dm table: clear add_random unless all devices have it set
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22
23 #include <trace/events/block.h>
24
25 #define DM_MSG_PREFIX "core"
26
27 #ifdef CONFIG_PRINTK
28 /*
29 * ratelimit state to be used in DMXXX_LIMIT().
30 */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36
37 /*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43
44 static const char *_name = DM_NAME;
45
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48
49 static DEFINE_IDR(_minor_idr);
50
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53 * For bio-based dm.
54 * One of these is allocated per bio.
55 */
56 struct dm_io {
57 struct mapped_device *md;
58 int error;
59 atomic_t io_count;
60 struct bio *bio;
61 unsigned long start_time;
62 spinlock_t endio_lock;
63 };
64
65 /*
66 * For bio-based dm.
67 * One of these is allocated per target within a bio. Hopefully
68 * this will be simplified out one day.
69 */
70 struct dm_target_io {
71 struct dm_io *io;
72 struct dm_target *ti;
73 union map_info info;
74 };
75
76 /*
77 * For request-based dm.
78 * One of these is allocated per request.
79 */
80 struct dm_rq_target_io {
81 struct mapped_device *md;
82 struct dm_target *ti;
83 struct request *orig, clone;
84 int error;
85 union map_info info;
86 };
87
88 /*
89 * For request-based dm.
90 * One of these is allocated per bio.
91 */
92 struct dm_rq_clone_bio_info {
93 struct bio *orig;
94 struct dm_rq_target_io *tio;
95 };
96
97 union map_info *dm_get_mapinfo(struct bio *bio)
98 {
99 if (bio && bio->bi_private)
100 return &((struct dm_target_io *)bio->bi_private)->info;
101 return NULL;
102 }
103
104 union map_info *dm_get_rq_mapinfo(struct request *rq)
105 {
106 if (rq && rq->end_io_data)
107 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
108 return NULL;
109 }
110 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
111
112 #define MINOR_ALLOCED ((void *)-1)
113
114 /*
115 * Bits for the md->flags field.
116 */
117 #define DMF_BLOCK_IO_FOR_SUSPEND 0
118 #define DMF_SUSPENDED 1
119 #define DMF_FROZEN 2
120 #define DMF_FREEING 3
121 #define DMF_DELETING 4
122 #define DMF_NOFLUSH_SUSPENDING 5
123 #define DMF_MERGE_IS_OPTIONAL 6
124
125 /*
126 * Work processed by per-device workqueue.
127 */
128 struct mapped_device {
129 struct rw_semaphore io_lock;
130 struct mutex suspend_lock;
131 rwlock_t map_lock;
132 atomic_t holders;
133 atomic_t open_count;
134
135 unsigned long flags;
136
137 struct request_queue *queue;
138 unsigned type;
139 /* Protect queue and type against concurrent access. */
140 struct mutex type_lock;
141
142 struct target_type *immutable_target_type;
143
144 struct gendisk *disk;
145 char name[16];
146
147 void *interface_ptr;
148
149 /*
150 * A list of ios that arrived while we were suspended.
151 */
152 atomic_t pending[2];
153 wait_queue_head_t wait;
154 struct work_struct work;
155 struct bio_list deferred;
156 spinlock_t deferred_lock;
157
158 /*
159 * Processing queue (flush)
160 */
161 struct workqueue_struct *wq;
162
163 /*
164 * The current mapping.
165 */
166 struct dm_table *map;
167
168 /*
169 * io objects are allocated from here.
170 */
171 mempool_t *io_pool;
172 mempool_t *tio_pool;
173
174 struct bio_set *bs;
175
176 /*
177 * Event handling.
178 */
179 atomic_t event_nr;
180 wait_queue_head_t eventq;
181 atomic_t uevent_seq;
182 struct list_head uevent_list;
183 spinlock_t uevent_lock; /* Protect access to uevent_list */
184
185 /*
186 * freeze/thaw support require holding onto a super block
187 */
188 struct super_block *frozen_sb;
189 struct block_device *bdev;
190
191 /* forced geometry settings */
192 struct hd_geometry geometry;
193
194 /* sysfs handle */
195 struct kobject kobj;
196
197 /* zero-length flush that will be cloned and submitted to targets */
198 struct bio flush_bio;
199 };
200
201 /*
202 * For mempools pre-allocation at the table loading time.
203 */
204 struct dm_md_mempools {
205 mempool_t *io_pool;
206 mempool_t *tio_pool;
207 struct bio_set *bs;
208 };
209
210 #define MIN_IOS 256
211 static struct kmem_cache *_io_cache;
212 static struct kmem_cache *_tio_cache;
213 static struct kmem_cache *_rq_tio_cache;
214 static struct kmem_cache *_rq_bio_info_cache;
215
216 static int __init local_init(void)
217 {
218 int r = -ENOMEM;
219
220 /* allocate a slab for the dm_ios */
221 _io_cache = KMEM_CACHE(dm_io, 0);
222 if (!_io_cache)
223 return r;
224
225 /* allocate a slab for the target ios */
226 _tio_cache = KMEM_CACHE(dm_target_io, 0);
227 if (!_tio_cache)
228 goto out_free_io_cache;
229
230 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
231 if (!_rq_tio_cache)
232 goto out_free_tio_cache;
233
234 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
235 if (!_rq_bio_info_cache)
236 goto out_free_rq_tio_cache;
237
238 r = dm_uevent_init();
239 if (r)
240 goto out_free_rq_bio_info_cache;
241
242 _major = major;
243 r = register_blkdev(_major, _name);
244 if (r < 0)
245 goto out_uevent_exit;
246
247 if (!_major)
248 _major = r;
249
250 return 0;
251
252 out_uevent_exit:
253 dm_uevent_exit();
254 out_free_rq_bio_info_cache:
255 kmem_cache_destroy(_rq_bio_info_cache);
256 out_free_rq_tio_cache:
257 kmem_cache_destroy(_rq_tio_cache);
258 out_free_tio_cache:
259 kmem_cache_destroy(_tio_cache);
260 out_free_io_cache:
261 kmem_cache_destroy(_io_cache);
262
263 return r;
264 }
265
266 static void local_exit(void)
267 {
268 kmem_cache_destroy(_rq_bio_info_cache);
269 kmem_cache_destroy(_rq_tio_cache);
270 kmem_cache_destroy(_tio_cache);
271 kmem_cache_destroy(_io_cache);
272 unregister_blkdev(_major, _name);
273 dm_uevent_exit();
274
275 _major = 0;
276
277 DMINFO("cleaned up");
278 }
279
280 static int (*_inits[])(void) __initdata = {
281 local_init,
282 dm_target_init,
283 dm_linear_init,
284 dm_stripe_init,
285 dm_io_init,
286 dm_kcopyd_init,
287 dm_interface_init,
288 };
289
290 static void (*_exits[])(void) = {
291 local_exit,
292 dm_target_exit,
293 dm_linear_exit,
294 dm_stripe_exit,
295 dm_io_exit,
296 dm_kcopyd_exit,
297 dm_interface_exit,
298 };
299
300 static int __init dm_init(void)
301 {
302 const int count = ARRAY_SIZE(_inits);
303
304 int r, i;
305
306 for (i = 0; i < count; i++) {
307 r = _inits[i]();
308 if (r)
309 goto bad;
310 }
311
312 return 0;
313
314 bad:
315 while (i--)
316 _exits[i]();
317
318 return r;
319 }
320
321 static void __exit dm_exit(void)
322 {
323 int i = ARRAY_SIZE(_exits);
324
325 while (i--)
326 _exits[i]();
327
328 /*
329 * Should be empty by this point.
330 */
331 idr_remove_all(&_minor_idr);
332 idr_destroy(&_minor_idr);
333 }
334
335 /*
336 * Block device functions
337 */
338 int dm_deleting_md(struct mapped_device *md)
339 {
340 return test_bit(DMF_DELETING, &md->flags);
341 }
342
343 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
344 {
345 struct mapped_device *md;
346
347 spin_lock(&_minor_lock);
348
349 md = bdev->bd_disk->private_data;
350 if (!md)
351 goto out;
352
353 if (test_bit(DMF_FREEING, &md->flags) ||
354 dm_deleting_md(md)) {
355 md = NULL;
356 goto out;
357 }
358
359 dm_get(md);
360 atomic_inc(&md->open_count);
361
362 out:
363 spin_unlock(&_minor_lock);
364
365 return md ? 0 : -ENXIO;
366 }
367
368 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
369 {
370 struct mapped_device *md = disk->private_data;
371
372 spin_lock(&_minor_lock);
373
374 atomic_dec(&md->open_count);
375 dm_put(md);
376
377 spin_unlock(&_minor_lock);
378
379 return 0;
380 }
381
382 int dm_open_count(struct mapped_device *md)
383 {
384 return atomic_read(&md->open_count);
385 }
386
387 /*
388 * Guarantees nothing is using the device before it's deleted.
