Merge branch 'linux-next' of git://git.infradead.org/ubi-2.6
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
23
24 #include <trace/events/block.h>
25
26 #define DM_MSG_PREFIX "core"
27
28 /*
29 * Cookies are numeric values sent with CHANGE and REMOVE
30 * uevents while resuming, removing or renaming the device.
31 */
32 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
33 #define DM_COOKIE_LENGTH 24
34
35 static DEFINE_MUTEX(dm_mutex);
36 static const char *_name = DM_NAME;
37
38 static unsigned int major = 0;
39 static unsigned int _major = 0;
40
41 static DEFINE_SPINLOCK(_minor_lock);
42 /*
43 * For bio-based dm.
44 * One of these is allocated per bio.
45 */
46 struct dm_io {
47 struct mapped_device *md;
48 int error;
49 atomic_t io_count;
50 struct bio *bio;
51 unsigned long start_time;
52 spinlock_t endio_lock;
53 };
54
55 /*
56 * For bio-based dm.
57 * One of these is allocated per target within a bio. Hopefully
58 * this will be simplified out one day.
59 */
60 struct dm_target_io {
61 struct dm_io *io;
62 struct dm_target *ti;
63 union map_info info;
64 };
65
66 /*
67 * For request-based dm.
68 * One of these is allocated per request.
69 */
70 struct dm_rq_target_io {
71 struct mapped_device *md;
72 struct dm_target *ti;
73 struct request *orig, clone;
74 int error;
75 union map_info info;
76 };
77
78 /*
79 * For request-based dm.
80 * One of these is allocated per bio.
81 */
82 struct dm_rq_clone_bio_info {
83 struct bio *orig;
84 struct dm_rq_target_io *tio;
85 };
86
87 union map_info *dm_get_mapinfo(struct bio *bio)
88 {
89 if (bio && bio->bi_private)
90 return &((struct dm_target_io *)bio->bi_private)->info;
91 return NULL;
92 }
93
94 union map_info *dm_get_rq_mapinfo(struct request *rq)
95 {
96 if (rq && rq->end_io_data)
97 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
98 return NULL;
99 }
100 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
101
102 #define MINOR_ALLOCED ((void *)-1)
103
104 /*
105 * Bits for the md->flags field.
106 */
107 #define DMF_BLOCK_IO_FOR_SUSPEND 0
108 #define DMF_SUSPENDED 1
109 #define DMF_FROZEN 2
110 #define DMF_FREEING 3
111 #define DMF_DELETING 4
112 #define DMF_NOFLUSH_SUSPENDING 5
113
114 /*
115 * Work processed by per-device workqueue.
116 */
117 struct mapped_device {
118 struct rw_semaphore io_lock;
119 struct mutex suspend_lock;
120 rwlock_t map_lock;
121 atomic_t holders;
122 atomic_t open_count;
123
124 unsigned long flags;
125
126 struct request_queue *queue;
127 unsigned type;
128 /* Protect queue and type against concurrent access. */
129 struct mutex type_lock;
130
131 struct gendisk *disk;
132 char name[16];
133
134 void *interface_ptr;
135
136 /*
137 * A list of ios that arrived while we were suspended.
138 */
139 atomic_t pending[2];
140 wait_queue_head_t wait;
141 struct work_struct work;
142 struct bio_list deferred;
143 spinlock_t deferred_lock;
144
145 /*
146 * Processing queue (flush)
147 */
148 struct workqueue_struct *wq;
149
150 /*
151 * The current mapping.
152 */
153 struct dm_table *map;
154
155 /*
156 * io objects are allocated from here.
157 */
158 mempool_t *io_pool;
159 mempool_t *tio_pool;
160
161 struct bio_set *bs;
162
163 /*
164 * Event handling.
165 */
166 atomic_t event_nr;
167 wait_queue_head_t eventq;
168 atomic_t uevent_seq;
169 struct list_head uevent_list;
170 spinlock_t uevent_lock; /* Protect access to uevent_list */
171
172 /*
173 * freeze/thaw support require holding onto a super block
174 */
175 struct super_block *frozen_sb;
176 struct block_device *bdev;
177
178 /* forced geometry settings */
179 struct hd_geometry geometry;
180
181 /* For saving the address of __make_request for request based dm */
182 make_request_fn *saved_make_request_fn;
183
184 /* sysfs handle */
185 struct kobject kobj;
186
187 /* zero-length flush that will be cloned and submitted to targets */
188 struct bio flush_bio;
189 };
190
191 /*
192 * For mempools pre-allocation at the table loading time.
193 */
194 struct dm_md_mempools {
195 mempool_t *io_pool;
196 mempool_t *tio_pool;
197 struct bio_set *bs;
198 };
199
200 #define MIN_IOS 256
201 static struct kmem_cache *_io_cache;
202 static struct kmem_cache *_tio_cache;
203 static struct kmem_cache *_rq_tio_cache;
204 static struct kmem_cache *_rq_bio_info_cache;
205
206 static int __init local_init(void)
207 {
208 int r = -ENOMEM;
209
210 /* allocate a slab for the dm_ios */
211 _io_cache = KMEM_CACHE(dm_io, 0);
212 if (!_io_cache)
213 return r;
214
215 /* allocate a slab for the target ios */
216 _tio_cache = KMEM_CACHE(dm_target_io, 0);
217 if (!_tio_cache)
218 goto out_free_io_cache;
219
220 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
221 if (!_rq_tio_cache)
222 goto out_free_tio_cache;
223
224 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
225 if (!_rq_bio_info_cache)
226 goto out_free_rq_tio_cache;
227
228 r = dm_uevent_init();
229 if (r)
230 goto out_free_rq_bio_info_cache;
231
232 _major = major;
233 r = register_blkdev(_major, _name);
234 if (r < 0)
235 goto out_uevent_exit;
236
237 if (!_major)
238 _major = r;
239
240 return 0;
241
242 out_uevent_exit:
243 dm_uevent_exit();
244 out_free_rq_bio_info_cache:
245 kmem_cache_destroy(_rq_bio_info_cache);
246 out_free_rq_tio_cache:
247 kmem_cache_destroy(_rq_tio_cache);
248 out_free_tio_cache:
249 kmem_cache_destroy(_tio_cache);
250 out_free_io_cache:
251 kmem_cache_destroy(_io_cache);
252
253 return r;
254 }
255
256 static void local_exit(void)
257 {
258 kmem_cache_destroy(_rq_bio_info_cache);
259 kmem_cache_destroy(_rq_tio_cache);
260 kmem_cache_destroy(_tio_cache);
261 kmem_cache_destroy(_io_cache);
262 unregister_blkdev(_major, _name);
263 dm_uevent_exit();
264
265 _major = 0;
266
267 DMINFO("cleaned up");
268 }
269
270 static int (*_inits[])(void) __initdata = {
271 local_init,
272 dm_target_init,
273 dm_linear_init,
274 dm_stripe_init,
275 dm_io_init,
276 dm_kcopyd_init,
277 dm_interface_init,
278 };
279
280 static void (*_exits[])(void) = {
281 local_exit,
282 dm_target_exit,
283 dm_linear_exit,
284 dm_stripe_exit,
285 dm_io_exit,
286 dm_kcopyd_exit,
287 dm_interface_exit,
288 };
289
290 static int __init dm_init(void)
291 {
292 const int count = ARRAY_SIZE(_inits);
293
294 int r, i;
295
296 for (i = 0; i < count; i++) {
297 r = _inits[i]();
298 if (r)
299 goto bad;
300 }
301
302 return 0;
303
304 bad:
305 while (i--)
306 _exits[i]();
307
308 return r;
309 }
310
311 static void __exit dm_exit(void)
312 {
313 int i = ARRAY_SIZE(_exits);
314
315 while (i--)
316 _exits[i]();
317 }
318
319 /*
320 * Block device functions
321 */
322 int dm_deleting_md(struct mapped_device *md)
323 {
324 return test_bit(DMF_DELETING, &md->flags);
325 }
326
327 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
328 {
329 struct mapped_device *md;
330
331 mutex_lock(&dm_mutex);
332 spin_lock(&_minor_lock);
333
334 md = bdev->bd_disk->private_data;
335 if (!md)
336 goto out;
337
338 if (test_bit(DMF_FREEING, &md->flags) ||
339 dm_deleting_md(md)) {
340 md = NULL;
341 goto out;
342 }
343
344 dm_get(md);
345 atomic_inc(&md->open_count);
346
347 out:
348 spin_unlock(&_minor_lock);
349 mutex_unlock(&dm_mutex);
350
351 return md ? 0 : -ENXIO;
352 }
353
354 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
355 {
356 struct mapped_device *md = disk->private_data;
357
358 mutex_lock(&dm_mutex);
359 atomic_dec(&md->open_count);
360 dm_put(md);
361 mutex_unlock(&dm_mutex);
362
363 return 0;
364 }
365
366 int dm_open_count(struct mapped_device *md)
367 {
368 return atomic_read(&md->open_count);
369 }
370
371 /*
372 * Guarantees nothing is using the device before it's deleted.
