Merge tag 'iommu-config-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23
24 #include <trace/events/block.h>
25
26 #define DM_MSG_PREFIX "core"
27
28 #ifdef CONFIG_PRINTK
29 /*
30 * ratelimit state to be used in DMXXX_LIMIT().
31 */
32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
33 DEFAULT_RATELIMIT_INTERVAL,
34 DEFAULT_RATELIMIT_BURST);
35 EXPORT_SYMBOL(dm_ratelimit_state);
36 #endif
37
38 /*
39 * Cookies are numeric values sent with CHANGE and REMOVE
40 * uevents while resuming, removing or renaming the device.
41 */
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
44
45 static const char *_name = DM_NAME;
46
47 static unsigned int major = 0;
48 static unsigned int _major = 0;
49
50 static DEFINE_IDR(_minor_idr);
51
52 static DEFINE_SPINLOCK(_minor_lock);
53
54 static void do_deferred_remove(struct work_struct *w);
55
56 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
57
58 static struct workqueue_struct *deferred_remove_workqueue;
59
60 /*
61 * For bio-based dm.
62 * One of these is allocated per bio.
63 */
64 struct dm_io {
65 struct mapped_device *md;
66 int error;
67 atomic_t io_count;
68 struct bio *bio;
69 unsigned long start_time;
70 spinlock_t endio_lock;
71 struct dm_stats_aux stats_aux;
72 };
73
74 /*
75 * For request-based dm.
76 * One of these is allocated per request.
77 */
78 struct dm_rq_target_io {
79 struct mapped_device *md;
80 struct dm_target *ti;
81 struct request *orig, clone;
82 int error;
83 union map_info info;
84 };
85
86 /*
87 * For request-based dm - the bio clones we allocate are embedded in these
88 * structs.
89 *
90 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
91 * the bioset is created - this means the bio has to come at the end of the
92 * struct.
93 */
94 struct dm_rq_clone_bio_info {
95 struct bio *orig;
96 struct dm_rq_target_io *tio;
97 struct bio clone;
98 };
99
100 union map_info *dm_get_rq_mapinfo(struct request *rq)
101 {
102 if (rq && rq->end_io_data)
103 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
104 return NULL;
105 }
106 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
107
108 #define MINOR_ALLOCED ((void *)-1)
109
110 /*
111 * Bits for the md->flags field.
112 */
113 #define DMF_BLOCK_IO_FOR_SUSPEND 0
114 #define DMF_SUSPENDED 1
115 #define DMF_FROZEN 2
116 #define DMF_FREEING 3
117 #define DMF_DELETING 4
118 #define DMF_NOFLUSH_SUSPENDING 5
119 #define DMF_MERGE_IS_OPTIONAL 6
120 #define DMF_DEFERRED_REMOVE 7
121 #define DMF_SUSPENDED_INTERNALLY 8
122
123 /*
124 * A dummy definition to make RCU happy.
125 * struct dm_table should never be dereferenced in this file.
126 */
127 struct dm_table {
128 int undefined__;
129 };
130
131 /*
132 * Work processed by per-device workqueue.
133 */
134 struct mapped_device {
135 struct srcu_struct io_barrier;
136 struct mutex suspend_lock;
137 atomic_t holders;
138 atomic_t open_count;
139
140 /*
141 * The current mapping.
142 * Use dm_get_live_table{_fast} or take suspend_lock for
143 * dereference.
144 */
145 struct dm_table __rcu *map;
146
147 struct list_head table_devices;
148 struct mutex table_devices_lock;
149
150 unsigned long flags;
151
152 struct request_queue *queue;
153 unsigned type;
154 /* Protect queue and type against concurrent access. */
155 struct mutex type_lock;
156
157 struct target_type *immutable_target_type;
158
159 struct gendisk *disk;
160 char name[16];
161
162 void *interface_ptr;
163
164 /*
165 * A list of ios that arrived while we were suspended.
166 */
167 atomic_t pending[2];
168 wait_queue_head_t wait;
169 struct work_struct work;
170 struct bio_list deferred;
171 spinlock_t deferred_lock;
172
173 /*
174 * Processing queue (flush)
175 */
176 struct workqueue_struct *wq;
177
178 /*
179 * io objects are allocated from here.
180 */
181 mempool_t *io_pool;
182
183 struct bio_set *bs;
184
185 /*
186 * Event handling.
187 */
188 atomic_t event_nr;
189 wait_queue_head_t eventq;
190 atomic_t uevent_seq;
191 struct list_head uevent_list;
192 spinlock_t uevent_lock; /* Protect access to uevent_list */
193
194 /*
195 * freeze/thaw support require holding onto a super block
196 */
197 struct super_block *frozen_sb;
198 struct block_device *bdev;
199
200 /* forced geometry settings */
201 struct hd_geometry geometry;
202
203 /* kobject and completion */
204 struct dm_kobject_holder kobj_holder;
205
206 /* zero-length flush that will be cloned and submitted to targets */
207 struct bio flush_bio;
208
209 struct dm_stats stats;
210 };
211
212 /*
213 * For mempools pre-allocation at the table loading time.
214 */
215 struct dm_md_mempools {
216 mempool_t *io_pool;
217 struct bio_set *bs;
218 };
219
220 struct table_device {
221 struct list_head list;
222 atomic_t count;
223 struct dm_dev dm_dev;
224 };
225
226 #define RESERVED_BIO_BASED_IOS 16
227 #define RESERVED_REQUEST_BASED_IOS 256
228 #define RESERVED_MAX_IOS 1024
229 static struct kmem_cache *_io_cache;
230 static struct kmem_cache *_rq_tio_cache;
231
232 /*
233 * Bio-based DM's mempools' reserved IOs set by the user.
234 */
235 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
236
237 /*
238 * Request-based DM's mempools' reserved IOs set by the user.
239 */
240 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
241
242 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
243 unsigned def, unsigned max)
244 {
245 unsigned ios = ACCESS_ONCE(*reserved_ios);
246 unsigned modified_ios = 0;
247
248 if (!ios)
249 modified_ios = def;
250 else if (ios > max)
251 modified_ios = max;
252
253 if (modified_ios) {
254 (void)cmpxchg(reserved_ios, ios, modified_ios);
255 ios = modified_ios;
256 }
257
258 return ios;
259 }
260
261 unsigned dm_get_reserved_bio_based_ios(void)
262 {
263 return __dm_get_reserved_ios(&reserved_bio_based_ios,
264 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
265 }
266 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
267
268 unsigned dm_get_reserved_rq_based_ios(void)
269 {
270 return __dm_get_reserved_ios(&reserved_rq_based_ios,
271 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
272 }
273 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
274
275 static int __init local_init(void)
276 {
277 int r = -ENOMEM;
278
279 /* allocate a slab for the dm_ios */
280 _io_cache = KMEM_CACHE(dm_io, 0);
281 if (!_io_cache)
282 return r;
283
284 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
285 if (!_rq_tio_cache)
286 goto out_free_io_cache;
287
288 r = dm_uevent_init();
289 if (r)
290 goto out_free_rq_tio_cache;
291
292 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
293 if (!deferred_remove_workqueue) {
294 r = -ENOMEM;
295 goto out_uevent_exit;
296 }
297
298 _major = major;
299 r = register_blkdev(_major, _name);
300 if (r < 0)
301 goto out_free_workqueue;
302
303 if (!_major)
304 _major = r;
305
306 return 0;
307
308 out_free_workqueue:
309 destroy_workqueue(deferred_remove_workqueue);
310 out_uevent_exit:
311 dm_uevent_exit();
312 out_free_rq_tio_cache:
313 kmem_cache_destroy(_rq_tio_cache);
314 out_free_io_cache:
315 kmem_cache_destroy(_io_cache);
316
317 return r;
318 }
319
320 static void local_exit(void)
321 {
322 flush_scheduled_work();
323 destroy_workqueue(deferred_remove_workqueue);
324
325 kmem_cache_destroy(_rq_tio_cache);
326 kmem_cache_destroy(_io_cache);
327 unregister_blkdev(_major, _name);
328 dm_uevent_exit();
329
330 _major = 0;
331
332 DMINFO("cleaned up");
333 }
334
335 static int (*_inits[])(void) __initdata = {
336 local_init,
337 dm_target_init,
338 dm_linear_init,
339 dm_stripe_init,
340 dm_io_init,
341 dm_kcopyd_init,
342 dm_interface_init,
343 dm_statistics_init,
344 };
345
346 static void (*_exits[])(void) = {
347 local_exit,
348 dm_target_exit,
349 dm_linear_exit,
350 dm_stripe_exit,
351 dm_io_exit,
352 dm_kcopyd_exit,
353 dm_interface_exit,
354 dm_statistics_exit,
355 };
356
357 static int __init dm_init(void)
358 {
359 const int count = ARRAY_SIZE(_inits);
360
361 int r, i;
362
363 for (i = 0; i < count; i++) {
364 r = _inits[i]();
365 if (r)
366 goto bad;
367 }
368
369 return 0;
370
371 bad:
372 while (i--)
373 _exits[i]();
374
375 return r;
376 }
377
378 static void __exit dm_exit(void)
379 {
380 int i = ARRAY_SIZE(_exits);
381
382 while (i--)
383 _exits[i]();
384
385 /*
386 * Should be empty by this point.
387 */
388 idr_destroy(&_minor_idr);
389 }
390
391 /*
392 * Block device functions
393 */
394 int dm_deleting_md(struct mapped_device *md)
395 {
396 return test_bit(DMF_DELETING, &md->flags);
397 }
398
399 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
400 {
401 struct mapped_device *md;
402
403 spin_lock(&_minor_lock);
404
405 md = bdev->bd_disk->private_data;
406 if (!md)
407 goto out;
408
409 if (test_bit(DMF_FREEING, &md->flags) ||
410 dm_deleting_md(md)) {
411 md = NULL;
412 goto out;
413 }
414
415 dm_get(md);
416 atomic_inc(&md->open_count);
417
418 out:
419 spin_unlock(&_minor_lock);
420
421 return md ? 0 : -ENXIO;
422 }
423
424 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
425 {
426 struct mapped_device *md = disk->private_data;
427
428 spin_lock(&_minor_lock);
429
430 if (atomic_dec_and_test(&md->open_count) &&
431 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
432 queue_work(deferred_remove_workqueue, &deferred_remove_work);
433
434 dm_put(md);
435
436 spin_unlock(&_minor_lock);
437 }
438
439 int dm_open_count(struct mapped_device *md)
440 {
441 return atomic_read(&md->open_count);
442 }
443
444 /*
445 * Guarantees nothing is using the device before it's deleted.