389 */
390 int dm_lock_for_deletion(struct mapped_device *md)
391 {
392 int r = 0;
393
394 spin_lock(&_minor_lock);
395
396 if (dm_open_count(md))
397 r = -EBUSY;
398 else
399 set_bit(DMF_DELETING, &md->flags);
400
401 spin_unlock(&_minor_lock);
402
403 return r;
404 }
405
406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 struct mapped_device *md = bdev->bd_disk->private_data;
409
410 return dm_get_geometry(md, geo);
411 }
412
413 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
414 unsigned int cmd, unsigned long arg)
415 {
416 struct mapped_device *md = bdev->bd_disk->private_data;
417 struct dm_table *map = dm_get_live_table(md);
418 struct dm_target *tgt;
419 int r = -ENOTTY;
420
421 if (!map || !dm_table_get_size(map))
422 goto out;
423
424 /* We only support devices that have a single target */
425 if (dm_table_get_num_targets(map) != 1)
426 goto out;
427
428 tgt = dm_table_get_target(map, 0);
429
430 if (dm_suspended_md(md)) {
431 r = -EAGAIN;
432 goto out;
433 }
434
435 if (tgt->type->ioctl)
436 r = tgt->type->ioctl(tgt, cmd, arg);
437
438 out:
439 dm_table_put(map);
440
441 return r;
442 }
443
444 static struct dm_io *alloc_io(struct mapped_device *md)
445 {
446 return mempool_alloc(md->io_pool, GFP_NOIO);
447 }
448
449 static void free_io(struct mapped_device *md, struct dm_io *io)
450 {
451 mempool_free(io, md->io_pool);
452 }
453
454 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
455 {
456 mempool_free(tio, md->tio_pool);
457 }
458
459 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
460 gfp_t gfp_mask)
461 {
462 return mempool_alloc(md->tio_pool, gfp_mask);
463 }
464
465 static void free_rq_tio(struct dm_rq_target_io *tio)
466 {
467 mempool_free(tio, tio->md->tio_pool);
468 }
469
470 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
471 {
472 return mempool_alloc(md->io_pool, GFP_ATOMIC);
473 }
474
475 static void free_bio_info(struct dm_rq_clone_bio_info *info)
476 {
477 mempool_free(info, info->tio->md->io_pool);
478 }
479
480 static int md_in_flight(struct mapped_device *md)
481 {
482 return atomic_read(&md->pending[READ]) +
483 atomic_read(&md->pending[WRITE]);
484 }
485
486 static void start_io_acct(struct dm_io *io)
487 {
488 struct mapped_device *md = io->md;
489 int cpu;
490 int rw = bio_data_dir(io->bio);
491
492 io->start_time = jiffies;
493
494 cpu = part_stat_lock();
495 part_round_stats(cpu, &dm_disk(md)->part0);
496 part_stat_unlock();
497 atomic_set(&dm_disk(md)->part0.in_flight[rw],
498 atomic_inc_return(&md->pending[rw]));
499 }
500
501 static void end_io_acct(struct dm_io *io)
502 {
503 struct mapped_device *md = io->md;
504 struct bio *bio = io->bio;
505 unsigned long duration = jiffies - io->start_time;
506 int pending, cpu;
507 int rw = bio_data_dir(bio);
508
509 cpu = part_stat_lock();
510 part_round_stats(cpu, &dm_disk(md)->part0);
511 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
512 part_stat_unlock();
513
514 /*
515 * After this is decremented the bio must not be touched if it is
516 * a flush.
517 */
518 pending = atomic_dec_return(&md->pending[rw]);
519 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
520 pending += atomic_read(&md->pending[rw^0x1]);
521
522 /* nudge anyone waiting on suspend queue */
523 if (!pending)
524 wake_up(&md->wait);
525 }
526
527 /*
528 * Add the bio to the list of deferred io.
529 */
530 static void queue_io(struct mapped_device *md, struct bio *bio)
531 {
532 unsigned long flags;
533
534 spin_lock_irqsave(&md->deferred_lock, flags);
535 bio_list_add(&md->deferred, bio);
536 spin_unlock_irqrestore(&md->deferred_lock, flags);
537 queue_work(md->wq, &md->work);
538 }
539
540 /*
541 * Everyone (including functions in this file), should use this
542 * function to access the md->map field, and make sure they call
543 * dm_table_put() when finished.
544 */
545 struct dm_table *dm_get_live_table(struct mapped_device *md)
546 {
547 struct dm_table *t;
548 unsigned long flags;
549
550 read_lock_irqsave(&md->map_lock, flags);
551 t = md->map;
552 if (t)
553 dm_table_get(t);
554 read_unlock_irqrestore(&md->map_lock, flags);
555
556 return t;
557 }
558
559 /*
560 * Get the geometry associated with a dm device
561 */
562 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
563 {
564 *geo = md->geometry;
565
566 return 0;
567 }
568
569 /*
570 * Set the geometry of a device.
571 */
572 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
573 {
574 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
575
576 if (geo->start > sz) {
577 DMWARN("Start sector is beyond the geometry limits.");
578 return -EINVAL;
579 }
580
581 md->geometry = *geo;
582
583 return 0;
584 }
585
586 /*-----------------------------------------------------------------
587 * CRUD START:
588 * A more elegant soln is in the works that uses the queue
589 * merge fn, unfortunately there are a couple of changes to
590 * the block layer that I want to make for this. So in the
591 * interests of getting something for people to use I give
592 * you this clearly demarcated crap.
593 *---------------------------------------------------------------*/
594
595 static int __noflush_suspending(struct mapped_device *md)
596 {
597 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
598 }
599
600 /*
601 * Decrements the number of outstanding ios that a bio has been
602 * cloned into, completing the original io if necc.
603 */
604 static void dec_pending(struct dm_io *io, int error)
605 {
606 unsigned long flags;
607 int io_error;
608 struct bio *bio;
609 struct mapped_device *md = io->md;
610
611 /* Push-back supersedes any I/O errors */
612 if (unlikely(error)) {
613 spin_lock_irqsave(&io->endio_lock, flags);
614 if (!(io->error > 0 && __noflush_suspending(md)))
615 io->error = error;
616 spin_unlock_irqrestore(&io->endio_lock, flags);
617 }
618
619 if (atomic_dec_and_test(&io->io_count)) {
620 if (io->error == DM_ENDIO_REQUEUE) {
621 /*
622 * Target requested pushing back the I/O.
623 */
624 spin_lock_irqsave(&md->deferred_lock, flags);
625 if (__noflush_suspending(md))
626 bio_list_add_head(&md->deferred, io->bio);
627 else
628 /* noflush suspend was interrupted. */
629 io->error = -EIO;
630 spin_unlock_irqrestore(&md->deferred_lock, flags);
631 }
632
633 io_error = io->error;
634 bio = io->bio;
635 end_io_acct(io);
636 free_io(md, io);
637
638 if (io_error == DM_ENDIO_REQUEUE)
639 return;
640
641 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
642 /*
643 * Preflush done for flush with data, reissue
644 * without REQ_FLUSH.
645 */
646 bio->bi_rw &= ~REQ_FLUSH;
647 queue_io(md, bio);
648 } else {
649 /* done with normal IO or empty flush */
650 trace_block_bio_complete(md->queue, bio, io_error);
651 bio_endio(bio, io_error);
652 }
653 }
654 }
655
656 static void clone_endio(struct bio *bio, int error)
657 {
658 int r = 0;
659 struct dm_target_io *tio = bio->bi_private;
660 struct dm_io *io = tio->io;
661 struct mapped_device *md = tio->io->md;
662 dm_endio_fn endio = tio->ti->type->end_io;
663
664 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
665 error = -EIO;
666
667 if (endio) {
668 r = endio(tio->ti, bio, error, &tio->info);
669 if (r < 0 || r == DM_ENDIO_REQUEUE)
670 /*
671 * error and requeue request are handled
672 * in dec_pending().
673 */
674 error = r;
675 else if (r == DM_ENDIO_INCOMPLETE)
676 /* The target will handle the io */
677 return;
678 else if (r) {
679 DMWARN("unimplemented target endio return value: %d", r);
680 BUG();
681 }
682 }
683
684 /*
685 * Store md for cleanup instead of tio which is about to get freed.
686 */
687 bio->bi_private = md->bs;
688
689 free_tio(md, tio);
690 bio_put(bio);
691 dec_pending(io, error);
692 }
693
694 /*
695 * Partial completion handling for request-based dm
696 */
697 static void end_clone_bio(struct bio *clone, int error)
698 {
699 struct dm_rq_clone_bio_info *info = clone->bi_private;
700 struct dm_rq_target_io *tio = info->tio;
701 struct bio *bio = info->orig;
702 unsigned int nr_bytes = info->orig->bi_size;
703
704 bio_put(clone);
705
706 if (tio->error)
707 /*
708 * An error has already been detected on the request.
709 * Once error occurred, just let clone->end_io() handle
710 * the remainder.
711 */
712 return;
713 else if (error) {
714 /*
715 * Don't notice the error to the upper layer yet.
716 * The error handling decision is made by the target driver,
717 * when the request is completed.
718 */
719 tio->error = error;
720 return;
721 }
722
723 /*
724 * I/O for the bio successfully completed.
725 * Notice the data completion to the upper layer.
726 */
727
728 /*
729 * bios are processed from the head of the list.
730 * So the completing bio should always be rq->bio.
731 * If it's not, something wrong is happening.
732 */
733 if (tio->orig->bio != bio)
734 DMERR("bio completion is going in the middle of the request");
735
736 /*
737 * Update the original request.
738 * Do not use blk_end_request() here, because it may complete
739 * the original request before the clone, and break the ordering.
740 */
741 blk_update_request(tio->orig, 0, nr_bytes);
742 }
743
744 /*
745 * Don't touch any member of the md after calling this function because
746 * the md may be freed in dm_put() at the end of this function.
747 * Or do dm_get() before calling this function and dm_put() later.
748 */
749 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
750 {
751 atomic_dec(&md->pending[rw]);
752
753 /* nudge anyone waiting on suspend queue */
754 if (!md_in_flight(md))
755 wake_up(&md->wait);
756
757 if (run_queue)
758 blk_run_queue(md->queue);
759
760 /*
761 * dm_put() must be at the end of this function. See the comment above
762 */
763 dm_put(md);
764 }
765
766 static void free_rq_clone(struct request *clone)
767 {
768 struct dm_rq_target_io *tio = clone->end_io_data;
769
770 blk_rq_unprep_clone(clone);
771 free_rq_tio(tio);
772 }
773
774 /*
775 * Complete the clone and the original request.
776 * Must be called without queue lock.