373 */
374 int dm_lock_for_deletion(struct mapped_device *md)
375 {
376 int r = 0;
377
378 spin_lock(&_minor_lock);
379
380 if (dm_open_count(md))
381 r = -EBUSY;
382 else
383 set_bit(DMF_DELETING, &md->flags);
384
385 spin_unlock(&_minor_lock);
386
387 return r;
388 }
389
390 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
391 {
392 struct mapped_device *md = bdev->bd_disk->private_data;
393
394 return dm_get_geometry(md, geo);
395 }
396
397 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
398 unsigned int cmd, unsigned long arg)
399 {
400 struct mapped_device *md = bdev->bd_disk->private_data;
401 struct dm_table *map = dm_get_live_table(md);
402 struct dm_target *tgt;
403 int r = -ENOTTY;
404
405 if (!map || !dm_table_get_size(map))
406 goto out;
407
408 /* We only support devices that have a single target */
409 if (dm_table_get_num_targets(map) != 1)
410 goto out;
411
412 tgt = dm_table_get_target(map, 0);
413
414 if (dm_suspended_md(md)) {
415 r = -EAGAIN;
416 goto out;
417 }
418
419 if (tgt->type->ioctl)
420 r = tgt->type->ioctl(tgt, cmd, arg);
421
422 out:
423 dm_table_put(map);
424
425 return r;
426 }
427
428 static struct dm_io *alloc_io(struct mapped_device *md)
429 {
430 return mempool_alloc(md->io_pool, GFP_NOIO);
431 }
432
433 static void free_io(struct mapped_device *md, struct dm_io *io)
434 {
435 mempool_free(io, md->io_pool);
436 }
437
438 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
439 {
440 mempool_free(tio, md->tio_pool);
441 }
442
443 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
444 gfp_t gfp_mask)
445 {
446 return mempool_alloc(md->tio_pool, gfp_mask);
447 }
448
449 static void free_rq_tio(struct dm_rq_target_io *tio)
450 {
451 mempool_free(tio, tio->md->tio_pool);
452 }
453
454 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
455 {
456 return mempool_alloc(md->io_pool, GFP_ATOMIC);
457 }
458
459 static void free_bio_info(struct dm_rq_clone_bio_info *info)
460 {
461 mempool_free(info, info->tio->md->io_pool);
462 }
463
464 static int md_in_flight(struct mapped_device *md)
465 {
466 return atomic_read(&md->pending[READ]) +
467 atomic_read(&md->pending[WRITE]);
468 }
469
470 static void start_io_acct(struct dm_io *io)
471 {
472 struct mapped_device *md = io->md;
473 int cpu;
474 int rw = bio_data_dir(io->bio);
475
476 io->start_time = jiffies;
477
478 cpu = part_stat_lock();
479 part_round_stats(cpu, &dm_disk(md)->part0);
480 part_stat_unlock();
481 dm_disk(md)->part0.in_flight[rw] = atomic_inc_return(&md->pending[rw]);
482 }
483
484 static void end_io_acct(struct dm_io *io)
485 {
486 struct mapped_device *md = io->md;
487 struct bio *bio = io->bio;
488 unsigned long duration = jiffies - io->start_time;
489 int pending, cpu;
490 int rw = bio_data_dir(bio);
491
492 cpu = part_stat_lock();
493 part_round_stats(cpu, &dm_disk(md)->part0);
494 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
495 part_stat_unlock();
496
497 /*
498 * After this is decremented the bio must not be touched if it is
499 * a flush.
500 */
501 dm_disk(md)->part0.in_flight[rw] = pending =
502 atomic_dec_return(&md->pending[rw]);
503 pending += atomic_read(&md->pending[rw^0x1]);
504
505 /* nudge anyone waiting on suspend queue */
506 if (!pending)
507 wake_up(&md->wait);
508 }
509
510 /*
511 * Add the bio to the list of deferred io.
512 */
513 static void queue_io(struct mapped_device *md, struct bio *bio)
514 {
515 unsigned long flags;
516
517 spin_lock_irqsave(&md->deferred_lock, flags);
518 bio_list_add(&md->deferred, bio);
519 spin_unlock_irqrestore(&md->deferred_lock, flags);
520 queue_work(md->wq, &md->work);
521 }
522
523 /*
524 * Everyone (including functions in this file), should use this
525 * function to access the md->map field, and make sure they call
526 * dm_table_put() when finished.
527 */
528 struct dm_table *dm_get_live_table(struct mapped_device *md)
529 {
530 struct dm_table *t;
531 unsigned long flags;
532
533 read_lock_irqsave(&md->map_lock, flags);
534 t = md->map;
535 if (t)
536 dm_table_get(t);
537 read_unlock_irqrestore(&md->map_lock, flags);
538
539 return t;
540 }
541
542 /*
543 * Get the geometry associated with a dm device
544 */
545 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
546 {
547 *geo = md->geometry;
548
549 return 0;
550 }
551
552 /*
553 * Set the geometry of a device.
554 */
555 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
556 {
557 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
558
559 if (geo->start > sz) {
560 DMWARN("Start sector is beyond the geometry limits.");
561 return -EINVAL;
562 }
563
564 md->geometry = *geo;
565
566 return 0;
567 }
568
569 /*-----------------------------------------------------------------
570 * CRUD START:
571 * A more elegant soln is in the works that uses the queue
572 * merge fn, unfortunately there are a couple of changes to
573 * the block layer that I want to make for this. So in the
574 * interests of getting something for people to use I give
575 * you this clearly demarcated crap.
576 *---------------------------------------------------------------*/
577
578 static int __noflush_suspending(struct mapped_device *md)
579 {
580 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
581 }
582
583 /*
584 * Decrements the number of outstanding ios that a bio has been
585 * cloned into, completing the original io if necc.
586 */
587 static void dec_pending(struct dm_io *io, int error)
588 {
589 unsigned long flags;
590 int io_error;
591 struct bio *bio;
592 struct mapped_device *md = io->md;
593
594 /* Push-back supersedes any I/O errors */
595 if (unlikely(error)) {
596 spin_lock_irqsave(&io->endio_lock, flags);
597 if (!(io->error > 0 && __noflush_suspending(md)))
598 io->error = error;
599 spin_unlock_irqrestore(&io->endio_lock, flags);
600 }
601
602 if (atomic_dec_and_test(&io->io_count)) {
603 if (io->error == DM_ENDIO_REQUEUE) {
604 /*
605 * Target requested pushing back the I/O.
606 */
607 spin_lock_irqsave(&md->deferred_lock, flags);
608 if (__noflush_suspending(md))
609 bio_list_add_head(&md->deferred, io->bio);
610 else
611 /* noflush suspend was interrupted. */
612 io->error = -EIO;
613 spin_unlock_irqrestore(&md->deferred_lock, flags);
614 }
615
616 io_error = io->error;
617 bio = io->bio;
618 end_io_acct(io);
619 free_io(md, io);
620
621 if (io_error == DM_ENDIO_REQUEUE)
622 return;
623
624 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
625 /*
626 * Preflush done for flush with data, reissue
627 * without REQ_FLUSH.
628 */
629 bio->bi_rw &= ~REQ_FLUSH;
630 queue_io(md, bio);
631 } else {
632 /* done with normal IO or empty flush */
633 trace_block_bio_complete(md->queue, bio);
634 bio_endio(bio, io_error);
635 }
636 }
637 }
638
639 static void clone_endio(struct bio *bio, int error)
640 {
641 int r = 0;
642 struct dm_target_io *tio = bio->bi_private;
643 struct dm_io *io = tio->io;
644 struct mapped_device *md = tio->io->md;
645 dm_endio_fn endio = tio->ti->type->end_io;
646
647 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
648 error = -EIO;
649
650 if (endio) {
651 r = endio(tio->ti, bio, error, &tio->info);
652 if (r < 0 || r == DM_ENDIO_REQUEUE)
653 /*
654 * error and requeue request are handled
655 * in dec_pending().
656 */
657 error = r;
658 else if (r == DM_ENDIO_INCOMPLETE)
659 /* The target will handle the io */
660 return;
661 else if (r) {
662 DMWARN("unimplemented target endio return value: %d", r);
663 BUG();
664 }
665 }
666
667 /*
668 * Store md for cleanup instead of tio which is about to get freed.
669 */
670 bio->bi_private = md->bs;
671
672 free_tio(md, tio);
673 bio_put(bio);
674 dec_pending(io, error);
675 }
676
677 /*
678 * Partial completion handling for request-based dm
679 */
680 static void end_clone_bio(struct bio *clone, int error)
681 {
682 struct dm_rq_clone_bio_info *info = clone->bi_private;
683 struct dm_rq_target_io *tio = info->tio;
684 struct bio *bio = info->orig;
685 unsigned int nr_bytes = info->orig->bi_size;
686
687 bio_put(clone);
688
689 if (tio->error)
690 /*
691 * An error has already been detected on the request.
692 * Once error occurred, just let clone->end_io() handle
693 * the remainder.
694 */
695 return;
696 else if (error) {
697 /*
698 * Don't notice the error to the upper layer yet.
699 * The error handling decision is made by the target driver,
700 * when the request is completed.
701 */
702 tio->error = error;
703 return;
704 }
705
706 /*
707 * I/O for the bio successfully completed.
708 * Notice the data completion to the upper layer.
709 */
710
711 /*
712 * bios are processed from the head of the list.
713 * So the completing bio should always be rq->bio.
714 * If it's not, something wrong is happening.
715 */
716 if (tio->orig->bio != bio)
717 DMERR("bio completion is going in the middle of the request");
718
719 /*
720 * Update the original request.
721 * Do not use blk_end_request() here, because it may complete
722 * the original request before the clone, and break the ordering.
723 */
724 blk_update_request(tio->orig, 0, nr_bytes);
725 }
726
727 /*
728 * Don't touch any member of the md after calling this function because
729 * the md may be freed in dm_put() at the end of this function.
730 * Or do dm_get() before calling this function and dm_put() later.