446 */
447 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
448 {
449 int r = 0;
450
451 spin_lock(&_minor_lock);
452
453 if (dm_open_count(md)) {
454 r = -EBUSY;
455 if (mark_deferred)
456 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
457 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
458 r = -EEXIST;
459 else
460 set_bit(DMF_DELETING, &md->flags);
461
462 spin_unlock(&_minor_lock);
463
464 return r;
465 }
466
467 int dm_cancel_deferred_remove(struct mapped_device *md)
468 {
469 int r = 0;
470
471 spin_lock(&_minor_lock);
472
473 if (test_bit(DMF_DELETING, &md->flags))
474 r = -EBUSY;
475 else
476 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
477
478 spin_unlock(&_minor_lock);
479
480 return r;
481 }
482
483 static void do_deferred_remove(struct work_struct *w)
484 {
485 dm_deferred_remove();
486 }
487
488 sector_t dm_get_size(struct mapped_device *md)
489 {
490 return get_capacity(md->disk);
491 }
492
493 struct request_queue *dm_get_md_queue(struct mapped_device *md)
494 {
495 return md->queue;
496 }
497
498 struct dm_stats *dm_get_stats(struct mapped_device *md)
499 {
500 return &md->stats;
501 }
502
503 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
504 {
505 struct mapped_device *md = bdev->bd_disk->private_data;
506
507 return dm_get_geometry(md, geo);
508 }
509
510 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
511 unsigned int cmd, unsigned long arg)
512 {
513 struct mapped_device *md = bdev->bd_disk->private_data;
514 int srcu_idx;
515 struct dm_table *map;
516 struct dm_target *tgt;
517 int r = -ENOTTY;
518
519 retry:
520 map = dm_get_live_table(md, &srcu_idx);
521
522 if (!map || !dm_table_get_size(map))
523 goto out;
524
525 /* We only support devices that have a single target */
526 if (dm_table_get_num_targets(map) != 1)
527 goto out;
528
529 tgt = dm_table_get_target(map, 0);
530 if (!tgt->type->ioctl)
531 goto out;
532
533 if (dm_suspended_md(md)) {
534 r = -EAGAIN;
535 goto out;
536 }
537
538 r = tgt->type->ioctl(tgt, cmd, arg);
539
540 out:
541 dm_put_live_table(md, srcu_idx);
542
543 if (r == -ENOTCONN) {
544 msleep(10);
545 goto retry;
546 }
547
548 return r;
549 }
550
551 static struct dm_io *alloc_io(struct mapped_device *md)
552 {
553 return mempool_alloc(md->io_pool, GFP_NOIO);
554 }
555
556 static void free_io(struct mapped_device *md, struct dm_io *io)
557 {
558 mempool_free(io, md->io_pool);
559 }
560
561 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
562 {
563 bio_put(&tio->clone);
564 }
565
566 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
567 gfp_t gfp_mask)
568 {
569 return mempool_alloc(md->io_pool, gfp_mask);
570 }
571
572 static void free_rq_tio(struct dm_rq_target_io *tio)
573 {
574 mempool_free(tio, tio->md->io_pool);
575 }
576
577 static int md_in_flight(struct mapped_device *md)
578 {
579 return atomic_read(&md->pending[READ]) +
580 atomic_read(&md->pending[WRITE]);
581 }
582
583 static void start_io_acct(struct dm_io *io)
584 {
585 struct mapped_device *md = io->md;
586 struct bio *bio = io->bio;
587 int cpu;
588 int rw = bio_data_dir(bio);
589
590 io->start_time = jiffies;
591
592 cpu = part_stat_lock();
593 part_round_stats(cpu, &dm_disk(md)->part0);
594 part_stat_unlock();
595 atomic_set(&dm_disk(md)->part0.in_flight[rw],
596 atomic_inc_return(&md->pending[rw]));
597
598 if (unlikely(dm_stats_used(&md->stats)))
599 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
600 bio_sectors(bio), false, 0, &io->stats_aux);
601 }
602
603 static void end_io_acct(struct dm_io *io)
604 {
605 struct mapped_device *md = io->md;
606 struct bio *bio = io->bio;
607 unsigned long duration = jiffies - io->start_time;
608 int pending;
609 int rw = bio_data_dir(bio);
610
611 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
612
613 if (unlikely(dm_stats_used(&md->stats)))
614 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
615 bio_sectors(bio), true, duration, &io->stats_aux);
616
617 /*
618 * After this is decremented the bio must not be touched if it is
619 * a flush.
620 */
621 pending = atomic_dec_return(&md->pending[rw]);
622 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
623 pending += atomic_read(&md->pending[rw^0x1]);
624
625 /* nudge anyone waiting on suspend queue */
626 if (!pending)
627 wake_up(&md->wait);
628 }
629
630 /*
631 * Add the bio to the list of deferred io.
632 */
633 static void queue_io(struct mapped_device *md, struct bio *bio)
634 {
635 unsigned long flags;
636
637 spin_lock_irqsave(&md->deferred_lock, flags);
638 bio_list_add(&md->deferred, bio);
639 spin_unlock_irqrestore(&md->deferred_lock, flags);
640 queue_work(md->wq, &md->work);
641 }
642
643 /*
644 * Everyone (including functions in this file), should use this
645 * function to access the md->map field, and make sure they call
646 * dm_put_live_table() when finished.
647 */
648 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
649 {
650 *srcu_idx = srcu_read_lock(&md->io_barrier);
651
652 return srcu_dereference(md->map, &md->io_barrier);
653 }
654
655 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
656 {
657 srcu_read_unlock(&md->io_barrier, srcu_idx);
658 }
659
660 void dm_sync_table(struct mapped_device *md)
661 {
662 synchronize_srcu(&md->io_barrier);
663 synchronize_rcu_expedited();
664 }
665
666 /*
667 * A fast alternative to dm_get_live_table/dm_put_live_table.
668 * The caller must not block between these two functions.
669 */
670 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
671 {
672 rcu_read_lock();
673 return rcu_dereference(md->map);
674 }
675
676 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
677 {
678 rcu_read_unlock();
679 }
680
681 /*
682 * Open a table device so we can use it as a map destination.
683 */
684 static int open_table_device(struct table_device *td, dev_t dev,
685 struct mapped_device *md)
686 {
687 static char *_claim_ptr = "I belong to device-mapper";
688 struct block_device *bdev;
689
690 int r;
691
692 BUG_ON(td->dm_dev.bdev);
693
694 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
695 if (IS_ERR(bdev))
696 return PTR_ERR(bdev);
697
698 r = bd_link_disk_holder(bdev, dm_disk(md));
699 if (r) {
700 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
701 return r;
702 }
703
704 td->dm_dev.bdev = bdev;
705 return 0;
706 }
707
708 /*
709 * Close a table device that we've been using.
710 */
711 static void close_table_device(struct table_device *td, struct mapped_device *md)
712 {
713 if (!td->dm_dev.bdev)
714 return;
715
716 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
717 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
718 td->dm_dev.bdev = NULL;
719 }
720
721 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
722 fmode_t mode) {
723 struct table_device *td;
724
725 list_for_each_entry(td, l, list)
726 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
727 return td;
728
729 return NULL;
730 }
731
732 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
733 struct dm_dev **result) {
734 int r;
735 struct table_device *td;
736
737 mutex_lock(&md->table_devices_lock);
738 td = find_table_device(&md->table_devices, dev, mode);
739 if (!td) {
740 td = kmalloc(sizeof(*td), GFP_KERNEL);
741 if (!td) {
742 mutex_unlock(&md->table_devices_lock);
743 return -ENOMEM;
744 }
745
746 td->dm_dev.mode = mode;
747 td->dm_dev.bdev = NULL;
748
749 if ((r = open_table_device(td, dev, md))) {
750 mutex_unlock(&md->table_devices_lock);
751 kfree(td);
752 return r;
753 }
754
755 format_dev_t(td->dm_dev.name, dev);
756
757 atomic_set(&td->count, 0);
758 list_add(&td->list, &md->table_devices);
759 }
760 atomic_inc(&td->count);
761 mutex_unlock(&md->table_devices_lock);
762
763 *result = &td->dm_dev;
764 return 0;
765 }
766 EXPORT_SYMBOL_GPL(dm_get_table_device);
767
768 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
769 {
770 struct table_device *td = container_of(d, struct table_device, dm_dev);
771
772 mutex_lock(&md->table_devices_lock);
773 if (atomic_dec_and_test(&td->count)) {
774 close_table_device(td, md);
775 list_del(&td->list);
776 kfree(td);
777 }
778 mutex_unlock(&md->table_devices_lock);
779 }
780 EXPORT_SYMBOL(dm_put_table_device);
781
782 static void free_table_devices(struct list_head *devices)
783 {
784 struct list_head *tmp, *next;
785
786 list_for_each_safe(tmp, next, devices) {
787 struct table_device *td = list_entry(tmp, struct table_device, list);
788
789 DMWARN("dm_destroy: %s still exists with %d references",
790 td->dm_dev.name, atomic_read(&td->count));
791 kfree(td);
792 }
793 }
794
795 /*
796 * Get the geometry associated with a dm device
797 */
798 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
799 {
800 *geo = md->geometry;
801
802 return 0;
803 }
804
805 /*
806 * Set the geometry of a device.
807 */
808 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
809 {
810 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
811
812 if (geo->start > sz) {
813 DMWARN("Start sector is beyond the geometry limits.");
814 return -EINVAL;
815 }
816
817 md->geometry = *geo;
818
819 return 0;
820 }
821
822 /*-----------------------------------------------------------------
823 * CRUD START:
824 * A more elegant soln is in the works that uses the queue
825 * merge fn, unfortunately there are a couple of changes to
826 * the block layer that I want to make for this. So in the
827 * interests of getting something for people to use I give
828 * you this clearly demarcated crap.
829 *---------------------------------------------------------------*/
830
831 static int __noflush_suspending(struct mapped_device *md)
832 {
833 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
834 }
835
836 /*
837 * Decrements the number of outstanding ios that a bio has been
838 * cloned into, completing the original io if necc.
839 */
840 static void dec_pending(struct dm_io *io, int error)
841 {
842 unsigned long flags;
843 int io_error;
844 struct bio *bio;
845 struct mapped_device *md = io->md;
846
847 /* Push-back supersedes any I/O errors */
848 if (unlikely(error)) {
849 spin_lock_irqsave(&io->endio_lock, flags);
850 if (!(io->error > 0 && __noflush_suspending(md)))
851 io->error = error;
852 spin_unlock_irqrestore(&io->endio_lock, flags);
853 }
854
855 if (atomic_dec_and_test(&io->io_count)) {
856 if (io->error == DM_ENDIO_REQUEUE) {
857 /*
858 * Target requested pushing back the I/O.
859 */
860 spin_lock_irqsave(&md->deferred_lock, flags);
861 if (__noflush_suspending(md))
862 bio_list_add_head(&md->deferred, io->bio);
863 else
864 /* noflush suspend was interrupted. */
865 io->error = -EIO;
866 spin_unlock_irqrestore(&md->deferred_lock, flags);
867 }
868
869 io_error = io->error;
870 bio = io->bio;
871 end_io_acct(io);
872 free_io(md, io);
873
874 if (io_error == DM_ENDIO_REQUEUE)
875 return;
876
877 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
878 /*
879 * Preflush done for flush with data, reissue
880 * without REQ_FLUSH.