777 */
778 static void dm_end_request(struct request *clone, int error)
779 {
780 int rw = rq_data_dir(clone);
781 struct dm_rq_target_io *tio = clone->end_io_data;
782 struct mapped_device *md = tio->md;
783 struct request *rq = tio->orig;
784
785 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
786 rq->errors = clone->errors;
787 rq->resid_len = clone->resid_len;
788
789 if (rq->sense)
790 /*
791 * We are using the sense buffer of the original
792 * request.
793 * So setting the length of the sense data is enough.
794 */
795 rq->sense_len = clone->sense_len;
796 }
797
798 free_rq_clone(clone);
799 blk_end_request_all(rq, error);
800 rq_completed(md, rw, true);
801 }
802
803 static void dm_unprep_request(struct request *rq)
804 {
805 struct request *clone = rq->special;
806
807 rq->special = NULL;
808 rq->cmd_flags &= ~REQ_DONTPREP;
809
810 free_rq_clone(clone);
811 }
812
813 /*
814 * Requeue the original request of a clone.
815 */
816 void dm_requeue_unmapped_request(struct request *clone)
817 {
818 int rw = rq_data_dir(clone);
819 struct dm_rq_target_io *tio = clone->end_io_data;
820 struct mapped_device *md = tio->md;
821 struct request *rq = tio->orig;
822 struct request_queue *q = rq->q;
823 unsigned long flags;
824
825 dm_unprep_request(rq);
826
827 spin_lock_irqsave(q->queue_lock, flags);
828 blk_requeue_request(q, rq);
829 spin_unlock_irqrestore(q->queue_lock, flags);
830
831 rq_completed(md, rw, 0);
832 }
833 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
834
835 static void __stop_queue(struct request_queue *q)
836 {
837 blk_stop_queue(q);
838 }
839
840 static void stop_queue(struct request_queue *q)
841 {
842 unsigned long flags;
843
844 spin_lock_irqsave(q->queue_lock, flags);
845 __stop_queue(q);
846 spin_unlock_irqrestore(q->queue_lock, flags);
847 }
848
849 static void __start_queue(struct request_queue *q)
850 {
851 if (blk_queue_stopped(q))
852 blk_start_queue(q);
853 }
854
855 static void start_queue(struct request_queue *q)
856 {
857 unsigned long flags;
858
859 spin_lock_irqsave(q->queue_lock, flags);
860 __start_queue(q);
861 spin_unlock_irqrestore(q->queue_lock, flags);
862 }
863
864 static void dm_done(struct request *clone, int error, bool mapped)
865 {
866 int r = error;
867 struct dm_rq_target_io *tio = clone->end_io_data;
868 dm_request_endio_fn rq_end_io = NULL;
869
870 if (tio->ti) {
871 rq_end_io = tio->ti->type->rq_end_io;
872
873 if (mapped && rq_end_io)
874 r = rq_end_io(tio->ti, clone, error, &tio->info);
875 }
876
877 if (r <= 0)
878 /* The target wants to complete the I/O */
879 dm_end_request(clone, r);
880 else if (r == DM_ENDIO_INCOMPLETE)
881 /* The target will handle the I/O */
882 return;
883 else if (r == DM_ENDIO_REQUEUE)
884 /* The target wants to requeue the I/O */
885 dm_requeue_unmapped_request(clone);
886 else {
887 DMWARN("unimplemented target endio return value: %d", r);
888 BUG();
889 }
890 }
891
892 /*
893 * Request completion handler for request-based dm
894 */
895 static void dm_softirq_done(struct request *rq)
896 {
897 bool mapped = true;
898 struct request *clone = rq->completion_data;
899 struct dm_rq_target_io *tio = clone->end_io_data;
900
901 if (rq->cmd_flags & REQ_FAILED)
902 mapped = false;
903
904 dm_done(clone, tio->error, mapped);
905 }
906
907 /*
908 * Complete the clone and the original request with the error status
909 * through softirq context.
910 */
911 static void dm_complete_request(struct request *clone, int error)
912 {
913 struct dm_rq_target_io *tio = clone->end_io_data;
914 struct request *rq = tio->orig;
915
916 tio->error = error;
917 rq->completion_data = clone;
918 blk_complete_request(rq);
919 }
920
921 /*
922 * Complete the not-mapped clone and the original request with the error status
923 * through softirq context.
924 * Target's rq_end_io() function isn't called.
925 * This may be used when the target's map_rq() function fails.
926 */
927 void dm_kill_unmapped_request(struct request *clone, int error)
928 {
929 struct dm_rq_target_io *tio = clone->end_io_data;
930 struct request *rq = tio->orig;
931
932 rq->cmd_flags |= REQ_FAILED;
933 dm_complete_request(clone, error);
934 }
935 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
936
937 /*
938 * Called with the queue lock held
939 */
940 static void end_clone_request(struct request *clone, int error)
941 {
942 /*
943 * For just cleaning up the information of the queue in which
944 * the clone was dispatched.
945 * The clone is *NOT* freed actually here because it is alloced from
946 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
947 */
948 __blk_put_request(clone->q, clone);
949
950 /*
951 * Actual request completion is done in a softirq context which doesn't
952 * hold the queue lock. Otherwise, deadlock could occur because:
953 * - another request may be submitted by the upper level driver
954 * of the stacking during the completion
955 * - the submission which requires queue lock may be done
956 * against this queue
957 */
958 dm_complete_request(clone, error);
959 }
960
961 /*
962 * Return maximum size of I/O possible at the supplied sector up to the current
963 * target boundary.
964 */
965 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
966 {
967 sector_t target_offset = dm_target_offset(ti, sector);
968
969 return ti->len - target_offset;
970 }
971
972 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
973 {
974 sector_t len = max_io_len_target_boundary(sector, ti);
975 sector_t offset, max_len;
976
977 /*
978 * Does the target need to split even further?
979 */
980 if (ti->max_io_len) {
981 offset = dm_target_offset(ti, sector);
982 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
983 max_len = sector_div(offset, ti->max_io_len);
984 else
985 max_len = offset & (ti->max_io_len - 1);
986 max_len = ti->max_io_len - max_len;
987
988 if (len > max_len)
989 len = max_len;
990 }
991
992 return len;
993 }
994
995 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
996 {
997 if (len > UINT_MAX) {
998 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
999 (unsigned long long)len, UINT_MAX);
1000 ti->error = "Maximum size of target IO is too large";
1001 return -EINVAL;
1002 }
1003
1004 ti->max_io_len = (uint32_t) len;
1005
1006 return 0;
1007 }
1008 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1009
1010 static void __map_bio(struct dm_target *ti, struct bio *clone,
1011 struct dm_target_io *tio)
1012 {
1013 int r;
1014 sector_t sector;
1015 struct mapped_device *md;
1016
1017 clone->bi_end_io = clone_endio;
1018 clone->bi_private = tio;
1019
1020 /*
1021 * Map the clone. If r == 0 we don't need to do
1022 * anything, the target has assumed ownership of
1023 * this io.
1024 */
1025 atomic_inc(&tio->io->io_count);
1026 sector = clone->bi_sector;
1027 r = ti->type->map(ti, clone, &tio->info);
1028 if (r == DM_MAPIO_REMAPPED) {
1029 /* the bio has been remapped so dispatch it */
1030
1031 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1032 tio->io->bio->bi_bdev->bd_dev, sector);
1033
1034 generic_make_request(clone);
1035 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1036 /* error the io and bail out, or requeue it if needed */
1037 md = tio->io->md;
1038 dec_pending(tio->io, r);
1039 /*
1040 * Store bio_set for cleanup.
1041 */
1042 clone->bi_end_io = NULL;
1043 clone->bi_private = md->bs;
1044 bio_put(clone);
1045 free_tio(md, tio);
1046 } else if (r) {
1047 DMWARN("unimplemented target map return value: %d", r);
1048 BUG();
1049 }
1050 }
1051
1052 struct clone_info {
1053 struct mapped_device *md;
1054 struct dm_table *map;
1055 struct bio *bio;
1056 struct dm_io *io;
1057 sector_t sector;
1058 sector_t sector_count;
1059 unsigned short idx;
1060 };
1061
1062 static void dm_bio_destructor(struct bio *bio)
1063 {
1064 struct bio_set *bs = bio->bi_private;
1065
1066 bio_free(bio, bs);
1067 }
1068
1069 /*
1070 * Creates a little bio that just does part of a bvec.
1071 */
1072 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1073 unsigned short idx, unsigned int offset,
1074 unsigned int len, struct bio_set *bs)
1075 {
1076 struct bio *clone;
1077 struct bio_vec *bv = bio->bi_io_vec + idx;
1078
1079 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1080 clone->bi_destructor = dm_bio_destructor;
1081 *clone->bi_io_vec = *bv;
1082
1083 clone->bi_sector = sector;
1084 clone->bi_bdev = bio->bi_bdev;
1085 clone->bi_rw = bio->bi_rw;
1086 clone->bi_vcnt = 1;
1087 clone->bi_size = to_bytes(len);
1088 clone->bi_io_vec->bv_offset = offset;
1089 clone->bi_io_vec->bv_len = clone->bi_size;
1090 clone->bi_flags |= 1 << BIO_CLONED;
1091
1092 if (bio_integrity(bio)) {
1093 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1094 bio_integrity_trim(clone,
1095 bio_sector_offset(bio, idx, offset), len);
1096 }
1097
1098 return clone;
1099 }
1100
1101 /*
1102 * Creates a bio that consists of range of complete bvecs.
