Merge branch 'for-linus' of master.kernel.org:/home/rmk/linux-2.6-arm
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/blktrace_api.h>
23
24 #include <trace/events/block.h>
25
26 #define DM_MSG_PREFIX "core"
27
28 static const char *_name = DM_NAME;
29
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35 * For bio-based dm.
36 * One of these is allocated per bio.
37 */
38 struct dm_io {
39 struct mapped_device *md;
40 int error;
41 atomic_t io_count;
42 struct bio *bio;
43 unsigned long start_time;
44 };
45
46 /*
47 * For bio-based dm.
48 * One of these is allocated per target within a bio. Hopefully
49 * this will be simplified out one day.
50 */
51 struct dm_target_io {
52 struct dm_io *io;
53 struct dm_target *ti;
54 union map_info info;
55 };
56
57 /*
58 * For request-based dm.
59 * One of these is allocated per request.
60 */
61 struct dm_rq_target_io {
62 struct mapped_device *md;
63 struct dm_target *ti;
64 struct request *orig, clone;
65 int error;
66 union map_info info;
67 };
68
69 /*
70 * For request-based dm.
71 * One of these is allocated per bio.
72 */
73 struct dm_rq_clone_bio_info {
74 struct bio *orig;
75 struct request *rq;
76 };
77
78 union map_info *dm_get_mapinfo(struct bio *bio)
79 {
80 if (bio && bio->bi_private)
81 return &((struct dm_target_io *)bio->bi_private)->info;
82 return NULL;
83 }
84
85 #define MINOR_ALLOCED ((void *)-1)
86
87 /*
88 * Bits for the md->flags field.
89 */
90 #define DMF_BLOCK_IO_FOR_SUSPEND 0
91 #define DMF_SUSPENDED 1
92 #define DMF_FROZEN 2
93 #define DMF_FREEING 3
94 #define DMF_DELETING 4
95 #define DMF_NOFLUSH_SUSPENDING 5
96 #define DMF_QUEUE_IO_TO_THREAD 6
97
98 /*
99 * Work processed by per-device workqueue.
100 */
101 struct mapped_device {
102 struct rw_semaphore io_lock;
103 struct mutex suspend_lock;
104 rwlock_t map_lock;
105 atomic_t holders;
106 atomic_t open_count;
107
108 unsigned long flags;
109
110 struct request_queue *queue;
111 struct gendisk *disk;
112 char name[16];
113
114 void *interface_ptr;
115
116 /*
117 * A list of ios that arrived while we were suspended.
118 */
119 atomic_t pending;
120 wait_queue_head_t wait;
121 struct work_struct work;
122 struct bio_list deferred;
123 spinlock_t deferred_lock;
124
125 /*
126 * An error from the barrier request currently being processed.
127 */
128 int barrier_error;
129
130 /*
131 * Processing queue (flush/barriers)
132 */
133 struct workqueue_struct *wq;
134
135 /*
136 * The current mapping.
137 */
138 struct dm_table *map;
139
140 /*
141 * io objects are allocated from here.
142 */
143 mempool_t *io_pool;
144 mempool_t *tio_pool;
145
146 struct bio_set *bs;
147
148 /*
149 * Event handling.
150 */
151 atomic_t event_nr;
152 wait_queue_head_t eventq;
153 atomic_t uevent_seq;
154 struct list_head uevent_list;
155 spinlock_t uevent_lock; /* Protect access to uevent_list */
156
157 /*
158 * freeze/thaw support require holding onto a super block
159 */
160 struct super_block *frozen_sb;
161 struct block_device *suspended_bdev;
162
163 /* forced geometry settings */
164 struct hd_geometry geometry;
165
166 /* sysfs handle */
167 struct kobject kobj;
168 };
169
170 #define MIN_IOS 256
171 static struct kmem_cache *_io_cache;
172 static struct kmem_cache *_tio_cache;
173 static struct kmem_cache *_rq_tio_cache;
174 static struct kmem_cache *_rq_bio_info_cache;
175
176 static int __init local_init(void)
177 {
178 int r = -ENOMEM;
179
180 /* allocate a slab for the dm_ios */
181 _io_cache = KMEM_CACHE(dm_io, 0);
182 if (!_io_cache)
183 return r;
184
185 /* allocate a slab for the target ios */
186 _tio_cache = KMEM_CACHE(dm_target_io, 0);
187 if (!_tio_cache)
188 goto out_free_io_cache;
189
190 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
191 if (!_rq_tio_cache)
192 goto out_free_tio_cache;
193
194 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
195 if (!_rq_bio_info_cache)
196 goto out_free_rq_tio_cache;
197
198 r = dm_uevent_init();
199 if (r)
200 goto out_free_rq_bio_info_cache;
201
202 _major = major;
203 r = register_blkdev(_major, _name);
204 if (r < 0)
205 goto out_uevent_exit;
206
207 if (!_major)
208 _major = r;
209
210 return 0;
211
212 out_uevent_exit:
213 dm_uevent_exit();
214 out_free_rq_bio_info_cache:
215 kmem_cache_destroy(_rq_bio_info_cache);
216 out_free_rq_tio_cache:
217 kmem_cache_destroy(_rq_tio_cache);
218 out_free_tio_cache:
219 kmem_cache_destroy(_tio_cache);
220 out_free_io_cache:
221 kmem_cache_destroy(_io_cache);
222
223 return r;
224 }
225
226 static void local_exit(void)
227 {
228 kmem_cache_destroy(_rq_bio_info_cache);
229 kmem_cache_destroy(_rq_tio_cache);
230 kmem_cache_destroy(_tio_cache);
231 kmem_cache_destroy(_io_cache);
232 unregister_blkdev(_major, _name);
233 dm_uevent_exit();
234
235 _major = 0;
236
237 DMINFO("cleaned up");
238 }
239
240 static int (*_inits[])(void) __initdata = {
241 local_init,
242 dm_target_init,
243 dm_linear_init,
244 dm_stripe_init,
245 dm_kcopyd_init,
246 dm_interface_init,
247 };
248
249 static void (*_exits[])(void) = {
250 local_exit,
251 dm_target_exit,
252 dm_linear_exit,
253 dm_stripe_exit,
254 dm_kcopyd_exit,
255 dm_interface_exit,
256 };
257
258 static int __init dm_init(void)
259 {
260 const int count = ARRAY_SIZE(_inits);
261
262 int r, i;
263
264 for (i = 0; i < count; i++) {
265 r = _inits[i]();
266 if (r)
267 goto bad;
268 }
269
270 return 0;
271
272 bad:
273 while (i--)
274 _exits[i]();
275
276 return r;
277 }
278
279 static void __exit dm_exit(void)
280 {
281 int i = ARRAY_SIZE(_exits);
282
283 while (i--)
284 _exits[i]();
285 }
286
287 /*
288 * Block device functions
289 */
290 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
291 {
292 struct mapped_device *md;
293
294 spin_lock(&_minor_lock);
295
296 md = bdev->bd_disk->private_data;
297 if (!md)
298 goto out;
299
300 if (test_bit(DMF_FREEING, &md->flags) ||
301 test_bit(DMF_DELETING, &md->flags)) {
302 md = NULL;
303 goto out;
304 }
305
306 dm_get(md);
307 atomic_inc(&md->open_count);
308
309 out:
310 spin_unlock(&_minor_lock);
311
312 return md ? 0 : -ENXIO;
313 }
314
315 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
316 {
317 struct mapped_device *md = disk->private_data;
318 atomic_dec(&md->open_count);
319 dm_put(md);
320 return 0;
321 }
322
323 int dm_open_count(struct mapped_device *md)
324 {
325 return atomic_read(&md->open_count);
326 }
327
328 /*
329 * Guarantees nothing is using the device before it's deleted.
330 */
331 int dm_lock_for_deletion(struct mapped_device *md)
332 {
333 int r = 0;
334
335 spin_lock(&_minor_lock);
336
337 if (dm_open_count(md))
338 r = -EBUSY;
339 else
340 set_bit(DMF_DELETING, &md->flags);
341
342 spin_unlock(&_minor_lock);
343
344 return r;
345 }
346
347 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
348 {
349 struct mapped_device *md = bdev->bd_disk->private_data;
350
351 return dm_get_geometry(md, geo);
352 }
353
354 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
355 unsigned int cmd, unsigned long arg)
356 {
357 struct mapped_device *md = bdev->bd_disk->private_data;
358 struct dm_table *map = dm_get_table(md);
359 struct dm_target *tgt;
360 int r = -ENOTTY;
361
362 if (!map || !dm_table_get_size(map))
363 goto out;
364
365 /* We only support devices that have a single target */
366 if (dm_table_get_num_targets(map) != 1)
367 goto out;
368
369 tgt = dm_table_get_target(map, 0);
370
371 if (dm_suspended(md)) {
372 r = -EAGAIN;
373 goto out;
374 }
375
376 if (tgt->type->ioctl)
377 r = tgt->type->ioctl(tgt, cmd, arg);
378
379 out:
380 dm_table_put(map);
381
382 return r;
383 }
384
385 static struct dm_io *alloc_io(struct mapped_device *md)
386 {
387 return mempool_alloc(md->io_pool, GFP_NOIO);
388 }
389
390 static void free_io(struct mapped_device *md, struct dm_io *io)
391 {
392 mempool_free(io, md->io_pool);
393 }
394
395 static struct dm_target_io *alloc_tio(struct mapped_device *md)
396 {
397 return mempool_alloc(md->tio_pool, GFP_NOIO);
398 }
399
400 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
401 {
402 mempool_free(tio, md->tio_pool);
403 }
404
405 static void start_io_acct(struct dm_io *io)
406 {
407 struct mapped_device *md = io->md;
408 int cpu;
409
410 io->start_time = jiffies;
411
412 cpu = part_stat_lock();
413 part_round_stats(cpu, &dm_disk(md)->part0);
414 part_stat_unlock();
415 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
416 }
417
418 static void end_io_acct(struct dm_io *io)
419 {
420 struct mapped_device *md = io->md;
421 struct bio *bio = io->bio;
422 unsigned long duration = jiffies - io->start_time;
423 int pending, cpu;
424 int rw = bio_data_dir(bio);
425
426 cpu = part_stat_lock();
427 part_round_stats(cpu, &dm_disk(md)->part0);
428 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
429 part_stat_unlock();
430
431 /*
432 * After this is decremented the bio must not be touched if it is
433 * a barrier.
