a78caad29996809831001dfebdb5eec365d41eea
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <linux/smp_lock.h>
25
26 #define DM_MSG_PREFIX "core"
27
28 static const char *_name = DM_NAME;
29
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35 * One of these is allocated per bio.
36 */
37 struct dm_io {
38 struct mapped_device *md;
39 int error;
40 atomic_t io_count;
41 struct bio *bio;
42 unsigned long start_time;
43 };
44
45 /*
46 * One of these is allocated per target within a bio. Hopefully
47 * this will be simplified out one day.
48 */
49 struct dm_target_io {
50 struct dm_io *io;
51 struct dm_target *ti;
52 union map_info info;
53 };
54
55 union map_info *dm_get_mapinfo(struct bio *bio)
56 {
57 if (bio && bio->bi_private)
58 return &((struct dm_target_io *)bio->bi_private)->info;
59 return NULL;
60 }
61
62 #define MINOR_ALLOCED ((void *)-1)
63
64 /*
65 * Bits for the md->flags field.
66 */
67 #define DMF_BLOCK_IO 0
68 #define DMF_SUSPENDED 1
69 #define DMF_FROZEN 2
70 #define DMF_FREEING 3
71 #define DMF_DELETING 4
72 #define DMF_NOFLUSH_SUSPENDING 5
73
74 /*
75 * Work processed by per-device workqueue.
76 */
77 struct dm_wq_req {
78 enum {
79 DM_WQ_FLUSH_ALL,
80 DM_WQ_FLUSH_DEFERRED,
81 } type;
82 struct work_struct work;
83 struct mapped_device *md;
84 void *context;
85 };
86
87 struct mapped_device {
88 struct rw_semaphore io_lock;
89 struct mutex suspend_lock;
90 spinlock_t pushback_lock;
91 rwlock_t map_lock;
92 atomic_t holders;
93 atomic_t open_count;
94
95 unsigned long flags;
96
97 struct request_queue *queue;
98 struct gendisk *disk;
99 char name[16];
100
101 void *interface_ptr;
102
103 /*
104 * A list of ios that arrived while we were suspended.
105 */
106 atomic_t pending;
107 wait_queue_head_t wait;
108 struct bio_list deferred;
109 struct bio_list pushback;
110
111 /*
112 * Processing queue (flush/barriers)
113 */
114 struct workqueue_struct *wq;
115
116 /*
117 * The current mapping.
118 */
119 struct dm_table *map;
120
121 /*
122 * io objects are allocated from here.
123 */
124 mempool_t *io_pool;
125 mempool_t *tio_pool;
126
127 struct bio_set *bs;
128
129 /*
130 * Event handling.
131 */
132 atomic_t event_nr;
133 wait_queue_head_t eventq;
134 atomic_t uevent_seq;
135 struct list_head uevent_list;
136 spinlock_t uevent_lock; /* Protect access to uevent_list */
137
138 /*
139 * freeze/thaw support require holding onto a super block
140 */
141 struct super_block *frozen_sb;
142 struct block_device *suspended_bdev;
143
144 /* forced geometry settings */
145 struct hd_geometry geometry;
146 };
147
148 #define MIN_IOS 256
149 static struct kmem_cache *_io_cache;
150 static struct kmem_cache *_tio_cache;
151
152 static int __init local_init(void)
153 {
154 int r;
155
156 /* allocate a slab for the dm_ios */
157 _io_cache = KMEM_CACHE(dm_io, 0);
158 if (!_io_cache)
159 return -ENOMEM;
160
161 /* allocate a slab for the target ios */
162 _tio_cache = KMEM_CACHE(dm_target_io, 0);
163 if (!_tio_cache) {
164 kmem_cache_destroy(_io_cache);
165 return -ENOMEM;
166 }
167
168 r = dm_uevent_init();
169 if (r) {
170 kmem_cache_destroy(_tio_cache);
171 kmem_cache_destroy(_io_cache);
172 return r;
173 }
174
175 _major = major;
176 r = register_blkdev(_major, _name);
177 if (r < 0) {
178 kmem_cache_destroy(_tio_cache);
179 kmem_cache_destroy(_io_cache);
180 dm_uevent_exit();
181 return r;
182 }
183
184 if (!_major)
185 _major = r;
186
187 return 0;
188 }
189
190 static void local_exit(void)
191 {
192 kmem_cache_destroy(_tio_cache);
193 kmem_cache_destroy(_io_cache);
194 unregister_blkdev(_major, _name);
195 dm_uevent_exit();
196
197 _major = 0;
198
199 DMINFO("cleaned up");
200 }
201
202 static int (*_inits[])(void) __initdata = {
203 local_init,
204 dm_target_init,
205 dm_linear_init,
206 dm_stripe_init,
207 dm_kcopyd_init,
208 dm_interface_init,
209 };
210
211 static void (*_exits[])(void) = {
212 local_exit,
213 dm_target_exit,
214 dm_linear_exit,
215 dm_stripe_exit,
216 dm_kcopyd_exit,
217 dm_interface_exit,
218 };
219
220 static int __init dm_init(void)
221 {
222 const int count = ARRAY_SIZE(_inits);
223
224 int r, i;
225
226 for (i = 0; i < count; i++) {
227 r = _inits[i]();
228 if (r)
229 goto bad;
230 }
231
232 return 0;
233
234 bad:
235 while (i--)
236 _exits[i]();
237
238 return r;
239 }
240
241 static void __exit dm_exit(void)
242 {
243 int i = ARRAY_SIZE(_exits);
244
245 while (i--)
246 _exits[i]();
247 }
248
249 /*
250 * Block device functions
251 */
252 static int dm_blk_open(struct inode *inode, struct file *file)
253 {
254 struct mapped_device *md;
255
256 spin_lock(&_minor_lock);
257
258 md = inode->i_bdev->bd_disk->private_data;
259 if (!md)
260 goto out;
261
262 if (test_bit(DMF_FREEING, &md->flags) ||
263 test_bit(DMF_DELETING, &md->flags)) {
264 md = NULL;
265 goto out;
266 }
267
268 dm_get(md);
269 atomic_inc(&md->open_count);
270
271 out:
272 spin_unlock(&_minor_lock);
273
274 return md ? 0 : -ENXIO;
275 }
276
277 static int dm_blk_close(struct inode *inode, struct file *file)
278 {
279 struct mapped_device *md;
280
281 md = inode->i_bdev->bd_disk->private_data;
282 atomic_dec(&md->open_count);
283 dm_put(md);
284 return 0;
285 }
286
287 int dm_open_count(struct mapped_device *md)
288 {
289 return atomic_read(&md->open_count);
290 }
291
292 /*
293 * Guarantees nothing is using the device before it's deleted.