1103 */
1104 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1105 unsigned short idx, unsigned short bv_count,
1106 unsigned int len, struct bio_set *bs)
1107 {
1108 struct bio *clone;
1109
1110 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1111 __bio_clone(clone, bio);
1112 clone->bi_destructor = dm_bio_destructor;
1113 clone->bi_sector = sector;
1114 clone->bi_idx = idx;
1115 clone->bi_vcnt = idx + bv_count;
1116 clone->bi_size = to_bytes(len);
1117 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1118
1119 if (bio_integrity(bio)) {
1120 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1121
1122 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1123 bio_integrity_trim(clone,
1124 bio_sector_offset(bio, idx, 0), len);
1125 }
1126
1127 return clone;
1128 }
1129
1130 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1131 struct dm_target *ti)
1132 {
1133 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1134
1135 tio->io = ci->io;
1136 tio->ti = ti;
1137 memset(&tio->info, 0, sizeof(tio->info));
1138
1139 return tio;
1140 }
1141
1142 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1143 unsigned request_nr, sector_t len)
1144 {
1145 struct dm_target_io *tio = alloc_tio(ci, ti);
1146 struct bio *clone;
1147
1148 tio->info.target_request_nr = request_nr;
1149
1150 /*
1151 * Discard requests require the bio's inline iovecs be initialized.
1152 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1153 * and discard, so no need for concern about wasted bvec allocations.
1154 */
1155 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1156 __bio_clone(clone, ci->bio);
1157 clone->bi_destructor = dm_bio_destructor;
1158 if (len) {
1159 clone->bi_sector = ci->sector;
1160 clone->bi_size = to_bytes(len);
1161 }
1162
1163 __map_bio(ti, clone, tio);
1164 }
1165
1166 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1167 unsigned num_requests, sector_t len)
1168 {
1169 unsigned request_nr;
1170
1171 for (request_nr = 0; request_nr < num_requests; request_nr++)
1172 __issue_target_request(ci, ti, request_nr, len);
1173 }
1174
1175 static int __clone_and_map_empty_flush(struct clone_info *ci)
1176 {
1177 unsigned target_nr = 0;
1178 struct dm_target *ti;
1179
1180 BUG_ON(bio_has_data(ci->bio));
1181 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1182 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1183
1184 return 0;
1185 }
1186
1187 /*
1188 * Perform all io with a single clone.
1189 */
1190 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1191 {
1192 struct bio *clone, *bio = ci->bio;
1193 struct dm_target_io *tio;
1194
1195 tio = alloc_tio(ci, ti);
1196 clone = clone_bio(bio, ci->sector, ci->idx,
1197 bio->bi_vcnt - ci->idx, ci->sector_count,
1198 ci->md->bs);
1199 __map_bio(ti, clone, tio);
1200 ci->sector_count = 0;
1201 }
1202
1203 static int __clone_and_map_discard(struct clone_info *ci)
1204 {
1205 struct dm_target *ti;
1206 sector_t len;
1207
1208 do {
1209 ti = dm_table_find_target(ci->map, ci->sector);
1210 if (!dm_target_is_valid(ti))
1211 return -EIO;
1212
1213 /*
1214 * Even though the device advertised discard support,
1215 * that does not mean every target supports it, and
1216 * reconfiguration might also have changed that since the
1217 * check was performed.
1218 */
1219 if (!ti->num_discard_requests)
1220 return -EOPNOTSUPP;
1221
1222 if (!ti->split_discard_requests)
1223 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1224 else
1225 len = min(ci->sector_count, max_io_len(ci->sector, ti));
1226
1227 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1228
1229 ci->sector += len;
1230 } while (ci->sector_count -= len);
1231
1232 return 0;
1233 }
1234
1235 static int __clone_and_map(struct clone_info *ci)
1236 {
1237 struct bio *clone, *bio = ci->bio;
1238 struct dm_target *ti;
1239 sector_t len = 0, max;
1240 struct dm_target_io *tio;
1241
1242 if (unlikely(bio->bi_rw & REQ_DISCARD))
1243 return __clone_and_map_discard(ci);
1244
1245 ti = dm_table_find_target(ci->map, ci->sector);
1246 if (!dm_target_is_valid(ti))
1247 return -EIO;
1248
1249 max = max_io_len(ci->sector, ti);
1250
1251 if (ci->sector_count <= max) {
1252 /*
1253 * Optimise for the simple case where we can do all of
1254 * the remaining io with a single clone.
1255 */
1256 __clone_and_map_simple(ci, ti);
1257
1258 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1259 /*
1260 * There are some bvecs that don't span targets.
1261 * Do as many of these as possible.
1262 */
1263 int i;
1264 sector_t remaining = max;
1265 sector_t bv_len;
1266
1267 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1268 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1269
1270 if (bv_len > remaining)
1271 break;
1272
1273 remaining -= bv_len;
1274 len += bv_len;
1275 }
1276
1277 tio = alloc_tio(ci, ti);
1278 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1279 ci->md->bs);
1280 __map_bio(ti, clone, tio);
1281
1282 ci->sector += len;
1283 ci->sector_count -= len;
1284 ci->idx = i;
1285
1286 } else {
1287 /*
1288 * Handle a bvec that must be split between two or more targets.
1289 */
1290 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1291 sector_t remaining = to_sector(bv->bv_len);
1292 unsigned int offset = 0;
1293
1294 do {
1295 if (offset) {
1296 ti = dm_table_find_target(ci->map, ci->sector);
1297 if (!dm_target_is_valid(ti))
1298 return -EIO;
1299
1300 max = max_io_len(ci->sector, ti);
1301 }
1302
1303 len = min(remaining, max);
1304
1305 tio = alloc_tio(ci, ti);
1306 clone = split_bvec(bio, ci->sector, ci->idx,
1307 bv->bv_offset + offset, len,
1308 ci->md->bs);
1309
1310 __map_bio(ti, clone, tio);
1311
1312 ci->sector += len;
1313 ci->sector_count -= len;
1314 offset += to_bytes(len);
1315 } while (remaining -= len);
1316
1317 ci->idx++;
1318 }
1319
1320 return 0;
1321 }
1322
1323 /*
1324 * Split the bio into several clones and submit it to targets.
1325 */
1326 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1327 {
1328 struct clone_info ci;
1329 int error = 0;
1330
1331 ci.map = dm_get_live_table(md);
1332 if (unlikely(!ci.map)) {
1333 bio_io_error(bio);
1334 return;
1335 }
1336
1337 ci.md = md;
1338 ci.io = alloc_io(md);
1339 ci.io->error = 0;
1340 atomic_set(&ci.io->io_count, 1);
1341 ci.io->bio = bio;
1342 ci.io->md = md;
1343 spin_lock_init(&ci.io->endio_lock);
1344 ci.sector = bio->bi_sector;
1345 ci.idx = bio->bi_idx;
1346
1347 start_io_acct(ci.io);
1348 if (bio->bi_rw & REQ_FLUSH) {
1349 ci.bio = &ci.md->flush_bio;
1350 ci.sector_count = 0;
1351 error = __clone_and_map_empty_flush(&ci);
1352 /* dec_pending submits any data associated with flush */
1353 } else {
1354 ci.bio = bio;
1355 ci.sector_count = bio_sectors(bio);
1356 while (ci.sector_count && !error)
1357 error = __clone_and_map(&ci);
1358 }
1359
1360 /* drop the extra reference count */
1361 dec_pending(ci.io, error);
1362 dm_table_put(ci.map);
1363 }
1364 /*-----------------------------------------------------------------
1365 * CRUD END
1366 *---------------------------------------------------------------*/
1367
1368 static int dm_merge_bvec(struct request_queue *q,
1369 struct bvec_merge_data *bvm,
1370 struct bio_vec *biovec)
1371 {
1372 struct mapped_device *md = q->queuedata;
1373 struct dm_table *map = dm_get_live_table(md);
1374 struct dm_target *ti;
1375 sector_t max_sectors;
1376 int max_size = 0;
1377
1378 if (unlikely(!map))
1379 goto out;
1380
1381 ti = dm_table_find_target(map, bvm->bi_sector);
1382 if (!dm_target_is_valid(ti))
1383 goto out_table;
1384
1385 /*
1386 * Find maximum amount of I/O that won't need splitting
1387 */
1388 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1389 (sector_t) BIO_MAX_SECTORS);
1390 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1391 if (max_size < 0)
1392 max_size = 0;
1393
1394 /*
1395 * merge_bvec_fn() returns number of bytes
1396 * it can accept at this offset
1397 * max is precomputed maximal io size
1398 */
1399 if (max_size && ti->type->merge)
1400 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1401 /*
1402 * If the target doesn't support merge method and some of the devices
1403 * provided their merge_bvec method (we know this by looking at
1404 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1405 * entries. So always set max_size to 0, and the code below allows
1406 * just one page.
1407 */
1408 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1409
1410 max_size = 0;
1411
1412 out_table:
1413 dm_table_put(map);
1414
1415 out:
1416 /*
1417 * Always allow an entire first page
1418 */
1419 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1420 max_size = biovec->bv_len;
1421
1422 return max_size;
1423 }
1424
1425 /*
1426 * The request function that just remaps the bio built up by
1427 * dm_merge_bvec.