881 */
882 bio->bi_rw &= ~REQ_FLUSH;
883 queue_io(md, bio);
884 } else {
885 /* done with normal IO or empty flush */
886 trace_block_bio_complete(md->queue, bio, io_error);
887 bio_endio(bio, io_error);
888 }
889 }
890 }
891
892 static void disable_write_same(struct mapped_device *md)
893 {
894 struct queue_limits *limits = dm_get_queue_limits(md);
895
896 /* device doesn't really support WRITE SAME, disable it */
897 limits->max_write_same_sectors = 0;
898 }
899
900 static void clone_endio(struct bio *bio, int error)
901 {
902 int r = 0;
903 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
904 struct dm_io *io = tio->io;
905 struct mapped_device *md = tio->io->md;
906 dm_endio_fn endio = tio->ti->type->end_io;
907
908 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
909 error = -EIO;
910
911 if (endio) {
912 r = endio(tio->ti, bio, error);
913 if (r < 0 || r == DM_ENDIO_REQUEUE)
914 /*
915 * error and requeue request are handled
916 * in dec_pending().
917 */
918 error = r;
919 else if (r == DM_ENDIO_INCOMPLETE)
920 /* The target will handle the io */
921 return;
922 else if (r) {
923 DMWARN("unimplemented target endio return value: %d", r);
924 BUG();
925 }
926 }
927
928 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
929 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
930 disable_write_same(md);
931
932 free_tio(md, tio);
933 dec_pending(io, error);
934 }
935
936 /*
937 * Partial completion handling for request-based dm
938 */
939 static void end_clone_bio(struct bio *clone, int error)
940 {
941 struct dm_rq_clone_bio_info *info =
942 container_of(clone, struct dm_rq_clone_bio_info, clone);
943 struct dm_rq_target_io *tio = info->tio;
944 struct bio *bio = info->orig;
945 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
946
947 bio_put(clone);
948
949 if (tio->error)
950 /*
951 * An error has already been detected on the request.
952 * Once error occurred, just let clone->end_io() handle
953 * the remainder.
954 */
955 return;
956 else if (error) {
957 /*
958 * Don't notice the error to the upper layer yet.
959 * The error handling decision is made by the target driver,
960 * when the request is completed.
961 */
962 tio->error = error;
963 return;
964 }
965
966 /*
967 * I/O for the bio successfully completed.
968 * Notice the data completion to the upper layer.
969 */
970
971 /*
972 * bios are processed from the head of the list.
973 * So the completing bio should always be rq->bio.
974 * If it's not, something wrong is happening.
975 */
976 if (tio->orig->bio != bio)
977 DMERR("bio completion is going in the middle of the request");
978
979 /*
980 * Update the original request.
981 * Do not use blk_end_request() here, because it may complete
982 * the original request before the clone, and break the ordering.
983 */
984 blk_update_request(tio->orig, 0, nr_bytes);
985 }
986
987 /*
988 * Don't touch any member of the md after calling this function because
989 * the md may be freed in dm_put() at the end of this function.
990 * Or do dm_get() before calling this function and dm_put() later.
991 */
992 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
993 {
994 atomic_dec(&md->pending[rw]);
995
996 /* nudge anyone waiting on suspend queue */
997 if (!md_in_flight(md))
998 wake_up(&md->wait);
999
1000 /*
1001 * Run this off this callpath, as drivers could invoke end_io while
1002 * inside their request_fn (and holding the queue lock). Calling
1003 * back into ->request_fn() could deadlock attempting to grab the
1004 * queue lock again.
1005 */
1006 if (run_queue)
1007 blk_run_queue_async(md->queue);
1008
1009 /*
1010 * dm_put() must be at the end of this function. See the comment above
1011 */
1012 dm_put(md);
1013 }
1014
1015 static void free_rq_clone(struct request *clone)
1016 {
1017 struct dm_rq_target_io *tio = clone->end_io_data;
1018
1019 blk_rq_unprep_clone(clone);
1020 free_rq_tio(tio);
1021 }
1022
1023 /*
1024 * Complete the clone and the original request.
1025 * Must be called without queue lock.
1026 */
1027 static void dm_end_request(struct request *clone, int error)
1028 {
1029 int rw = rq_data_dir(clone);
1030 struct dm_rq_target_io *tio = clone->end_io_data;
1031 struct mapped_device *md = tio->md;
1032 struct request *rq = tio->orig;
1033
1034 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1035 rq->errors = clone->errors;
1036 rq->resid_len = clone->resid_len;
1037
1038 if (rq->sense)
1039 /*
1040 * We are using the sense buffer of the original
1041 * request.
1042 * So setting the length of the sense data is enough.
1043 */
1044 rq->sense_len = clone->sense_len;
1045 }
1046
1047 free_rq_clone(clone);
1048 blk_end_request_all(rq, error);
1049 rq_completed(md, rw, true);
1050 }
1051
1052 static void dm_unprep_request(struct request *rq)
1053 {
1054 struct request *clone = rq->special;
1055
1056 rq->special = NULL;
1057 rq->cmd_flags &= ~REQ_DONTPREP;
1058
1059 free_rq_clone(clone);
1060 }
1061
1062 /*
1063 * Requeue the original request of a clone.
1064 */
1065 void dm_requeue_unmapped_request(struct request *clone)
1066 {
1067 int rw = rq_data_dir(clone);
1068 struct dm_rq_target_io *tio = clone->end_io_data;
1069 struct mapped_device *md = tio->md;
1070 struct request *rq = tio->orig;
1071 struct request_queue *q = rq->q;
1072 unsigned long flags;
1073
1074 dm_unprep_request(rq);
1075
1076 spin_lock_irqsave(q->queue_lock, flags);
1077 blk_requeue_request(q, rq);
1078 spin_unlock_irqrestore(q->queue_lock, flags);
1079
1080 rq_completed(md, rw, 0);
1081 }
1082 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
1083
1084 static void __stop_queue(struct request_queue *q)
1085 {
1086 blk_stop_queue(q);
1087 }
1088
1089 static void stop_queue(struct request_queue *q)
1090 {
1091 unsigned long flags;
1092
1093 spin_lock_irqsave(q->queue_lock, flags);
1094 __stop_queue(q);
1095 spin_unlock_irqrestore(q->queue_lock, flags);
1096 }
1097
1098 static void __start_queue(struct request_queue *q)
1099 {
1100 if (blk_queue_stopped(q))
1101 blk_start_queue(q);
1102 }
1103
1104 static void start_queue(struct request_queue *q)
1105 {
1106 unsigned long flags;
1107
1108 spin_lock_irqsave(q->queue_lock, flags);
1109 __start_queue(q);
1110 spin_unlock_irqrestore(q->queue_lock, flags);
1111 }
1112
1113 static void dm_done(struct request *clone, int error, bool mapped)
1114 {
1115 int r = error;
1116 struct dm_rq_target_io *tio = clone->end_io_data;
1117 dm_request_endio_fn rq_end_io = NULL;
1118
1119 if (tio->ti) {
1120 rq_end_io = tio->ti->type->rq_end_io;
1121
1122 if (mapped && rq_end_io)
1123 r = rq_end_io(tio->ti, clone, error, &tio->info);
1124 }
1125
1126 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1127 !clone->q->limits.max_write_same_sectors))
1128 disable_write_same(tio->md);
1129
1130 if (r <= 0)
1131 /* The target wants to complete the I/O */
1132 dm_end_request(clone, r);
1133 else if (r == DM_ENDIO_INCOMPLETE)
1134 /* The target will handle the I/O */
1135 return;
1136 else if (r == DM_ENDIO_REQUEUE)
1137 /* The target wants to requeue the I/O */
1138 dm_requeue_unmapped_request(clone);
1139 else {
1140 DMWARN("unimplemented target endio return value: %d", r);
1141 BUG();
1142 }
1143 }
1144
1145 /*
1146 * Request completion handler for request-based dm
1147 */
1148 static void dm_softirq_done(struct request *rq)
1149 {
1150 bool mapped = true;
1151 struct request *clone = rq->completion_data;
1152 struct dm_rq_target_io *tio = clone->end_io_data;
1153
1154 if (rq->cmd_flags & REQ_FAILED)
1155 mapped = false;
1156
1157 dm_done(clone, tio->error, mapped);
1158 }
1159
1160 /*
1161 * Complete the clone and the original request with the error status
1162 * through softirq context.
1163 */
1164 static void dm_complete_request(struct request *clone, int error)
1165 {
1166 struct dm_rq_target_io *tio = clone->end_io_data;
1167 struct request *rq = tio->orig;
1168
1169 tio->error = error;
1170 rq->completion_data = clone;
1171 blk_complete_request(rq);
1172 }
1173
1174 /*
1175 * Complete the not-mapped clone and the original request with the error status
1176 * through softirq context.
1177 * Target's rq_end_io() function isn't called.
1178 * This may be used when the target's map_rq() function fails.
1179 */
1180 void dm_kill_unmapped_request(struct request *clone, int error)
1181 {
1182 struct dm_rq_target_io *tio = clone->end_io_data;
1183 struct request *rq = tio->orig;
1184
1185 rq->cmd_flags |= REQ_FAILED;
1186 dm_complete_request(clone, error);
1187 }
1188 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
1189
1190 /*
1191 * Called with the queue lock held
1192 */
1193 static void end_clone_request(struct request *clone, int error)
1194 {
1195 /*
1196 * For just cleaning up the information of the queue in which
1197 * the clone was dispatched.
1198 * The clone is *NOT* freed actually here because it is alloced from
1199 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
1200 */
1201 __blk_put_request(clone->q, clone);
1202
1203 /*
1204 * Actual request completion is done in a softirq context which doesn't
1205 * hold the queue lock. Otherwise, deadlock could occur because:
1206 * - another request may be submitted by the upper level driver
1207 * of the stacking during the completion
1208 * - the submission which requires queue lock may be done
1209 * against this queue
1210 */
1211 dm_complete_request(clone, error);
1212 }
1213
1214 /*
1215 * Return maximum size of I/O possible at the supplied sector up to the current
1216 * target boundary.
1217 */
1218 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1219 {
1220 sector_t target_offset = dm_target_offset(ti, sector);
1221
1222 return ti->len - target_offset;
1223 }
1224
1225 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1226 {
1227 sector_t len = max_io_len_target_boundary(sector, ti);
1228 sector_t offset, max_len;
1229
1230 /*
1231 * Does the target need to split even further?
1232 */
1233 if (ti->max_io_len) {
1234 offset = dm_target_offset(ti, sector);
1235 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1236 max_len = sector_div(offset, ti->max_io_len);
1237 else
1238 max_len = offset & (ti->max_io_len - 1);
1239 max_len = ti->max_io_len - max_len;
1240
1241 if (len > max_len)
1242 len = max_len;
1243 }
1244
1245 return len;
1246 }
1247
1248 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1249 {
1250 if (len > UINT_MAX) {
1251 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1252 (unsigned long long)len, UINT_MAX);
1253 ti->error = "Maximum size of target IO is too large";
1254 return -EINVAL;
1255 }
1256
1257 ti->max_io_len = (uint32_t) len;
1258
1259 return 0;
1260 }
1261 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1262
1263 /*
1264 * A target may call dm_accept_partial_bio only from the map routine. It is
1265 * allowed for all bio types except REQ_FLUSH.