294 */
295 int dm_lock_for_deletion(struct mapped_device *md)
296 {
297 int r = 0;
298
299 spin_lock(&_minor_lock);
300
301 if (dm_open_count(md))
302 r = -EBUSY;
303 else
304 set_bit(DMF_DELETING, &md->flags);
305
306 spin_unlock(&_minor_lock);
307
308 return r;
309 }
310
311 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
312 {
313 struct mapped_device *md = bdev->bd_disk->private_data;
314
315 return dm_get_geometry(md, geo);
316 }
317
318 static int dm_blk_ioctl(struct inode *inode, struct file *file,
319 unsigned int cmd, unsigned long arg)
320 {
321 struct mapped_device *md;
322 struct dm_table *map;
323 struct dm_target *tgt;
324 int r = -ENOTTY;
325
326 /* We don't really need this lock, but we do need 'inode'. */
327 unlock_kernel();
328
329 md = inode->i_bdev->bd_disk->private_data;
330
331 map = dm_get_table(md);
332
333 if (!map || !dm_table_get_size(map))
334 goto out;
335
336 /* We only support devices that have a single target */
337 if (dm_table_get_num_targets(map) != 1)
338 goto out;
339
340 tgt = dm_table_get_target(map, 0);
341
342 if (dm_suspended(md)) {
343 r = -EAGAIN;
344 goto out;
345 }
346
347 if (tgt->type->ioctl)
348 r = tgt->type->ioctl(tgt, inode, file, cmd, arg);
349
350 out:
351 dm_table_put(map);
352
353 lock_kernel();
354 return r;
355 }
356
357 static struct dm_io *alloc_io(struct mapped_device *md)
358 {
359 return mempool_alloc(md->io_pool, GFP_NOIO);
360 }
361
362 static void free_io(struct mapped_device *md, struct dm_io *io)
363 {
364 mempool_free(io, md->io_pool);
365 }
366
367 static struct dm_target_io *alloc_tio(struct mapped_device *md)
368 {
369 return mempool_alloc(md->tio_pool, GFP_NOIO);
370 }
371
372 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
373 {
374 mempool_free(tio, md->tio_pool);
375 }
376
377 static void start_io_acct(struct dm_io *io)
378 {
379 struct mapped_device *md = io->md;
380
381 io->start_time = jiffies;
382
383 preempt_disable();
384 disk_round_stats(dm_disk(md));
385 preempt_enable();
386 dm_disk(md)->in_flight = atomic_inc_return(&md->pending);
387 }
388
389 static int end_io_acct(struct dm_io *io)
390 {
391 struct mapped_device *md = io->md;
392 struct bio *bio = io->bio;
393 unsigned long duration = jiffies - io->start_time;
394 int pending;
395 int rw = bio_data_dir(bio);
396
397 preempt_disable();
398 disk_round_stats(dm_disk(md));
399 preempt_enable();
400 dm_disk(md)->in_flight = pending = atomic_dec_return(&md->pending);
401
402 disk_stat_add(dm_disk(md), ticks[rw], duration);
403
404 return !pending;
405 }
406
407 /*
408 * Add the bio to the list of deferred io.
409 */
410 static int queue_io(struct mapped_device *md, struct bio *bio)
411 {
412 down_write(&md->io_lock);
413
414 if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
415 up_write(&md->io_lock);
416 return 1;
417 }
418
419 bio_list_add(&md->deferred, bio);
420
421 up_write(&md->io_lock);
422 return 0; /* deferred successfully */
423 }
424
425 /*
426 * Everyone (including functions in this file), should use this
427 * function to access the md->map field, and make sure they call
428 * dm_table_put() when finished.
429 */
430 struct dm_table *dm_get_table(struct mapped_device *md)
431 {
432 struct dm_table *t;
433
434 read_lock(&md->map_lock);
435 t = md->map;
436 if (t)
437 dm_table_get(t);
438 read_unlock(&md->map_lock);
439
440 return t;
441 }
442
443 /*
444 * Get the geometry associated with a dm device
445 */
446 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
447 {
448 *geo = md->geometry;
449
450 return 0;
451 }
452
453 /*
454 * Set the geometry of a device.
455 */
456 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
457 {
458 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
459
460 if (geo->start > sz) {
461 DMWARN("Start sector is beyond the geometry limits.");
462 return -EINVAL;
463 }
464
465 md->geometry = *geo;
466
467 return 0;
468 }
469
470 /*-----------------------------------------------------------------
471 * CRUD START:
472 * A more elegant soln is in the works that uses the queue
473 * merge fn, unfortunately there are a couple of changes to
474 * the block layer that I want to make for this. So in the
475 * interests of getting something for people to use I give
476 * you this clearly demarcated crap.
477 *---------------------------------------------------------------*/
478
479 static int __noflush_suspending(struct mapped_device *md)
480 {
481 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
482 }
483
484 /*
485 * Decrements the number of outstanding ios that a bio has been
486 * cloned into, completing the original io if necc.