1428 */
1429 static void _dm_request(struct request_queue *q, struct bio *bio)
1430 {
1431 int rw = bio_data_dir(bio);
1432 struct mapped_device *md = q->queuedata;
1433 int cpu;
1434
1435 down_read(&md->io_lock);
1436
1437 cpu = part_stat_lock();
1438 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1439 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1440 part_stat_unlock();
1441
1442 /* if we're suspended, we have to queue this io for later */
1443 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1444 up_read(&md->io_lock);
1445
1446 if (bio_rw(bio) != READA)
1447 queue_io(md, bio);
1448 else
1449 bio_io_error(bio);
1450 return;
1451 }
1452
1453 __split_and_process_bio(md, bio);
1454 up_read(&md->io_lock);
1455 return;
1456 }
1457
1458 static int dm_request_based(struct mapped_device *md)
1459 {
1460 return blk_queue_stackable(md->queue);
1461 }
1462
1463 static void dm_request(struct request_queue *q, struct bio *bio)
1464 {
1465 struct mapped_device *md = q->queuedata;
1466
1467 if (dm_request_based(md))
1468 blk_queue_bio(q, bio);
1469 else
1470 _dm_request(q, bio);
1471 }
1472
1473 void dm_dispatch_request(struct request *rq)
1474 {
1475 int r;
1476
1477 if (blk_queue_io_stat(rq->q))
1478 rq->cmd_flags |= REQ_IO_STAT;
1479
1480 rq->start_time = jiffies;
1481 r = blk_insert_cloned_request(rq->q, rq);
1482 if (r)
1483 dm_complete_request(rq, r);
1484 }
1485 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1486
1487 static void dm_rq_bio_destructor(struct bio *bio)
1488 {
1489 struct dm_rq_clone_bio_info *info = bio->bi_private;
1490 struct mapped_device *md = info->tio->md;
1491
1492 free_bio_info(info);
1493 bio_free(bio, md->bs);
1494 }
1495
1496 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1497 void *data)
1498 {
1499 struct dm_rq_target_io *tio = data;
1500 struct mapped_device *md = tio->md;
1501 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1502
1503 if (!info)
1504 return -ENOMEM;
1505
1506 info->orig = bio_orig;
1507 info->tio = tio;
1508 bio->bi_end_io = end_clone_bio;
1509 bio->bi_private = info;
1510 bio->bi_destructor = dm_rq_bio_destructor;
1511
1512 return 0;
1513 }
1514
1515 static int setup_clone(struct request *clone, struct request *rq,
1516 struct dm_rq_target_io *tio)
1517 {
1518 int r;
1519
1520 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1521 dm_rq_bio_constructor, tio);
1522 if (r)
1523 return r;
1524
1525 clone->cmd = rq->cmd;
1526 clone->cmd_len = rq->cmd_len;
1527 clone->sense = rq->sense;
1528 clone->buffer = rq->buffer;
1529 clone->end_io = end_clone_request;
1530 clone->end_io_data = tio;
1531
1532 return 0;
1533 }
1534
1535 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1536 gfp_t gfp_mask)
1537 {
1538 struct request *clone;
1539 struct dm_rq_target_io *tio;
1540
1541 tio = alloc_rq_tio(md, gfp_mask);
1542 if (!tio)
1543 return NULL;
1544
1545 tio->md = md;
1546 tio->ti = NULL;
1547 tio->orig = rq;
1548 tio->error = 0;
1549 memset(&tio->info, 0, sizeof(tio->info));
1550
1551 clone = &tio->clone;
1552 if (setup_clone(clone, rq, tio)) {
1553 /* -ENOMEM */
1554 free_rq_tio(tio);
1555 return NULL;
1556 }
1557
1558 return clone;
1559 }
1560
1561 /*
1562 * Called with the queue lock held.
1563 */
1564 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1565 {
1566 struct mapped_device *md = q->queuedata;
1567 struct request *clone;
1568
1569 if (unlikely(rq->special)) {
1570 DMWARN("Already has something in rq->special.");
1571 return BLKPREP_KILL;
1572 }
1573
1574 clone = clone_rq(rq, md, GFP_ATOMIC);
1575 if (!clone)
1576 return BLKPREP_DEFER;
1577
1578 rq->special = clone;
1579 rq->cmd_flags |= REQ_DONTPREP;
1580
1581 return BLKPREP_OK;
1582 }
1583
1584 /*
1585 * Returns:
1586 * 0 : the request has been processed (not requeued)
1587 * !0 : the request has been requeued
1588 */
1589 static int map_request(struct dm_target *ti, struct request *clone,
1590 struct mapped_device *md)
1591 {
1592 int r, requeued = 0;
1593 struct dm_rq_target_io *tio = clone->end_io_data;
1594
1595 tio->ti = ti;
1596 r = ti->type->map_rq(ti, clone, &tio->info);
1597 switch (r) {
1598 case DM_MAPIO_SUBMITTED:
1599 /* The target has taken the I/O to submit by itself later */
1600 break;
1601 case DM_MAPIO_REMAPPED:
1602 /* The target has remapped the I/O so dispatch it */
1603 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1604 blk_rq_pos(tio->orig));
1605 dm_dispatch_request(clone);
1606 break;
1607 case DM_MAPIO_REQUEUE:
1608 /* The target wants to requeue the I/O */
1609 dm_requeue_unmapped_request(clone);
1610 requeued = 1;
1611 break;
1612 default:
1613 if (r > 0) {
1614 DMWARN("unimplemented target map return value: %d", r);
1615 BUG();
1616 }
1617
1618 /* The target wants to complete the I/O */
1619 dm_kill_unmapped_request(clone, r);
1620 break;
1621 }
1622
1623 return requeued;
1624 }
1625
1626 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1627 {
1628 struct request *clone;
1629
1630 blk_start_request(orig);
1631 clone = orig->special;
1632 atomic_inc(&md->pending[rq_data_dir(clone)]);
1633
1634 /*
1635 * Hold the md reference here for the in-flight I/O.
1636 * We can't rely on the reference count by device opener,
1637 * because the device may be closed during the request completion
1638 * when all bios are completed.
1639 * See the comment in rq_completed() too.
1640 */
1641 dm_get(md);
1642
1643 return clone;
1644 }
1645
1646 /*
1647 * q->request_fn for request-based dm.
1648 * Called with the queue lock held.
1649 */
1650 static void dm_request_fn(struct request_queue *q)
1651 {
1652 struct mapped_device *md = q->queuedata;
1653 struct dm_table *map = dm_get_live_table(md);
1654 struct dm_target *ti;
1655 struct request *rq, *clone;
1656 sector_t pos;
1657
1658 /*
1659 * For suspend, check blk_queue_stopped() and increment
1660 * ->pending within a single queue_lock not to increment the
1661 * number of in-flight I/Os after the queue is stopped in
1662 * dm_suspend().
1663 */
1664 while (!blk_queue_stopped(q)) {
1665 rq = blk_peek_request(q);
1666 if (!rq)
1667 goto delay_and_out;
1668
1669 /* always use block 0 to find the target for flushes for now */
1670 pos = 0;
1671 if (!(rq->cmd_flags & REQ_FLUSH))
1672 pos = blk_rq_pos(rq);
1673
1674 ti = dm_table_find_target(map, pos);
1675 if (!dm_target_is_valid(ti)) {
1676 /*
1677 * Must perform setup, that dm_done() requires,
1678 * before calling dm_kill_unmapped_request
1679 */
1680 DMERR_LIMIT("request attempted access beyond the end of device");
1681 clone = dm_start_request(md, rq);
1682 dm_kill_unmapped_request(clone, -EIO);
1683 continue;
1684 }
1685
1686 if (ti->type->busy && ti->type->busy(ti))
1687 goto delay_and_out;
1688
1689 clone = dm_start_request(md, rq);
1690
1691 spin_unlock(q->queue_lock);
1692 if (map_request(ti, clone, md))
1693 goto requeued;
1694
1695 BUG_ON(!irqs_disabled());
1696 spin_lock(q->queue_lock);
1697 }
1698
1699 goto out;
1700
1701 requeued:
1702 BUG_ON(!irqs_disabled());
1703 spin_lock(q->queue_lock);
1704
1705 delay_and_out:
1706 blk_delay_queue(q, HZ / 10);
1707 out:
1708 dm_table_put(map);
1709 }
1710
1711 int dm_underlying_device_busy(struct request_queue *q)
1712 {
1713 return blk_lld_busy(q);
1714 }
1715 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1716
1717 static int dm_lld_busy(struct request_queue *q)
1718 {
1719 int r;
1720 struct mapped_device *md = q->queuedata;
1721 struct dm_table *map = dm_get_live_table(md);
1722
1723 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1724 r = 1;
1725 else
1726 r = dm_table_any_busy_target(map);
1727
1728 dm_table_put(map);
1729
1730 return r;
1731 }
1732
1733 static int dm_any_congested(void *congested_data, int bdi_bits)
1734 {
1735 int r = bdi_bits;
1736 struct mapped_device *md = congested_data;
1737 struct dm_table *map;
1738
1739 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1740 map = dm_get_live_table(md);
1741 if (map) {
1742 /*
1743 * Request-based dm cares about only own queue for
1744 * the query about congestion status of request_queue
1745 */
1746 if (dm_request_based(md))
1747 r = md->queue->backing_dev_info.state &
1748 bdi_bits;
1749 else
1750 r = dm_table_any_congested(map, bdi_bits);
1751
1752 dm_table_put(map);
1753 }
1754 }
1755
1756 return r;
1757 }
1758
1759 /*-----------------------------------------------------------------
1760 * An IDR is used to keep track of allocated minor numbers.
1761 *---------------------------------------------------------------*/
1762 static void free_minor(int minor)
1763 {
1764 spin_lock(&_minor_lock);
1765 idr_remove(&_minor_idr, minor);
1766 spin_unlock(&_minor_lock);
1767 }
1768
1769 /*
1770 * See if the device with a specific minor # is free.