1266 *
1267 * dm_accept_partial_bio informs the dm that the target only wants to process
1268 * additional n_sectors sectors of the bio and the rest of the data should be
1269 * sent in a next bio.
1270 *
1271 * A diagram that explains the arithmetics:
1272 * +--------------------+---------------+-------+
1273 * | 1 | 2 | 3 |
1274 * +--------------------+---------------+-------+
1275 *
1276 * <-------------- *tio->len_ptr --------------->
1277 * <------- bi_size ------->
1278 * <-- n_sectors -->
1279 *
1280 * Region 1 was already iterated over with bio_advance or similar function.
1281 * (it may be empty if the target doesn't use bio_advance)
1282 * Region 2 is the remaining bio size that the target wants to process.
1283 * (it may be empty if region 1 is non-empty, although there is no reason
1284 * to make it empty)
1285 * The target requires that region 3 is to be sent in the next bio.
1286 *
1287 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1288 * the partially processed part (the sum of regions 1+2) must be the same for all
1289 * copies of the bio.
1290 */
1291 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1292 {
1293 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1294 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1295 BUG_ON(bio->bi_rw & REQ_FLUSH);
1296 BUG_ON(bi_size > *tio->len_ptr);
1297 BUG_ON(n_sectors > bi_size);
1298 *tio->len_ptr -= bi_size - n_sectors;
1299 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1300 }
1301 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1302
1303 static void __map_bio(struct dm_target_io *tio)
1304 {
1305 int r;
1306 sector_t sector;
1307 struct mapped_device *md;
1308 struct bio *clone = &tio->clone;
1309 struct dm_target *ti = tio->ti;
1310
1311 clone->bi_end_io = clone_endio;
1312
1313 /*
1314 * Map the clone. If r == 0 we don't need to do
1315 * anything, the target has assumed ownership of
1316 * this io.
1317 */
1318 atomic_inc(&tio->io->io_count);
1319 sector = clone->bi_iter.bi_sector;
1320 r = ti->type->map(ti, clone);
1321 if (r == DM_MAPIO_REMAPPED) {
1322 /* the bio has been remapped so dispatch it */
1323
1324 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1325 tio->io->bio->bi_bdev->bd_dev, sector);
1326
1327 generic_make_request(clone);
1328 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1329 /* error the io and bail out, or requeue it if needed */
1330 md = tio->io->md;
1331 dec_pending(tio->io, r);
1332 free_tio(md, tio);
1333 } else if (r) {
1334 DMWARN("unimplemented target map return value: %d", r);
1335 BUG();
1336 }
1337 }
1338
1339 struct clone_info {
1340 struct mapped_device *md;
1341 struct dm_table *map;
1342 struct bio *bio;
1343 struct dm_io *io;
1344 sector_t sector;
1345 unsigned sector_count;
1346 };
1347
1348 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1349 {
1350 bio->bi_iter.bi_sector = sector;
1351 bio->bi_iter.bi_size = to_bytes(len);
1352 }
1353
1354 /*
1355 * Creates a bio that consists of range of complete bvecs.
1356 */
1357 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1358 sector_t sector, unsigned len)
1359 {
1360 struct bio *clone = &tio->clone;
1361
1362 __bio_clone_fast(clone, bio);
1363
1364 if (bio_integrity(bio))
1365 bio_integrity_clone(clone, bio, GFP_NOIO);
1366
1367 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1368 clone->bi_iter.bi_size = to_bytes(len);
1369
1370 if (bio_integrity(bio))
1371 bio_integrity_trim(clone, 0, len);
1372 }
1373
1374 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1375 struct dm_target *ti,
1376 unsigned target_bio_nr)
1377 {
1378 struct dm_target_io *tio;
1379 struct bio *clone;
1380
1381 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1382 tio = container_of(clone, struct dm_target_io, clone);
1383
1384 tio->io = ci->io;
1385 tio->ti = ti;
1386 tio->target_bio_nr = target_bio_nr;
1387
1388 return tio;
1389 }
1390
1391 static void __clone_and_map_simple_bio(struct clone_info *ci,
1392 struct dm_target *ti,
1393 unsigned target_bio_nr, unsigned *len)
1394 {
1395 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1396 struct bio *clone = &tio->clone;
1397
1398 tio->len_ptr = len;
1399
1400 __bio_clone_fast(clone, ci->bio);
1401 if (len)
1402 bio_setup_sector(clone, ci->sector, *len);
1403
1404 __map_bio(tio);
1405 }
1406
1407 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1408 unsigned num_bios, unsigned *len)
1409 {
1410 unsigned target_bio_nr;
1411
1412 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1413 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1414 }
1415
1416 static int __send_empty_flush(struct clone_info *ci)
1417 {
1418 unsigned target_nr = 0;
1419 struct dm_target *ti;
1420
1421 BUG_ON(bio_has_data(ci->bio));
1422 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1423 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1424
1425 return 0;
1426 }
1427
1428 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1429 sector_t sector, unsigned *len)
1430 {
1431 struct bio *bio = ci->bio;
1432 struct dm_target_io *tio;
1433 unsigned target_bio_nr;
1434 unsigned num_target_bios = 1;
1435
1436 /*
1437 * Does the target want to receive duplicate copies of the bio?
1438 */
1439 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1440 num_target_bios = ti->num_write_bios(ti, bio);
1441
1442 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1443 tio = alloc_tio(ci, ti, target_bio_nr);
1444 tio->len_ptr = len;
1445 clone_bio(tio, bio, sector, *len);
1446 __map_bio(tio);
1447 }
1448 }
1449
1450 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1451
1452 static unsigned get_num_discard_bios(struct dm_target *ti)
1453 {
1454 return ti->num_discard_bios;
1455 }
1456
1457 static unsigned get_num_write_same_bios(struct dm_target *ti)
1458 {
1459 return ti->num_write_same_bios;
1460 }
1461
1462 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1463
1464 static bool is_split_required_for_discard(struct dm_target *ti)
1465 {
1466 return ti->split_discard_bios;
1467 }
1468
1469 static int __send_changing_extent_only(struct clone_info *ci,
1470 get_num_bios_fn get_num_bios,
1471 is_split_required_fn is_split_required)
1472 {
1473 struct dm_target *ti;
1474 unsigned len;
1475 unsigned num_bios;
1476
1477 do {
1478 ti = dm_table_find_target(ci->map, ci->sector);
1479 if (!dm_target_is_valid(ti))
1480 return -EIO;
1481
1482 /*
1483 * Even though the device advertised support for this type of
1484 * request, that does not mean every target supports it, and
1485 * reconfiguration might also have changed that since the
1486 * check was performed.
1487 */
1488 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1489 if (!num_bios)
1490 return -EOPNOTSUPP;
1491
1492 if (is_split_required && !is_split_required(ti))
1493 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1494 else
1495 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1496
1497 __send_duplicate_bios(ci, ti, num_bios, &len);
1498
1499 ci->sector += len;
1500 } while (ci->sector_count -= len);
1501
1502 return 0;
1503 }
1504
1505 static int __send_discard(struct clone_info *ci)
1506 {
1507 return __send_changing_extent_only(ci, get_num_discard_bios,
1508 is_split_required_for_discard);
1509 }
1510
1511 static int __send_write_same(struct clone_info *ci)
1512 {
1513 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1514 }
1515
1516 /*
1517 * Select the correct strategy for processing a non-flush bio.
1518 */
1519 static int __split_and_process_non_flush(struct clone_info *ci)
1520 {
1521 struct bio *bio = ci->bio;
1522 struct dm_target *ti;
1523 unsigned len;
1524
1525 if (unlikely(bio->bi_rw & REQ_DISCARD))
1526 return __send_discard(ci);
1527 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1528 return __send_write_same(ci);
1529
1530 ti = dm_table_find_target(ci->map, ci->sector);
1531 if (!dm_target_is_valid(ti))
1532 return -EIO;
1533
1534 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1535
1536 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1537
1538 ci->sector += len;
1539 ci->sector_count -= len;
1540
1541 return 0;
1542 }
1543
1544 /*
1545 * Entry point to split a bio into clones and submit them to the targets.
1546 */
1547 static void __split_and_process_bio(struct mapped_device *md,
1548 struct dm_table *map, struct bio *bio)
1549 {
1550 struct clone_info ci;
1551 int error = 0;
1552
1553 if (unlikely(!map)) {
1554 bio_io_error(bio);
1555 return;
1556 }
1557
1558 ci.map = map;
1559 ci.md = md;
1560 ci.io = alloc_io(md);
1561 ci.io->error = 0;
1562 atomic_set(&ci.io->io_count, 1);
1563 ci.io->bio = bio;
1564 ci.io->md = md;
1565 spin_lock_init(&ci.io->endio_lock);
1566 ci.sector = bio->bi_iter.bi_sector;
1567
1568 start_io_acct(ci.io);
1569
1570 if (bio->bi_rw & REQ_FLUSH) {
1571 ci.bio = &ci.md->flush_bio;
1572 ci.sector_count = 0;
1573 error = __send_empty_flush(&ci);
1574 /* dec_pending submits any data associated with flush */
1575 } else {
1576 ci.bio = bio;
1577 ci.sector_count = bio_sectors(bio);
1578 while (ci.sector_count && !error)
1579 error = __split_and_process_non_flush(&ci);
1580 }
1581
1582 /* drop the extra reference count */
1583 dec_pending(ci.io, error);
1584 }
1585 /*-----------------------------------------------------------------
1586 * CRUD END
1587 *---------------------------------------------------------------*/
1588
1589 static int dm_merge_bvec(struct request_queue *q,
1590 struct bvec_merge_data *bvm,
1591 struct bio_vec *biovec)
1592 {
1593 struct mapped_device *md = q->queuedata;
1594 struct dm_table *map = dm_get_live_table_fast(md);
1595 struct dm_target *ti;
1596 sector_t max_sectors;
1597 int max_size = 0;
1598
1599 if (unlikely(!map))
1600 goto out;
1601
1602 ti = dm_table_find_target(map, bvm->bi_sector);
1603 if (!dm_target_is_valid(ti))
1604 goto out;
1605
1606 /*
1607 * Find maximum amount of I/O that won't need splitting
1608 */
1609 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1610 (sector_t) queue_max_sectors(q));
1611 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1612 if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */
1613 max_size = 0;
1614
1615 /*
1616 * merge_bvec_fn() returns number of bytes
1617 * it can accept at this offset
1618 * max is precomputed maximal io size
1619 */
1620 if (max_size && ti->type->merge)
1621 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1622 /*
1623 * If the target doesn't support merge method and some of the devices
1624 * provided their merge_bvec method (we know this by looking for the
1625 * max_hw_sectors that dm_set_device_limits may set), then we can't
1626 * allow bios with multiple vector entries. So always set max_size
1627 * to 0, and the code below allows just one page.