487 */
488 static void dec_pending(struct dm_io *io, int error)
489 {
490 unsigned long flags;
491
492 /* Push-back supersedes any I/O errors */
493 if (error && !(io->error > 0 && __noflush_suspending(io->md)))
494 io->error = error;
495
496 if (atomic_dec_and_test(&io->io_count)) {
497 if (io->error == DM_ENDIO_REQUEUE) {
498 /*
499 * Target requested pushing back the I/O.
500 * This must be handled before the sleeper on
501 * suspend queue merges the pushback list.
502 */
503 spin_lock_irqsave(&io->md->pushback_lock, flags);
504 if (__noflush_suspending(io->md))
505 bio_list_add(&io->md->pushback, io->bio);
506 else
507 /* noflush suspend was interrupted. */
508 io->error = -EIO;
509 spin_unlock_irqrestore(&io->md->pushback_lock, flags);
510 }
511
512 if (end_io_acct(io))
513 /* nudge anyone waiting on suspend queue */
514 wake_up(&io->md->wait);
515
516 if (io->error != DM_ENDIO_REQUEUE) {
517 blk_add_trace_bio(io->md->queue, io->bio,
518 BLK_TA_COMPLETE);
519
520 bio_endio(io->bio, io->error);
521 }
522
523 free_io(io->md, io);
524 }
525 }
526
527 static void clone_endio(struct bio *bio, int error)
528 {
529 int r = 0;
530 struct dm_target_io *tio = bio->bi_private;
531 struct mapped_device *md = tio->io->md;
532 dm_endio_fn endio = tio->ti->type->end_io;
533
534 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
535 error = -EIO;
536
537 if (endio) {
538 r = endio(tio->ti, bio, error, &tio->info);
539 if (r < 0 || r == DM_ENDIO_REQUEUE)
540 /*
541 * error and requeue request are handled
542 * in dec_pending().
543 */
544 error = r;
545 else if (r == DM_ENDIO_INCOMPLETE)
546 /* The target will handle the io */
547 return;
548 else if (r) {
549 DMWARN("unimplemented target endio return value: %d", r);
550 BUG();
551 }
552 }
553
554 dec_pending(tio->io, error);
555
556 /*
557 * Store md for cleanup instead of tio which is about to get freed.
558 */
559 bio->bi_private = md->bs;
560
561 bio_put(bio);
562 free_tio(md, tio);
563 }
564
565 static sector_t max_io_len(struct mapped_device *md,
566 sector_t sector, struct dm_target *ti)
567 {
568 sector_t offset = sector - ti->begin;
569 sector_t len = ti->len - offset;
570
571 /*
572 * Does the target need to split even further ?
573 */
574 if (ti->split_io) {
575 sector_t boundary;
576 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
577 - offset;
578 if (len > boundary)
579 len = boundary;
580 }
581
582 return len;
583 }
584
585 static void __map_bio(struct dm_target *ti, struct bio *clone,
586 struct dm_target_io *tio)
587 {
588 int r;
589 sector_t sector;
590 struct mapped_device *md;
591
592 /*
593 * Sanity checks.
594 */
595 BUG_ON(!clone->bi_size);
596
597 clone->bi_end_io = clone_endio;
598 clone->bi_private = tio;
599
600 /*
601 * Map the clone. If r == 0 we don't need to do
602 * anything, the target has assumed ownership of
603 * this io.
604 */
605 atomic_inc(&tio->io->io_count);
606 sector = clone->bi_sector;
607 r = ti->type->map(ti, clone, &tio->info);
608 if (r == DM_MAPIO_REMAPPED) {
609 /* the bio has been remapped so dispatch it */
610
611 blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone,
612 tio->io->bio->bi_bdev->bd_dev,
613 clone->bi_sector, sector);
614
615 generic_make_request(clone);
616 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
617 /* error the io and bail out, or requeue it if needed */
618 md = tio->io->md;
619 dec_pending(tio->io, r);
620 /*
621 * Store bio_set for cleanup.
622 */
623 clone->bi_private = md->bs;
624 bio_put(clone);
625 free_tio(md, tio);
626 } else if (r) {
627 DMWARN("unimplemented target map return value: %d", r);
628 BUG();
629 }
630 }
631
632 struct clone_info {
633 struct mapped_device *md;
634 struct dm_table *map;
635 struct bio *bio;
636 struct dm_io *io;
637 sector_t sector;
638 sector_t sector_count;
639 unsigned short idx;
640 };
641
642 static void dm_bio_destructor(struct bio *bio)
643 {
644 struct bio_set *bs = bio->bi_private;
645
646 bio_free(bio, bs);
647 }
648
649 /*
650 * Creates a little bio that is just does part of a bvec.
651 */
652 static struct bio *split_bvec(struct bio *bio, sector_t sector,
653 unsigned short idx, unsigned int offset,
654 unsigned int len, struct bio_set *bs)
655 {
656 struct bio *clone;
657 struct bio_vec *bv = bio->bi_io_vec + idx;
658
659 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
660 clone->bi_destructor = dm_bio_destructor;
661 *clone->bi_io_vec = *bv;
662
663 clone->bi_sector = sector;
664 clone->bi_bdev = bio->bi_bdev;
665 clone->bi_rw = bio->bi_rw;
666 clone->bi_vcnt = 1;
667 clone->bi_size = to_bytes(len);
668 clone->bi_io_vec->bv_offset = offset;
669 clone->bi_io_vec->bv_len = clone->bi_size;
670
671 return clone;
672 }
673
674 /*
675 * Creates a bio that consists of range of complete bvecs.
