[IA64] pvops: preparation: introduce ia64_get_psr_i() to make kernel paravirtualizati...
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <linux/smp_lock.h>
25
26 #define DM_MSG_PREFIX "core"
27
28 static const char *_name = DM_NAME;
29
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35 * One of these is allocated per bio.
36 */
37 struct dm_io {
38 struct mapped_device *md;
39 int error;
40 struct bio *bio;
41 atomic_t io_count;
42 unsigned long start_time;
43 };
44
45 /*
46 * One of these is allocated per target within a bio. Hopefully
47 * this will be simplified out one day.
48 */
49 struct dm_target_io {
50 struct dm_io *io;
51 struct dm_target *ti;
52 union map_info info;
53 };
54
55 union map_info *dm_get_mapinfo(struct bio *bio)
56 {
57 if (bio && bio->bi_private)
58 return &((struct dm_target_io *)bio->bi_private)->info;
59 return NULL;
60 }
61
62 #define MINOR_ALLOCED ((void *)-1)
63
64 /*
65 * Bits for the md->flags field.
66 */
67 #define DMF_BLOCK_IO 0
68 #define DMF_SUSPENDED 1
69 #define DMF_FROZEN 2
70 #define DMF_FREEING 3
71 #define DMF_DELETING 4
72 #define DMF_NOFLUSH_SUSPENDING 5
73
74 /*
75 * Work processed by per-device workqueue.
76 */
77 struct dm_wq_req {
78 enum {
79 DM_WQ_FLUSH_ALL,
80 DM_WQ_FLUSH_DEFERRED,
81 } type;
82 struct work_struct work;
83 struct mapped_device *md;
84 void *context;
85 };
86
87 struct mapped_device {
88 struct rw_semaphore io_lock;
89 struct mutex suspend_lock;
90 spinlock_t pushback_lock;
91 rwlock_t map_lock;
92 atomic_t holders;
93 atomic_t open_count;
94
95 unsigned long flags;
96
97 struct request_queue *queue;
98 struct gendisk *disk;
99 char name[16];
100
101 void *interface_ptr;
102
103 /*
104 * A list of ios that arrived while we were suspended.
105 */
106 atomic_t pending;
107 wait_queue_head_t wait;
108 struct bio_list deferred;
109 struct bio_list pushback;
110
111 /*
112 * Processing queue (flush/barriers)
113 */
114 struct workqueue_struct *wq;
115
116 /*
117 * The current mapping.
118 */
119 struct dm_table *map;
120
121 /*
122 * io objects are allocated from here.
123 */
124 mempool_t *io_pool;
125 mempool_t *tio_pool;
126
127 struct bio_set *bs;
128
129 /*
130 * Event handling.
131 */
132 atomic_t event_nr;
133 wait_queue_head_t eventq;
134 atomic_t uevent_seq;
135 struct list_head uevent_list;
136 spinlock_t uevent_lock; /* Protect access to uevent_list */
137
138 /*
139 * freeze/thaw support require holding onto a super block
140 */
141 struct super_block *frozen_sb;
142 struct block_device *suspended_bdev;
143
144 /* forced geometry settings */
145 struct hd_geometry geometry;
146 };
147
148 #define MIN_IOS 256
149 static struct kmem_cache *_io_cache;
150 static struct kmem_cache *_tio_cache;
151
152 static int __init local_init(void)
153 {
154 int r;
155
156 /* allocate a slab for the dm_ios */
157 _io_cache = KMEM_CACHE(dm_io, 0);
158 if (!_io_cache)
159 return -ENOMEM;
160
161 /* allocate a slab for the target ios */
162 _tio_cache = KMEM_CACHE(dm_target_io, 0);
163 if (!_tio_cache) {
164 kmem_cache_destroy(_io_cache);
165 return -ENOMEM;
166 }
167
168 r = dm_uevent_init();
169 if (r) {
170 kmem_cache_destroy(_tio_cache);
171 kmem_cache_destroy(_io_cache);
172 return r;
173 }
174
175 _major = major;
176 r = register_blkdev(_major, _name);
177 if (r < 0) {
178 kmem_cache_destroy(_tio_cache);
179 kmem_cache_destroy(_io_cache);
180 dm_uevent_exit();
181 return r;
182 }
183
184 if (!_major)
185 _major = r;
186
187 return 0;
188 }
189
190 static void local_exit(void)
191 {
192 kmem_cache_destroy(_tio_cache);
193 kmem_cache_destroy(_io_cache);
194 unregister_blkdev(_major, _name);
195 dm_uevent_exit();
196
197 _major = 0;
198
199 DMINFO("cleaned up");
200 }
201
202 static int (*_inits[])(void) __initdata = {
203 local_init,
204 dm_target_init,
205 dm_linear_init,
206 dm_stripe_init,
207 dm_kcopyd_init,
208 dm_interface_init,
209 };
210
211 static void (*_exits[])(void) = {
212 local_exit,
213 dm_target_exit,
214 dm_linear_exit,
215 dm_stripe_exit,
216 dm_kcopyd_exit,
217 dm_interface_exit,
218 };
219
220 static int __init dm_init(void)
221 {
222 const int count = ARRAY_SIZE(_inits);
223
224 int r, i;
225
226 for (i = 0; i < count; i++) {
227 r = _inits[i]();
228 if (r)
229 goto bad;
230 }
231
232 return 0;
233
234 bad:
235 while (i--)
236 _exits[i]();
237
238 return r;
239 }
240
241 static void __exit dm_exit(void)
242 {
243 int i = ARRAY_SIZE(_exits);
244
245 while (i--)
246 _exits[i]();
247 }
248
249 /*
250 * Block device functions
251 */
252 static int dm_blk_open(struct inode *inode, struct file *file)
253 {
254 struct mapped_device *md;
255
256 spin_lock(&_minor_lock);
257
258 md = inode->i_bdev->bd_disk->private_data;
259 if (!md)
260 goto out;
261
262 if (test_bit(DMF_FREEING, &md->flags) ||
263 test_bit(DMF_DELETING, &md->flags)) {
264 md = NULL;
265 goto out;
266 }
267
268 dm_get(md);
269 atomic_inc(&md->open_count);
270
271 out:
272 spin_unlock(&_minor_lock);
273
274 return md ? 0 : -ENXIO;
275 }
276
277 static int dm_blk_close(struct inode *inode, struct file *file)
278 {
279 struct mapped_device *md;
280
281 md = inode->i_bdev->bd_disk->private_data;
282 atomic_dec(&md->open_count);
283 dm_put(md);
284 return 0;
285 }
286
287 int dm_open_count(struct mapped_device *md)
288 {
289 return atomic_read(&md->open_count);
290 }
291
292 /*
293 * Guarantees nothing is using the device before it's deleted.