1628 */
1629 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1630 max_size = 0;
1631
1632 out:
1633 dm_put_live_table_fast(md);
1634 /*
1635 * Always allow an entire first page
1636 */
1637 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1638 max_size = biovec->bv_len;
1639
1640 return max_size;
1641 }
1642
1643 /*
1644 * The request function that just remaps the bio built up by
1645 * dm_merge_bvec.
1646 */
1647 static void _dm_request(struct request_queue *q, struct bio *bio)
1648 {
1649 int rw = bio_data_dir(bio);
1650 struct mapped_device *md = q->queuedata;
1651 int srcu_idx;
1652 struct dm_table *map;
1653
1654 map = dm_get_live_table(md, &srcu_idx);
1655
1656 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1657
1658 /* if we're suspended, we have to queue this io for later */
1659 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1660 dm_put_live_table(md, srcu_idx);
1661
1662 if (bio_rw(bio) != READA)
1663 queue_io(md, bio);
1664 else
1665 bio_io_error(bio);
1666 return;
1667 }
1668
1669 __split_and_process_bio(md, map, bio);
1670 dm_put_live_table(md, srcu_idx);
1671 return;
1672 }
1673
1674 int dm_request_based(struct mapped_device *md)
1675 {
1676 return blk_queue_stackable(md->queue);
1677 }
1678
1679 static void dm_request(struct request_queue *q, struct bio *bio)
1680 {
1681 struct mapped_device *md = q->queuedata;
1682
1683 if (dm_request_based(md))
1684 blk_queue_bio(q, bio);
1685 else
1686 _dm_request(q, bio);
1687 }
1688
1689 void dm_dispatch_request(struct request *rq)
1690 {
1691 int r;
1692
1693 if (blk_queue_io_stat(rq->q))
1694 rq->cmd_flags |= REQ_IO_STAT;
1695
1696 rq->start_time = jiffies;
1697 r = blk_insert_cloned_request(rq->q, rq);
1698 if (r)
1699 dm_complete_request(rq, r);
1700 }
1701 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1702
1703 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1704 void *data)
1705 {
1706 struct dm_rq_target_io *tio = data;
1707 struct dm_rq_clone_bio_info *info =
1708 container_of(bio, struct dm_rq_clone_bio_info, clone);
1709
1710 info->orig = bio_orig;
1711 info->tio = tio;
1712 bio->bi_end_io = end_clone_bio;
1713
1714 return 0;
1715 }
1716
1717 static int setup_clone(struct request *clone, struct request *rq,
1718 struct dm_rq_target_io *tio)
1719 {
1720 int r;
1721
1722 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1723 dm_rq_bio_constructor, tio);
1724 if (r)
1725 return r;
1726
1727 clone->cmd = rq->cmd;
1728 clone->cmd_len = rq->cmd_len;
1729 clone->sense = rq->sense;
1730 clone->end_io = end_clone_request;
1731 clone->end_io_data = tio;
1732
1733 return 0;
1734 }
1735
1736 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1737 gfp_t gfp_mask)
1738 {
1739 struct request *clone;
1740 struct dm_rq_target_io *tio;
1741
1742 tio = alloc_rq_tio(md, gfp_mask);
1743 if (!tio)
1744 return NULL;
1745
1746 tio->md = md;
1747 tio->ti = NULL;
1748 tio->orig = rq;
1749 tio->error = 0;
1750 memset(&tio->info, 0, sizeof(tio->info));
1751
1752 clone = &tio->clone;
1753 if (setup_clone(clone, rq, tio)) {
1754 /* -ENOMEM */
1755 free_rq_tio(tio);
1756 return NULL;
1757 }
1758
1759 return clone;
1760 }
1761
1762 /*
1763 * Called with the queue lock held.
1764 */
1765 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1766 {
1767 struct mapped_device *md = q->queuedata;
1768 struct request *clone;
1769
1770 if (unlikely(rq->special)) {
1771 DMWARN("Already has something in rq->special.");
1772 return BLKPREP_KILL;
1773 }
1774
1775 clone = clone_rq(rq, md, GFP_ATOMIC);
1776 if (!clone)
1777 return BLKPREP_DEFER;
1778
1779 rq->special = clone;
1780 rq->cmd_flags |= REQ_DONTPREP;
1781
1782 return BLKPREP_OK;
1783 }
1784
1785 /*
1786 * Returns:
1787 * 0 : the request has been processed (not requeued)
1788 * !0 : the request has been requeued
1789 */
1790 static int map_request(struct dm_target *ti, struct request *clone,
1791 struct mapped_device *md)
1792 {
1793 int r, requeued = 0;
1794 struct dm_rq_target_io *tio = clone->end_io_data;
1795
1796 tio->ti = ti;
1797 r = ti->type->map_rq(ti, clone, &tio->info);
1798 switch (r) {
1799 case DM_MAPIO_SUBMITTED:
1800 /* The target has taken the I/O to submit by itself later */
1801 break;
1802 case DM_MAPIO_REMAPPED:
1803 /* The target has remapped the I/O so dispatch it */
1804 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1805 blk_rq_pos(tio->orig));
1806 dm_dispatch_request(clone);
1807 break;
1808 case DM_MAPIO_REQUEUE:
1809 /* The target wants to requeue the I/O */
1810 dm_requeue_unmapped_request(clone);
1811 requeued = 1;
1812 break;
1813 default:
1814 if (r > 0) {
1815 DMWARN("unimplemented target map return value: %d", r);
1816 BUG();
1817 }
1818
1819 /* The target wants to complete the I/O */
1820 dm_kill_unmapped_request(clone, r);
1821 break;
1822 }
1823
1824 return requeued;
1825 }
1826
1827 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1828 {
1829 struct request *clone;
1830
1831 blk_start_request(orig);
1832 clone = orig->special;
1833 atomic_inc(&md->pending[rq_data_dir(clone)]);
1834
1835 /*
1836 * Hold the md reference here for the in-flight I/O.
1837 * We can't rely on the reference count by device opener,
1838 * because the device may be closed during the request completion
1839 * when all bios are completed.
1840 * See the comment in rq_completed() too.
1841 */
1842 dm_get(md);
1843
1844 return clone;
1845 }
1846
1847 /*
1848 * q->request_fn for request-based dm.
1849 * Called with the queue lock held.
1850 */
1851 static void dm_request_fn(struct request_queue *q)
1852 {
1853 struct mapped_device *md = q->queuedata;
1854 int srcu_idx;
1855 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1856 struct dm_target *ti;
1857 struct request *rq, *clone;
1858 sector_t pos;
1859
1860 /*
1861 * For suspend, check blk_queue_stopped() and increment
1862 * ->pending within a single queue_lock not to increment the
1863 * number of in-flight I/Os after the queue is stopped in
1864 * dm_suspend().
1865 */
1866 while (!blk_queue_stopped(q)) {
1867 rq = blk_peek_request(q);
1868 if (!rq)
1869 goto delay_and_out;
1870
1871 /* always use block 0 to find the target for flushes for now */
1872 pos = 0;
1873 if (!(rq->cmd_flags & REQ_FLUSH))
1874 pos = blk_rq_pos(rq);
1875
1876 ti = dm_table_find_target(map, pos);
1877 if (!dm_target_is_valid(ti)) {
1878 /*
1879 * Must perform setup, that dm_done() requires,
1880 * before calling dm_kill_unmapped_request
1881 */
1882 DMERR_LIMIT("request attempted access beyond the end of device");
1883 clone = dm_start_request(md, rq);
1884 dm_kill_unmapped_request(clone, -EIO);
1885 continue;
1886 }
1887
1888 if (ti->type->busy && ti->type->busy(ti))
1889 goto delay_and_out;
1890
1891 clone = dm_start_request(md, rq);
1892
1893 spin_unlock(q->queue_lock);
1894 if (map_request(ti, clone, md))
1895 goto requeued;
1896
1897 BUG_ON(!irqs_disabled());
1898 spin_lock(q->queue_lock);
1899 }
1900
1901 goto out;
1902
1903 requeued:
1904 BUG_ON(!irqs_disabled());
1905 spin_lock(q->queue_lock);
1906
1907 delay_and_out:
1908 blk_delay_queue(q, HZ / 10);
1909 out:
1910 dm_put_live_table(md, srcu_idx);
1911 }
1912
1913 int dm_underlying_device_busy(struct request_queue *q)
1914 {
1915 return blk_lld_busy(q);
1916 }
1917 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1918
1919 static int dm_lld_busy(struct request_queue *q)
1920 {
1921 int r;
1922 struct mapped_device *md = q->queuedata;
1923 struct dm_table *map = dm_get_live_table_fast(md);
1924
1925 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1926 r = 1;
1927 else
1928 r = dm_table_any_busy_target(map);
1929
1930 dm_put_live_table_fast(md);
1931
1932 return r;
1933 }
1934
1935 static int dm_any_congested(void *congested_data, int bdi_bits)
1936 {
1937 int r = bdi_bits;
1938 struct mapped_device *md = congested_data;
1939 struct dm_table *map;
1940
1941 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1942 map = dm_get_live_table_fast(md);
1943 if (map) {
1944 /*
1945 * Request-based dm cares about only own queue for
1946 * the query about congestion status of request_queue
1947 */
1948 if (dm_request_based(md))
1949 r = md->queue->backing_dev_info.state &
1950 bdi_bits;
1951 else
1952 r = dm_table_any_congested(map, bdi_bits);
1953 }
1954 dm_put_live_table_fast(md);
1955 }
1956
1957 return r;
1958 }
1959
1960 /*-----------------------------------------------------------------
1961 * An IDR is used to keep track of allocated minor numbers.
1962 *---------------------------------------------------------------*/
1963 static void free_minor(int minor)
1964 {
1965 spin_lock(&_minor_lock);
1966 idr_remove(&_minor_idr, minor);
1967 spin_unlock(&_minor_lock);
1968 }
1969
1970 /*
1971 * See if the device with a specific minor # is free.
1972 */
1973 static int specific_minor(int minor)
1974 {
1975 int r;
1976
1977 if (minor >= (1 << MINORBITS))
1978 return -EINVAL;
1979
1980 idr_preload(GFP_KERNEL);
1981 spin_lock(&_minor_lock);
1982
1983 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1984
1985 spin_unlock(&_minor_lock);
1986 idr_preload_end();
1987 if (r < 0)
1988 return r == -ENOSPC ? -EBUSY : r;
1989 return 0;
1990 }
1991
1992 static int next_free_minor(int *minor)
1993 {
1994 int r;
1995
1996 idr_preload(GFP_KERNEL);
1997 spin_lock(&_minor_lock);
1998
1999 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2000
2001 spin_unlock(&_minor_lock);
2002 idr_preload_end();
2003 if (r < 0)
2004 return r;
2005 *minor = r;
2006 return 0;
2007 }
2008
2009 static const struct block_device_operations dm_blk_dops;
2010
2011 static void dm_wq_work(struct work_struct *work);
2012
2013 static void dm_init_md_queue(struct mapped_device *md)
2014 {
2015 /*
2016 * Request-based dm devices cannot be stacked on top of bio-based dm
2017 * devices. The type of this dm device has not been decided yet.
2018 * The type is decided at the first table loading time.