676 */
677 static struct bio *clone_bio(struct bio *bio, sector_t sector,
678 unsigned short idx, unsigned short bv_count,
679 unsigned int len, struct bio_set *bs)
680 {
681 struct bio *clone;
682
683 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
684 __bio_clone(clone, bio);
685 clone->bi_destructor = dm_bio_destructor;
686 clone->bi_sector = sector;
687 clone->bi_idx = idx;
688 clone->bi_vcnt = idx + bv_count;
689 clone->bi_size = to_bytes(len);
690 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
691
692 return clone;
693 }
694
695 static int __clone_and_map(struct clone_info *ci)
696 {
697 struct bio *clone, *bio = ci->bio;
698 struct dm_target *ti;
699 sector_t len = 0, max;
700 struct dm_target_io *tio;
701
702 ti = dm_table_find_target(ci->map, ci->sector);
703 if (!dm_target_is_valid(ti))
704 return -EIO;
705
706 max = max_io_len(ci->md, ci->sector, ti);
707
708 /*
709 * Allocate a target io object.
710 */
711 tio = alloc_tio(ci->md);
712 tio->io = ci->io;
713 tio->ti = ti;
714 memset(&tio->info, 0, sizeof(tio->info));
715
716 if (ci->sector_count <= max) {
717 /*
718 * Optimise for the simple case where we can do all of
719 * the remaining io with a single clone.
720 */
721 clone = clone_bio(bio, ci->sector, ci->idx,
722 bio->bi_vcnt - ci->idx, ci->sector_count,
723 ci->md->bs);
724 __map_bio(ti, clone, tio);
725 ci->sector_count = 0;
726
727 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
728 /*
729 * There are some bvecs that don't span targets.
730 * Do as many of these as possible.
731 */
732 int i;
733 sector_t remaining = max;
734 sector_t bv_len;
735
736 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
737 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
738
739 if (bv_len > remaining)
740 break;
741
742 remaining -= bv_len;
743 len += bv_len;
744 }
745
746 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
747 ci->md->bs);
748 __map_bio(ti, clone, tio);
749
750 ci->sector += len;
751 ci->sector_count -= len;
752 ci->idx = i;
753
754 } else {
755 /*
756 * Handle a bvec that must be split between two or more targets.
757 */
758 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
759 sector_t remaining = to_sector(bv->bv_len);
760 unsigned int offset = 0;
761
762 do {
763 if (offset) {
764 ti = dm_table_find_target(ci->map, ci->sector);
765 if (!dm_target_is_valid(ti))
766 return -EIO;
767
768 max = max_io_len(ci->md, ci->sector, ti);
769
770 tio = alloc_tio(ci->md);
771 tio->io = ci->io;
772 tio->ti = ti;
773 memset(&tio->info, 0, sizeof(tio->info));
774 }
775
776 len = min(remaining, max);
777
778 clone = split_bvec(bio, ci->sector, ci->idx,
779 bv->bv_offset + offset, len,
780 ci->md->bs);
781
782 __map_bio(ti, clone, tio);
783
784 ci->sector += len;
785 ci->sector_count -= len;
786 offset += to_bytes(len);
787 } while (remaining -= len);
788
789 ci->idx++;
790 }
791
792 return 0;
793 }
794
795 /*
796 * Split the bio into several clones.
797 */
798 static int __split_bio(struct mapped_device *md, struct bio *bio)
799 {
800 struct clone_info ci;
801 int error = 0;
802
803 ci.map = dm_get_table(md);
804 if (unlikely(!ci.map))
805 return -EIO;
806
807 ci.md = md;
808 ci.bio = bio;
809 ci.io = alloc_io(md);
810 ci.io->error = 0;
811 atomic_set(&ci.io->io_count, 1);
812 ci.io->bio = bio;
813 ci.io->md = md;
814 ci.sector = bio->bi_sector;
815 ci.sector_count = bio_sectors(bio);
816 ci.idx = bio->bi_idx;
817
818 start_io_acct(ci.io);
819 while (ci.sector_count && !error)
820 error = __clone_and_map(&ci);
821
822 /* drop the extra reference count */
823 dec_pending(ci.io, error);
824 dm_table_put(ci.map);
825
826 return 0;
827 }
828 /*-----------------------------------------------------------------
829 * CRUD END
830 *---------------------------------------------------------------*/
831
832 static int dm_merge_bvec(struct request_queue *q,
833 struct bvec_merge_data *bvm,
834 struct bio_vec *biovec)
835 {
836 struct mapped_device *md = q->queuedata;
837 struct dm_table *map = dm_get_table(md);
838 struct dm_target *ti;
839 sector_t max_sectors;
840 int max_size = 0;
841
842 if (unlikely(!map))
843 goto out;
844
845 ti = dm_table_find_target(map, bvm->bi_sector);
846 if (!dm_target_is_valid(ti))
847 goto out_table;
848
849 /*
850 * Find maximum amount of I/O that won't need splitting
851 */
852 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
853 (sector_t) BIO_MAX_SECTORS);
854 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
855 if (max_size < 0)
856 max_size = 0;
857
858 /*
859 * merge_bvec_fn() returns number of bytes
860 * it can accept at this offset
861 * max is precomputed maximal io size
862 */
863 if (max_size && ti->type->merge)
864 max_size = ti->type->merge(ti, bvm, biovec, max_size);
865
866 out_table:
867 dm_table_put(map);
868
869 out:
870 /*
871 * Always allow an entire first page
872 */
873 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
874 max_size = biovec->bv_len;
875
876 return max_size;
877 }
878
879 /*
880 * The request function that just remaps the bio built up by
881 * dm_merge_bvec.
882 */
883 static int dm_request(struct request_queue *q, struct bio *bio)
884 {
885 int r = -EIO;
886 int rw = bio_data_dir(bio);
887 struct mapped_device *md = q->queuedata;
888
889 /*
890 * There is no use in forwarding any barrier request since we can't
891 * guarantee it is (or can be) handled by the targets correctly.
892 */
893 if (unlikely(bio_barrier(bio))) {
894 bio_endio(bio, -EOPNOTSUPP);
895 return 0;
896 }
897
898 down_read(&md->io_lock);
899
900 disk_stat_inc(dm_disk(md), ios[rw]);
901 disk_stat_add(dm_disk(md), sectors[rw], bio_sectors(bio));
902
903 /*
904 * If we're suspended we have to queue
905 * this io for later.