294 */
295 int dm_lock_for_deletion(struct mapped_device *md)
296 {
297 int r = 0;
298
299 spin_lock(&_minor_lock);
300
301 if (dm_open_count(md))
302 r = -EBUSY;
303 else
304 set_bit(DMF_DELETING, &md->flags);
305
306 spin_unlock(&_minor_lock);
307
308 return r;
309 }
310
311 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
312 {
313 struct mapped_device *md = bdev->bd_disk->private_data;
314
315 return dm_get_geometry(md, geo);
316 }
317
318 static int dm_blk_ioctl(struct inode *inode, struct file *file,
319 unsigned int cmd, unsigned long arg)
320 {
321 struct mapped_device *md;
322 struct dm_table *map;
323 struct dm_target *tgt;
324 int r = -ENOTTY;
325
326 /* We don't really need this lock, but we do need 'inode'. */
327 unlock_kernel();
328
329 md = inode->i_bdev->bd_disk->private_data;
330
331 map = dm_get_table(md);
332
333 if (!map || !dm_table_get_size(map))
334 goto out;
335
336 /* We only support devices that have a single target */
337 if (dm_table_get_num_targets(map) != 1)
338 goto out;
339
340 tgt = dm_table_get_target(map, 0);
341
342 if (dm_suspended(md)) {
343 r = -EAGAIN;
344 goto out;
345 }
346
347 if (tgt->type->ioctl)
348 r = tgt->type->ioctl(tgt, inode, file, cmd, arg);
349
350 out:
351 dm_table_put(map);
352
353 lock_kernel();
354 return r;
355 }
356
357 static struct dm_io *alloc_io(struct mapped_device *md)
358 {
359 return mempool_alloc(md->io_pool, GFP_NOIO);
360 }
361
362 static void free_io(struct mapped_device *md, struct dm_io *io)
363 {
364 mempool_free(io, md->io_pool);
365 }
366
367 static struct dm_target_io *alloc_tio(struct mapped_device *md)
368 {
369 return mempool_alloc(md->tio_pool, GFP_NOIO);
370 }
371
372 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
373 {
374 mempool_free(tio, md->tio_pool);
375 }
376
377 static void start_io_acct(struct dm_io *io)
378 {
379 struct mapped_device *md = io->md;
380
381 io->start_time = jiffies;
382
383 preempt_disable();
384 disk_round_stats(dm_disk(md));
385 preempt_enable();
386 dm_disk(md)->in_flight = atomic_inc_return(&md->pending);
387 }
388
389 static int end_io_acct(struct dm_io *io)
390 {
391 struct mapped_device *md = io->md;
392 struct bio *bio = io->bio;
393 unsigned long duration = jiffies - io->start_time;
394 int pending;
395 int rw = bio_data_dir(bio);
396
397 preempt_disable();
398 disk_round_stats(dm_disk(md));
399 preempt_enable();
400 dm_disk(md)->in_flight = pending = atomic_dec_return(&md->pending);
401
402 disk_stat_add(dm_disk(md), ticks[rw], duration);
403
404 return !pending;
405 }
406
407 /*
408 * Add the bio to the list of deferred io.
409 */
410 static int queue_io(struct mapped_device *md, struct bio *bio)
411 {
412 down_write(&md->io_lock);
413
414 if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
415 up_write(&md->io_lock);
416 return 1;
417 }
418
419 bio_list_add(&md->deferred, bio);
420
421 up_write(&md->io_lock);
422 return 0; /* deferred successfully */
423 }
424
425 /*
426 * Everyone (including functions in this file), should use this
427 * function to access the md->map field, and make sure they call
428 * dm_table_put() when finished.
429 */
430 struct dm_table *dm_get_table(struct mapped_device *md)
431 {
432 struct dm_table *t;
433
434 read_lock(&md->map_lock);
435 t = md->map;
436 if (t)
437 dm_table_get(t);
438 read_unlock(&md->map_lock);
439
440 return t;
441 }
442
443 /*
444 * Get the geometry associated with a dm device
445 */
446 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
447 {
448 *geo = md->geometry;
449
450 return 0;
451 }
452
453 /*
454 * Set the geometry of a device.
455 */
456 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
457 {
458 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
459
460 if (geo->start > sz) {
461 DMWARN("Start sector is beyond the geometry limits.");
462 return -EINVAL;
463 }
464
465 md->geometry = *geo;
466
467 return 0;
468 }
469
470 /*-----------------------------------------------------------------
471 * CRUD START:
472 * A more elegant soln is in the works that uses the queue
473 * merge fn, unfortunately there are a couple of changes to
474 * the block layer that I want to make for this. So in the
475 * interests of getting something for people to use I give
476 * you this clearly demarcated crap.