434 */
435 dm_disk(md)->part0.in_flight = pending =
436 atomic_dec_return(&md->pending);
437
438 /* nudge anyone waiting on suspend queue */
439 if (!pending)
440 wake_up(&md->wait);
441 }
442
443 /*
444 * Add the bio to the list of deferred io.
445 */
446 static void queue_io(struct mapped_device *md, struct bio *bio)
447 {
448 down_write(&md->io_lock);
449
450 spin_lock_irq(&md->deferred_lock);
451 bio_list_add(&md->deferred, bio);
452 spin_unlock_irq(&md->deferred_lock);
453
454 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
455 queue_work(md->wq, &md->work);
456
457 up_write(&md->io_lock);
458 }
459
460 /*
461 * Everyone (including functions in this file), should use this
462 * function to access the md->map field, and make sure they call
463 * dm_table_put() when finished.
464 */
465 struct dm_table *dm_get_table(struct mapped_device *md)
466 {
467 struct dm_table *t;
468
469 read_lock(&md->map_lock);
470 t = md->map;
471 if (t)
472 dm_table_get(t);
473 read_unlock(&md->map_lock);
474
475 return t;
476 }
477
478 /*
479 * Get the geometry associated with a dm device
480 */
481 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
482 {
483 *geo = md->geometry;
484
485 return 0;
486 }
487
488 /*
489 * Set the geometry of a device.
490 */
491 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
492 {
493 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
494
495 if (geo->start > sz) {
496 DMWARN("Start sector is beyond the geometry limits.");
497 return -EINVAL;
498 }
499
500 md->geometry = *geo;
501
502 return 0;
503 }
504
505 /*-----------------------------------------------------------------
506 * CRUD START:
507 * A more elegant soln is in the works that uses the queue
508 * merge fn, unfortunately there are a couple of changes to
509 * the block layer that I want to make for this. So in the
510 * interests of getting something for people to use I give
511 * you this clearly demarcated crap.
512 *---------------------------------------------------------------*/
513
514 static int __noflush_suspending(struct mapped_device *md)
515 {
516 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
517 }
518
519 /*
520 * Decrements the number of outstanding ios that a bio has been
521 * cloned into, completing the original io if necc.
522 */
523 static void dec_pending(struct dm_io *io, int error)
524 {
525 unsigned long flags;
526 int io_error;
527 struct bio *bio;
528 struct mapped_device *md = io->md;
529
530 /* Push-back supersedes any I/O errors */
531 if (error && !(io->error > 0 && __noflush_suspending(md)))
532 io->error = error;
533
534 if (atomic_dec_and_test(&io->io_count)) {
535 if (io->error == DM_ENDIO_REQUEUE) {
536 /*
537 * Target requested pushing back the I/O.
538 */
539 spin_lock_irqsave(&md->deferred_lock, flags);
540 if (__noflush_suspending(md))
541 bio_list_add_head(&md->deferred, io->bio);
542 else
543 /* noflush suspend was interrupted. */
544 io->error = -EIO;
545 spin_unlock_irqrestore(&md->deferred_lock, flags);
546 }
547
548 io_error = io->error;
549 bio = io->bio;
550
551 if (bio_barrier(bio)) {
552 /*
553 * There can be just one barrier request so we use
554 * a per-device variable for error reporting.
555 * Note that you can't touch the bio after end_io_acct
556 */
557 md->barrier_error = io_error;
558 end_io_acct(io);
559 } else {
560 end_io_acct(io);
561
562 if (io_error != DM_ENDIO_REQUEUE) {
563 trace_block_bio_complete(md->queue, bio);
564
565 bio_endio(bio, io_error);
566 }
567 }
568
569 free_io(md, io);
570 }
571 }
572
573 static void clone_endio(struct bio *bio, int error)
574 {
575 int r = 0;
576 struct dm_target_io *tio = bio->bi_private;
577 struct dm_io *io = tio->io;
578 struct mapped_device *md = tio->io->md;
579 dm_endio_fn endio = tio->ti->type->end_io;
580
581 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
582 error = -EIO;
583
584 if (endio) {
585 r = endio(tio->ti, bio, error, &tio->info);
586 if (r < 0 || r == DM_ENDIO_REQUEUE)
587 /*
588 * error and requeue request are handled
589 * in dec_pending().