906 */
907 while (test_bit(DMF_BLOCK_IO, &md->flags)) {
908 up_read(&md->io_lock);
909
910 if (bio_rw(bio) != READA)
911 r = queue_io(md, bio);
912
913 if (r <= 0)
914 goto out_req;
915
916 /*
917 * We're in a while loop, because someone could suspend
918 * before we get to the following read lock.
919 */
920 down_read(&md->io_lock);
921 }
922
923 r = __split_bio(md, bio);
924 up_read(&md->io_lock);
925
926 out_req:
927 if (r < 0)
928 bio_io_error(bio);
929
930 return 0;
931 }
932
933 static void dm_unplug_all(struct request_queue *q)
934 {
935 struct mapped_device *md = q->queuedata;
936 struct dm_table *map = dm_get_table(md);
937
938 if (map) {
939 dm_table_unplug_all(map);
940 dm_table_put(map);
941 }
942 }
943
944 static int dm_any_congested(void *congested_data, int bdi_bits)
945 {
946 int r;
947 struct mapped_device *md = (struct mapped_device *) congested_data;
948 struct dm_table *map = dm_get_table(md);
949
950 if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
951 r = bdi_bits;
952 else
953 r = dm_table_any_congested(map, bdi_bits);
954
955 dm_table_put(map);
956 return r;
957 }
958
959 /*-----------------------------------------------------------------
960 * An IDR is used to keep track of allocated minor numbers.
961 *---------------------------------------------------------------*/
962 static DEFINE_IDR(_minor_idr);
963
964 static void free_minor(int minor)
965 {
966 spin_lock(&_minor_lock);
967 idr_remove(&_minor_idr, minor);
968 spin_unlock(&_minor_lock);
969 }
970
971 /*
972 * See if the device with a specific minor # is free.
973 */
974 static int specific_minor(int minor)
975 {
976 int r, m;
977
978 if (minor >= (1 << MINORBITS))
979 return -EINVAL;
980
981 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
982 if (!r)
983 return -ENOMEM;
984
985 spin_lock(&_minor_lock);
986
987 if (idr_find(&_minor_idr, minor)) {
988 r = -EBUSY;
989 goto out;
990 }
991
992 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
993 if (r)
994 goto out;
995
996 if (m != minor) {
997 idr_remove(&_minor_idr, m);
998 r = -EBUSY;
999 goto out;
1000 }
1001
1002 out:
1003 spin_unlock(&_minor_lock);
1004 return r;
1005 }
1006
1007 static int next_free_minor(int *minor)
1008 {
1009 int r, m;
1010
1011 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1012 if (!r)
1013 return -ENOMEM;
1014
1015 spin_lock(&_minor_lock);
1016
1017 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1018 if (r)
1019 goto out;
1020
1021 if (m >= (1 << MINORBITS)) {
1022 idr_remove(&_minor_idr, m);
1023 r = -ENOSPC;
1024 goto out;
1025 }
1026
1027 *minor = m;
1028
1029 out:
1030 spin_unlock(&_minor_lock);
1031 return r;
1032 }
1033
1034 static struct block_device_operations dm_blk_dops;
1035
1036 /*
1037 * Allocate and initialise a blank device with a given minor.
1038 */
1039 static struct mapped_device *alloc_dev(int minor)
1040 {
1041 int r;
1042 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1043 void *old_md;
1044
1045 if (!md) {
1046 DMWARN("unable to allocate device, out of memory.");
1047 return NULL;
1048 }
1049
1050 if (!try_module_get(THIS_MODULE))
1051 goto bad_module_get;
1052
1053 /* get a minor number for the dev */
1054 if (minor == DM_ANY_MINOR)
1055 r = next_free_minor(&minor);
1056 else
1057 r = specific_minor(minor);
1058 if (r < 0)
1059 goto bad_minor;
1060
1061 init_rwsem(&md->io_lock);
1062 mutex_init(&md->suspend_lock);
1063 spin_lock_init(&md->pushback_lock);
1064 rwlock_init(&md->map_lock);
1065 atomic_set(&md->holders, 1);
1066 atomic_set(&md->open_count, 0);
1067 atomic_set(&md->event_nr, 0);
1068 atomic_set(&md->uevent_seq, 0);
1069 INIT_LIST_HEAD(&md->uevent_list);
1070 spin_lock_init(&md->uevent_lock);
1071
1072 md->queue = blk_alloc_queue(GFP_KERNEL);
1073 if (!md->queue)
1074 goto bad_queue;
1075
1076 md->queue->queuedata = md;
1077 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1078 md->queue->backing_dev_info.congested_data = md;
1079 blk_queue_make_request(md->queue, dm_request);
1080 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1081 md->queue->unplug_fn = dm_unplug_all;
1082 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1083
1084 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1085 if (!md->io_pool)
1086 goto bad_io_pool;
1087
1088 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1089 if (!md->tio_pool)
1090 goto bad_tio_pool;
1091
1092 md->bs = bioset_create(16, 16);
1093 if (!md->bs)
1094 goto bad_no_bioset;
1095
1096 md->disk = alloc_disk(1);
1097 if (!md->disk)
1098 goto bad_disk;
1099
1100 atomic_set(&md->pending, 0);
1101 init_waitqueue_head(&md->wait);
1102 init_waitqueue_head(&md->eventq);
1103
1104 md->disk->major = _major;
1105 md->disk->first_minor = minor;
1106 md->disk->fops = &dm_blk_dops;
1107 md->disk->queue = md->queue;
1108 md->disk->private_data = md;
1109 sprintf(md->disk->disk_name, "dm-%d", minor);