731 */
732 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
733 {
734 atomic_dec(&md->pending[rw]);
735
736 /* nudge anyone waiting on suspend queue */
737 if (!md_in_flight(md))
738 wake_up(&md->wait);
739
740 if (run_queue)
741 blk_run_queue(md->queue);
742
743 /*
744 * dm_put() must be at the end of this function. See the comment above
745 */
746 dm_put(md);
747 }
748
749 static void free_rq_clone(struct request *clone)
750 {
751 struct dm_rq_target_io *tio = clone->end_io_data;
752
753 blk_rq_unprep_clone(clone);
754 free_rq_tio(tio);
755 }
756
757 /*
758 * Complete the clone and the original request.
759 * Must be called without queue lock.
760 */
761 static void dm_end_request(struct request *clone, int error)
762 {
763 int rw = rq_data_dir(clone);
764 struct dm_rq_target_io *tio = clone->end_io_data;
765 struct mapped_device *md = tio->md;
766 struct request *rq = tio->orig;
767
768 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
769 rq->errors = clone->errors;
770 rq->resid_len = clone->resid_len;
771
772 if (rq->sense)
773 /*
774 * We are using the sense buffer of the original
775 * request.
776 * So setting the length of the sense data is enough.
777 */
778 rq->sense_len = clone->sense_len;
779 }
780
781 free_rq_clone(clone);
782 blk_end_request_all(rq, error);
783 rq_completed(md, rw, true);
784 }
785
786 static void dm_unprep_request(struct request *rq)
787 {
788 struct request *clone = rq->special;
789
790 rq->special = NULL;
791 rq->cmd_flags &= ~REQ_DONTPREP;
792
793 free_rq_clone(clone);
794 }
795
796 /*
797 * Requeue the original request of a clone.
798 */
799 void dm_requeue_unmapped_request(struct request *clone)
800 {
801 int rw = rq_data_dir(clone);
802 struct dm_rq_target_io *tio = clone->end_io_data;
803 struct mapped_device *md = tio->md;
804 struct request *rq = tio->orig;
805 struct request_queue *q = rq->q;
806 unsigned long flags;
807
808 dm_unprep_request(rq);
809
810 spin_lock_irqsave(q->queue_lock, flags);
811 if (elv_queue_empty(q))
812 blk_plug_device(q);
813 blk_requeue_request(q, rq);
814 spin_unlock_irqrestore(q->queue_lock, flags);
815
816 rq_completed(md, rw, 0);
817 }
818 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
819
820 static void __stop_queue(struct request_queue *q)
821 {
822 blk_stop_queue(q);
823 }
824
825 static void stop_queue(struct request_queue *q)
826 {
827 unsigned long flags;
828
829 spin_lock_irqsave(q->queue_lock, flags);
830 __stop_queue(q);
831 spin_unlock_irqrestore(q->queue_lock, flags);
832 }
833
834 static void __start_queue(struct request_queue *q)
835 {
836 if (blk_queue_stopped(q))
837 blk_start_queue(q);
838 }
839
840 static void start_queue(struct request_queue *q)
841 {
842 unsigned long flags;
843
844 spin_lock_irqsave(q->queue_lock, flags);
845 __start_queue(q);
846 spin_unlock_irqrestore(q->queue_lock, flags);
847 }
848
849 static void dm_done(struct request *clone, int error, bool mapped)
850 {
851 int r = error;
852 struct dm_rq_target_io *tio = clone->end_io_data;
853 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
854
855 if (mapped && rq_end_io)
856 r = rq_end_io(tio->ti, clone, error, &tio->info);
857
858 if (r <= 0)
859 /* The target wants to complete the I/O */
860 dm_end_request(clone, r);
861 else if (r == DM_ENDIO_INCOMPLETE)
862 /* The target will handle the I/O */
863 return;
864 else if (r == DM_ENDIO_REQUEUE)
865 /* The target wants to requeue the I/O */
866 dm_requeue_unmapped_request(clone);
867 else {
868 DMWARN("unimplemented target endio return value: %d", r);
869 BUG();
870 }
871 }
872
873 /*
874 * Request completion handler for request-based dm
875 */
876 static void dm_softirq_done(struct request *rq)
877 {
878 bool mapped = true;
879 struct request *clone = rq->completion_data;
880 struct dm_rq_target_io *tio = clone->end_io_data;
881
882 if (rq->cmd_flags & REQ_FAILED)
883 mapped = false;
884
885 dm_done(clone, tio->error, mapped);
886 }
887
888 /*
889 * Complete the clone and the original request with the error status
890 * through softirq context.
891 */
892 static void dm_complete_request(struct request *clone, int error)
893 {
894 struct dm_rq_target_io *tio = clone->end_io_data;
895 struct request *rq = tio->orig;
896
897 tio->error = error;
898 rq->completion_data = clone;
899 blk_complete_request(rq);
900 }
901
902 /*
903 * Complete the not-mapped clone and the original request with the error status
904 * through softirq context.
905 * Target's rq_end_io() function isn't called.
906 * This may be used when the target's map_rq() function fails.
907 */
908 void dm_kill_unmapped_request(struct request *clone, int error)
909 {
910 struct dm_rq_target_io *tio = clone->end_io_data;
911 struct request *rq = tio->orig;
912
913 rq->cmd_flags |= REQ_FAILED;
914 dm_complete_request(clone, error);
915 }
916 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
917
918 /*
919 * Called with the queue lock held
920 */
921 static void end_clone_request(struct request *clone, int error)
922 {
923 /*
924 * For just cleaning up the information of the queue in which
925 * the clone was dispatched.
926 * The clone is *NOT* freed actually here because it is alloced from
927 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
928 */
929 __blk_put_request(clone->q, clone);
930
931 /*
932 * Actual request completion is done in a softirq context which doesn't
933 * hold the queue lock. Otherwise, deadlock could occur because:
934 * - another request may be submitted by the upper level driver
935 * of the stacking during the completion
936 * - the submission which requires queue lock may be done
937 * against this queue
938 */
939 dm_complete_request(clone, error);
940 }
941
942 /*
943 * Return maximum size of I/O possible at the supplied sector up to the current
944 * target boundary.
945 */
946 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
947 {
948 sector_t target_offset = dm_target_offset(ti, sector);
949
950 return ti->len - target_offset;
951 }
952
953 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
954 {
955 sector_t len = max_io_len_target_boundary(sector, ti);
956
957 /*
958 * Does the target need to split even further ?
959 */
960 if (ti->split_io) {
961 sector_t boundary;
962 sector_t offset = dm_target_offset(ti, sector);
963 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
964 - offset;
965 if (len > boundary)
966 len = boundary;
967 }
968
969 return len;
970 }
971
972 static void __map_bio(struct dm_target *ti, struct bio *clone,
973 struct dm_target_io *tio)
974 {
975 int r;
976 sector_t sector;
977 struct mapped_device *md;
978
979 clone->bi_end_io = clone_endio;
980 clone->bi_private = tio;
981
982 /*
983 * Map the clone. If r == 0 we don't need to do
984 * anything, the target has assumed ownership of
985 * this io.
986 */
987 atomic_inc(&tio->io->io_count);
988 sector = clone->bi_sector;
989 r = ti->type->map(ti, clone, &tio->info);
990 if (r == DM_MAPIO_REMAPPED) {
991 /* the bio has been remapped so dispatch it */
992
993 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
994 tio->io->bio->bi_bdev->bd_dev, sector);
995
996 generic_make_request(clone);
997 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
998 /* error the io and bail out, or requeue it if needed */
999 md = tio->io->md;
1000 dec_pending(tio->io, r);
1001 /*
1002 * Store bio_set for cleanup.
1003 */
1004 clone->bi_private = md->bs;
1005 bio_put(clone);
1006 free_tio(md, tio);
1007 } else if (r) {
1008 DMWARN("unimplemented target map return value: %d", r);
1009 BUG();
1010 }
1011 }
1012
1013 struct clone_info {
1014 struct mapped_device *md;
1015 struct dm_table *map;
1016 struct bio *bio;
1017 struct dm_io *io;
1018 sector_t sector;
1019 sector_t sector_count;
1020 unsigned short idx;
1021 };
1022
1023 static void dm_bio_destructor(struct bio *bio)
1024 {
1025 struct bio_set *bs = bio->bi_private;
1026
1027 bio_free(bio, bs);
1028 }
1029
1030 /*
1031 * Creates a little bio that just does part of a bvec.
1032 */
1033 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1034 unsigned short idx, unsigned int offset,
1035 unsigned int len, struct bio_set *bs)
1036 {
1037 struct bio *clone;
1038 struct bio_vec *bv = bio->bi_io_vec + idx;
1039
1040 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1041 clone->bi_destructor = dm_bio_destructor;
1042 *clone->bi_io_vec = *bv;
1043
1044 clone->bi_sector = sector;
1045 clone->bi_bdev = bio->bi_bdev;
1046 clone->bi_rw = bio->bi_rw;
1047 clone->bi_vcnt = 1;
1048 clone->bi_size = to_bytes(len);
1049 clone->bi_io_vec->bv_offset = offset;
1050 clone->bi_io_vec->bv_len = clone->bi_size;
1051 clone->bi_flags |= 1 << BIO_CLONED;
1052
1053 if (bio_integrity(bio)) {
1054 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1055 bio_integrity_trim(clone,
1056 bio_sector_offset(bio, idx, offset), len);
1057 }
1058
1059 return clone;
1060 }
1061
1062 /*
1063 * Creates a bio that consists of range of complete bvecs.