2019 * To prevent problematic device stacking, clear the queue flag
2020 * for request stacking support until then.
2021 *
2022 * This queue is new, so no concurrency on the queue_flags.
2023 */
2024 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2025
2026 md->queue->queuedata = md;
2027 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2028 md->queue->backing_dev_info.congested_data = md;
2029 blk_queue_make_request(md->queue, dm_request);
2030 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2031 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2032 }
2033
2034 /*
2035 * Allocate and initialise a blank device with a given minor.
2036 */
2037 static struct mapped_device *alloc_dev(int minor)
2038 {
2039 int r;
2040 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2041 void *old_md;
2042
2043 if (!md) {
2044 DMWARN("unable to allocate device, out of memory.");
2045 return NULL;
2046 }
2047
2048 if (!try_module_get(THIS_MODULE))
2049 goto bad_module_get;
2050
2051 /* get a minor number for the dev */
2052 if (minor == DM_ANY_MINOR)
2053 r = next_free_minor(&minor);
2054 else
2055 r = specific_minor(minor);
2056 if (r < 0)
2057 goto bad_minor;
2058
2059 r = init_srcu_struct(&md->io_barrier);
2060 if (r < 0)
2061 goto bad_io_barrier;
2062
2063 md->type = DM_TYPE_NONE;
2064 mutex_init(&md->suspend_lock);
2065 mutex_init(&md->type_lock);
2066 mutex_init(&md->table_devices_lock);
2067 spin_lock_init(&md->deferred_lock);
2068 atomic_set(&md->holders, 1);
2069 atomic_set(&md->open_count, 0);
2070 atomic_set(&md->event_nr, 0);
2071 atomic_set(&md->uevent_seq, 0);
2072 INIT_LIST_HEAD(&md->uevent_list);
2073 INIT_LIST_HEAD(&md->table_devices);
2074 spin_lock_init(&md->uevent_lock);
2075
2076 md->queue = blk_alloc_queue(GFP_KERNEL);
2077 if (!md->queue)
2078 goto bad_queue;
2079
2080 dm_init_md_queue(md);
2081
2082 md->disk = alloc_disk(1);
2083 if (!md->disk)
2084 goto bad_disk;
2085
2086 atomic_set(&md->pending[0], 0);
2087 atomic_set(&md->pending[1], 0);
2088 init_waitqueue_head(&md->wait);
2089 INIT_WORK(&md->work, dm_wq_work);
2090 init_waitqueue_head(&md->eventq);
2091 init_completion(&md->kobj_holder.completion);
2092
2093 md->disk->major = _major;
2094 md->disk->first_minor = minor;
2095 md->disk->fops = &dm_blk_dops;
2096 md->disk->queue = md->queue;
2097 md->disk->private_data = md;
2098 sprintf(md->disk->disk_name, "dm-%d", minor);
2099 add_disk(md->disk);
2100 format_dev_t(md->name, MKDEV(_major, minor));
2101
2102 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2103 if (!md->wq)
2104 goto bad_thread;
2105
2106 md->bdev = bdget_disk(md->disk, 0);
2107 if (!md->bdev)
2108 goto bad_bdev;
2109
2110 bio_init(&md->flush_bio);
2111 md->flush_bio.bi_bdev = md->bdev;
2112 md->flush_bio.bi_rw = WRITE_FLUSH;
2113
2114 dm_stats_init(&md->stats);
2115
2116 /* Populate the mapping, nobody knows we exist yet */
2117 spin_lock(&_minor_lock);
2118 old_md = idr_replace(&_minor_idr, md, minor);
2119 spin_unlock(&_minor_lock);
2120
2121 BUG_ON(old_md != MINOR_ALLOCED);
2122
2123 return md;
2124
2125 bad_bdev:
2126 destroy_workqueue(md->wq);
2127 bad_thread:
2128 del_gendisk(md->disk);
2129 put_disk(md->disk);
2130 bad_disk:
2131 blk_cleanup_queue(md->queue);
2132 bad_queue:
2133 cleanup_srcu_struct(&md->io_barrier);
2134 bad_io_barrier:
2135 free_minor(minor);
2136 bad_minor:
2137 module_put(THIS_MODULE);
2138 bad_module_get:
2139 kfree(md);
2140 return NULL;
2141 }
2142
2143 static void unlock_fs(struct mapped_device *md);
2144
2145 static void free_dev(struct mapped_device *md)
2146 {
2147 int minor = MINOR(disk_devt(md->disk));
2148
2149 unlock_fs(md);
2150 bdput(md->bdev);
2151 destroy_workqueue(md->wq);
2152 if (md->io_pool)
2153 mempool_destroy(md->io_pool);
2154 if (md->bs)
2155 bioset_free(md->bs);
2156 blk_integrity_unregister(md->disk);
2157 del_gendisk(md->disk);
2158 cleanup_srcu_struct(&md->io_barrier);
2159 free_table_devices(&md->table_devices);
2160 free_minor(minor);
2161
2162 spin_lock(&_minor_lock);
2163 md->disk->private_data = NULL;
2164 spin_unlock(&_minor_lock);
2165
2166 put_disk(md->disk);
2167 blk_cleanup_queue(md->queue);
2168 dm_stats_cleanup(&md->stats);
2169 module_put(THIS_MODULE);
2170 kfree(md);
2171 }
2172
2173 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2174 {
2175 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2176
2177 if (md->io_pool && md->bs) {
2178 /* The md already has necessary mempools. */
2179 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2180 /*
2181 * Reload bioset because front_pad may have changed
2182 * because a different table was loaded.
2183 */
2184 bioset_free(md->bs);
2185 md->bs = p->bs;
2186 p->bs = NULL;
2187 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
2188 /*
2189 * There's no need to reload with request-based dm
2190 * because the size of front_pad doesn't change.
2191 * Note for future: If you are to reload bioset,
2192 * prep-ed requests in the queue may refer
2193 * to bio from the old bioset, so you must walk
2194 * through the queue to unprep.
2195 */
2196 }
2197 goto out;
2198 }
2199
2200 BUG_ON(!p || md->io_pool || md->bs);
2201
2202 md->io_pool = p->io_pool;
2203 p->io_pool = NULL;
2204 md->bs = p->bs;
2205 p->bs = NULL;
2206
2207 out:
2208 /* mempool bind completed, now no need any mempools in the table */
2209 dm_table_free_md_mempools(t);
2210 }
2211
2212 /*
2213 * Bind a table to the device.
2214 */
2215 static void event_callback(void *context)
2216 {
2217 unsigned long flags;
2218 LIST_HEAD(uevents);
2219 struct mapped_device *md = (struct mapped_device *) context;
2220
2221 spin_lock_irqsave(&md->uevent_lock, flags);
2222 list_splice_init(&md->uevent_list, &uevents);
2223 spin_unlock_irqrestore(&md->uevent_lock, flags);
2224
2225 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2226
2227 atomic_inc(&md->event_nr);
2228 wake_up(&md->eventq);
2229 }
2230
2231 /*
2232 * Protected by md->suspend_lock obtained by dm_swap_table().
2233 */
2234 static void __set_size(struct mapped_device *md, sector_t size)
2235 {
2236 set_capacity(md->disk, size);
2237
2238 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2239 }
2240
2241 /*
2242 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2243 *
2244 * If this function returns 0, then the device is either a non-dm
2245 * device without a merge_bvec_fn, or it is a dm device that is
2246 * able to split any bios it receives that are too big.
2247 */
2248 int dm_queue_merge_is_compulsory(struct request_queue *q)
2249 {
2250 struct mapped_device *dev_md;
2251
2252 if (!q->merge_bvec_fn)
2253 return 0;
2254
2255 if (q->make_request_fn == dm_request) {
2256 dev_md = q->queuedata;
2257 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2258 return 0;
2259 }
2260
2261 return 1;
2262 }
2263
2264 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2265 struct dm_dev *dev, sector_t start,
2266 sector_t len, void *data)
2267 {
2268 struct block_device *bdev = dev->bdev;
2269 struct request_queue *q = bdev_get_queue(bdev);
2270
2271 return dm_queue_merge_is_compulsory(q);
2272 }
2273
2274 /*
2275 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2276 * on the properties of the underlying devices.
2277 */
2278 static int dm_table_merge_is_optional(struct dm_table *table)
2279 {
2280 unsigned i = 0;
2281 struct dm_target *ti;
2282
2283 while (i < dm_table_get_num_targets(table)) {
2284 ti = dm_table_get_target(table, i++);
2285
2286 if (ti->type->iterate_devices &&
2287 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2288 return 0;
2289 }
2290
2291 return 1;
2292 }
2293
2294 /*
2295 * Returns old map, which caller must destroy.
2296 */
2297 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2298 struct queue_limits *limits)
2299 {
2300 struct dm_table *old_map;
2301 struct request_queue *q = md->queue;
2302 sector_t size;
2303 int merge_is_optional;
2304
2305 size = dm_table_get_size(t);
2306
2307 /*
2308 * Wipe any geometry if the size of the table changed.
2309 */
2310 if (size != dm_get_size(md))
2311 memset(&md->geometry, 0, sizeof(md->geometry));
2312
2313 __set_size(md, size);
2314
2315 dm_table_event_callback(t, event_callback, md);
2316
2317 /*
2318 * The queue hasn't been stopped yet, if the old table type wasn't
2319 * for request-based during suspension. So stop it to prevent
2320 * I/O mapping before resume.
2321 * This must be done before setting the queue restrictions,
2322 * because request-based dm may be run just after the setting.
2323 */
2324 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2325 stop_queue(q);
2326
2327 __bind_mempools(md, t);
2328
2329 merge_is_optional = dm_table_merge_is_optional(t);
2330
2331 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2332 rcu_assign_pointer(md->map, t);
2333 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2334
2335 dm_table_set_restrictions(t, q, limits);
2336 if (merge_is_optional)
2337 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2338 else
2339 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2340 if (old_map)
2341 dm_sync_table(md);
2342
2343 return old_map;
2344 }
2345
2346 /*
2347 * Returns unbound table for the caller to free.
2348 */
2349 static struct dm_table *__unbind(struct mapped_device *md)
2350 {
2351 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2352
2353 if (!map)
2354 return NULL;
2355
2356 dm_table_event_callback(map, NULL, NULL);
2357 RCU_INIT_POINTER(md->map, NULL);
2358 dm_sync_table(md);
2359
2360 return map;
2361 }
2362
2363 /*
2364 * Constructor for a new device.
2365 */
2366 int dm_create(int minor, struct mapped_device **result)
2367 {
2368 struct mapped_device *md;
2369
2370 md = alloc_dev(minor);
2371 if (!md)
2372 return -ENXIO;
2373
2374 dm_sysfs_init(md);
2375
2376 *result = md;
2377 return 0;
2378 }
2379
2380 /*
2381 * Functions to manage md->type.
2382 * All are required to hold md->type_lock.