477 *---------------------------------------------------------------*/
478
479 static int __noflush_suspending(struct mapped_device *md)
480 {
481 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
482 }
483
484 /*
485 * Decrements the number of outstanding ios that a bio has been
486 * cloned into, completing the original io if necc.
487 */
488 static void dec_pending(struct dm_io *io, int error)
489 {
490 unsigned long flags;
491
492 /* Push-back supersedes any I/O errors */
493 if (error && !(io->error > 0 && __noflush_suspending(io->md)))
494 io->error = error;
495
496 if (atomic_dec_and_test(&io->io_count)) {
497 if (io->error == DM_ENDIO_REQUEUE) {
498 /*
499 * Target requested pushing back the I/O.
500 * This must be handled before the sleeper on
501 * suspend queue merges the pushback list.
502 */
503 spin_lock_irqsave(&io->md->pushback_lock, flags);
504 if (__noflush_suspending(io->md))
505 bio_list_add(&io->md->pushback, io->bio);
506 else
507 /* noflush suspend was interrupted. */
508 io->error = -EIO;
509 spin_unlock_irqrestore(&io->md->pushback_lock, flags);
510 }
511
512 if (end_io_acct(io))
513 /* nudge anyone waiting on suspend queue */
514 wake_up(&io->md->wait);
515
516 if (io->error != DM_ENDIO_REQUEUE) {
517 blk_add_trace_bio(io->md->queue, io->bio,
518 BLK_TA_COMPLETE);
519
520 bio_endio(io->bio, io->error);
521 }
522
523 free_io(io->md, io);
524 }
525 }
526
527 static void clone_endio(struct bio *bio, int error)
528 {
529 int r = 0;
530 struct dm_target_io *tio = bio->bi_private;
531 struct mapped_device *md = tio->io->md;
532 dm_endio_fn endio = tio->ti->type->end_io;
533
534 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
535 error = -EIO;
536
537 if (endio) {
538 r = endio(tio->ti, bio, error, &tio->info);
539 if (r < 0 || r == DM_ENDIO_REQUEUE)
540 /*
541 * error and requeue request are handled
542 * in dec_pending().
543 */
544 error = r;
545 else if (r == DM_ENDIO_INCOMPLETE)
546 /* The target will handle the io */
547 return;
548 else if (r) {
549 DMWARN("unimplemented target endio return value: %d", r);
550 BUG();
551 }
552 }
553
554 dec_pending(tio->io, error);
555
556 /*
557 * Store md for cleanup instead of tio which is about to get freed.
558 */
559 bio->bi_private = md->bs;
560
561 bio_put(bio);
562 free_tio(md, tio);
563 }
564
565 static sector_t max_io_len(struct mapped_device *md,
566 sector_t sector, struct dm_target *ti)
567 {
568 sector_t offset = sector - ti->begin;
569 sector_t len = ti->len - offset;
570
571 /*
572 * Does the target need to split even further ?
573 */
574 if (ti->split_io) {
575 sector_t boundary;
576 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
577 - offset;
578 if (len > boundary)
579 len = boundary;
580 }
581
582 return len;
583 }
584
585 static void __map_bio(struct dm_target *ti, struct bio *clone,
586 struct dm_target_io *tio)
587 {
588 int r;
589 sector_t sector;
590 struct mapped_device *md;
591
592 /*
593 * Sanity checks.
594 */
595 BUG_ON(!clone->bi_size);
596
597 clone->bi_end_io = clone_endio;
598 clone->bi_private = tio;
599
600 /*
601 * Map the clone. If r == 0 we don't need to do
602 * anything, the target has assumed ownership of
603 * this io.
604 */
605 atomic_inc(&tio->io->io_count);
606 sector = clone->bi_sector;
607 r = ti->type->map(ti, clone, &tio->info);
608 if (r == DM_MAPIO_REMAPPED) {
609 /* the bio has been remapped so dispatch it */
610
611 blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone,
612 tio->io->bio->bi_bdev->bd_dev,
613 clone->bi_sector, sector);
614
615 generic_make_request(clone);
616 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
617 /* error the io and bail out, or requeue it if needed */
618 md = tio->io->md;
619 dec_pending(tio->io, r);
620 /*
621 * Store bio_set for cleanup.
622 */
623 clone->bi_private = md->bs;
624 bio_put(clone);
625 free_tio(md, tio);
626 } else if (r) {
627 DMWARN("unimplemented target map return value: %d", r);
628 BUG();
629 }
630 }
631
632 struct clone_info {
633 struct mapped_device *md;
634 struct dm_table *map;
635 struct bio *bio;
636 struct dm_io *io;
637 sector_t sector;
638 sector_t sector_count;
639 unsigned short idx;
640 };
641
642 static void dm_bio_destructor(struct bio *bio)
643 {
644 struct bio_set *bs = bio->bi_private;
645
646 bio_free(bio, bs);
647 }
648
649 /*
650 * Creates a little bio that is just does part of a bvec.
651 */
652 static struct bio *split_bvec(struct bio *bio, sector_t sector,
653 unsigned short idx, unsigned int offset,
654 unsigned int len, struct bio_set *bs)
655 {
656 struct bio *clone;
657 struct bio_vec *bv = bio->bi_io_vec + idx;
658
659 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
660 clone->bi_destructor = dm_bio_destructor;
661 *clone->bi_io_vec = *bv;
662
663 clone->bi_sector = sector;
664 clone->bi_bdev = bio->bi_bdev;
665 clone->bi_rw = bio->bi_rw;
666 clone->bi_vcnt = 1;
667 clone->bi_size = to_bytes(len);
668 clone->bi_io_vec->bv_offset = offset;
669 clone->bi_io_vec->bv_len = clone->bi_size;
670
671 return clone;
672 }
673
674 /*
675 * Creates a bio that consists of range of complete bvecs.