1064 */
1065 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1066 unsigned short idx, unsigned short bv_count,
1067 unsigned int len, struct bio_set *bs)
1068 {
1069 struct bio *clone;
1070
1071 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1072 __bio_clone(clone, bio);
1073 clone->bi_destructor = dm_bio_destructor;
1074 clone->bi_sector = sector;
1075 clone->bi_idx = idx;
1076 clone->bi_vcnt = idx + bv_count;
1077 clone->bi_size = to_bytes(len);
1078 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1079
1080 if (bio_integrity(bio)) {
1081 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1082
1083 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1084 bio_integrity_trim(clone,
1085 bio_sector_offset(bio, idx, 0), len);
1086 }
1087
1088 return clone;
1089 }
1090
1091 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1092 struct dm_target *ti)
1093 {
1094 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1095
1096 tio->io = ci->io;
1097 tio->ti = ti;
1098 memset(&tio->info, 0, sizeof(tio->info));
1099
1100 return tio;
1101 }
1102
1103 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1104 unsigned request_nr, sector_t len)
1105 {
1106 struct dm_target_io *tio = alloc_tio(ci, ti);
1107 struct bio *clone;
1108
1109 tio->info.target_request_nr = request_nr;
1110
1111 /*
1112 * Discard requests require the bio's inline iovecs be initialized.
1113 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1114 * and discard, so no need for concern about wasted bvec allocations.
1115 */
1116 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1117 __bio_clone(clone, ci->bio);
1118 clone->bi_destructor = dm_bio_destructor;
1119 if (len) {
1120 clone->bi_sector = ci->sector;
1121 clone->bi_size = to_bytes(len);
1122 }
1123
1124 __map_bio(ti, clone, tio);
1125 }
1126
1127 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1128 unsigned num_requests, sector_t len)
1129 {
1130 unsigned request_nr;
1131
1132 for (request_nr = 0; request_nr < num_requests; request_nr++)
1133 __issue_target_request(ci, ti, request_nr, len);
1134 }
1135
1136 static int __clone_and_map_empty_flush(struct clone_info *ci)
1137 {
1138 unsigned target_nr = 0;
1139 struct dm_target *ti;
1140
1141 BUG_ON(bio_has_data(ci->bio));
1142 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1143 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1144
1145 return 0;
1146 }
1147
1148 /*
1149 * Perform all io with a single clone.
1150 */
1151 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1152 {
1153 struct bio *clone, *bio = ci->bio;
1154 struct dm_target_io *tio;
1155
1156 tio = alloc_tio(ci, ti);
1157 clone = clone_bio(bio, ci->sector, ci->idx,
1158 bio->bi_vcnt - ci->idx, ci->sector_count,
1159 ci->md->bs);
1160 __map_bio(ti, clone, tio);
1161 ci->sector_count = 0;
1162 }
1163
1164 static int __clone_and_map_discard(struct clone_info *ci)
1165 {
1166 struct dm_target *ti;
1167 sector_t len;
1168
1169 do {
1170 ti = dm_table_find_target(ci->map, ci->sector);
1171 if (!dm_target_is_valid(ti))
1172 return -EIO;
1173
1174 /*
1175 * Even though the device advertised discard support,
1176 * reconfiguration might have changed that since the
1177 * check was performed.
1178 */
1179 if (!ti->num_discard_requests)
1180 return -EOPNOTSUPP;
1181
1182 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1183
1184 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1185
1186 ci->sector += len;
1187 } while (ci->sector_count -= len);
1188
1189 return 0;
1190 }
1191
1192 static int __clone_and_map(struct clone_info *ci)
1193 {
1194 struct bio *clone, *bio = ci->bio;
1195 struct dm_target *ti;
1196 sector_t len = 0, max;
1197 struct dm_target_io *tio;
1198
1199 if (unlikely(bio->bi_rw & REQ_DISCARD))
1200 return __clone_and_map_discard(ci);
1201
1202 ti = dm_table_find_target(ci->map, ci->sector);
1203 if (!dm_target_is_valid(ti))
1204 return -EIO;
1205
1206 max = max_io_len(ci->sector, ti);
1207
1208 if (ci->sector_count <= max) {
1209 /*
1210 * Optimise for the simple case where we can do all of
1211 * the remaining io with a single clone.
1212 */
1213 __clone_and_map_simple(ci, ti);
1214
1215 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1216 /*
1217 * There are some bvecs that don't span targets.
1218 * Do as many of these as possible.
1219 */
1220 int i;
1221 sector_t remaining = max;
1222 sector_t bv_len;
1223
1224 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1225 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1226
1227 if (bv_len > remaining)
1228 break;
1229
1230 remaining -= bv_len;
1231 len += bv_len;
1232 }
1233
1234 tio = alloc_tio(ci, ti);
1235 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1236 ci->md->bs);
1237 __map_bio(ti, clone, tio);
1238
1239 ci->sector += len;
1240 ci->sector_count -= len;
1241 ci->idx = i;
1242
1243 } else {
1244 /*
1245 * Handle a bvec that must be split between two or more targets.
1246 */
1247 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1248 sector_t remaining = to_sector(bv->bv_len);
1249 unsigned int offset = 0;
1250
1251 do {
1252 if (offset) {
1253 ti = dm_table_find_target(ci->map, ci->sector);
1254 if (!dm_target_is_valid(ti))
1255 return -EIO;
1256
1257 max = max_io_len(ci->sector, ti);
1258 }
1259
1260 len = min(remaining, max);
1261
1262 tio = alloc_tio(ci, ti);
1263 clone = split_bvec(bio, ci->sector, ci->idx,
1264 bv->bv_offset + offset, len,
1265 ci->md->bs);
1266
1267 __map_bio(ti, clone, tio);
1268
1269 ci->sector += len;
1270 ci->sector_count -= len;
1271 offset += to_bytes(len);
1272 } while (remaining -= len);
1273
1274 ci->idx++;
1275 }
1276
1277 return 0;
1278 }
1279
1280 /*
1281 * Split the bio into several clones and submit it to targets.
1282 */
1283 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1284 {
1285 struct clone_info ci;
1286 int error = 0;
1287
1288 ci.map = dm_get_live_table(md);
1289 if (unlikely(!ci.map)) {
1290 bio_io_error(bio);
1291 return;
1292 }
1293
1294 ci.md = md;
1295 ci.io = alloc_io(md);
1296 ci.io->error = 0;
1297 atomic_set(&ci.io->io_count, 1);
1298 ci.io->bio = bio;
1299 ci.io->md = md;
1300 spin_lock_init(&ci.io->endio_lock);
1301 ci.sector = bio->bi_sector;
1302 ci.idx = bio->bi_idx;
1303
1304 start_io_acct(ci.io);
1305 if (bio->bi_rw & REQ_FLUSH) {
1306 ci.bio = &ci.md->flush_bio;
1307 ci.sector_count = 0;
1308 error = __clone_and_map_empty_flush(&ci);
1309 /* dec_pending submits any data associated with flush */
1310 } else {
1311 ci.bio = bio;
1312 ci.sector_count = bio_sectors(bio);
1313 while (ci.sector_count && !error)
1314 error = __clone_and_map(&ci);
1315 }
1316
1317 /* drop the extra reference count */
1318 dec_pending(ci.io, error);
1319 dm_table_put(ci.map);
1320 }
1321 /*-----------------------------------------------------------------
1322 * CRUD END
1323 *---------------------------------------------------------------*/
1324
1325 static int dm_merge_bvec(struct request_queue *q,
1326 struct bvec_merge_data *bvm,
1327 struct bio_vec *biovec)
1328 {
1329 struct mapped_device *md = q->queuedata;
1330 struct dm_table *map = dm_get_live_table(md);
1331 struct dm_target *ti;
1332 sector_t max_sectors;
1333 int max_size = 0;
1334
1335 if (unlikely(!map))
1336 goto out;
1337
1338 ti = dm_table_find_target(map, bvm->bi_sector);
1339 if (!dm_target_is_valid(ti))
1340 goto out_table;
1341
1342 /*
1343 * Find maximum amount of I/O that won't need splitting
1344 */
1345 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1346 (sector_t) BIO_MAX_SECTORS);
1347 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1348 if (max_size < 0)
1349 max_size = 0;
1350
1351 /*
1352 * merge_bvec_fn() returns number of bytes
1353 * it can accept at this offset
1354 * max is precomputed maximal io size
1355 */
1356 if (max_size && ti->type->merge)
1357 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1358 /*
1359 * If the target doesn't support merge method and some of the devices
1360 * provided their merge_bvec method (we know this by looking at
1361 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1362 * entries. So always set max_size to 0, and the code below allows
1363 * just one page.
1364 */
1365 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1366
1367 max_size = 0;
1368
1369 out_table:
1370 dm_table_put(map);
1371
1372 out:
1373 /*
1374 * Always allow an entire first page
1375 */
1376 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1377 max_size = biovec->bv_len;
1378
1379 return max_size;
1380 }
1381
1382 /*
1383 * The request function that just remaps the bio built up by
1384 * dm_merge_bvec.