1771 */
1772 static int specific_minor(int minor)
1773 {
1774 int r, m;
1775
1776 if (minor >= (1 << MINORBITS))
1777 return -EINVAL;
1778
1779 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1780 if (!r)
1781 return -ENOMEM;
1782
1783 spin_lock(&_minor_lock);
1784
1785 if (idr_find(&_minor_idr, minor)) {
1786 r = -EBUSY;
1787 goto out;
1788 }
1789
1790 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1791 if (r)
1792 goto out;
1793
1794 if (m != minor) {
1795 idr_remove(&_minor_idr, m);
1796 r = -EBUSY;
1797 goto out;
1798 }
1799
1800 out:
1801 spin_unlock(&_minor_lock);
1802 return r;
1803 }
1804
1805 static int next_free_minor(int *minor)
1806 {
1807 int r, m;
1808
1809 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1810 if (!r)
1811 return -ENOMEM;
1812
1813 spin_lock(&_minor_lock);
1814
1815 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1816 if (r)
1817 goto out;
1818
1819 if (m >= (1 << MINORBITS)) {
1820 idr_remove(&_minor_idr, m);
1821 r = -ENOSPC;
1822 goto out;
1823 }
1824
1825 *minor = m;
1826
1827 out:
1828 spin_unlock(&_minor_lock);
1829 return r;
1830 }
1831
1832 static const struct block_device_operations dm_blk_dops;
1833
1834 static void dm_wq_work(struct work_struct *work);
1835
1836 static void dm_init_md_queue(struct mapped_device *md)
1837 {
1838 /*
1839 * Request-based dm devices cannot be stacked on top of bio-based dm
1840 * devices. The type of this dm device has not been decided yet.
1841 * The type is decided at the first table loading time.
1842 * To prevent problematic device stacking, clear the queue flag
1843 * for request stacking support until then.
1844 *
1845 * This queue is new, so no concurrency on the queue_flags.
1846 */
1847 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1848
1849 md->queue->queuedata = md;
1850 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1851 md->queue->backing_dev_info.congested_data = md;
1852 blk_queue_make_request(md->queue, dm_request);
1853 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1854 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1855 }
1856
1857 /*
1858 * Allocate and initialise a blank device with a given minor.
1859 */
1860 static struct mapped_device *alloc_dev(int minor)
1861 {
1862 int r;
1863 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1864 void *old_md;
1865
1866 if (!md) {
1867 DMWARN("unable to allocate device, out of memory.");
1868 return NULL;
1869 }
1870
1871 if (!try_module_get(THIS_MODULE))
1872 goto bad_module_get;
1873
1874 /* get a minor number for the dev */
1875 if (minor == DM_ANY_MINOR)
1876 r = next_free_minor(&minor);
1877 else
1878 r = specific_minor(minor);
1879 if (r < 0)
1880 goto bad_minor;
1881
1882 md->type = DM_TYPE_NONE;
1883 init_rwsem(&md->io_lock);
1884 mutex_init(&md->suspend_lock);
1885 mutex_init(&md->type_lock);
1886 spin_lock_init(&md->deferred_lock);
1887 rwlock_init(&md->map_lock);
1888 atomic_set(&md->holders, 1);
1889 atomic_set(&md->open_count, 0);
1890 atomic_set(&md->event_nr, 0);
1891 atomic_set(&md->uevent_seq, 0);
1892 INIT_LIST_HEAD(&md->uevent_list);
1893 spin_lock_init(&md->uevent_lock);
1894
1895 md->queue = blk_alloc_queue(GFP_KERNEL);
1896 if (!md->queue)
1897 goto bad_queue;
1898
1899 dm_init_md_queue(md);
1900
1901 md->disk = alloc_disk(1);
1902 if (!md->disk)
1903 goto bad_disk;
1904
1905 atomic_set(&md->pending[0], 0);
1906 atomic_set(&md->pending[1], 0);
1907 init_waitqueue_head(&md->wait);
1908 INIT_WORK(&md->work, dm_wq_work);
1909 init_waitqueue_head(&md->eventq);
1910
1911 md->disk->major = _major;
1912 md->disk->first_minor = minor;
1913 md->disk->fops = &dm_blk_dops;
1914 md->disk->queue = md->queue;
1915 md->disk->private_data = md;
1916 sprintf(md->disk->disk_name, "dm-%d", minor);
1917 add_disk(md->disk);
1918 format_dev_t(md->name, MKDEV(_major, minor));
1919
1920 md->wq = alloc_workqueue("kdmflush",
1921 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1922 if (!md->wq)
1923 goto bad_thread;
1924
1925 md->bdev = bdget_disk(md->disk, 0);
1926 if (!md->bdev)
1927 goto bad_bdev;
1928
1929 bio_init(&md->flush_bio);
1930 md->flush_bio.bi_bdev = md->bdev;
1931 md->flush_bio.bi_rw = WRITE_FLUSH;
1932
1933 /* Populate the mapping, nobody knows we exist yet */
1934 spin_lock(&_minor_lock);
1935 old_md = idr_replace(&_minor_idr, md, minor);
1936 spin_unlock(&_minor_lock);
1937
1938 BUG_ON(old_md != MINOR_ALLOCED);
1939
1940 return md;
1941
1942 bad_bdev:
1943 destroy_workqueue(md->wq);
1944 bad_thread:
1945 del_gendisk(md->disk);
1946 put_disk(md->disk);
1947 bad_disk:
1948 blk_cleanup_queue(md->queue);
1949 bad_queue:
1950 free_minor(minor);
1951 bad_minor:
1952 module_put(THIS_MODULE);
1953 bad_module_get:
1954 kfree(md);
1955 return NULL;
1956 }
1957
1958 static void unlock_fs(struct mapped_device *md);
1959
1960 static void free_dev(struct mapped_device *md)
1961 {
1962 int minor = MINOR(disk_devt(md->disk));
1963
1964 unlock_fs(md);
1965 bdput(md->bdev);
1966 destroy_workqueue(md->wq);
1967 if (md->tio_pool)
1968 mempool_destroy(md->tio_pool);
1969 if (md->io_pool)
1970 mempool_destroy(md->io_pool);
1971 if (md->bs)
1972 bioset_free(md->bs);
1973 blk_integrity_unregister(md->disk);
1974 del_gendisk(md->disk);
1975 free_minor(minor);
1976
1977 spin_lock(&_minor_lock);
1978 md->disk->private_data = NULL;
1979 spin_unlock(&_minor_lock);
1980
1981 put_disk(md->disk);
1982 blk_cleanup_queue(md->queue);
1983 module_put(THIS_MODULE);
1984 kfree(md);
1985 }
1986
1987 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1988 {
1989 struct dm_md_mempools *p;
1990
1991 if (md->io_pool && md->tio_pool && md->bs)
1992 /* the md already has necessary mempools */
1993 goto out;
1994
1995 p = dm_table_get_md_mempools(t);
1996 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1997
1998 md->io_pool = p->io_pool;
1999 p->io_pool = NULL;
2000 md->tio_pool = p->tio_pool;
2001 p->tio_pool = NULL;
2002 md->bs = p->bs;
2003 p->bs = NULL;
2004
2005 out:
2006 /* mempool bind completed, now no need any mempools in the table */
2007 dm_table_free_md_mempools(t);
2008 }
2009
2010 /*
2011 * Bind a table to the device.
2012 */
2013 static void event_callback(void *context)
2014 {
2015 unsigned long flags;
2016 LIST_HEAD(uevents);
2017 struct mapped_device *md = (struct mapped_device *) context;
2018
2019 spin_lock_irqsave(&md->uevent_lock, flags);
2020 list_splice_init(&md->uevent_list, &uevents);
2021 spin_unlock_irqrestore(&md->uevent_lock, flags);
2022
2023 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2024
2025 atomic_inc(&md->event_nr);
2026 wake_up(&md->eventq);
2027 }
2028
2029 /*
2030 * Protected by md->suspend_lock obtained by dm_swap_table().
2031 */
2032 static void __set_size(struct mapped_device *md, sector_t size)
2033 {
2034 set_capacity(md->disk, size);
2035
2036 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2037 }
2038
2039 /*
2040 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2041 *
2042 * If this function returns 0, then the device is either a non-dm
2043 * device without a merge_bvec_fn, or it is a dm device that is
2044 * able to split any bios it receives that are too big.
2045 */
2046 int dm_queue_merge_is_compulsory(struct request_queue *q)
2047 {
2048 struct mapped_device *dev_md;
2049
2050 if (!q->merge_bvec_fn)
2051 return 0;
2052
2053 if (q->make_request_fn == dm_request) {
2054 dev_md = q->queuedata;
2055 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2056 return 0;
2057 }
2058
2059 return 1;
2060 }
2061
2062 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2063 struct dm_dev *dev, sector_t start,
2064 sector_t len, void *data)
2065 {
2066 struct block_device *bdev = dev->bdev;
2067 struct request_queue *q = bdev_get_queue(bdev);
2068
2069 return dm_queue_merge_is_compulsory(q);
2070 }
2071
2072 /*
2073 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2074 * on the properties of the underlying devices.
2075 */
2076 static int dm_table_merge_is_optional(struct dm_table *table)
2077 {
2078 unsigned i = 0;
2079 struct dm_target *ti;
2080
2081 while (i < dm_table_get_num_targets(table)) {
2082 ti = dm_table_get_target(table, i++);
2083
2084 if (ti->type->iterate_devices &&
2085 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2086 return 0;
2087 }
2088
2089 return 1;
2090 }
2091
2092 /*
2093 * Returns old map, which caller must destroy.
2094 */
2095 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2096 struct queue_limits *limits)
2097 {
2098 struct dm_table *old_map;
2099 struct request_queue *q = md->queue;
2100 sector_t size;
2101 unsigned long flags;
2102 int merge_is_optional;
2103
2104 size = dm_table_get_size(t);
2105
2106 /*
2107 * Wipe any geometry if the size of the table changed.
2108 */
2109 if (size != get_capacity(md->disk))
2110 memset(&md->geometry, 0, sizeof(md->geometry));
2111
2112 __set_size(md, size);
2113
2114 dm_table_event_callback(t, event_callback, md);
2115
2116 /*
2117 * The queue hasn't been stopped yet, if the old table type wasn't
2118 * for request-based during suspension. So stop it to prevent
2119 * I/O mapping before resume.