2383 */
2384 void dm_lock_md_type(struct mapped_device *md)
2385 {
2386 mutex_lock(&md->type_lock);
2387 }
2388
2389 void dm_unlock_md_type(struct mapped_device *md)
2390 {
2391 mutex_unlock(&md->type_lock);
2392 }
2393
2394 void dm_set_md_type(struct mapped_device *md, unsigned type)
2395 {
2396 BUG_ON(!mutex_is_locked(&md->type_lock));
2397 md->type = type;
2398 }
2399
2400 unsigned dm_get_md_type(struct mapped_device *md)
2401 {
2402 BUG_ON(!mutex_is_locked(&md->type_lock));
2403 return md->type;
2404 }
2405
2406 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2407 {
2408 return md->immutable_target_type;
2409 }
2410
2411 /*
2412 * The queue_limits are only valid as long as you have a reference
2413 * count on 'md'.
2414 */
2415 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2416 {
2417 BUG_ON(!atomic_read(&md->holders));
2418 return &md->queue->limits;
2419 }
2420 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2421
2422 /*
2423 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2424 */
2425 static int dm_init_request_based_queue(struct mapped_device *md)
2426 {
2427 struct request_queue *q = NULL;
2428
2429 if (md->queue->elevator)
2430 return 1;
2431
2432 /* Fully initialize the queue */
2433 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2434 if (!q)
2435 return 0;
2436
2437 md->queue = q;
2438 dm_init_md_queue(md);
2439 blk_queue_softirq_done(md->queue, dm_softirq_done);
2440 blk_queue_prep_rq(md->queue, dm_prep_fn);
2441 blk_queue_lld_busy(md->queue, dm_lld_busy);
2442
2443 elv_register_queue(md->queue);
2444
2445 return 1;
2446 }
2447
2448 /*
2449 * Setup the DM device's queue based on md's type
2450 */
2451 int dm_setup_md_queue(struct mapped_device *md)
2452 {
2453 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2454 !dm_init_request_based_queue(md)) {
2455 DMWARN("Cannot initialize queue for request-based mapped device");
2456 return -EINVAL;
2457 }
2458
2459 return 0;
2460 }
2461
2462 static struct mapped_device *dm_find_md(dev_t dev)
2463 {
2464 struct mapped_device *md;
2465 unsigned minor = MINOR(dev);
2466
2467 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2468 return NULL;
2469
2470 spin_lock(&_minor_lock);
2471
2472 md = idr_find(&_minor_idr, minor);
2473 if (md && (md == MINOR_ALLOCED ||
2474 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2475 dm_deleting_md(md) ||
2476 test_bit(DMF_FREEING, &md->flags))) {
2477 md = NULL;
2478 goto out;
2479 }
2480
2481 out:
2482 spin_unlock(&_minor_lock);
2483
2484 return md;
2485 }
2486
2487 struct mapped_device *dm_get_md(dev_t dev)
2488 {
2489 struct mapped_device *md = dm_find_md(dev);
2490
2491 if (md)
2492 dm_get(md);
2493
2494 return md;
2495 }
2496 EXPORT_SYMBOL_GPL(dm_get_md);
2497
2498 void *dm_get_mdptr(struct mapped_device *md)
2499 {
2500 return md->interface_ptr;
2501 }
2502
2503 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2504 {
2505 md->interface_ptr = ptr;
2506 }
2507
2508 void dm_get(struct mapped_device *md)
2509 {
2510 atomic_inc(&md->holders);
2511 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2512 }
2513
2514 const char *dm_device_name(struct mapped_device *md)
2515 {
2516 return md->name;
2517 }
2518 EXPORT_SYMBOL_GPL(dm_device_name);
2519
2520 static void __dm_destroy(struct mapped_device *md, bool wait)
2521 {
2522 struct dm_table *map;
2523 int srcu_idx;
2524
2525 might_sleep();
2526
2527 spin_lock(&_minor_lock);
2528 map = dm_get_live_table(md, &srcu_idx);
2529 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2530 set_bit(DMF_FREEING, &md->flags);
2531 spin_unlock(&_minor_lock);
2532
2533 if (!dm_suspended_md(md)) {
2534 dm_table_presuspend_targets(map);
2535 dm_table_postsuspend_targets(map);
2536 }
2537
2538 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2539 dm_put_live_table(md, srcu_idx);
2540
2541 /*
2542 * Rare, but there may be I/O requests still going to complete,
2543 * for example. Wait for all references to disappear.
2544 * No one should increment the reference count of the mapped_device,
2545 * after the mapped_device state becomes DMF_FREEING.
2546 */
2547 if (wait)
2548 while (atomic_read(&md->holders))
2549 msleep(1);
2550 else if (atomic_read(&md->holders))
2551 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2552 dm_device_name(md), atomic_read(&md->holders));
2553
2554 dm_sysfs_exit(md);
2555 dm_table_destroy(__unbind(md));
2556 free_dev(md);
2557 }
2558
2559 void dm_destroy(struct mapped_device *md)
2560 {
2561 __dm_destroy(md, true);
2562 }
2563
2564 void dm_destroy_immediate(struct mapped_device *md)
2565 {
2566 __dm_destroy(md, false);
2567 }
2568
2569 void dm_put(struct mapped_device *md)
2570 {
2571 atomic_dec(&md->holders);
2572 }
2573 EXPORT_SYMBOL_GPL(dm_put);
2574
2575 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2576 {
2577 int r = 0;
2578 DECLARE_WAITQUEUE(wait, current);
2579
2580 add_wait_queue(&md->wait, &wait);
2581
2582 while (1) {
2583 set_current_state(interruptible);
2584
2585 if (!md_in_flight(md))
2586 break;
2587
2588 if (interruptible == TASK_INTERRUPTIBLE &&
2589 signal_pending(current)) {
2590 r = -EINTR;
2591 break;
2592 }
2593
2594 io_schedule();
2595 }
2596 set_current_state(TASK_RUNNING);
2597
2598 remove_wait_queue(&md->wait, &wait);
2599
2600 return r;
2601 }
2602
2603 /*
2604 * Process the deferred bios
2605 */
2606 static void dm_wq_work(struct work_struct *work)
2607 {
2608 struct mapped_device *md = container_of(work, struct mapped_device,
2609 work);
2610 struct bio *c;
2611 int srcu_idx;
2612 struct dm_table *map;
2613
2614 map = dm_get_live_table(md, &srcu_idx);
2615
2616 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2617 spin_lock_irq(&md->deferred_lock);
2618 c = bio_list_pop(&md->deferred);
2619 spin_unlock_irq(&md->deferred_lock);
2620
2621 if (!c)
2622 break;
2623
2624 if (dm_request_based(md))
2625 generic_make_request(c);
2626 else
2627 __split_and_process_bio(md, map, c);
2628 }
2629
2630 dm_put_live_table(md, srcu_idx);
2631 }
2632
2633 static void dm_queue_flush(struct mapped_device *md)
2634 {
2635 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2636 smp_mb__after_atomic();
2637 queue_work(md->wq, &md->work);
2638 }
2639
2640 /*
2641 * Swap in a new table, returning the old one for the caller to destroy.
2642 */
2643 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2644 {
2645 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2646 struct queue_limits limits;
2647 int r;
2648
2649 mutex_lock(&md->suspend_lock);
2650
2651 /* device must be suspended */
2652 if (!dm_suspended_md(md))
2653 goto out;
2654
2655 /*
2656 * If the new table has no data devices, retain the existing limits.
2657 * This helps multipath with queue_if_no_path if all paths disappear,
2658 * then new I/O is queued based on these limits, and then some paths
2659 * reappear.
2660 */
2661 if (dm_table_has_no_data_devices(table)) {
2662 live_map = dm_get_live_table_fast(md);
2663 if (live_map)
2664 limits = md->queue->limits;
2665 dm_put_live_table_fast(md);
2666 }
2667
2668 if (!live_map) {
2669 r = dm_calculate_queue_limits(table, &limits);
2670 if (r) {
2671 map = ERR_PTR(r);
2672 goto out;
2673 }
2674 }
2675
2676 map = __bind(md, table, &limits);
2677
2678 out:
2679 mutex_unlock(&md->suspend_lock);
2680 return map;
2681 }
2682
2683 /*
2684 * Functions to lock and unlock any filesystem running on the
2685 * device.
2686 */
2687 static int lock_fs(struct mapped_device *md)
2688 {
2689 int r;
2690
2691 WARN_ON(md->frozen_sb);
2692
2693 md->frozen_sb = freeze_bdev(md->bdev);
2694 if (IS_ERR(md->frozen_sb)) {
2695 r = PTR_ERR(md->frozen_sb);
2696 md->frozen_sb = NULL;
2697 return r;
2698 }
2699
2700 set_bit(DMF_FROZEN, &md->flags);
2701
2702 return 0;
2703 }
2704
2705 static void unlock_fs(struct mapped_device *md)
2706 {
2707 if (!test_bit(DMF_FROZEN, &md->flags))
2708 return;
2709
2710 thaw_bdev(md->bdev, md->frozen_sb);
2711 md->frozen_sb = NULL;
2712 clear_bit(DMF_FROZEN, &md->flags);
2713 }
2714
2715 /*
2716 * If __dm_suspend returns 0, the device is completely quiescent
2717 * now. There is no request-processing activity. All new requests
2718 * are being added to md->deferred list.
2719 *
2720 * Caller must hold md->suspend_lock
2721 */
2722 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2723 unsigned suspend_flags, int interruptible)
2724 {
2725 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2726 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2727 int r;
2728
2729 /*
2730 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2731 * This flag is cleared before dm_suspend returns.
2732 */
2733 if (noflush)
2734 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2735
2736 /*
2737 * This gets reverted if there's an error later and the targets
2738 * provide the .presuspend_undo hook.
2739 */
2740 dm_table_presuspend_targets(map);
2741
2742 /*
2743 * Flush I/O to the device.
2744 * Any I/O submitted after lock_fs() may not be flushed.
2745 * noflush takes precedence over do_lockfs.
2746 * (lock_fs() flushes I/Os and waits for them to complete.)
2747 */
2748 if (!noflush && do_lockfs) {
2749 r = lock_fs(md);
2750 if (r) {
2751 dm_table_presuspend_undo_targets(map);
2752 return r;
2753 }
2754 }
2755
2756 /*
2757 * Here we must make sure that no processes are submitting requests
2758 * to target drivers i.e. no one may be executing
2759 * __split_and_process_bio. This is called from dm_request and
2760 * dm_wq_work.
2761 *
2762 * To get all processes out of __split_and_process_bio in dm_request,
2763 * we take the write lock. To prevent any process from reentering
2764 * __split_and_process_bio from dm_request and quiesce the thread
2765 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2766 * flush_workqueue(md->wq).
2767 */
2768 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2769 if (map)
2770 synchronize_srcu(&md->io_barrier);
2771
2772 /*
2773 * Stop md->queue before flushing md->wq in case request-based
2774 * dm defers requests to md->wq from md->queue.
2775 */
2776 if (dm_request_based(md))
2777 stop_queue(md->queue);
2778
2779 flush_workqueue(md->wq);
2780
2781 /*
2782 * At this point no more requests are entering target request routines.
2783 * We call dm_wait_for_completion to wait for all existing requests
2784 * to finish.
