 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4309 if (!_new_mapping_cache)
4310 goto bad_new_mapping_cache;
4311
4312 return 0;
4313
4314 bad_new_mapping_cache:
4315 dm_unregister_target(&pool_target);
4316 bad_pool_target:
4317 dm_unregister_target(&thin_target);
4318
4319 return r;
4320 }
4321
4322 static void dm_thin_exit(void)
4323 {
4324 dm_unregister_target(&thin_target);
4325 dm_unregister_target(&pool_target);
4326
4327 kmem_cache_destroy(_new_mapping_cache);
4328 }
4329
4330 module_init(dm_thin_init);
4331 module_exit(dm_thin_exit);
4332
4333 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4334 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4335
4336 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4337 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4338 MODULE_LICENSE("GPL");
This page took 0.112796 seconds and 6 git commands to generate.