676 */
677 static struct bio *clone_bio(struct bio *bio, sector_t sector,
678 unsigned short idx, unsigned short bv_count,
679 unsigned int len, struct bio_set *bs)
680 {
681 struct bio *clone;
682
683 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
684 __bio_clone(clone, bio);
685 clone->bi_destructor = dm_bio_destructor;
686 clone->bi_sector = sector;
687 clone->bi_idx = idx;
688 clone->bi_vcnt = idx + bv_count;
689 clone->bi_size = to_bytes(len);
690 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
691
692 return clone;
693 }
694
695 static int __clone_and_map(struct clone_info *ci)
696 {
697 struct bio *clone, *bio = ci->bio;
698 struct dm_target *ti;
699 sector_t len = 0, max;
700 struct dm_target_io *tio;
701
702 ti = dm_table_find_target(ci->map, ci->sector);
703 if (!dm_target_is_valid(ti))
704 return -EIO;
705
706 max = max_io_len(ci->md, ci->sector, ti);
707
708 /*
709 * Allocate a target io object.
710 */
711 tio = alloc_tio(ci->md);
712 tio->io = ci->io;
713 tio->ti = ti;
714 memset(&tio->info, 0, sizeof(tio->info));
715
716 if (ci->sector_count <= max) {
717 /*
718 * Optimise for the simple case where we can do all of
719 * the remaining io with a single clone.
720 */
721 clone = clone_bio(bio, ci->sector, ci->idx,
722 bio->bi_vcnt - ci->idx, ci->sector_count,
723 ci->md->bs);
724 __map_bio(ti, clone, tio);
725 ci->sector_count = 0;
726
727 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
728 /*
729 * There are some bvecs that don't span targets.
730 * Do as many of these as possible.
731 */
732 int i;
733 sector_t remaining = max;
734 sector_t bv_len;
735
736 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
737 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
738
739 if (bv_len > remaining)
740 break;
741
742 remaining -= bv_len;
743 len += bv_len;
744 }
745
746 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
747 ci->md->bs);
748 __map_bio(ti, clone, tio);
749
750 ci->sector += len;
751 ci->sector_count -= len;
752 ci->idx = i;
753
754 } else {
755 /*
756 * Handle a bvec that must be split between two or more targets.
757 */
758 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
759 sector_t remaining = to_sector(bv->bv_len);
760 unsigned int offset = 0;
761
762 do {
763 if (offset) {
764 ti = dm_table_find_target(ci->map, ci->sector);
765 if (!dm_target_is_valid(ti))
766 return -EIO;
767
768 max = max_io_len(ci->md, ci->sector, ti);
769
770 tio = alloc_tio(ci->md);
771 tio->io = ci->io;
772 tio->ti = ti;
773 memset(&tio->info, 0, sizeof(tio->info));
774 }
775
776 len = min(remaining, max);
777
778 clone = split_bvec(bio, ci->sector, ci->idx,
779 bv->bv_offset + offset, len,
780 ci->md->bs);
781
782 __map_bio(ti, clone, tio);
783
784 ci->sector += len;
785 ci->sector_count -= len;
786 offset += to_bytes(len);
787 } while (remaining -= len);
788
789 ci->idx++;
790 }
791
792 return 0;
793 }
794
795 /*
796 * Split the bio into several clones.
797 */
798 static int __split_bio(struct mapped_device *md, struct bio *bio)
799 {
800 struct clone_info ci;
801 int error = 0;
802
803 ci.map = dm_get_table(md);
804 if (unlikely(!ci.map))
805 return -EIO;
806
807 ci.md = md;
808 ci.bio = bio;
809 ci.io = alloc_io(md);
810 ci.io->error = 0;
811 atomic_set(&ci.io->io_count, 1);
812 ci.io->bio = bio;
813 ci.io->md = md;
814 ci.sector = bio->bi_sector;
815 ci.sector_count = bio_sectors(bio);
816 ci.idx = bio->bi_idx;
817
818 start_io_acct(ci.io);
819 while (ci.sector_count && !error)
820 error = __clone_and_map(&ci);
821
822 /* drop the extra reference count */
823 dec_pending(ci.io, error);
824 dm_table_put(ci.map);
825
826 return 0;
827 }
828 /*-----------------------------------------------------------------
829 * CRUD END
830 *---------------------------------------------------------------*/
831
832 /*
833 * The request function that just remaps the bio built up by
834 * dm_merge_bvec.
835 */
836 static int dm_request(struct request_queue *q, struct bio *bio)
837 {
838 int r = -EIO;
839 int rw = bio_data_dir(bio);
840 struct mapped_device *md = q->queuedata;
841
842 /*
843 * There is no use in forwarding any barrier request since we can't
844 * guarantee it is (or can be) handled by the targets correctly.
845 */
846 if (unlikely(bio_barrier(bio))) {
847 bio_endio(bio, -EOPNOTSUPP);
848 return 0;
849 }
850
851 down_read(&md->io_lock);
852
853 disk_stat_inc(dm_disk(md), ios[rw]);
854 disk_stat_add(dm_disk(md), sectors[rw], bio_sectors(bio));
855
856 /*
857 * If we're suspended we have to queue
858 * this io for later.
859 */
860 while (test_bit(DMF_BLOCK_IO, &md->flags)) {
861 up_read(&md->io_lock);
862
863 if (bio_rw(bio) != READA)
864 r = queue_io(md, bio);
865
866 if (r <= 0)
867 goto out_req;
868
869 /*
870 * We're in a while loop, because someone could suspend
871 * before we get to the following read lock.