2785 */
2786 r = dm_wait_for_completion(md, interruptible);
2787
2788 if (noflush)
2789 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2790 if (map)
2791 synchronize_srcu(&md->io_barrier);
2792
2793 /* were we interrupted ? */
2794 if (r < 0) {
2795 dm_queue_flush(md);
2796
2797 if (dm_request_based(md))
2798 start_queue(md->queue);
2799
2800 unlock_fs(md);
2801 dm_table_presuspend_undo_targets(map);
2802 /* pushback list is already flushed, so skip flush */
2803 }
2804
2805 return r;
2806 }
2807
2808 /*
2809 * We need to be able to change a mapping table under a mounted
2810 * filesystem. For example we might want to move some data in
2811 * the background. Before the table can be swapped with
2812 * dm_bind_table, dm_suspend must be called to flush any in
2813 * flight bios and ensure that any further io gets deferred.
2814 */
2815 /*
2816 * Suspend mechanism in request-based dm.
2817 *
2818 * 1. Flush all I/Os by lock_fs() if needed.
2819 * 2. Stop dispatching any I/O by stopping the request_queue.
2820 * 3. Wait for all in-flight I/Os to be completed or requeued.
2821 *
2822 * To abort suspend, start the request_queue.
2823 */
2824 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2825 {
2826 struct dm_table *map = NULL;
2827 int r = 0;
2828
2829 retry:
2830 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2831
2832 if (dm_suspended_md(md)) {
2833 r = -EINVAL;
2834 goto out_unlock;
2835 }
2836
2837 if (dm_suspended_internally_md(md)) {
2838 /* already internally suspended, wait for internal resume */
2839 mutex_unlock(&md->suspend_lock);
2840 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2841 if (r)
2842 return r;
2843 goto retry;
2844 }
2845
2846 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2847
2848 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
2849 if (r)
2850 goto out_unlock;
2851
2852 set_bit(DMF_SUSPENDED, &md->flags);
2853
2854 dm_table_postsuspend_targets(map);
2855
2856 out_unlock:
2857 mutex_unlock(&md->suspend_lock);
2858 return r;
2859 }
2860
2861 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2862 {
2863 if (map) {
2864 int r = dm_table_resume_targets(map);
2865 if (r)
2866 return r;
2867 }
2868
2869 dm_queue_flush(md);
2870
2871 /*
2872 * Flushing deferred I/Os must be done after targets are resumed
2873 * so that mapping of targets can work correctly.
2874 * Request-based dm is queueing the deferred I/Os in its request_queue.
2875 */
2876 if (dm_request_based(md))
2877 start_queue(md->queue);
2878
2879 unlock_fs(md);
2880
2881 return 0;
2882 }
2883
2884 int dm_resume(struct mapped_device *md)
2885 {
2886 int r = -EINVAL;
2887 struct dm_table *map = NULL;
2888
2889 retry:
2890 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2891
2892 if (!dm_suspended_md(md))
2893 goto out;
2894
2895 if (dm_suspended_internally_md(md)) {
2896 /* already internally suspended, wait for internal resume */
2897 mutex_unlock(&md->suspend_lock);
2898 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2899 if (r)
2900 return r;
2901 goto retry;
2902 }
2903
2904 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2905 if (!map || !dm_table_get_size(map))
2906 goto out;
2907
2908 r = __dm_resume(md, map);
2909 if (r)
2910 goto out;
2911
2912 clear_bit(DMF_SUSPENDED, &md->flags);
2913
2914 r = 0;
2915 out:
2916 mutex_unlock(&md->suspend_lock);
2917
2918 return r;
2919 }
2920
2921 /*
2922 * Internal suspend/resume works like userspace-driven suspend. It waits
2923 * until all bios finish and prevents issuing new bios to the target drivers.
2924 * It may be used only from the kernel.
2925 */
2926
2927 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2928 {
2929 struct dm_table *map = NULL;
2930
2931 if (dm_suspended_internally_md(md))
2932 return; /* nested internal suspend */
2933
2934 if (dm_suspended_md(md)) {
2935 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2936 return; /* nest suspend */
2937 }
2938
2939 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2940
2941 /*
2942 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2943 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2944 * would require changing .presuspend to return an error -- avoid this
2945 * until there is a need for more elaborate variants of internal suspend.
2946 */
2947 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
2948
2949 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2950
2951 dm_table_postsuspend_targets(map);
2952 }
2953
2954 static void __dm_internal_resume(struct mapped_device *md)
2955 {
2956 if (!dm_suspended_internally_md(md))
2957 return; /* resume from nested internal suspend */
2958
2959 if (dm_suspended_md(md))
2960 goto done; /* resume from nested suspend */
2961
2962 /*
2963 * NOTE: existing callers don't need to call dm_table_resume_targets
2964 * (which may fail -- so best to avoid it for now by passing NULL map)
2965 */
2966 (void) __dm_resume(md, NULL);
2967
2968 done:
2969 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2970 smp_mb__after_atomic();
2971 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2972 }
2973
2974 void dm_internal_suspend_noflush(struct mapped_device *md)
2975 {
2976 mutex_lock(&md->suspend_lock);
2977 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2978 mutex_unlock(&md->suspend_lock);
2979 }
2980 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2981
2982 void dm_internal_resume(struct mapped_device *md)
2983 {
2984 mutex_lock(&md->suspend_lock);
2985 __dm_internal_resume(md);
2986 mutex_unlock(&md->suspend_lock);
2987 }
2988 EXPORT_SYMBOL_GPL(dm_internal_resume);
2989
2990 /*
2991 * Fast variants of internal suspend/resume hold md->suspend_lock,
2992 * which prevents interaction with userspace-driven suspend.
2993 */
2994
2995 void dm_internal_suspend_fast(struct mapped_device *md)
2996 {
2997 mutex_lock(&md->suspend_lock);
2998 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2999 return;
3000
3001 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3002 synchronize_srcu(&md->io_barrier);
3003 flush_workqueue(md->wq);
3004 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3005 }
3006
3007 void dm_internal_resume_fast(struct mapped_device *md)
3008 {
3009 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3010 goto done;
3011
3012 dm_queue_flush(md);
3013
3014 done:
3015 mutex_unlock(&md->suspend_lock);
3016 }
3017
3018 /*-----------------------------------------------------------------
3019 * Event notification.
3020 *---------------------------------------------------------------*/
3021 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3022 unsigned cookie)
3023 {
3024 char udev_cookie[DM_COOKIE_LENGTH];
3025 char *envp[] = { udev_cookie, NULL };
3026
3027 if (!cookie)
3028 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3029 else {
3030 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3031 DM_COOKIE_ENV_VAR_NAME, cookie);
3032 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3033 action, envp);
3034 }
3035 }
3036
3037 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3038 {
3039 return atomic_add_return(1, &md->uevent_seq);
3040 }
3041
3042 uint32_t dm_get_event_nr(struct mapped_device *md)
3043 {
3044 return atomic_read(&md->event_nr);
3045 }
3046
3047 int dm_wait_event(struct mapped_device *md, int event_nr)
3048 {
3049 return wait_event_interruptible(md->eventq,
3050 (event_nr != atomic_read(&md->event_nr)));
3051 }
3052
3053 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3054 {
3055 unsigned long flags;
3056
3057 spin_lock_irqsave(&md->uevent_lock, flags);
3058 list_add(elist, &md->uevent_list);
3059 spin_unlock_irqrestore(&md->uevent_lock, flags);
3060 }
3061
3062 /*
3063 * The gendisk is only valid as long as you have a reference
3064 * count on 'md'.
3065 */
3066 struct gendisk *dm_disk(struct mapped_device *md)
3067 {
3068 return md->disk;
3069 }
3070
3071 struct kobject *dm_kobject(struct mapped_device *md)
3072 {
3073 return &md->kobj_holder.kobj;
3074 }
3075
3076 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3077 {
3078 struct mapped_device *md;
3079
3080 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3081
3082 if (test_bit(DMF_FREEING, &md->flags) ||
3083 dm_deleting_md(md))
3084 return NULL;
3085
3086 dm_get(md);
3087 return md;
3088 }
3089
3090 int dm_suspended_md(struct mapped_device *md)
3091 {
3092 return test_bit(DMF_SUSPENDED, &md->flags);
3093 }
3094
3095 int dm_suspended_internally_md(struct mapped_device *md)
3096 {
3097 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3098 }
3099
3100 int dm_test_deferred_remove_flag(struct mapped_device *md)
3101 {
3102 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3103 }
3104
3105 int dm_suspended(struct dm_target *ti)
3106 {
3107 return dm_suspended_md(dm_table_get_md(ti->table));
3108 }
3109 EXPORT_SYMBOL_GPL(dm_suspended);
3110
3111 int dm_noflush_suspending(struct dm_target *ti)
3112 {
3113 return __noflush_suspending(dm_table_get_md(ti->table));
3114 }
3115 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3116
3117 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
3118 {
3119 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3120 struct kmem_cache *cachep;
3121 unsigned int pool_size;
3122 unsigned int front_pad;
3123
3124 if (!pools)
3125 return NULL;
3126
3127 if (type == DM_TYPE_BIO_BASED) {
3128 cachep = _io_cache;
3129 pool_size = dm_get_reserved_bio_based_ios();
3130 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3131 } else if (type == DM_TYPE_REQUEST_BASED) {
3132 cachep = _rq_tio_cache;
3133 pool_size = dm_get_reserved_rq_based_ios();
3134 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3135 /* per_bio_data_size is not used. See __bind_mempools(). */
3136 WARN_ON(per_bio_data_size != 0);
3137 } else
3138 goto out;
3139
3140 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3141 if (!pools->io_pool)
3142 goto out;
3143
3144 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3145 if (!pools->bs)
3146 goto out;
3147
3148 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3149 goto out;
3150
3151 return pools;
3152
3153 out:
3154 dm_free_md_mempools(pools);
3155
3156 return NULL;
3157 }
3158
3159 void dm_free_md_mempools(struct dm_md_mempools *pools)
3160 {
3161 if (!pools)
3162 return;
3163
3164 if (pools->io_pool)
3165 mempool_destroy(pools->io_pool);
3166
3167 if (pools->bs)
3168 bioset_free(pools->bs);
3169
3170 kfree(pools);
3171 }
3172
3173 static const struct block_device_operations dm_blk_dops = {
3174 .open = dm_blk_open,
3175 .release = dm_blk_close,
3176 .ioctl = dm_blk_ioctl,
3177 .getgeo = dm_blk_getgeo,
3178 .owner = THIS_MODULE
3179 };
3180
3181 /*
3182 * module hooks
3183 */
3184 module_init(dm_init);
3185 module_exit(dm_exit);
3186
3187 module_param(major, uint, 0);
3188 MODULE_PARM_DESC(major, "The major number of the device mapper");
3189
3190 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3191 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3192
3193 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3194 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3195
3196 MODULE_DESCRIPTION(DM_NAME " driver");
3197 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3198 MODULE_LICENSE("GPL");
This page took 0.093652 seconds and 5 git commands to generate.