590 */
591 error = r;
592 else if (r == DM_ENDIO_INCOMPLETE)
593 /* The target will handle the io */
594 return;
595 else if (r) {
596 DMWARN("unimplemented target endio return value: %d", r);
597 BUG();
598 }
599 }
600
601 /*
602 * Store md for cleanup instead of tio which is about to get freed.
603 */
604 bio->bi_private = md->bs;
605
606 free_tio(md, tio);
607 bio_put(bio);
608 dec_pending(io, error);
609 }
610
611 static sector_t max_io_len(struct mapped_device *md,
612 sector_t sector, struct dm_target *ti)
613 {
614 sector_t offset = sector - ti->begin;
615 sector_t len = ti->len - offset;
616
617 /*
618 * Does the target need to split even further ?
619 */
620 if (ti->split_io) {
621 sector_t boundary;
622 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
623 - offset;
624 if (len > boundary)
625 len = boundary;
626 }
627
628 return len;
629 }
630
631 static void __map_bio(struct dm_target *ti, struct bio *clone,
632 struct dm_target_io *tio)
633 {
634 int r;
635 sector_t sector;
636 struct mapped_device *md;
637
638 /*
639 * Sanity checks.
640 */
641 BUG_ON(!clone->bi_size);
642
643 clone->bi_end_io = clone_endio;
644 clone->bi_private = tio;
645
646 /*
647 * Map the clone. If r == 0 we don't need to do
648 * anything, the target has assumed ownership of
649 * this io.
650 */
651 atomic_inc(&tio->io->io_count);
652 sector = clone->bi_sector;
653 r = ti->type->map(ti, clone, &tio->info);
654 if (r == DM_MAPIO_REMAPPED) {
655 /* the bio has been remapped so dispatch it */
656
657 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
658 tio->io->bio->bi_bdev->bd_dev, sector);
659
660 generic_make_request(clone);
661 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
662 /* error the io and bail out, or requeue it if needed */
663 md = tio->io->md;
664 dec_pending(tio->io, r);
665 /*
666 * Store bio_set for cleanup.
667 */
668 clone->bi_private = md->bs;
669 bio_put(clone);
670 free_tio(md, tio);
671 } else if (r) {
672 DMWARN("unimplemented target map return value: %d", r);
673 BUG();
674 }
675 }
676
677 struct clone_info {
678 struct mapped_device *md;
679 struct dm_table *map;
680 struct bio *bio;
681 struct dm_io *io;
682 sector_t sector;
683 sector_t sector_count;
684 unsigned short idx;
685 };
686
687 static void dm_bio_destructor(struct bio *bio)
688 {
689 struct bio_set *bs = bio->bi_private;
690
691 bio_free(bio, bs);
692 }
693
694 /*
695 * Creates a little bio that is just does part of a bvec.
696 */
697 static struct bio *split_bvec(struct bio *bio, sector_t sector,
698 unsigned short idx, unsigned int offset,
699 unsigned int len, struct bio_set *bs)
700 {
701 struct bio *clone;
702 struct bio_vec *bv = bio->bi_io_vec + idx;
703
704 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
705 clone->bi_destructor = dm_bio_destructor;
706 *clone->bi_io_vec = *bv;
707
708 clone->bi_sector = sector;
709 clone->bi_bdev = bio->bi_bdev;
710 clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
711 clone->bi_vcnt = 1;
712 clone->bi_size = to_bytes(len);
713 clone->bi_io_vec->bv_offset = offset;
714 clone->bi_io_vec->bv_len = clone->bi_size;
715 clone->bi_flags |= 1 << BIO_CLONED;
716
717 if (bio_integrity(bio)) {
718 bio_integrity_clone(clone, bio, GFP_NOIO);
719 bio_integrity_trim(clone,
720 bio_sector_offset(bio, idx, offset), len);
721 }
722
723 return clone;
724 }
725
726 /*
727 * Creates a bio that consists of range of complete bvecs.
728 */
729 static struct bio *clone_bio(struct bio *bio, sector_t sector,
730 unsigned short idx, unsigned short bv_count,
731 unsigned int len, struct bio_set *bs)
732 {
733 struct bio *clone;
734
735 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
736 __bio_clone(clone, bio);
737 clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
738 clone->bi_destructor = dm_bio_destructor;
739 clone->bi_sector = sector;
740 clone->bi_idx = idx;
741 clone->bi_vcnt = idx + bv_count;
742 clone->bi_size = to_bytes(len);
743 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
744
745 if (bio_integrity(bio)) {
746 bio_integrity_clone(clone, bio, GFP_NOIO);
747
748 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
749 bio_integrity_trim(clone,
750 bio_sector_offset(bio, idx, 0), len);
751 }
752
753 return clone;
754 }
755
756 static int __clone_and_map(struct clone_info *ci)
757 {
758 struct bio *clone, *bio = ci->bio;
759 struct dm_target *ti;
760 sector_t len = 0, max;
761 struct dm_target_io *tio;
762
763 ti = dm_table_find_target(ci->map, ci->sector);
764 if (!dm_target_is_valid(ti))
765 return -EIO;
766
767 max = max_io_len(ci->md, ci->sector, ti);
768
769 /*
770 * Allocate a target io object.