1385 */
1386 static int _dm_request(struct request_queue *q, struct bio *bio)
1387 {
1388 int rw = bio_data_dir(bio);
1389 struct mapped_device *md = q->queuedata;
1390 int cpu;
1391
1392 down_read(&md->io_lock);
1393
1394 cpu = part_stat_lock();
1395 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1396 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1397 part_stat_unlock();
1398
1399 /* if we're suspended, we have to queue this io for later */
1400 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1401 up_read(&md->io_lock);
1402
1403 if (bio_rw(bio) != READA)
1404 queue_io(md, bio);
1405 else
1406 bio_io_error(bio);
1407 return 0;
1408 }
1409
1410 __split_and_process_bio(md, bio);
1411 up_read(&md->io_lock);
1412 return 0;
1413 }
1414
1415 static int dm_make_request(struct request_queue *q, struct bio *bio)
1416 {
1417 struct mapped_device *md = q->queuedata;
1418
1419 return md->saved_make_request_fn(q, bio); /* call __make_request() */
1420 }
1421
1422 static int dm_request_based(struct mapped_device *md)
1423 {
1424 return blk_queue_stackable(md->queue);
1425 }
1426
1427 static int dm_request(struct request_queue *q, struct bio *bio)
1428 {
1429 struct mapped_device *md = q->queuedata;
1430
1431 if (dm_request_based(md))
1432 return dm_make_request(q, bio);
1433
1434 return _dm_request(q, bio);
1435 }
1436
1437 void dm_dispatch_request(struct request *rq)
1438 {
1439 int r;
1440
1441 if (blk_queue_io_stat(rq->q))
1442 rq->cmd_flags |= REQ_IO_STAT;
1443
1444 rq->start_time = jiffies;
1445 r = blk_insert_cloned_request(rq->q, rq);
1446 if (r)
1447 dm_complete_request(rq, r);
1448 }
1449 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1450
1451 static void dm_rq_bio_destructor(struct bio *bio)
1452 {
1453 struct dm_rq_clone_bio_info *info = bio->bi_private;
1454 struct mapped_device *md = info->tio->md;
1455
1456 free_bio_info(info);
1457 bio_free(bio, md->bs);
1458 }
1459
1460 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1461 void *data)
1462 {
1463 struct dm_rq_target_io *tio = data;
1464 struct mapped_device *md = tio->md;
1465 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1466
1467 if (!info)
1468 return -ENOMEM;
1469
1470 info->orig = bio_orig;
1471 info->tio = tio;
1472 bio->bi_end_io = end_clone_bio;
1473 bio->bi_private = info;
1474 bio->bi_destructor = dm_rq_bio_destructor;
1475
1476 return 0;
1477 }
1478
1479 static int setup_clone(struct request *clone, struct request *rq,
1480 struct dm_rq_target_io *tio)
1481 {
1482 int r;
1483
1484 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1485 dm_rq_bio_constructor, tio);
1486 if (r)
1487 return r;
1488
1489 clone->cmd = rq->cmd;
1490 clone->cmd_len = rq->cmd_len;
1491 clone->sense = rq->sense;
1492 clone->buffer = rq->buffer;
1493 clone->end_io = end_clone_request;
1494 clone->end_io_data = tio;
1495
1496 return 0;
1497 }
1498
1499 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1500 gfp_t gfp_mask)
1501 {
1502 struct request *clone;
1503 struct dm_rq_target_io *tio;
1504
1505 tio = alloc_rq_tio(md, gfp_mask);
1506 if (!tio)
1507 return NULL;
1508
1509 tio->md = md;
1510 tio->ti = NULL;
1511 tio->orig = rq;
1512 tio->error = 0;
1513 memset(&tio->info, 0, sizeof(tio->info));
1514
1515 clone = &tio->clone;
1516 if (setup_clone(clone, rq, tio)) {
1517 /* -ENOMEM */
1518 free_rq_tio(tio);
1519 return NULL;
1520 }
1521
1522 return clone;
1523 }
1524
1525 /*
1526 * Called with the queue lock held.
1527 */
1528 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1529 {
1530 struct mapped_device *md = q->queuedata;
1531 struct request *clone;
1532
1533 if (unlikely(rq->special)) {
1534 DMWARN("Already has something in rq->special.");
1535 return BLKPREP_KILL;
1536 }
1537
1538 clone = clone_rq(rq, md, GFP_ATOMIC);
1539 if (!clone)
1540 return BLKPREP_DEFER;
1541
1542 rq->special = clone;
1543 rq->cmd_flags |= REQ_DONTPREP;
1544
1545 return BLKPREP_OK;
1546 }
1547
1548 /*
1549 * Returns:
1550 * 0 : the request has been processed (not requeued)
1551 * !0 : the request has been requeued
1552 */
1553 static int map_request(struct dm_target *ti, struct request *clone,
1554 struct mapped_device *md)
1555 {
1556 int r, requeued = 0;
1557 struct dm_rq_target_io *tio = clone->end_io_data;
1558
1559 /*
1560 * Hold the md reference here for the in-flight I/O.
1561 * We can't rely on the reference count by device opener,
1562 * because the device may be closed during the request completion
1563 * when all bios are completed.
1564 * See the comment in rq_completed() too.
1565 */
1566 dm_get(md);
1567
1568 tio->ti = ti;
1569 r = ti->type->map_rq(ti, clone, &tio->info);
1570 switch (r) {
1571 case DM_MAPIO_SUBMITTED:
1572 /* The target has taken the I/O to submit by itself later */
1573 break;
1574 case DM_MAPIO_REMAPPED:
1575 /* The target has remapped the I/O so dispatch it */
1576 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1577 blk_rq_pos(tio->orig));
1578 dm_dispatch_request(clone);
1579 break;
1580 case DM_MAPIO_REQUEUE:
1581 /* The target wants to requeue the I/O */
1582 dm_requeue_unmapped_request(clone);
1583 requeued = 1;
1584 break;
1585 default:
1586 if (r > 0) {
1587 DMWARN("unimplemented target map return value: %d", r);
1588 BUG();
1589 }
1590
1591 /* The target wants to complete the I/O */
1592 dm_kill_unmapped_request(clone, r);
1593 break;
1594 }
1595
1596 return requeued;
1597 }
1598
1599 /*
1600 * q->request_fn for request-based dm.
1601 * Called with the queue lock held.
1602 */
1603 static void dm_request_fn(struct request_queue *q)
1604 {
1605 struct mapped_device *md = q->queuedata;
1606 struct dm_table *map = dm_get_live_table(md);
1607 struct dm_target *ti;
1608 struct request *rq, *clone;
1609 sector_t pos;
1610
1611 /*
1612 * For suspend, check blk_queue_stopped() and increment
1613 * ->pending within a single queue_lock not to increment the
1614 * number of in-flight I/Os after the queue is stopped in
1615 * dm_suspend().
1616 */
1617 while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
1618 rq = blk_peek_request(q);
1619 if (!rq)
1620 goto plug_and_out;
1621
1622 /* always use block 0 to find the target for flushes for now */
1623 pos = 0;
1624 if (!(rq->cmd_flags & REQ_FLUSH))
1625 pos = blk_rq_pos(rq);
1626
1627 ti = dm_table_find_target(map, pos);
1628 BUG_ON(!dm_target_is_valid(ti));
1629
1630 if (ti->type->busy && ti->type->busy(ti))
1631 goto plug_and_out;
1632
1633 blk_start_request(rq);
1634 clone = rq->special;
1635 atomic_inc(&md->pending[rq_data_dir(clone)]);
1636
1637 spin_unlock(q->queue_lock);
1638 if (map_request(ti, clone, md))
1639 goto requeued;
1640
1641 spin_lock_irq(q->queue_lock);
1642 }
1643
1644 goto out;
1645
1646 requeued:
1647 spin_lock_irq(q->queue_lock);
1648
1649 plug_and_out:
1650 if (!elv_queue_empty(q))
1651 /* Some requests still remain, retry later */
1652 blk_plug_device(q);
1653
1654 out:
1655 dm_table_put(map);
1656
1657 return;
1658 }
1659
1660 int dm_underlying_device_busy(struct request_queue *q)
1661 {
1662 return blk_lld_busy(q);
1663 }
1664 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1665
1666 static int dm_lld_busy(struct request_queue *q)
1667 {
1668 int r;
1669 struct mapped_device *md = q->queuedata;
1670 struct dm_table *map = dm_get_live_table(md);
1671
1672 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1673 r = 1;
1674 else
1675 r = dm_table_any_busy_target(map);
1676
1677 dm_table_put(map);
1678
1679 return r;
1680 }
1681
1682 static void dm_unplug_all(struct request_queue *q)
1683 {
1684 struct mapped_device *md = q->queuedata;
1685 struct dm_table *map = dm_get_live_table(md);
1686
1687 if (map) {
1688 if (dm_request_based(md))
1689 generic_unplug_device(q);
1690
1691 dm_table_unplug_all(map);
1692 dm_table_put(map);
1693 }
1694 }
1695
1696 static int dm_any_congested(void *congested_data, int bdi_bits)
1697 {
1698 int r = bdi_bits;
1699 struct mapped_device *md = congested_data;
1700 struct dm_table *map;
1701
1702 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1703 map = dm_get_live_table(md);
1704 if (map) {
1705 /*
1706 * Request-based dm cares about only own queue for
1707 * the query about congestion status of request_queue
1708 */
1709 if (dm_request_based(md))
1710 r = md->queue->backing_dev_info.state &
1711 bdi_bits;
1712 else
1713 r = dm_table_any_congested(map, bdi_bits);
1714
1715 dm_table_put(map);
1716 }
1717 }
1718
1719 return r;
1720 }
1721
1722 /*-----------------------------------------------------------------
1723 * An IDR is used to keep track of allocated minor numbers.
1724 *---------------------------------------------------------------*/
1725 static DEFINE_IDR(_minor_idr);
1726
1727 static void free_minor(int minor)
1728 {
1729 spin_lock(&_minor_lock);
1730 idr_remove(&_minor_idr, minor);
1731 spin_unlock(&_minor_lock);
1732 }
1733
1734 /*
1735 * See if the device with a specific minor # is free.