1110 add_disk(md->disk);
1111 format_dev_t(md->name, MKDEV(_major, minor));
1112
1113 md->wq = create_singlethread_workqueue("kdmflush");
1114 if (!md->wq)
1115 goto bad_thread;
1116
1117 /* Populate the mapping, nobody knows we exist yet */
1118 spin_lock(&_minor_lock);
1119 old_md = idr_replace(&_minor_idr, md, minor);
1120 spin_unlock(&_minor_lock);
1121
1122 BUG_ON(old_md != MINOR_ALLOCED);
1123
1124 return md;
1125
1126 bad_thread:
1127 put_disk(md->disk);
1128 bad_disk:
1129 bioset_free(md->bs);
1130 bad_no_bioset:
1131 mempool_destroy(md->tio_pool);
1132 bad_tio_pool:
1133 mempool_destroy(md->io_pool);
1134 bad_io_pool:
1135 blk_cleanup_queue(md->queue);
1136 bad_queue:
1137 free_minor(minor);
1138 bad_minor:
1139 module_put(THIS_MODULE);
1140 bad_module_get:
1141 kfree(md);
1142 return NULL;
1143 }
1144
1145 static void unlock_fs(struct mapped_device *md);
1146
1147 static void free_dev(struct mapped_device *md)
1148 {
1149 int minor = MINOR(disk_devt(md->disk));
1150
1151 if (md->suspended_bdev) {
1152 unlock_fs(md);
1153 bdput(md->suspended_bdev);
1154 }
1155 destroy_workqueue(md->wq);
1156 mempool_destroy(md->tio_pool);
1157 mempool_destroy(md->io_pool);
1158 bioset_free(md->bs);
1159 del_gendisk(md->disk);
1160 free_minor(minor);
1161
1162 spin_lock(&_minor_lock);
1163 md->disk->private_data = NULL;
1164 spin_unlock(&_minor_lock);
1165
1166 put_disk(md->disk);
1167 blk_cleanup_queue(md->queue);
1168 module_put(THIS_MODULE);
1169 kfree(md);
1170 }
1171
1172 /*
1173 * Bind a table to the device.
1174 */
1175 static void event_callback(void *context)
1176 {
1177 unsigned long flags;
1178 LIST_HEAD(uevents);
1179 struct mapped_device *md = (struct mapped_device *) context;
1180
1181 spin_lock_irqsave(&md->uevent_lock, flags);
1182 list_splice_init(&md->uevent_list, &uevents);
1183 spin_unlock_irqrestore(&md->uevent_lock, flags);
1184
1185 dm_send_uevents(&uevents, &md->disk->dev.kobj);
1186
1187 atomic_inc(&md->event_nr);
1188 wake_up(&md->eventq);
1189 }
1190
1191 static void __set_size(struct mapped_device *md, sector_t size)
1192 {
1193 set_capacity(md->disk, size);
1194
1195 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1196 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1197 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1198 }
1199
1200 static int __bind(struct mapped_device *md, struct dm_table *t)
1201 {
1202 struct request_queue *q = md->queue;
1203 sector_t size;
1204
1205 size = dm_table_get_size(t);
1206
1207 /*
1208 * Wipe any geometry if the size of the table changed.
1209 */
1210 if (size != get_capacity(md->disk))
1211 memset(&md->geometry, 0, sizeof(md->geometry));
1212
1213 if (md->suspended_bdev)
1214 __set_size(md, size);
1215 if (size == 0)
1216 return 0;
1217
1218 dm_table_get(t);
1219 dm_table_event_callback(t, event_callback, md);
1220
1221 write_lock(&md->map_lock);
1222 md->map = t;
1223 dm_table_set_restrictions(t, q);
1224 write_unlock(&md->map_lock);
1225
1226 return 0;
1227 }
1228
1229 static void __unbind(struct mapped_device *md)
1230 {
1231 struct dm_table *map = md->map;
1232
1233 if (!map)
1234 return;
1235
1236 dm_table_event_callback(map, NULL, NULL);
1237 write_lock(&md->map_lock);
1238 md->map = NULL;
1239 write_unlock(&md->map_lock);
1240 dm_table_put(map);
1241 }
1242
1243 /*
1244 * Constructor for a new device.
1245 */
1246 int dm_create(int minor, struct mapped_device **result)
1247 {
1248 struct mapped_device *md;
1249
1250 md = alloc_dev(minor);
1251 if (!md)
1252 return -ENXIO;
1253
1254 *result = md;
1255 return 0;
1256 }
1257
1258 static struct mapped_device *dm_find_md(dev_t dev)
1259 {
1260 struct mapped_device *md;
1261 unsigned minor = MINOR(dev);
1262
1263 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1264 return NULL;
1265
1266 spin_lock(&_minor_lock);
1267
1268 md = idr_find(&_minor_idr, minor);
1269 if (md && (md == MINOR_ALLOCED ||
1270 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1271 test_bit(DMF_FREEING, &md->flags))) {
1272 md = NULL;
1273 goto out;
1274 }
1275
1276 out:
1277 spin_unlock(&_minor_lock);
1278
1279 return md;
1280 }
1281
1282 struct mapped_device *dm_get_md(dev_t dev)
1283 {
1284 struct mapped_device *md = dm_find_md(dev);
1285
1286 if (md)
1287 dm_get(md);
1288
1289 return md;
1290 }
1291
1292 void *dm_get_mdptr(struct mapped_device *md)
1293 {
1294 return md->interface_ptr;
1295 }
1296
1297 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1298 {
1299 md->interface_ptr = ptr;
1300 }
1301
1302 void dm_get(struct mapped_device *md)
1303 {
1304 atomic_inc(&md->holders);
1305 }
1306
1307 const char *dm_device_name(struct mapped_device *md)
1308 {
1309 return md->name;
1310 }
1311 EXPORT_SYMBOL_GPL(dm_device_name);
1312
1313 void dm_put(struct mapped_device *md)
1314 {
1315 struct dm_table *map;
1316
1317 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1318