771 */
772 tio = alloc_tio(ci->md);
773 tio->io = ci->io;
774 tio->ti = ti;
775 memset(&tio->info, 0, sizeof(tio->info));
776
777 if (ci->sector_count <= max) {
778 /*
779 * Optimise for the simple case where we can do all of
780 * the remaining io with a single clone.
781 */
782 clone = clone_bio(bio, ci->sector, ci->idx,
783 bio->bi_vcnt - ci->idx, ci->sector_count,
784 ci->md->bs);
785 __map_bio(ti, clone, tio);
786 ci->sector_count = 0;
787
788 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
789 /*
790 * There are some bvecs that don't span targets.
791 * Do as many of these as possible.
792 */
793 int i;
794 sector_t remaining = max;
795 sector_t bv_len;
796
797 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
798 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
799
800 if (bv_len > remaining)
801 break;
802
803 remaining -= bv_len;
804 len += bv_len;
805 }
806
807 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
808 ci->md->bs);
809 __map_bio(ti, clone, tio);
810
811 ci->sector += len;
812 ci->sector_count -= len;
813 ci->idx = i;
814
815 } else {
816 /*
817 * Handle a bvec that must be split between two or more targets.
818 */
819 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
820 sector_t remaining = to_sector(bv->bv_len);
821 unsigned int offset = 0;
822
823 do {
824 if (offset) {
825 ti = dm_table_find_target(ci->map, ci->sector);
826 if (!dm_target_is_valid(ti))
827 return -EIO;
828
829 max = max_io_len(ci->md, ci->sector, ti);
830
831 tio = alloc_tio(ci->md);
832 tio->io = ci->io;
833 tio->ti = ti;
834 memset(&tio->info, 0, sizeof(tio->info));
835 }
836
837 len = min(remaining, max);
838
839 clone = split_bvec(bio, ci->sector, ci->idx,
840 bv->bv_offset + offset, len,
841 ci->md->bs);
842
843 __map_bio(ti, clone, tio);
844
845 ci->sector += len;
846 ci->sector_count -= len;
847 offset += to_bytes(len);
848 } while (remaining -= len);
849
850 ci->idx++;
851 }
852
853 return 0;
854 }
855
856 /*
857 * Split the bio into several clones and submit it to targets.
858 */
859 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
860 {
861 struct clone_info ci;
862 int error = 0;
863
864 ci.map = dm_get_table(md);
865 if (unlikely(!ci.map)) {
866 if (!bio_barrier(bio))
867 bio_io_error(bio);
868 else
869 md->barrier_error = -EIO;
870 return;
871 }
872
873 ci.md = md;
874 ci.bio = bio;
875 ci.io = alloc_io(md);
876 ci.io->error = 0;
877 atomic_set(&ci.io->io_count, 1);
878 ci.io->bio = bio;
879 ci.io->md = md;
880 ci.sector = bio->bi_sector;
881 ci.sector_count = bio_sectors(bio);
882 ci.idx = bio->bi_idx;
883
884 start_io_acct(ci.io);
885 while (ci.sector_count && !error)
886 error = __clone_and_map(&ci);
887
888 /* drop the extra reference count */
889 dec_pending(ci.io, error);
890 dm_table_put(ci.map);
891 }
892 /*-----------------------------------------------------------------
893 * CRUD END
894 *---------------------------------------------------------------*/
895
896 static int dm_merge_bvec(struct request_queue *q,
897 struct bvec_merge_data *bvm,
898 struct bio_vec *biovec)
899 {
900 struct mapped_device *md = q->queuedata;
901 struct dm_table *map = dm_get_table(md);
902 struct dm_target *ti;
903 sector_t max_sectors;
904 int max_size = 0;
905
906 if (unlikely(!map))
907 goto out;
908
909 ti = dm_table_find_target(map, bvm->bi_sector);
910 if (!dm_target_is_valid(ti))
911 goto out_table;
912
913 /*
914 * Find maximum amount of I/O that won't need splitting
915 */
916 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
917 (sector_t) BIO_MAX_SECTORS);
918 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
919 if (max_size < 0)
920 max_size = 0;
921
922 /*
923 * merge_bvec_fn() returns number of bytes
924 * it can accept at this offset
925 * max is precomputed maximal io size
926 */
927 if (max_size && ti->type->merge)
928 max_size = ti->type->merge(ti, bvm, biovec, max_size);
929
930 out_table:
931 dm_table_put(map);
932
933 out:
934 /*
935 * Always allow an entire first page
936 */
937 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
938 max_size = biovec->bv_len;
939
940 return max_size;
941 }
942
943 /*
944 * The request function that just remaps the bio built up by
945 * dm_merge_bvec.