2120 * This must be done before setting the queue restrictions,
2121 * because request-based dm may be run just after the setting.
2122 */
2123 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2124 stop_queue(q);
2125
2126 __bind_mempools(md, t);
2127
2128 merge_is_optional = dm_table_merge_is_optional(t);
2129
2130 write_lock_irqsave(&md->map_lock, flags);
2131 old_map = md->map;
2132 md->map = t;
2133 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2134
2135 dm_table_set_restrictions(t, q, limits);
2136 if (merge_is_optional)
2137 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2138 else
2139 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2140 write_unlock_irqrestore(&md->map_lock, flags);
2141
2142 return old_map;
2143 }
2144
2145 /*
2146 * Returns unbound table for the caller to free.
2147 */
2148 static struct dm_table *__unbind(struct mapped_device *md)
2149 {
2150 struct dm_table *map = md->map;
2151 unsigned long flags;
2152
2153 if (!map)
2154 return NULL;
2155
2156 dm_table_event_callback(map, NULL, NULL);
2157 write_lock_irqsave(&md->map_lock, flags);
2158 md->map = NULL;
2159 write_unlock_irqrestore(&md->map_lock, flags);
2160
2161 return map;
2162 }
2163
2164 /*
2165 * Constructor for a new device.
2166 */
2167 int dm_create(int minor, struct mapped_device **result)
2168 {
2169 struct mapped_device *md;
2170
2171 md = alloc_dev(minor);
2172 if (!md)
2173 return -ENXIO;
2174
2175 dm_sysfs_init(md);
2176
2177 *result = md;
2178 return 0;
2179 }
2180
2181 /*
2182 * Functions to manage md->type.
2183 * All are required to hold md->type_lock.
2184 */
2185 void dm_lock_md_type(struct mapped_device *md)
2186 {
2187 mutex_lock(&md->type_lock);
2188 }
2189
2190 void dm_unlock_md_type(struct mapped_device *md)
2191 {
2192 mutex_unlock(&md->type_lock);
2193 }
2194
2195 void dm_set_md_type(struct mapped_device *md, unsigned type)
2196 {
2197 md->type = type;
2198 }
2199
2200 unsigned dm_get_md_type(struct mapped_device *md)
2201 {
2202 return md->type;
2203 }
2204
2205 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2206 {
2207 return md->immutable_target_type;
2208 }
2209
2210 /*
2211 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2212 */
2213 static int dm_init_request_based_queue(struct mapped_device *md)
2214 {
2215 struct request_queue *q = NULL;
2216
2217 if (md->queue->elevator)
2218 return 1;
2219
2220 /* Fully initialize the queue */
2221 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2222 if (!q)
2223 return 0;
2224
2225 md->queue = q;
2226 dm_init_md_queue(md);
2227 blk_queue_softirq_done(md->queue, dm_softirq_done);
2228 blk_queue_prep_rq(md->queue, dm_prep_fn);
2229 blk_queue_lld_busy(md->queue, dm_lld_busy);
2230
2231 elv_register_queue(md->queue);
2232
2233 return 1;
2234 }
2235
2236 /*
2237 * Setup the DM device's queue based on md's type
2238 */
2239 int dm_setup_md_queue(struct mapped_device *md)
2240 {
2241 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2242 !dm_init_request_based_queue(md)) {
2243 DMWARN("Cannot initialize queue for request-based mapped device");
2244 return -EINVAL;
2245 }
2246
2247 return 0;
2248 }
2249
2250 static struct mapped_device *dm_find_md(dev_t dev)
2251 {
2252 struct mapped_device *md;
2253 unsigned minor = MINOR(dev);
2254
2255 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2256 return NULL;
2257
2258 spin_lock(&_minor_lock);
2259
2260 md = idr_find(&_minor_idr, minor);
2261 if (md && (md == MINOR_ALLOCED ||
2262 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2263 dm_deleting_md(md) ||
2264 test_bit(DMF_FREEING, &md->flags))) {
2265 md = NULL;
2266 goto out;
2267 }
2268
2269 out:
2270 spin_unlock(&_minor_lock);
2271
2272 return md;
2273 }
2274
2275 struct mapped_device *dm_get_md(dev_t dev)
2276 {
2277 struct mapped_device *md = dm_find_md(dev);
2278
2279 if (md)
2280 dm_get(md);
2281
2282 return md;
2283 }
2284 EXPORT_SYMBOL_GPL(dm_get_md);
2285
2286 void *dm_get_mdptr(struct mapped_device *md)
2287 {
2288 return md->interface_ptr;
2289 }
2290
2291 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2292 {
2293 md->interface_ptr = ptr;
2294 }
2295
2296 void dm_get(struct mapped_device *md)
2297 {
2298 atomic_inc(&md->holders);
2299 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2300 }
2301
2302 const char *dm_device_name(struct mapped_device *md)
2303 {
2304 return md->name;
2305 }
2306 EXPORT_SYMBOL_GPL(dm_device_name);
2307
2308 static void __dm_destroy(struct mapped_device *md, bool wait)
2309 {
2310 struct dm_table *map;
2311
2312 might_sleep();
2313
2314 spin_lock(&_minor_lock);
2315 map = dm_get_live_table(md);
2316 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2317 set_bit(DMF_FREEING, &md->flags);
2318 spin_unlock(&_minor_lock);
2319
2320 if (!dm_suspended_md(md)) {
2321 dm_table_presuspend_targets(map);
2322 dm_table_postsuspend_targets(map);
2323 }
2324
2325 /*
2326 * Rare, but there may be I/O requests still going to complete,
2327 * for example. Wait for all references to disappear.
2328 * No one should increment the reference count of the mapped_device,
2329 * after the mapped_device state becomes DMF_FREEING.
2330 */
2331 if (wait)
2332 while (atomic_read(&md->holders))
2333 msleep(1);
2334 else if (atomic_read(&md->holders))
2335 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2336 dm_device_name(md), atomic_read(&md->holders));
2337
2338 dm_sysfs_exit(md);
2339 dm_table_put(map);
2340 dm_table_destroy(__unbind(md));
2341 free_dev(md);
2342 }
2343
2344 void dm_destroy(struct mapped_device *md)
2345 {
2346 __dm_destroy(md, true);
2347 }
2348
2349 void dm_destroy_immediate(struct mapped_device *md)
2350 {
2351 __dm_destroy(md, false);
2352 }
2353
2354 void dm_put(struct mapped_device *md)
2355 {
2356 atomic_dec(&md->holders);
2357 }
2358 EXPORT_SYMBOL_GPL(dm_put);
2359
2360 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2361 {
2362 int r = 0;
2363 DECLARE_WAITQUEUE(wait, current);
2364
2365 add_wait_queue(&md->wait, &wait);
2366
2367 while (1) {
2368 set_current_state(interruptible);
2369
2370 if (!md_in_flight(md))
2371 break;
2372
2373 if (interruptible == TASK_INTERRUPTIBLE &&
2374 signal_pending(current)) {
2375 r = -EINTR;
2376 break;
2377 }
2378
2379 io_schedule();
2380 }
2381 set_current_state(TASK_RUNNING);
2382
2383 remove_wait_queue(&md->wait, &wait);
2384
2385 return r;
2386 }
2387
2388 /*
2389 * Process the deferred bios
2390 */
2391 static void dm_wq_work(struct work_struct *work)
2392 {
2393 struct mapped_device *md = container_of(work, struct mapped_device,
2394 work);
2395 struct bio *c;
2396
2397 down_read(&md->io_lock);
2398
2399 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2400 spin_lock_irq(&md->deferred_lock);
2401 c = bio_list_pop(&md->deferred);
2402 spin_unlock_irq(&md->deferred_lock);
2403
2404 if (!c)
2405 break;
2406
2407 up_read(&md->io_lock);
2408
2409 if (dm_request_based(md))
2410 generic_make_request(c);
2411 else
2412 __split_and_process_bio(md, c);
2413
2414 down_read(&md->io_lock);
2415 }
2416
2417 up_read(&md->io_lock);
2418 }
2419
2420 static void dm_queue_flush(struct mapped_device *md)
2421 {
2422 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2423 smp_mb__after_clear_bit();
2424 queue_work(md->wq, &md->work);
2425 }
2426
2427 /*
2428 * Swap in a new table, returning the old one for the caller to destroy.
2429 */
2430 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2431 {
2432 struct dm_table *map = ERR_PTR(-EINVAL);
2433 struct queue_limits limits;
2434 int r;
2435
2436 mutex_lock(&md->suspend_lock);
2437
2438 /* device must be suspended */
2439 if (!dm_suspended_md(md))
2440 goto out;
2441
2442 r = dm_calculate_queue_limits(table, &limits);
2443 if (r) {
2444 map = ERR_PTR(r);
2445 goto out;
2446 }
2447
2448 map = __bind(md, table, &limits);
2449
2450 out:
2451 mutex_unlock(&md->suspend_lock);
2452 return map;
2453 }
2454
2455 /*
2456 * Functions to lock and unlock any filesystem running on the
2457 * device.
2458 */
2459 static int lock_fs(struct mapped_device *md)
2460 {
2461 int r;
2462
2463 WARN_ON(md->frozen_sb);
2464
2465 md->frozen_sb = freeze_bdev(md->bdev);
2466 if (IS_ERR(md->frozen_sb)) {
2467 r = PTR_ERR(md->frozen_sb);
2468 md->frozen_sb = NULL;
2469 return r;
2470 }
2471
2472 set_bit(DMF_FROZEN, &md->flags);
2473
2474 return 0;
2475 }
2476
2477 static void unlock_fs(struct mapped_device *md)
2478 {
2479 if (!test_bit(DMF_FROZEN, &md->flags))
2480 return;
2481
2482 thaw_bdev(md->bdev, md->frozen_sb);
2483 md->frozen_sb = NULL;
2484 clear_bit(DMF_FROZEN, &md->flags);
2485 }
2486
2487 /*
2488 * We need to be able to change a mapping table under a mounted
2489 * filesystem. For example we might want to move some data in
2490 * the background. Before the table can be swapped with
2491 * dm_bind_table, dm_suspend must be called to flush any in
2492 * flight bios and ensure that any further io gets deferred.