1736 */
1737 static int specific_minor(int minor)
1738 {
1739 int r, m;
1740
1741 if (minor >= (1 << MINORBITS))
1742 return -EINVAL;
1743
1744 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1745 if (!r)
1746 return -ENOMEM;
1747
1748 spin_lock(&_minor_lock);
1749
1750 if (idr_find(&_minor_idr, minor)) {
1751 r = -EBUSY;
1752 goto out;
1753 }
1754
1755 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1756 if (r)
1757 goto out;
1758
1759 if (m != minor) {
1760 idr_remove(&_minor_idr, m);
1761 r = -EBUSY;
1762 goto out;
1763 }
1764
1765 out:
1766 spin_unlock(&_minor_lock);
1767 return r;
1768 }
1769
1770 static int next_free_minor(int *minor)
1771 {
1772 int r, m;
1773
1774 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1775 if (!r)
1776 return -ENOMEM;
1777
1778 spin_lock(&_minor_lock);
1779
1780 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1781 if (r)
1782 goto out;
1783
1784 if (m >= (1 << MINORBITS)) {
1785 idr_remove(&_minor_idr, m);
1786 r = -ENOSPC;
1787 goto out;
1788 }
1789
1790 *minor = m;
1791
1792 out:
1793 spin_unlock(&_minor_lock);
1794 return r;
1795 }
1796
1797 static const struct block_device_operations dm_blk_dops;
1798
1799 static void dm_wq_work(struct work_struct *work);
1800
1801 static void dm_init_md_queue(struct mapped_device *md)
1802 {
1803 /*
1804 * Request-based dm devices cannot be stacked on top of bio-based dm
1805 * devices. The type of this dm device has not been decided yet.
1806 * The type is decided at the first table loading time.
1807 * To prevent problematic device stacking, clear the queue flag
1808 * for request stacking support until then.
1809 *
1810 * This queue is new, so no concurrency on the queue_flags.
1811 */
1812 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1813
1814 md->queue->queuedata = md;
1815 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1816 md->queue->backing_dev_info.congested_data = md;
1817 blk_queue_make_request(md->queue, dm_request);
1818 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1819 md->queue->unplug_fn = dm_unplug_all;
1820 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1821 blk_queue_flush(md->queue, REQ_FLUSH | REQ_FUA);
1822 }
1823
1824 /*
1825 * Allocate and initialise a blank device with a given minor.
1826 */
1827 static struct mapped_device *alloc_dev(int minor)
1828 {
1829 int r;
1830 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1831 void *old_md;
1832
1833 if (!md) {
1834 DMWARN("unable to allocate device, out of memory.");
1835 return NULL;
1836 }
1837
1838 if (!try_module_get(THIS_MODULE))
1839 goto bad_module_get;
1840
1841 /* get a minor number for the dev */
1842 if (minor == DM_ANY_MINOR)
1843 r = next_free_minor(&minor);
1844 else
1845 r = specific_minor(minor);
1846 if (r < 0)
1847 goto bad_minor;
1848
1849 md->type = DM_TYPE_NONE;
1850 init_rwsem(&md->io_lock);
1851 mutex_init(&md->suspend_lock);
1852 mutex_init(&md->type_lock);
1853 spin_lock_init(&md->deferred_lock);
1854 rwlock_init(&md->map_lock);
1855 atomic_set(&md->holders, 1);
1856 atomic_set(&md->open_count, 0);
1857 atomic_set(&md->event_nr, 0);
1858 atomic_set(&md->uevent_seq, 0);
1859 INIT_LIST_HEAD(&md->uevent_list);
1860 spin_lock_init(&md->uevent_lock);
1861
1862 md->queue = blk_alloc_queue(GFP_KERNEL);
1863 if (!md->queue)
1864 goto bad_queue;
1865
1866 dm_init_md_queue(md);
1867
1868 md->disk = alloc_disk(1);
1869 if (!md->disk)
1870 goto bad_disk;
1871
1872 atomic_set(&md->pending[0], 0);
1873 atomic_set(&md->pending[1], 0);
1874 init_waitqueue_head(&md->wait);
1875 INIT_WORK(&md->work, dm_wq_work);
1876 init_waitqueue_head(&md->eventq);
1877
1878 md->disk->major = _major;
1879 md->disk->first_minor = minor;
1880 md->disk->fops = &dm_blk_dops;
1881 md->disk->queue = md->queue;
1882 md->disk->private_data = md;
1883 sprintf(md->disk->disk_name, "dm-%d", minor);
1884 add_disk(md->disk);
1885 format_dev_t(md->name, MKDEV(_major, minor));
1886
1887 md->wq = create_singlethread_workqueue("kdmflush");
1888 if (!md->wq)
1889 goto bad_thread;
1890
1891 md->bdev = bdget_disk(md->disk, 0);
1892 if (!md->bdev)
1893 goto bad_bdev;
1894
1895 bio_init(&md->flush_bio);
1896 md->flush_bio.bi_bdev = md->bdev;
1897 md->flush_bio.bi_rw = WRITE_FLUSH;
1898
1899 /* Populate the mapping, nobody knows we exist yet */
1900 spin_lock(&_minor_lock);
1901 old_md = idr_replace(&_minor_idr, md, minor);
1902 spin_unlock(&_minor_lock);
1903
1904 BUG_ON(old_md != MINOR_ALLOCED);
1905
1906 return md;
1907
1908 bad_bdev:
1909 destroy_workqueue(md->wq);
1910 bad_thread:
1911 del_gendisk(md->disk);
1912 put_disk(md->disk);
1913 bad_disk:
1914 blk_cleanup_queue(md->queue);
1915 bad_queue:
1916 free_minor(minor);
1917 bad_minor:
1918 module_put(THIS_MODULE);
1919 bad_module_get:
1920 kfree(md);
1921 return NULL;
1922 }
1923
1924 static void unlock_fs(struct mapped_device *md);
1925
1926 static void free_dev(struct mapped_device *md)
1927 {
1928 int minor = MINOR(disk_devt(md->disk));
1929
1930 unlock_fs(md);
1931 bdput(md->bdev);
1932 destroy_workqueue(md->wq);
1933 if (md->tio_pool)
1934 mempool_destroy(md->tio_pool);
1935 if (md->io_pool)
1936 mempool_destroy(md->io_pool);
1937 if (md->bs)
1938 bioset_free(md->bs);
1939 blk_integrity_unregister(md->disk);
1940 del_gendisk(md->disk);
1941 free_minor(minor);
1942
1943 spin_lock(&_minor_lock);
1944 md->disk->private_data = NULL;
1945 spin_unlock(&_minor_lock);
1946
1947 put_disk(md->disk);
1948 blk_cleanup_queue(md->queue);
1949 module_put(THIS_MODULE);
1950 kfree(md);
1951 }
1952
1953 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1954 {
1955 struct dm_md_mempools *p;
1956
1957 if (md->io_pool && md->tio_pool && md->bs)
1958 /* the md already has necessary mempools */
1959 goto out;
1960
1961 p = dm_table_get_md_mempools(t);
1962 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1963
1964 md->io_pool = p->io_pool;
1965 p->io_pool = NULL;
1966 md->tio_pool = p->tio_pool;
1967 p->tio_pool = NULL;
1968 md->bs = p->bs;
1969 p->bs = NULL;
1970
1971 out:
1972 /* mempool bind completed, now no need any mempools in the table */
1973 dm_table_free_md_mempools(t);
1974 }
1975
1976 /*
1977 * Bind a table to the device.
1978 */
1979 static void event_callback(void *context)
1980 {
1981 unsigned long flags;
1982 LIST_HEAD(uevents);
1983 struct mapped_device *md = (struct mapped_device *) context;
1984
1985 spin_lock_irqsave(&md->uevent_lock, flags);
1986 list_splice_init(&md->uevent_list, &uevents);
1987 spin_unlock_irqrestore(&md->uevent_lock, flags);
1988
1989 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1990
1991 atomic_inc(&md->event_nr);
1992 wake_up(&md->eventq);
1993 }
1994
1995 static void __set_size(struct mapped_device *md, sector_t size)
1996 {
1997 set_capacity(md->disk, size);
1998
1999 mutex_lock(&md->bdev->bd_inode->i_mutex);
2000 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2001 mutex_unlock(&md->bdev->bd_inode->i_mutex);
2002 }
2003
2004 /*
2005 * Returns old map, which caller must destroy.
2006 */
2007 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2008 struct queue_limits *limits)
2009 {
2010 struct dm_table *old_map;
2011 struct request_queue *q = md->queue;
2012 sector_t size;
2013 unsigned long flags;
2014
2015 size = dm_table_get_size(t);
2016
2017 /*
2018 * Wipe any geometry if the size of the table changed.
2019 */
2020 if (size != get_capacity(md->disk))
2021 memset(&md->geometry, 0, sizeof(md->geometry));
2022
2023 __set_size(md, size);
2024
2025 dm_table_event_callback(t, event_callback, md);
2026
2027 /*
2028 * The queue hasn't been stopped yet, if the old table type wasn't
2029 * for request-based during suspension. So stop it to prevent
2030 * I/O mapping before resume.
2031 * This must be done before setting the queue restrictions,
2032 * because request-based dm may be run just after the setting.