946 */
947 static int dm_request(struct request_queue *q, struct bio *bio)
948 {
949 int rw = bio_data_dir(bio);
950 struct mapped_device *md = q->queuedata;
951 int cpu;
952
953 down_read(&md->io_lock);
954
955 cpu = part_stat_lock();
956 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
957 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
958 part_stat_unlock();
959
960 /*
961 * If we're suspended or the thread is processing barriers
962 * we have to queue this io for later.
963 */
964 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
965 unlikely(bio_barrier(bio))) {
966 up_read(&md->io_lock);
967
968 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
969 bio_rw(bio) == READA) {
970 bio_io_error(bio);
971 return 0;
972 }
973
974 queue_io(md, bio);
975
976 return 0;
977 }
978
979 __split_and_process_bio(md, bio);
980 up_read(&md->io_lock);
981 return 0;
982 }
983
984 static void dm_unplug_all(struct request_queue *q)
985 {
986 struct mapped_device *md = q->queuedata;
987 struct dm_table *map = dm_get_table(md);
988
989 if (map) {
990 dm_table_unplug_all(map);
991 dm_table_put(map);
992 }
993 }
994
995 static int dm_any_congested(void *congested_data, int bdi_bits)
996 {
997 int r = bdi_bits;
998 struct mapped_device *md = congested_data;
999 struct dm_table *map;
1000
1001 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1002 map = dm_get_table(md);
1003 if (map) {
1004 r = dm_table_any_congested(map, bdi_bits);
1005 dm_table_put(map);
1006 }
1007 }
1008
1009 return r;
1010 }
1011
1012 /*-----------------------------------------------------------------
1013 * An IDR is used to keep track of allocated minor numbers.
1014 *---------------------------------------------------------------*/
1015 static DEFINE_IDR(_minor_idr);
1016
1017 static void free_minor(int minor)
1018 {
1019 spin_lock(&_minor_lock);
1020 idr_remove(&_minor_idr, minor);
1021 spin_unlock(&_minor_lock);
1022 }
1023
1024 /*
1025 * See if the device with a specific minor # is free.
1026 */
1027 static int specific_minor(int minor)
1028 {
1029 int r, m;
1030
1031 if (minor >= (1 << MINORBITS))
1032 return -EINVAL;
1033
1034 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1035 if (!r)
1036 return -ENOMEM;
1037
1038 spin_lock(&_minor_lock);
1039
1040 if (idr_find(&_minor_idr, minor)) {
1041 r = -EBUSY;
1042 goto out;
1043 }
1044
1045 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1046 if (r)
1047 goto out;
1048
1049 if (m != minor) {
1050 idr_remove(&_minor_idr, m);
1051 r = -EBUSY;
1052 goto out;
1053 }
1054
1055 out:
1056 spin_unlock(&_minor_lock);
1057 return r;
1058 }
1059
1060 static int next_free_minor(int *minor)
1061 {
1062 int r, m;
1063
1064 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1065 if (!r)
1066 return -ENOMEM;
1067
1068 spin_lock(&_minor_lock);
1069
1070 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1071 if (r)
1072 goto out;
1073
1074 if (m >= (1 << MINORBITS)) {
1075 idr_remove(&_minor_idr, m);
1076 r = -ENOSPC;
1077 goto out;
1078 }
1079
1080 *minor = m;
1081
1082 out:
1083 spin_unlock(&_minor_lock);
1084 return r;
1085 }
1086
1087 static struct block_device_operations dm_blk_dops;
1088
1089 static void dm_wq_work(struct work_struct *work);
1090
1091 /*
1092 * Allocate and initialise a blank device with a given minor.