2493 */
2494 /*
2495 * Suspend mechanism in request-based dm.
2496 *
2497 * 1. Flush all I/Os by lock_fs() if needed.
2498 * 2. Stop dispatching any I/O by stopping the request_queue.
2499 * 3. Wait for all in-flight I/Os to be completed or requeued.
2500 *
2501 * To abort suspend, start the request_queue.
2502 */
2503 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2504 {
2505 struct dm_table *map = NULL;
2506 int r = 0;
2507 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2508 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2509
2510 mutex_lock(&md->suspend_lock);
2511
2512 if (dm_suspended_md(md)) {
2513 r = -EINVAL;
2514 goto out_unlock;
2515 }
2516
2517 map = dm_get_live_table(md);
2518
2519 /*
2520 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2521 * This flag is cleared before dm_suspend returns.
2522 */
2523 if (noflush)
2524 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2525
2526 /* This does not get reverted if there's an error later. */
2527 dm_table_presuspend_targets(map);
2528
2529 /*
2530 * Flush I/O to the device.
2531 * Any I/O submitted after lock_fs() may not be flushed.
2532 * noflush takes precedence over do_lockfs.
2533 * (lock_fs() flushes I/Os and waits for them to complete.)
2534 */
2535 if (!noflush && do_lockfs) {
2536 r = lock_fs(md);
2537 if (r)
2538 goto out;
2539 }
2540
2541 /*
2542 * Here we must make sure that no processes are submitting requests
2543 * to target drivers i.e. no one may be executing
2544 * __split_and_process_bio. This is called from dm_request and
2545 * dm_wq_work.
2546 *
2547 * To get all processes out of __split_and_process_bio in dm_request,
2548 * we take the write lock. To prevent any process from reentering
2549 * __split_and_process_bio from dm_request and quiesce the thread
2550 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2551 * flush_workqueue(md->wq).
2552 */
2553 down_write(&md->io_lock);
2554 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2555 up_write(&md->io_lock);
2556
2557 /*
2558 * Stop md->queue before flushing md->wq in case request-based
2559 * dm defers requests to md->wq from md->queue.
2560 */
2561 if (dm_request_based(md))
2562 stop_queue(md->queue);
2563
2564 flush_workqueue(md->wq);
2565
2566 /*
2567 * At this point no more requests are entering target request routines.
2568 * We call dm_wait_for_completion to wait for all existing requests
2569 * to finish.
2570 */
2571 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2572
2573 down_write(&md->io_lock);
2574 if (noflush)
2575 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2576 up_write(&md->io_lock);
2577
2578 /* were we interrupted ? */
2579 if (r < 0) {
2580 dm_queue_flush(md);
2581
2582 if (dm_request_based(md))
2583 start_queue(md->queue);
2584
2585 unlock_fs(md);
2586 goto out; /* pushback list is already flushed, so skip flush */
2587 }
2588
2589 /*
2590 * If dm_wait_for_completion returned 0, the device is completely
2591 * quiescent now. There is no request-processing activity. All new
2592 * requests are being added to md->deferred list.
2593 */
2594
2595 set_bit(DMF_SUSPENDED, &md->flags);
2596
2597 dm_table_postsuspend_targets(map);
2598
2599 out:
2600 dm_table_put(map);
2601
2602 out_unlock:
2603 mutex_unlock(&md->suspend_lock);
2604 return r;
2605 }
2606
2607 int dm_resume(struct mapped_device *md)
2608 {
2609 int r = -EINVAL;
2610 struct dm_table *map = NULL;
2611
2612 mutex_lock(&md->suspend_lock);
2613 if (!dm_suspended_md(md))
2614 goto out;
2615
2616 map = dm_get_live_table(md);
2617 if (!map || !dm_table_get_size(map))
2618 goto out;
2619
2620 r = dm_table_resume_targets(map);
2621 if (r)
2622 goto out;
2623
2624 dm_queue_flush(md);
2625
2626 /*
2627 * Flushing deferred I/Os must be done after targets are resumed
2628 * so that mapping of targets can work correctly.
2629 * Request-based dm is queueing the deferred I/Os in its request_queue.
2630 */
2631 if (dm_request_based(md))
2632 start_queue(md->queue);
2633
2634 unlock_fs(md);
2635
2636 clear_bit(DMF_SUSPENDED, &md->flags);
2637
2638 r = 0;
2639 out:
2640 dm_table_put(map);
2641 mutex_unlock(&md->suspend_lock);
2642
2643 return r;
2644 }
2645
2646 /*-----------------------------------------------------------------
2647 * Event notification.
2648 *---------------------------------------------------------------*/
2649 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2650 unsigned cookie)
2651 {
2652 char udev_cookie[DM_COOKIE_LENGTH];
2653 char *envp[] = { udev_cookie, NULL };
2654
2655 if (!cookie)
2656 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2657 else {
2658 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2659 DM_COOKIE_ENV_VAR_NAME, cookie);
2660 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2661 action, envp);
2662 }
2663 }
2664
2665 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2666 {
2667 return atomic_add_return(1, &md->uevent_seq);
2668 }
2669
2670 uint32_t dm_get_event_nr(struct mapped_device *md)
2671 {
2672 return atomic_read(&md->event_nr);
2673 }
2674
2675 int dm_wait_event(struct mapped_device *md, int event_nr)
2676 {
2677 return wait_event_interruptible(md->eventq,
2678 (event_nr != atomic_read(&md->event_nr)));
2679 }
2680
2681 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2682 {
2683 unsigned long flags;
2684
2685 spin_lock_irqsave(&md->uevent_lock, flags);
2686 list_add(elist, &md->uevent_list);
2687 spin_unlock_irqrestore(&md->uevent_lock, flags);
2688 }
2689
2690 /*
2691 * The gendisk is only valid as long as you have a reference
2692 * count on 'md'.
2693 */
2694 struct gendisk *dm_disk(struct mapped_device *md)
2695 {
2696 return md->disk;
2697 }
2698
2699 struct kobject *dm_kobject(struct mapped_device *md)
2700 {
2701 return &md->kobj;
2702 }
2703
2704 /*
2705 * struct mapped_device should not be exported outside of dm.c
2706 * so use this check to verify that kobj is part of md structure
2707 */
2708 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2709 {
2710 struct mapped_device *md;
2711
2712 md = container_of(kobj, struct mapped_device, kobj);
2713 if (&md->kobj != kobj)
2714 return NULL;
2715
2716 if (test_bit(DMF_FREEING, &md->flags) ||
2717 dm_deleting_md(md))
2718 return NULL;
2719
2720 dm_get(md);
2721 return md;
2722 }
2723
2724 int dm_suspended_md(struct mapped_device *md)
2725 {
2726 return test_bit(DMF_SUSPENDED, &md->flags);
2727 }
2728
2729 int dm_suspended(struct dm_target *ti)
2730 {
2731 return dm_suspended_md(dm_table_get_md(ti->table));
2732 }
2733 EXPORT_SYMBOL_GPL(dm_suspended);
2734
2735 int dm_noflush_suspending(struct dm_target *ti)
2736 {
2737 return __noflush_suspending(dm_table_get_md(ti->table));
2738 }
2739 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2740
2741 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2742 {
2743 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2744 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2745
2746 if (!pools)
2747 return NULL;
2748
2749 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2750 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2751 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2752 if (!pools->io_pool)
2753 goto free_pools_and_out;
2754
2755 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2756 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2757 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2758 if (!pools->tio_pool)
2759 goto free_io_pool_and_out;
2760
2761 pools->bs = bioset_create(pool_size, 0);
2762 if (!pools->bs)
2763 goto free_tio_pool_and_out;
2764
2765 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2766 goto free_bioset_and_out;
2767
2768 return pools;
2769
2770 free_bioset_and_out:
2771 bioset_free(pools->bs);
2772
2773 free_tio_pool_and_out:
2774 mempool_destroy(pools->tio_pool);
2775
2776 free_io_pool_and_out:
2777 mempool_destroy(pools->io_pool);
2778
2779 free_pools_and_out:
2780 kfree(pools);
2781
2782 return NULL;
2783 }
2784
2785 void dm_free_md_mempools(struct dm_md_mempools *pools)
2786 {
2787 if (!pools)
2788 return;
2789
2790 if (pools->io_pool)
2791 mempool_destroy(pools->io_pool);
2792
2793 if (pools->tio_pool)
2794 mempool_destroy(pools->tio_pool);
2795
2796 if (pools->bs)
2797 bioset_free(pools->bs);
2798
2799 kfree(pools);
2800 }
2801
2802 static const struct block_device_operations dm_blk_dops = {
2803 .open = dm_blk_open,
2804 .release = dm_blk_close,
2805 .ioctl = dm_blk_ioctl,
2806 .getgeo = dm_blk_getgeo,
2807 .owner = THIS_MODULE
2808 };
2809
2810 EXPORT_SYMBOL(dm_get_mapinfo);
2811
2812 /*
2813 * module hooks
2814 */
2815 module_init(dm_init);
2816 module_exit(dm_exit);
2817
2818 module_param(major, uint, 0);
2819 MODULE_PARM_DESC(major, "The major number of the device mapper");
2820 MODULE_DESCRIPTION(DM_NAME " driver");
2821 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2822 MODULE_LICENSE("GPL");
This page took 0.094452 seconds and 5 git commands to generate.