2033 */
2034 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2035 stop_queue(q);
2036
2037 __bind_mempools(md, t);
2038
2039 write_lock_irqsave(&md->map_lock, flags);
2040 old_map = md->map;
2041 md->map = t;
2042 dm_table_set_restrictions(t, q, limits);
2043 write_unlock_irqrestore(&md->map_lock, flags);
2044
2045 return old_map;
2046 }
2047
2048 /*
2049 * Returns unbound table for the caller to free.
2050 */
2051 static struct dm_table *__unbind(struct mapped_device *md)
2052 {
2053 struct dm_table *map = md->map;
2054 unsigned long flags;
2055
2056 if (!map)
2057 return NULL;
2058
2059 dm_table_event_callback(map, NULL, NULL);
2060 write_lock_irqsave(&md->map_lock, flags);
2061 md->map = NULL;
2062 write_unlock_irqrestore(&md->map_lock, flags);
2063
2064 return map;
2065 }
2066
2067 /*
2068 * Constructor for a new device.
2069 */
2070 int dm_create(int minor, struct mapped_device **result)
2071 {
2072 struct mapped_device *md;
2073
2074 md = alloc_dev(minor);
2075 if (!md)
2076 return -ENXIO;
2077
2078 dm_sysfs_init(md);
2079
2080 *result = md;
2081 return 0;
2082 }
2083
2084 /*
2085 * Functions to manage md->type.
2086 * All are required to hold md->type_lock.
2087 */
2088 void dm_lock_md_type(struct mapped_device *md)
2089 {
2090 mutex_lock(&md->type_lock);
2091 }
2092
2093 void dm_unlock_md_type(struct mapped_device *md)
2094 {
2095 mutex_unlock(&md->type_lock);
2096 }
2097
2098 void dm_set_md_type(struct mapped_device *md, unsigned type)
2099 {
2100 md->type = type;
2101 }
2102
2103 unsigned dm_get_md_type(struct mapped_device *md)
2104 {
2105 return md->type;
2106 }
2107
2108 /*
2109 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2110 */
2111 static int dm_init_request_based_queue(struct mapped_device *md)
2112 {
2113 struct request_queue *q = NULL;
2114
2115 if (md->queue->elevator)
2116 return 1;
2117
2118 /* Fully initialize the queue */
2119 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2120 if (!q)
2121 return 0;
2122
2123 md->queue = q;
2124 md->saved_make_request_fn = md->queue->make_request_fn;
2125 dm_init_md_queue(md);
2126 blk_queue_softirq_done(md->queue, dm_softirq_done);
2127 blk_queue_prep_rq(md->queue, dm_prep_fn);
2128 blk_queue_lld_busy(md->queue, dm_lld_busy);
2129
2130 elv_register_queue(md->queue);
2131
2132 return 1;
2133 }
2134
2135 /*
2136 * Setup the DM device's queue based on md's type
2137 */
2138 int dm_setup_md_queue(struct mapped_device *md)
2139 {
2140 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2141 !dm_init_request_based_queue(md)) {
2142 DMWARN("Cannot initialize queue for request-based mapped device");
2143 return -EINVAL;
2144 }
2145
2146 return 0;
2147 }
2148
2149 static struct mapped_device *dm_find_md(dev_t dev)
2150 {
2151 struct mapped_device *md;
2152 unsigned minor = MINOR(dev);
2153
2154 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2155 return NULL;
2156
2157 spin_lock(&_minor_lock);
2158
2159 md = idr_find(&_minor_idr, minor);
2160 if (md && (md == MINOR_ALLOCED ||
2161 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2162 dm_deleting_md(md) ||
2163 test_bit(DMF_FREEING, &md->flags))) {
2164 md = NULL;
2165 goto out;
2166 }
2167
2168 out:
2169 spin_unlock(&_minor_lock);
2170
2171 return md;
2172 }
2173
2174 struct mapped_device *dm_get_md(dev_t dev)
2175 {
2176 struct mapped_device *md = dm_find_md(dev);
2177
2178 if (md)
2179 dm_get(md);
2180
2181 return md;
2182 }
2183
2184 void *dm_get_mdptr(struct mapped_device *md)
2185 {
2186 return md->interface_ptr;
2187 }
2188
2189 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2190 {
2191 md->interface_ptr = ptr;
2192 }
2193
2194 void dm_get(struct mapped_device *md)
2195 {
2196 atomic_inc(&md->holders);
2197 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2198 }
2199
2200 const char *dm_device_name(struct mapped_device *md)
2201 {
2202 return md->name;
2203 }
2204 EXPORT_SYMBOL_GPL(dm_device_name);
2205
2206 static void __dm_destroy(struct mapped_device *md, bool wait)
2207 {
2208 struct dm_table *map;
2209
2210 might_sleep();
2211
2212 spin_lock(&_minor_lock);
2213 map = dm_get_live_table(md);
2214 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2215 set_bit(DMF_FREEING, &md->flags);
2216 spin_unlock(&_minor_lock);
2217
2218 if (!dm_suspended_md(md)) {
2219 dm_table_presuspend_targets(map);
2220 dm_table_postsuspend_targets(map);
2221 }
2222
2223 /*
2224 * Rare, but there may be I/O requests still going to complete,
2225 * for example. Wait for all references to disappear.
2226 * No one should increment the reference count of the mapped_device,
2227 * after the mapped_device state becomes DMF_FREEING.
2228 */
2229 if (wait)
2230 while (atomic_read(&md->holders))
2231 msleep(1);
2232 else if (atomic_read(&md->holders))
2233 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2234 dm_device_name(md), atomic_read(&md->holders));
2235
2236 dm_sysfs_exit(md);
2237 dm_table_put(map);
2238 dm_table_destroy(__unbind(md));
2239 free_dev(md);
2240 }
2241
2242 void dm_destroy(struct mapped_device *md)
2243 {
2244 __dm_destroy(md, true);
2245 }
2246
2247 void dm_destroy_immediate(struct mapped_device *md)
2248 {
2249 __dm_destroy(md, false);
2250 }
2251
2252 void dm_put(struct mapped_device *md)
2253 {
2254 atomic_dec(&md->holders);
2255 }
2256 EXPORT_SYMBOL_GPL(dm_put);
2257
2258 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2259 {
2260 int r = 0;
2261 DECLARE_WAITQUEUE(wait, current);
2262
2263 dm_unplug_all(md->queue);
2264
2265 add_wait_queue(&md->wait, &wait);
2266
2267 while (1) {
2268 set_current_state(interruptible);
2269
2270 smp_mb();
2271 if (!md_in_flight(md))
2272 break;
2273
2274 if (interruptible == TASK_INTERRUPTIBLE &&
2275 signal_pending(current)) {
2276 r = -EINTR;
2277 break;
2278 }
2279
2280 io_schedule();
2281 }
2282 set_current_state(TASK_RUNNING);
2283
2284 remove_wait_queue(&md->wait, &wait);
2285
2286 return r;
2287 }
2288
2289 /*
2290 * Process the deferred bios
2291 */
2292 static void dm_wq_work(struct work_struct *work)
2293 {
2294 struct mapped_device *md = container_of(work, struct mapped_device,
2295 work);
2296 struct bio *c;
2297
2298 down_read(&md->io_lock);
2299
2300 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2301 spin_lock_irq(&md->deferred_lock);
2302 c = bio_list_pop(&md->deferred);
2303 spin_unlock_irq(&md->deferred_lock);
2304
2305 if (!c)
2306 break;
2307
2308 up_read(&md->io_lock);
2309
2310 if (dm_request_based(md))
2311 generic_make_request(c);
2312 else
2313 __split_and_process_bio(md, c);
2314
2315 down_read(&md->io_lock);
2316 }
2317
2318 up_read(&md->io_lock);
2319 }
2320
2321 static void dm_queue_flush(struct mapped_device *md)
2322 {
2323 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2324 smp_mb__after_clear_bit();
2325 queue_work(md->wq, &md->work);
2326 }
2327
2328 /*
2329 * Swap in a new table, returning the old one for the caller to destroy.
2330 */
2331 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2332 {
2333 struct dm_table *map = ERR_PTR(-EINVAL);
2334 struct queue_limits limits;
2335 int r;
2336
2337 mutex_lock(&md->suspend_lock);
2338
2339 /* device must be suspended */
2340 if (!dm_suspended_md(md))
2341 goto out;
2342
2343 r = dm_calculate_queue_limits(table, &limits);
2344 if (r) {
2345 map = ERR_PTR(r);
2346 goto out;
2347 }
2348
2349 map = __bind(md, table, &limits);
2350
2351 out:
2352 mutex_unlock(&md->suspend_lock);
2353 return map;
2354 }
2355
2356 /*
2357 * Functions to lock and unlock any filesystem running on the
2358 * device.
2359 */
2360 static int lock_fs(struct mapped_device *md)
2361 {
2362 int r;
2363
2364 WARN_ON(md->frozen_sb);
2365
2366 md->frozen_sb = freeze_bdev(md->bdev);
2367 if (IS_ERR(md->frozen_sb)) {
2368 r = PTR_ERR(md->frozen_sb);
2369 md->frozen_sb = NULL;
2370 return r;
2371 }
2372
2373 set_bit(DMF_FROZEN, &md->flags);
2374
2375 return 0;
2376 }
2377
2378 static void unlock_fs(struct mapped_device *md)
2379 {
2380 if (!test_bit(DMF_FROZEN, &md->flags))
2381 return;
2382
2383 thaw_bdev(md->bdev, md->frozen_sb);
2384 md->frozen_sb = NULL;
2385 clear_bit(DMF_FROZEN, &md->flags);
2386 }
2387
2388 /*
2389 * We need to be able to change a mapping table under a mounted
2390 * filesystem. For example we might want to move some data in
2391 * the background. Before the table can be swapped with
2392 * dm_bind_table, dm_suspend must be called to flush any in
2393 * flight bios and ensure that any further io gets deferred.