1093 */
1094 static struct mapped_device *alloc_dev(int minor)
1095 {
1096 int r;
1097 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1098 void *old_md;
1099
1100 if (!md) {
1101 DMWARN("unable to allocate device, out of memory.");
1102 return NULL;
1103 }
1104
1105 if (!try_module_get(THIS_MODULE))
1106 goto bad_module_get;
1107
1108 /* get a minor number for the dev */
1109 if (minor == DM_ANY_MINOR)
1110 r = next_free_minor(&minor);
1111 else
1112 r = specific_minor(minor);
1113 if (r < 0)
1114 goto bad_minor;
1115
1116 init_rwsem(&md->io_lock);
1117 mutex_init(&md->suspend_lock);
1118 spin_lock_init(&md->deferred_lock);
1119 rwlock_init(&md->map_lock);
1120 atomic_set(&md->holders, 1);
1121 atomic_set(&md->open_count, 0);
1122 atomic_set(&md->event_nr, 0);
1123 atomic_set(&md->uevent_seq, 0);
1124 INIT_LIST_HEAD(&md->uevent_list);
1125 spin_lock_init(&md->uevent_lock);
1126
1127 md->queue = blk_alloc_queue(GFP_KERNEL);
1128 if (!md->queue)
1129 goto bad_queue;
1130
1131 md->queue->queuedata = md;
1132 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1133 md->queue->backing_dev_info.congested_data = md;
1134 blk_queue_make_request(md->queue, dm_request);
1135 blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
1136 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1137 md->queue->unplug_fn = dm_unplug_all;
1138 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1139
1140 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1141 if (!md->io_pool)
1142 goto bad_io_pool;
1143
1144 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1145 if (!md->tio_pool)
1146 goto bad_tio_pool;
1147
1148 md->bs = bioset_create(16, 0);
1149 if (!md->bs)
1150 goto bad_no_bioset;
1151
1152 md->disk = alloc_disk(1);
1153 if (!md->disk)
1154 goto bad_disk;
1155
1156 atomic_set(&md->pending, 0);
1157 init_waitqueue_head(&md->wait);
1158 INIT_WORK(&md->work, dm_wq_work);
1159 init_waitqueue_head(&md->eventq);
1160
1161 md->disk->major = _major;
1162 md->disk->first_minor = minor;
1163 md->disk->fops = &dm_blk_dops;
1164 md->disk->queue = md->queue;
1165 md->disk->private_data = md;
1166 sprintf(md->disk->disk_name, "dm-%d", minor);
1167 add_disk(md->disk);
1168 format_dev_t(md->name, MKDEV(_major, minor));
1169
1170 md->wq = create_singlethread_workqueue("kdmflush");
1171 if (!md->wq)
1172 goto bad_thread;
1173
1174 /* Populate the mapping, nobody knows we exist yet */
1175 spin_lock(&_minor_lock);
1176 old_md = idr_replace(&_minor_idr, md, minor);
1177 spin_unlock(&_minor_lock);
1178
1179 BUG_ON(old_md != MINOR_ALLOCED);
1180
1181 return md;
1182
1183 bad_thread:
1184 put_disk(md->disk);
1185 bad_disk:
1186 bioset_free(md->bs);
1187 bad_no_bioset:
1188 mempool_destroy(md->tio_pool);
1189 bad_tio_pool:
1190 mempool_destroy(md->io_pool);
1191 bad_io_pool:
1192 blk_cleanup_queue(md->queue);
1193 bad_queue:
1194 free_minor(minor);
1195 bad_minor:
1196 module_put(THIS_MODULE);
1197 bad_module_get:
1198 kfree(md);
1199 return NULL;
1200 }
1201
1202 static void unlock_fs(struct mapped_device *md);
1203
1204 static void free_dev(struct mapped_device *md)
1205 {
1206 int minor = MINOR(disk_devt(md->disk));
1207
1208 if (md->suspended_bdev) {
1209 unlock_fs(md);
1210 bdput(md->suspended_bdev);
1211 }
1212 destroy_workqueue(md->wq);
1213 mempool_destroy(md->tio_pool);
1214 mempool_destroy(md->io_pool);
1215 bioset_free(md->bs);
1216 blk_integrity_unregister(md->disk);
1217 del_gendisk(md->disk);
1218 free_minor(minor);
1219
1220 spin_lock(&_minor_lock);
1221 md->disk->private_data = NULL;
1222 spin_unlock(&_minor_lock);
1223
1224 put_disk(md->disk);
1225 blk_cleanup_queue(md->queue);
1226 module_put(THIS_MODULE);
1227 kfree(md);
1228 }
1229
1230 /*
1231 * Bind a table to the device.
1232 */
1233 static void event_callback(void *context)
1234 {
1235 unsigned long flags;
1236 LIST_HEAD(uevents);
1237 struct mapped_device *md = (struct mapped_device *) context;
1238
1239 spin_lock_irqsave(&md->uevent_lock, flags);
1240 list_splice_init(&md->uevent_list, &uevents);
1241 spin_unlock_irqrestore(&md->uevent_lock, flags);
1242
1243 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1244
1245 atomic_inc(&md->event_nr);
1246 wake_up(&md->eventq);
1247 }
1248
1249 static void __set_size(struct mapped_device *md, sector_t size)
1250 {
1251 set_capacity(md->disk, size);
1252
1253 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1254 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1255 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1256 }
1257
1258 static int __bind(struct mapped_device *md, struct dm_table *t)
1259 {
1260 struct request_queue *q = md->queue;
1261 sector_t size;
1262
1263 size = dm_table_get_size(t);
1264
1265 /*
1266 * Wipe any geometry if the size of the table changed.