1319 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1320 map = dm_get_table(md);
1321 idr_replace(&_minor_idr, MINOR_ALLOCED,
1322 MINOR(disk_devt(dm_disk(md))));
1323 set_bit(DMF_FREEING, &md->flags);
1324 spin_unlock(&_minor_lock);
1325 if (!dm_suspended(md)) {
1326 dm_table_presuspend_targets(map);
1327 dm_table_postsuspend_targets(map);
1328 }
1329 __unbind(md);
1330 dm_table_put(map);
1331 free_dev(md);
1332 }
1333 }
1334 EXPORT_SYMBOL_GPL(dm_put);
1335
1336 static int dm_wait_for_completion(struct mapped_device *md)
1337 {
1338 int r = 0;
1339
1340 while (1) {
1341 set_current_state(TASK_INTERRUPTIBLE);
1342
1343 smp_mb();
1344 if (!atomic_read(&md->pending))
1345 break;
1346
1347 if (signal_pending(current)) {
1348 r = -EINTR;
1349 break;
1350 }
1351
1352 io_schedule();
1353 }
1354 set_current_state(TASK_RUNNING);
1355
1356 return r;
1357 }
1358
1359 /*
1360 * Process the deferred bios
1361 */
1362 static void __flush_deferred_io(struct mapped_device *md)
1363 {
1364 struct bio *c;
1365
1366 while ((c = bio_list_pop(&md->deferred))) {
1367 if (__split_bio(md, c))
1368 bio_io_error(c);
1369 }
1370
1371 clear_bit(DMF_BLOCK_IO, &md->flags);
1372 }
1373
1374 static void __merge_pushback_list(struct mapped_device *md)
1375 {
1376 unsigned long flags;
1377
1378 spin_lock_irqsave(&md->pushback_lock, flags);
1379 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1380 bio_list_merge_head(&md->deferred, &md->pushback);
1381 bio_list_init(&md->pushback);
1382 spin_unlock_irqrestore(&md->pushback_lock, flags);
1383 }
1384
1385 static void dm_wq_work(struct work_struct *work)
1386 {
1387 struct dm_wq_req *req = container_of(work, struct dm_wq_req, work);
1388 struct mapped_device *md = req->md;
1389
1390 down_write(&md->io_lock);
1391 switch (req->type) {
1392 case DM_WQ_FLUSH_ALL:
1393 __merge_pushback_list(md);
1394 /* pass through */
1395 case DM_WQ_FLUSH_DEFERRED:
1396 __flush_deferred_io(md);
1397 break;
1398 default:
1399 DMERR("dm_wq_work: unrecognised work type %d", req->type);
1400 BUG();
1401 }
1402 up_write(&md->io_lock);
1403 }
1404
1405 static void dm_wq_queue(struct mapped_device *md, int type, void *context,
1406 struct dm_wq_req *req)
1407 {
1408 req->type = type;
1409 req->md = md;
1410 req->context = context;
1411 INIT_WORK(&req->work, dm_wq_work);
1412 queue_work(md->wq, &req->work);
1413 }
1414
1415 static void dm_queue_flush(struct mapped_device *md, int type, void *context)
1416 {
1417 struct dm_wq_req req;
1418
1419 dm_wq_queue(md, type, context, &req);
1420 flush_workqueue(md->wq);
1421 }
1422
1423 /*
1424 * Swap in a new table (destroying old one).
1425 */
1426 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1427 {
1428 int r = -EINVAL;
1429
1430 mutex_lock(&md->suspend_lock);
1431
1432 /* device must be suspended */
1433 if (!dm_suspended(md))
1434 goto out;
1435
1436 /* without bdev, the device size cannot be changed */
1437 if (!md->suspended_bdev)
1438 if (get_capacity(md->disk) != dm_table_get_size(table))
1439 goto out;
1440
1441 __unbind(md);
1442 r = __bind(md, table);
1443
1444 out:
1445 mutex_unlock(&md->suspend_lock);
1446 return r;
1447 }
1448
1449 /*
1450 * Functions to lock and unlock any filesystem running on the
1451 * device.
1452 */
1453 static int lock_fs(struct mapped_device *md)
1454 {
1455 int r;
1456
1457 WARN_ON(md->frozen_sb);
1458
1459 md->frozen_sb = freeze_bdev(md->suspended_bdev);
1460 if (IS_ERR(md->frozen_sb)) {
1461 r = PTR_ERR(md->frozen_sb);
1462 md->frozen_sb = NULL;
1463 return r;
1464 }
1465
1466 set_bit(DMF_FROZEN, &md->flags);
1467
1468 /* don't bdput right now, we don't want the bdev
1469 * to go away while it is locked.
1470 */
1471 return 0;
1472 }
1473
1474 static void unlock_fs(struct mapped_device *md)
1475 {
1476 if (!test_bit(DMF_FROZEN, &md->flags))
1477 return;
1478
1479 thaw_bdev(md->suspended_bdev, md->frozen_sb);
1480 md->frozen_sb = NULL;
1481 clear_bit(DMF_FROZEN, &md->flags);
1482 }
1483
1484 /*
1485 * We need to be able to change a mapping table under a mounted
1486 * filesystem. For example we might want to move some data in
1487 * the background. Before the table can be swapped with
1488 * dm_bind_table, dm_suspend must be called to flush any in
1489 * flight bios and ensure that any further io gets deferred.
1490 */
1491 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1492 {
1493 struct dm_table *map = NULL;
1494 DECLARE_WAITQUEUE(wait, current);
1495 int r = 0;
1496 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1497 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1498
1499 mutex_lock(&md->suspend_lock);
1500
1501 if (dm_suspended(md)) {
1502 r = -EINVAL;
1503 goto out_unlock;
1504 }
1505
1506 map = dm_get_table(md);
1507
1508 /*
1509 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1510 * This flag is cleared before dm_suspend returns.