2394 */
2395 /*
2396 * Suspend mechanism in request-based dm.
2397 *
2398 * 1. Flush all I/Os by lock_fs() if needed.
2399 * 2. Stop dispatching any I/O by stopping the request_queue.
2400 * 3. Wait for all in-flight I/Os to be completed or requeued.
2401 *
2402 * To abort suspend, start the request_queue.
2403 */
2404 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2405 {
2406 struct dm_table *map = NULL;
2407 int r = 0;
2408 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2409 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2410
2411 mutex_lock(&md->suspend_lock);
2412
2413 if (dm_suspended_md(md)) {
2414 r = -EINVAL;
2415 goto out_unlock;
2416 }
2417
2418 map = dm_get_live_table(md);
2419
2420 /*
2421 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2422 * This flag is cleared before dm_suspend returns.
2423 */
2424 if (noflush)
2425 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2426
2427 /* This does not get reverted if there's an error later. */
2428 dm_table_presuspend_targets(map);
2429
2430 /*
2431 * Flush I/O to the device.
2432 * Any I/O submitted after lock_fs() may not be flushed.
2433 * noflush takes precedence over do_lockfs.
2434 * (lock_fs() flushes I/Os and waits for them to complete.)
2435 */
2436 if (!noflush && do_lockfs) {
2437 r = lock_fs(md);
2438 if (r)
2439 goto out;
2440 }
2441
2442 /*
2443 * Here we must make sure that no processes are submitting requests
2444 * to target drivers i.e. no one may be executing
2445 * __split_and_process_bio. This is called from dm_request and
2446 * dm_wq_work.
2447 *
2448 * To get all processes out of __split_and_process_bio in dm_request,
2449 * we take the write lock. To prevent any process from reentering
2450 * __split_and_process_bio from dm_request and quiesce the thread
2451 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2452 * flush_workqueue(md->wq).
2453 */
2454 down_write(&md->io_lock);
2455 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2456 up_write(&md->io_lock);
2457
2458 /*
2459 * Stop md->queue before flushing md->wq in case request-based
2460 * dm defers requests to md->wq from md->queue.
2461 */
2462 if (dm_request_based(md))
2463 stop_queue(md->queue);
2464
2465 flush_workqueue(md->wq);
2466
2467 /*
2468 * At this point no more requests are entering target request routines.
2469 * We call dm_wait_for_completion to wait for all existing requests
2470 * to finish.
2471 */
2472 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2473
2474 down_write(&md->io_lock);
2475 if (noflush)
2476 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2477 up_write(&md->io_lock);
2478
2479 /* were we interrupted ? */
2480 if (r < 0) {
2481 dm_queue_flush(md);
2482
2483 if (dm_request_based(md))
2484 start_queue(md->queue);
2485
2486 unlock_fs(md);
2487 goto out; /* pushback list is already flushed, so skip flush */
2488 }
2489
2490 /*
2491 * If dm_wait_for_completion returned 0, the device is completely
2492 * quiescent now. There is no request-processing activity. All new
2493 * requests are being added to md->deferred list.
2494 */
2495
2496 set_bit(DMF_SUSPENDED, &md->flags);
2497
2498 dm_table_postsuspend_targets(map);
2499
2500 out:
2501 dm_table_put(map);
2502
2503 out_unlock:
2504 mutex_unlock(&md->suspend_lock);
2505 return r;
2506 }
2507
2508 int dm_resume(struct mapped_device *md)
2509 {
2510 int r = -EINVAL;
2511 struct dm_table *map = NULL;
2512
2513 mutex_lock(&md->suspend_lock);
2514 if (!dm_suspended_md(md))
2515 goto out;
2516
2517 map = dm_get_live_table(md);
2518 if (!map || !dm_table_get_size(map))
2519 goto out;
2520
2521 r = dm_table_resume_targets(map);
2522 if (r)
2523 goto out;
2524
2525 dm_queue_flush(md);
2526
2527 /*
2528 * Flushing deferred I/Os must be done after targets are resumed
2529 * so that mapping of targets can work correctly.
2530 * Request-based dm is queueing the deferred I/Os in its request_queue.
2531 */
2532 if (dm_request_based(md))
2533 start_queue(md->queue);
2534
2535 unlock_fs(md);
2536
2537 clear_bit(DMF_SUSPENDED, &md->flags);
2538
2539 dm_table_unplug_all(map);
2540 r = 0;
2541 out:
2542 dm_table_put(map);
2543 mutex_unlock(&md->suspend_lock);
2544
2545 return r;
2546 }
2547
2548 /*-----------------------------------------------------------------
2549 * Event notification.
2550 *---------------------------------------------------------------*/
2551 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2552 unsigned cookie)
2553 {
2554 char udev_cookie[DM_COOKIE_LENGTH];
2555 char *envp[] = { udev_cookie, NULL };
2556
2557 if (!cookie)
2558 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2559 else {
2560 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2561 DM_COOKIE_ENV_VAR_NAME, cookie);
2562 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2563 action, envp);
2564 }
2565 }
2566
2567 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2568 {
2569 return atomic_add_return(1, &md->uevent_seq);
2570 }
2571
2572 uint32_t dm_get_event_nr(struct mapped_device *md)
2573 {
2574 return atomic_read(&md->event_nr);
2575 }
2576
2577 int dm_wait_event(struct mapped_device *md, int event_nr)
2578 {
2579 return wait_event_interruptible(md->eventq,
2580 (event_nr != atomic_read(&md->event_nr)));
2581 }
2582
2583 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2584 {
2585 unsigned long flags;
2586
2587 spin_lock_irqsave(&md->uevent_lock, flags);
2588 list_add(elist, &md->uevent_list);
2589 spin_unlock_irqrestore(&md->uevent_lock, flags);
2590 }
2591
2592 /*
2593 * The gendisk is only valid as long as you have a reference
2594 * count on 'md'.
2595 */
2596 struct gendisk *dm_disk(struct mapped_device *md)
2597 {
2598 return md->disk;
2599 }
2600
2601 struct kobject *dm_kobject(struct mapped_device *md)
2602 {
2603 return &md->kobj;
2604 }
2605
2606 /*
2607 * struct mapped_device should not be exported outside of dm.c
2608 * so use this check to verify that kobj is part of md structure
2609 */
2610 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2611 {
2612 struct mapped_device *md;
2613
2614 md = container_of(kobj, struct mapped_device, kobj);
2615 if (&md->kobj != kobj)
2616 return NULL;
2617
2618 if (test_bit(DMF_FREEING, &md->flags) ||
2619 dm_deleting_md(md))
2620 return NULL;
2621
2622 dm_get(md);
2623 return md;
2624 }
2625
2626 int dm_suspended_md(struct mapped_device *md)
2627 {
2628 return test_bit(DMF_SUSPENDED, &md->flags);
2629 }
2630
2631 int dm_suspended(struct dm_target *ti)
2632 {
2633 return dm_suspended_md(dm_table_get_md(ti->table));
2634 }
2635 EXPORT_SYMBOL_GPL(dm_suspended);
2636
2637 int dm_noflush_suspending(struct dm_target *ti)
2638 {
2639 return __noflush_suspending(dm_table_get_md(ti->table));
2640 }
2641 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2642
2643 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
2644 {
2645 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2646
2647 if (!pools)
2648 return NULL;
2649
2650 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2651 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2652 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2653 if (!pools->io_pool)
2654 goto free_pools_and_out;
2655
2656 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2657 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2658 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2659 if (!pools->tio_pool)
2660 goto free_io_pool_and_out;
2661
2662 pools->bs = (type == DM_TYPE_BIO_BASED) ?
2663 bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
2664 if (!pools->bs)
2665 goto free_tio_pool_and_out;
2666
2667 return pools;
2668
2669 free_tio_pool_and_out:
2670 mempool_destroy(pools->tio_pool);
2671
2672 free_io_pool_and_out:
2673 mempool_destroy(pools->io_pool);
2674
2675 free_pools_and_out:
2676 kfree(pools);
2677
2678 return NULL;
2679 }
2680
2681 void dm_free_md_mempools(struct dm_md_mempools *pools)
2682 {
2683 if (!pools)
2684 return;
2685
2686 if (pools->io_pool)
2687 mempool_destroy(pools->io_pool);
2688
2689 if (pools->tio_pool)
2690 mempool_destroy(pools->tio_pool);
2691
2692 if (pools->bs)
2693 bioset_free(pools->bs);
2694
2695 kfree(pools);
2696 }
2697
2698 static const struct block_device_operations dm_blk_dops = {
2699 .open = dm_blk_open,
2700 .release = dm_blk_close,
2701 .ioctl = dm_blk_ioctl,
2702 .getgeo = dm_blk_getgeo,
2703 .owner = THIS_MODULE
2704 };
2705
2706 EXPORT_SYMBOL(dm_get_mapinfo);
2707
2708 /*
2709 * module hooks
2710 */
2711 module_init(dm_init);
2712 module_exit(dm_exit);
2713
2714 module_param(major, uint, 0);
2715 MODULE_PARM_DESC(major, "The major number of the device mapper");
2716 MODULE_DESCRIPTION(DM_NAME " driver");
2717 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2718 MODULE_LICENSE("GPL");
This page took 0.084443 seconds and 5 git commands to generate.