872 */
873 down_read(&md->io_lock);
874 }
875
876 r = __split_bio(md, bio);
877 up_read(&md->io_lock);
878
879 out_req:
880 if (r < 0)
881 bio_io_error(bio);
882
883 return 0;
884 }
885
886 static void dm_unplug_all(struct request_queue *q)
887 {
888 struct mapped_device *md = q->queuedata;
889 struct dm_table *map = dm_get_table(md);
890
891 if (map) {
892 dm_table_unplug_all(map);
893 dm_table_put(map);
894 }
895 }
896
897 static int dm_any_congested(void *congested_data, int bdi_bits)
898 {
899 int r;
900 struct mapped_device *md = (struct mapped_device *) congested_data;
901 struct dm_table *map = dm_get_table(md);
902
903 if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
904 r = bdi_bits;
905 else
906 r = dm_table_any_congested(map, bdi_bits);
907
908 dm_table_put(map);
909 return r;
910 }
911
912 /*-----------------------------------------------------------------
913 * An IDR is used to keep track of allocated minor numbers.
914 *---------------------------------------------------------------*/
915 static DEFINE_IDR(_minor_idr);
916
917 static void free_minor(int minor)
918 {
919 spin_lock(&_minor_lock);
920 idr_remove(&_minor_idr, minor);
921 spin_unlock(&_minor_lock);
922 }
923
924 /*
925 * See if the device with a specific minor # is free.
926 */
927 static int specific_minor(int minor)
928 {
929 int r, m;
930
931 if (minor >= (1 << MINORBITS))
932 return -EINVAL;
933
934 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
935 if (!r)
936 return -ENOMEM;
937
938 spin_lock(&_minor_lock);
939
940 if (idr_find(&_minor_idr, minor)) {
941 r = -EBUSY;
942 goto out;
943 }
944
945 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
946 if (r)
947 goto out;
948
949 if (m != minor) {
950 idr_remove(&_minor_idr, m);
951 r = -EBUSY;
952 goto out;
953 }
954
955 out:
956 spin_unlock(&_minor_lock);
957 return r;
958 }
959
960 static int next_free_minor(int *minor)
961 {
962 int r, m;
963
964 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
965 if (!r)
966 return -ENOMEM;
967
968 spin_lock(&_minor_lock);
969
970 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
971 if (r)
972 goto out;
973
974 if (m >= (1 << MINORBITS)) {
975 idr_remove(&_minor_idr, m);
976 r = -ENOSPC;
977 goto out;
978 }
979
980 *minor = m;
981
982 out:
983 spin_unlock(&_minor_lock);
984 return r;
985 }
986
987 static struct block_device_operations dm_blk_dops;
988
989 /*
990 * Allocate and initialise a blank device with a given minor.
991 */
992 static struct mapped_device *alloc_dev(int minor)
993 {
994 int r;
995 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
996 void *old_md;
997
998 if (!md) {
999 DMWARN("unable to allocate device, out of memory.");
1000 return NULL;
1001 }
1002
1003 if (!try_module_get(THIS_MODULE))
1004 goto bad_module_get;
1005
1006 /* get a minor number for the dev */
1007 if (minor == DM_ANY_MINOR)
1008 r = next_free_minor(&minor);
1009 else
1010 r = specific_minor(minor);
1011 if (r < 0)
1012 goto bad_minor;
1013
1014 init_rwsem(&md->io_lock);
1015 mutex_init(&md->suspend_lock);
1016 spin_lock_init(&md->pushback_lock);
1017 rwlock_init(&md->map_lock);
1018 atomic_set(&md->holders, 1);
1019 atomic_set(&md->open_count, 0);
1020 atomic_set(&md->event_nr, 0);
1021 atomic_set(&md->uevent_seq, 0);
1022 INIT_LIST_HEAD(&md->uevent_list);
1023 spin_lock_init(&md->uevent_lock);
1024
1025 md->queue = blk_alloc_queue(GFP_KERNEL);
1026 if (!md->queue)
1027 goto bad_queue;
1028
1029 md->queue->queuedata = md;
1030 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1031 md->queue->backing_dev_info.congested_data = md;
1032 blk_queue_make_request(md->queue, dm_request);
1033 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1034 md->queue->unplug_fn = dm_unplug_all;
1035
1036 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1037 if (!md->io_pool)
1038 goto bad_io_pool;
1039
1040 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1041 if (!md->tio_pool)
1042 goto bad_tio_pool;
1043
1044 md->bs = bioset_create(16, 16);
1045 if (!md->bs)
1046 goto bad_no_bioset;
1047
1048 md->disk = alloc_disk(1);
1049 if (!md->disk)
1050 goto bad_disk;
1051
1052 atomic_set(&md->pending, 0);
1053 init_waitqueue_head(&md->wait);
1054 init_waitqueue_head(&md->eventq);
1055
1056 md->disk->major = _major;
1057 md->disk->first_minor = minor;
1058 md->disk->fops = &dm_blk_dops;
1059 md->disk->queue = md->queue;
1060 md->disk->private_data = md;
1061 sprintf(md->disk->disk_name, "dm-%d", minor);
1062 add_disk(md->disk);
1063 format_dev_t(md->name, MKDEV(_major, minor));
1064
1065 md->wq = create_singlethread_workqueue("kdmflush");
1066 if (!md->wq)
1067 goto bad_thread;
1068
1069 /* Populate the mapping, nobody knows we exist yet */
1070 spin_lock(&_minor_lock);
1071 old_md = idr_replace(&_minor_idr, md, minor);
1072 spin_unlock(&_minor_lock);
1073
1074 BUG_ON(old_md != MINOR_ALLOCED);
1075
1076 return md;
1077
1078 bad_thread:
1079 put_disk(md->disk);
1080 bad_disk:
1081 bioset_free(md->bs);
1082 bad_no_bioset:
1083 mempool_destroy(md->tio_pool);
1084 bad_tio_pool:
1085 mempool_destroy(md->io_pool);
1086 bad_io_pool:
1087 blk_cleanup_queue(md->queue);
1088 bad_queue:
1089 free_minor(minor);
1090 bad_minor:
1091 module_put(THIS_MODULE);
1092 bad_module_get:
1093 kfree(md);
1094 return NULL;
1095 }
1096
1097 static void unlock_fs(struct mapped_device *md);
1098
1099 static void free_dev(struct mapped_device *md)
1100 {
1101 int minor = md->disk->first_minor;
1102
1103 if (md->suspended_bdev) {
1104 unlock_fs(md);
1105 bdput(md->suspended_bdev);
1106 }
1107 destroy_workqueue(md->wq);
1108 mempool_destroy(md->tio_pool);
1109 mempool_destroy(md->io_pool);
1110 bioset_free(md->bs);
1111 del_gendisk(md->disk);
1112 free_minor(minor);
1113
1114 spin_lock(&_minor_lock);
1115 md->disk->private_data = NULL;
1116 spin_unlock(&_minor_lock);
1117
1118 put_disk(md->disk);
1119 blk_cleanup_queue(md->queue);
1120 module_put(THIS_MODULE);
1121 kfree(md);
1122 }
1123
1124 /*
1125 * Bind a table to the device.