1511 */
1512 if (noflush)
1513 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1514
1515 /* This does not get reverted if there's an error later. */
1516 dm_table_presuspend_targets(map);
1517
1518 /* bdget() can stall if the pending I/Os are not flushed */
1519 if (!noflush) {
1520 md->suspended_bdev = bdget_disk(md->disk, 0);
1521 if (!md->suspended_bdev) {
1522 DMWARN("bdget failed in dm_suspend");
1523 r = -ENOMEM;
1524 goto flush_and_out;
1525 }
1526
1527 /*
1528 * Flush I/O to the device. noflush supersedes do_lockfs,
1529 * because lock_fs() needs to flush I/Os.
1530 */
1531 if (do_lockfs) {
1532 r = lock_fs(md);
1533 if (r)
1534 goto out;
1535 }
1536 }
1537
1538 /*
1539 * First we set the BLOCK_IO flag so no more ios will be mapped.
1540 */
1541 down_write(&md->io_lock);
1542 set_bit(DMF_BLOCK_IO, &md->flags);
1543
1544 add_wait_queue(&md->wait, &wait);
1545 up_write(&md->io_lock);
1546
1547 /* unplug */
1548 if (map)
1549 dm_table_unplug_all(map);
1550
1551 /*
1552 * Wait for the already-mapped ios to complete.
1553 */
1554 r = dm_wait_for_completion(md);
1555
1556 down_write(&md->io_lock);
1557 remove_wait_queue(&md->wait, &wait);
1558
1559 if (noflush)
1560 __merge_pushback_list(md);
1561 up_write(&md->io_lock);
1562
1563 /* were we interrupted ? */
1564 if (r < 0) {
1565 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1566
1567 unlock_fs(md);
1568 goto out; /* pushback list is already flushed, so skip flush */
1569 }
1570
1571 dm_table_postsuspend_targets(map);
1572
1573 set_bit(DMF_SUSPENDED, &md->flags);
1574
1575 flush_and_out:
1576 if (r && noflush)
1577 /*
1578 * Because there may be already I/Os in the pushback list,
1579 * flush them before return.
1580 */
1581 dm_queue_flush(md, DM_WQ_FLUSH_ALL, NULL);
1582
1583 out:
1584 if (r && md->suspended_bdev) {
1585 bdput(md->suspended_bdev);
1586 md->suspended_bdev = NULL;
1587 }
1588
1589 dm_table_put(map);
1590
1591 out_unlock:
1592 mutex_unlock(&md->suspend_lock);
1593 return r;
1594 }
1595
1596 int dm_resume(struct mapped_device *md)
1597 {
1598 int r = -EINVAL;
1599 struct dm_table *map = NULL;
1600
1601 mutex_lock(&md->suspend_lock);
1602 if (!dm_suspended(md))
1603 goto out;
1604
1605 map = dm_get_table(md);
1606 if (!map || !dm_table_get_size(map))
1607 goto out;
1608
1609 r = dm_table_resume_targets(map);
1610 if (r)
1611 goto out;
1612
1613 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1614
1615 unlock_fs(md);
1616
1617 if (md->suspended_bdev) {
1618 bdput(md->suspended_bdev);
1619 md->suspended_bdev = NULL;
1620 }
1621
1622 clear_bit(DMF_SUSPENDED, &md->flags);
1623
1624 dm_table_unplug_all(map);
1625
1626 dm_kobject_uevent(md);
1627
1628 r = 0;
1629
1630 out:
1631 dm_table_put(map);
1632 mutex_unlock(&md->suspend_lock);
1633
1634 return r;
1635 }
1636
1637 /*-----------------------------------------------------------------
1638 * Event notification.
1639 *---------------------------------------------------------------*/
1640 void dm_kobject_uevent(struct mapped_device *md)
1641 {
1642 kobject_uevent(&md->disk->dev.kobj, KOBJ_CHANGE);
1643 }
1644
1645 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1646 {
1647 return atomic_add_return(1, &md->uevent_seq);
1648 }
1649
1650 uint32_t dm_get_event_nr(struct mapped_device *md)
1651 {
1652 return atomic_read(&md->event_nr);
1653 }
1654
1655 int dm_wait_event(struct mapped_device *md, int event_nr)
1656 {
1657 return wait_event_interruptible(md->eventq,
1658 (event_nr != atomic_read(&md->event_nr)));
1659 }
1660
1661 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1662 {
1663 unsigned long flags;
1664
1665 spin_lock_irqsave(&md->uevent_lock, flags);
1666 list_add(elist, &md->uevent_list);
1667 spin_unlock_irqrestore(&md->uevent_lock, flags);
1668 }
1669
1670 /*
1671 * The gendisk is only valid as long as you have a reference
1672 * count on 'md'.
1673 */
1674 struct gendisk *dm_disk(struct mapped_device *md)
1675 {
1676 return md->disk;
1677 }
1678
1679 int dm_suspended(struct mapped_device *md)
1680 {
1681 return test_bit(DMF_SUSPENDED, &md->flags);
1682 }
1683
1684 int dm_noflush_suspending(struct dm_target *ti)
1685 {
1686 struct mapped_device *md = dm_table_get_md(ti->table);
1687 int r = __noflush_suspending(md);
1688
1689 dm_put(md);
1690
1691 return r;
1692 }
1693 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1694
1695 static struct block_device_operations dm_blk_dops = {
1696 .open = dm_blk_open,
1697 .release = dm_blk_close,
1698 .ioctl = dm_blk_ioctl,
1699 .getgeo = dm_blk_getgeo,
1700 .owner = THIS_MODULE
1701 };
1702
1703 EXPORT_SYMBOL(dm_get_mapinfo);
1704
1705 /*
1706 * module hooks
1707 */
1708 module_init(dm_init);
1709 module_exit(dm_exit);
1710
1711 module_param(major, uint, 0);
1712 MODULE_PARM_DESC(major, "The major number of the device mapper");
1713 MODULE_DESCRIPTION(DM_NAME " driver");
1714 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1715 MODULE_LICENSE("GPL");
This page took 0.088366 seconds and 4 git commands to generate.