1126 */
1127 static void event_callback(void *context)
1128 {
1129 unsigned long flags;
1130 LIST_HEAD(uevents);
1131 struct mapped_device *md = (struct mapped_device *) context;
1132
1133 spin_lock_irqsave(&md->uevent_lock, flags);
1134 list_splice_init(&md->uevent_list, &uevents);
1135 spin_unlock_irqrestore(&md->uevent_lock, flags);
1136
1137 dm_send_uevents(&uevents, &md->disk->dev.kobj);
1138
1139 atomic_inc(&md->event_nr);
1140 wake_up(&md->eventq);
1141 }
1142
1143 static void __set_size(struct mapped_device *md, sector_t size)
1144 {
1145 set_capacity(md->disk, size);
1146
1147 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1148 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1149 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1150 }
1151
1152 static int __bind(struct mapped_device *md, struct dm_table *t)
1153 {
1154 struct request_queue *q = md->queue;
1155 sector_t size;
1156
1157 size = dm_table_get_size(t);
1158
1159 /*
1160 * Wipe any geometry if the size of the table changed.
1161 */
1162 if (size != get_capacity(md->disk))
1163 memset(&md->geometry, 0, sizeof(md->geometry));
1164
1165 if (md->suspended_bdev)
1166 __set_size(md, size);
1167 if (size == 0)
1168 return 0;
1169
1170 dm_table_get(t);
1171 dm_table_event_callback(t, event_callback, md);
1172
1173 write_lock(&md->map_lock);
1174 md->map = t;
1175 dm_table_set_restrictions(t, q);
1176 write_unlock(&md->map_lock);
1177
1178 return 0;
1179 }
1180
1181 static void __unbind(struct mapped_device *md)
1182 {
1183 struct dm_table *map = md->map;
1184
1185 if (!map)
1186 return;
1187
1188 dm_table_event_callback(map, NULL, NULL);
1189 write_lock(&md->map_lock);
1190 md->map = NULL;
1191 write_unlock(&md->map_lock);
1192 dm_table_put(map);
1193 }
1194
1195 /*
1196 * Constructor for a new device.
1197 */
1198 int dm_create(int minor, struct mapped_device **result)
1199 {
1200 struct mapped_device *md;
1201
1202 md = alloc_dev(minor);
1203 if (!md)
1204 return -ENXIO;
1205
1206 *result = md;
1207 return 0;
1208 }
1209
1210 static struct mapped_device *dm_find_md(dev_t dev)
1211 {
1212 struct mapped_device *md;
1213 unsigned minor = MINOR(dev);
1214
1215 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1216 return NULL;
1217
1218 spin_lock(&_minor_lock);
1219
1220 md = idr_find(&_minor_idr, minor);
1221 if (md && (md == MINOR_ALLOCED ||
1222 (dm_disk(md)->first_minor != minor) ||
1223 test_bit(DMF_FREEING, &md->flags))) {
1224 md = NULL;
1225 goto out;
1226 }
1227
1228 out:
1229 spin_unlock(&_minor_lock);
1230
1231 return md;
1232 }
1233
1234 struct mapped_device *dm_get_md(dev_t dev)
1235 {
1236 struct mapped_device *md = dm_find_md(dev);
1237
1238 if (md)
1239 dm_get(md);
1240
1241 return md;
1242 }
1243
1244 void *dm_get_mdptr(struct mapped_device *md)
1245 {
1246 return md->interface_ptr;
1247 }
1248
1249 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1250 {
1251 md->interface_ptr = ptr;
1252 }
1253
1254 void dm_get(struct mapped_device *md)
1255 {
1256 atomic_inc(&md->holders);
1257 }
1258
1259 const char *dm_device_name(struct mapped_device *md)
1260 {
1261 return md->name;
1262 }
1263 EXPORT_SYMBOL_GPL(dm_device_name);
1264
1265 void dm_put(struct mapped_device *md)
1266 {
1267 struct dm_table *map;
1268
1269 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1270
1271 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1272 map = dm_get_table(md);
1273 idr_replace(&_minor_idr, MINOR_ALLOCED, dm_disk(md)->first_minor);
1274 set_bit(DMF_FREEING, &md->flags);
1275 spin_unlock(&_minor_lock);
1276 if (!dm_suspended(md)) {
1277 dm_table_presuspend_targets(map);
1278 dm_table_postsuspend_targets(map);
1279 }
1280 __unbind(md);
1281 dm_table_put(map);
1282 free_dev(md);
1283 }
1284 }
1285 EXPORT_SYMBOL_GPL(dm_put);
1286
1287 static int dm_wait_for_completion(struct mapped_device *md)
1288 {
1289 int r = 0;
1290
1291 while (1) {
1292 set_current_state(TASK_INTERRUPTIBLE);
1293
1294 smp_mb();
1295 if (!atomic_read(&md->pending))
1296 break;
1297
1298 if (signal_pending(current)) {
1299 r = -EINTR;
1300 break;
1301 }
1302
1303 io_schedule();
1304 }
1305 set_current_state(TASK_RUNNING);
1306
1307 return r;
1308 }
1309
1310 /*
1311 * Process the deferred bios
1312 */
1313 static void __flush_deferred_io(struct mapped_device *md)
1314 {
1315 struct bio *c;
1316
1317 while ((c = bio_list_pop(&md->deferred))) {
1318 if (__split_bio(md, c))
1319 bio_io_error(c);
1320 }
1321
1322 clear_bit(DMF_BLOCK_IO, &md->flags);
1323 }
1324
1325 static void __merge_pushback_list(struct mapped_device *md)
1326 {
1327 unsigned long flags;
1328
1329 spin_lock_irqsave(&md->pushback_lock, flags);
1330 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1331 bio_list_merge_head(&md->deferred, &md->pushback);
1332 bio_list_init(&md->pushback);
1333 spin_unlock_irqrestore(&md->pushback_lock, flags);
1334 }
1335
1336 static void dm_wq_work(struct work_struct *work)
1337 {
1338 struct dm_wq_req *req = container_of(work, struct dm_wq_req, work);
1339 struct mapped_device *md = req->md;
1340
1341 down_write(&md->io_lock);
1342 switch (req->type) {
1343 case DM_WQ_FLUSH_ALL:
1344 __merge_pushback_list(md);
1345 /* pass through */
1346 case DM_WQ_FLUSH_DEFERRED:
1347 __flush_deferred_io(md);
1348 break;
1349 default:
1350 DMERR("dm_wq_work: unrecognised work type %d", req->type);
1351 BUG();
1352 }
1353 up_write(&md->io_lock);
1354 }
1355
1356 static void dm_wq_queue(struct mapped_device *md, int type, void *context,
1357 struct dm_wq_req *req)
1358 {
1359 req->type = type;
1360 req->md = md;
1361 req->context = context;
1362 INIT_WORK(&req->work, dm_wq_work);
1363 queue_work(md->wq, &req->work);
1364 }
1365
1366 static void dm_queue_flush(struct mapped_device *md, int type, void *context)
1367 {
1368 struct dm_wq_req req;
1369
1370 dm_wq_queue(md, type, context, &req);
1371 flush_workqueue(md->wq);
1372 }
1373
1374 /*
1375 * Swap in a new table (destroying old one).
1376 */
1377 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1378 {
1379 int r = -EINVAL;
1380
1381 mutex_lock(&md->suspend_lock);
1382
1383 /* device must be suspended */
1384 if (!dm_suspended(md))
1385 goto out;
1386
1387 /* without bdev, the device size cannot be changed */
1388 if (!md->suspended_bdev)
1389 if (get_capacity(md->disk) != dm_table_get_size(table))
1390 goto out;
1391
1392 __unbind(md);
1393 r = __bind(md, table);
1394
1395 out:
1396 mutex_unlock(&md->suspend_lock);
1397 return r;
1398 }
1399
1400 /*
1401 * Functions to lock and unlock any filesystem running on the
1402 * device.
1403 */
1404 static int lock_fs(struct mapped_device *md)
1405 {
1406 int r;
1407
1408 WARN_ON(md->frozen_sb);
1409
1410 md->frozen_sb = freeze_bdev(md->suspended_bdev);
1411 if (IS_ERR(md->frozen_sb)) {
1412 r = PTR_ERR(md->frozen_sb);
1413 md->frozen_sb = NULL;
1414 return r;
1415 }
1416
1417 set_bit(DMF_FROZEN, &md->flags);
1418
1419 /* don't bdput right now, we don't want the bdev
1420 * to go away while it is locked.
1421 */
1422 return 0;
1423 }
1424
1425 static void unlock_fs(struct mapped_device *md)
1426 {
1427 if (!test_bit(DMF_FROZEN, &md->flags))
1428 return;
1429
1430 thaw_bdev(md->suspended_bdev, md->frozen_sb);
1431 md->frozen_sb = NULL;
1432 clear_bit(DMF_FROZEN, &md->flags);
1433 }
1434
1435 /*
1436 * We need to be able to change a mapping table under a mounted
1437 * filesystem. For example we might want to move some data in
1438 * the background. Before the table can be swapped with
1439 * dm_bind_table, dm_suspend must be called to flush any in
1440 * flight bios and ensure that any further io gets deferred.
1441 */
1442 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1443 {
1444 struct dm_table *map = NULL;
1445 DECLARE_WAITQUEUE(wait, current);
1446 int r = 0;
1447 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1448 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1449
1450 mutex_lock(&md->suspend_lock);
1451
1452 if (dm_suspended(md)) {
1453 r = -EINVAL;
1454 goto out_unlock;
1455 }
1456
1457 map = dm_get_table(md);
1458
1459 /*
1460 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1461 * This flag is cleared before dm_suspend returns.
1462 */
1463 if (noflush)
1464 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1465
1466 /* This does not get reverted if there's an error later. */
1467 dm_table_presuspend_targets(map);
1468
1469 /* bdget() can stall if the pending I/Os are not flushed */
1470 if (!noflush) {
1471 md->suspended_bdev = bdget_disk(md->disk, 0);
1472 if (!md->suspended_bdev) {
1473 DMWARN("bdget failed in dm_suspend");
1474 r = -ENOMEM;
1475 goto flush_and_out;
1476 }
1477
1478 /*
1479 * Flush I/O to the device. noflush supersedes do_lockfs,
1480 * because lock_fs() needs to flush I/Os.
1481 */
1482 if (do_lockfs) {
1483 r = lock_fs(md);
1484 if (r)
1485 goto out;
1486 }
1487 }
1488
1489 /*
1490 * First we set the BLOCK_IO flag so no more ios will be mapped.
1491 */
1492 down_write(&md->io_lock);
1493 set_bit(DMF_BLOCK_IO, &md->flags);
1494
1495 add_wait_queue(&md->wait, &wait);
1496 up_write(&md->io_lock);
1497
1498 /* unplug */
1499 if (map)
1500 dm_table_unplug_all(map);
1501
1502 /*
1503 * Wait for the already-mapped ios to complete.
1504 */
1505 r = dm_wait_for_completion(md);
1506
1507 down_write(&md->io_lock);
1508 remove_wait_queue(&md->wait, &wait);
1509
1510 if (noflush)
1511 __merge_pushback_list(md);
1512 up_write(&md->io_lock);
1513
1514 /* were we interrupted ? */
1515 if (r < 0) {
1516 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1517
1518 unlock_fs(md);
1519 goto out; /* pushback list is already flushed, so skip flush */
1520 }
1521
1522 dm_table_postsuspend_targets(map);
1523
1524 set_bit(DMF_SUSPENDED, &md->flags);
1525
1526 flush_and_out:
1527 if (r && noflush)
1528 /*
1529 * Because there may be already I/Os in the pushback list,
1530 * flush them before return.
1531 */
1532 dm_queue_flush(md, DM_WQ_FLUSH_ALL, NULL);
1533
1534 out:
1535 if (r && md->suspended_bdev) {
1536 bdput(md->suspended_bdev);
1537 md->suspended_bdev = NULL;
1538 }
1539
1540 dm_table_put(map);
1541
1542 out_unlock:
1543 mutex_unlock(&md->suspend_lock);
1544 return r;
1545 }
1546
1547 int dm_resume(struct mapped_device *md)
1548 {
1549 int r = -EINVAL;
1550 struct dm_table *map = NULL;
1551
1552 mutex_lock(&md->suspend_lock);
1553 if (!dm_suspended(md))
1554 goto out;
1555
1556 map = dm_get_table(md);
1557 if (!map || !dm_table_get_size(map))
1558 goto out;
1559
1560 r = dm_table_resume_targets(map);
1561 if (r)
1562 goto out;
1563
1564 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1565
1566 unlock_fs(md);
1567
1568 if (md->suspended_bdev) {
1569 bdput(md->suspended_bdev);
1570 md->suspended_bdev = NULL;
1571 }
1572
1573 clear_bit(DMF_SUSPENDED, &md->flags);
1574
1575 dm_table_unplug_all(map);
1576
1577 dm_kobject_uevent(md);
1578
1579 r = 0;
1580
1581 out:
1582 dm_table_put(map);
1583 mutex_unlock(&md->suspend_lock);
1584
1585 return r;
1586 }
1587
1588 /*-----------------------------------------------------------------
1589 * Event notification.
1590 *---------------------------------------------------------------*/
1591 void dm_kobject_uevent(struct mapped_device *md)
1592 {
1593 kobject_uevent(&md->disk->dev.kobj, KOBJ_CHANGE);
1594 }
1595
1596 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1597 {
1598 return atomic_add_return(1, &md->uevent_seq);
1599 }
1600
1601 uint32_t dm_get_event_nr(struct mapped_device *md)
1602 {
1603 return atomic_read(&md->event_nr);
1604 }
1605
1606 int dm_wait_event(struct mapped_device *md, int event_nr)
1607 {
1608 return wait_event_interruptible(md->eventq,
1609 (event_nr != atomic_read(&md->event_nr)));
1610 }
1611
1612 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1613 {
1614 unsigned long flags;
1615
1616 spin_lock_irqsave(&md->uevent_lock, flags);
1617 list_add(elist, &md->uevent_list);
1618 spin_unlock_irqrestore(&md->uevent_lock, flags);
1619 }
1620
1621 /*
1622 * The gendisk is only valid as long as you have a reference
1623 * count on 'md'.
1624 */
1625 struct gendisk *dm_disk(struct mapped_device *md)
1626 {
1627 return md->disk;
1628 }
1629
1630 int dm_suspended(struct mapped_device *md)
1631 {
1632 return test_bit(DMF_SUSPENDED, &md->flags);
1633 }
1634
1635 int dm_noflush_suspending(struct dm_target *ti)
1636 {
1637 struct mapped_device *md = dm_table_get_md(ti->table);
1638 int r = __noflush_suspending(md);
1639
1640 dm_put(md);
1641
1642 return r;
1643 }
1644 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1645
1646 static struct block_device_operations dm_blk_dops = {
1647 .open = dm_blk_open,
1648 .release = dm_blk_close,
1649 .ioctl = dm_blk_ioctl,
1650 .getgeo = dm_blk_getgeo,
1651 .owner = THIS_MODULE
1652 };
1653
1654 EXPORT_SYMBOL(dm_get_mapinfo);
1655
1656 /*
1657 * module hooks
1658 */
1659 module_init(dm_init);
1660 module_exit(dm_exit);
1661
1662 module_param(major, uint, 0);
1663 MODULE_PARM_DESC(major, "The major number of the device mapper");
1664 MODULE_DESCRIPTION(DM_NAME " driver");
1665 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1666 MODULE_LICENSE("GPL");
This page took 0.093337 seconds and 5 git commands to generate.