1267 */
1268 if (size != get_capacity(md->disk))
1269 memset(&md->geometry, 0, sizeof(md->geometry));
1270
1271 if (md->suspended_bdev)
1272 __set_size(md, size);
1273
1274 if (!size) {
1275 dm_table_destroy(t);
1276 return 0;
1277 }
1278
1279 dm_table_event_callback(t, event_callback, md);
1280
1281 write_lock(&md->map_lock);
1282 md->map = t;
1283 dm_table_set_restrictions(t, q);
1284 write_unlock(&md->map_lock);
1285
1286 return 0;
1287 }
1288
1289 static void __unbind(struct mapped_device *md)
1290 {
1291 struct dm_table *map = md->map;
1292
1293 if (!map)
1294 return;
1295
1296 dm_table_event_callback(map, NULL, NULL);
1297 write_lock(&md->map_lock);
1298 md->map = NULL;
1299 write_unlock(&md->map_lock);
1300 dm_table_destroy(map);
1301 }
1302
1303 /*
1304 * Constructor for a new device.
1305 */
1306 int dm_create(int minor, struct mapped_device **result)
1307 {
1308 struct mapped_device *md;
1309
1310 md = alloc_dev(minor);
1311 if (!md)
1312 return -ENXIO;
1313
1314 dm_sysfs_init(md);
1315
1316 *result = md;
1317 return 0;
1318 }
1319
1320 static struct mapped_device *dm_find_md(dev_t dev)
1321 {
1322 struct mapped_device *md;
1323 unsigned minor = MINOR(dev);
1324
1325 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1326 return NULL;
1327
1328 spin_lock(&_minor_lock);
1329
1330 md = idr_find(&_minor_idr, minor);
1331 if (md && (md == MINOR_ALLOCED ||
1332 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1333 test_bit(DMF_FREEING, &md->flags))) {
1334 md = NULL;
1335 goto out;
1336 }
1337
1338 out:
1339 spin_unlock(&_minor_lock);
1340
1341 return md;
1342 }
1343
1344 struct mapped_device *dm_get_md(dev_t dev)
1345 {
1346 struct mapped_device *md = dm_find_md(dev);
1347
1348 if (md)
1349 dm_get(md);
1350
1351 return md;
1352 }
1353
1354 void *dm_get_mdptr(struct mapped_device *md)
1355 {
1356 return md->interface_ptr;
1357 }
1358
1359 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1360 {
1361 md->interface_ptr = ptr;
1362 }
1363
1364 void dm_get(struct mapped_device *md)
1365 {
1366 atomic_inc(&md->holders);
1367 }
1368
1369 const char *dm_device_name(struct mapped_device *md)
1370 {
1371 return md->name;
1372 }
1373 EXPORT_SYMBOL_GPL(dm_device_name);
1374
1375 void dm_put(struct mapped_device *md)
1376 {
1377 struct dm_table *map;
1378
1379 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1380
1381 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1382 map = dm_get_table(md);
1383 idr_replace(&_minor_idr, MINOR_ALLOCED,
1384 MINOR(disk_devt(dm_disk(md))));
1385 set_bit(DMF_FREEING, &md->flags);
1386 spin_unlock(&_minor_lock);
1387 if (!dm_suspended(md)) {
1388 dm_table_presuspend_targets(map);
1389 dm_table_postsuspend_targets(map);
1390 }
1391 dm_sysfs_exit(md);
1392 dm_table_put(map);
1393 __unbind(md);
1394 free_dev(md);
1395 }
1396 }
1397 EXPORT_SYMBOL_GPL(dm_put);
1398
1399 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
1400 {
1401 int r = 0;
1402 DECLARE_WAITQUEUE(wait, current);
1403
1404 dm_unplug_all(md->queue);
1405
1406 add_wait_queue(&md->wait, &wait);
1407
1408 while (1) {
1409 set_current_state(interruptible);
1410
1411 smp_mb();
1412 if (!atomic_read(&md->pending))
1413 break;
1414
1415 if (interruptible == TASK_INTERRUPTIBLE &&
1416 signal_pending(current)) {
1417 r = -EINTR;
1418 break;
1419 }
1420
1421 io_schedule();
1422 }
1423 set_current_state(TASK_RUNNING);
1424
1425 remove_wait_queue(&md->wait, &wait);
1426
1427 return r;
1428 }
1429
1430 static int dm_flush(struct mapped_device *md)
1431 {
1432 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
1433 return 0;
1434 }
1435
1436 static void process_barrier(struct mapped_device *md, struct bio *bio)
1437 {
1438 int error = dm_flush(md);
1439
1440 if (unlikely(error)) {
1441 bio_endio(bio, error);
1442 return;
1443 }
1444 if (bio_empty_barrier(bio)) {
1445 bio_endio(bio, 0);
1446 return;
1447 }
1448
1449 __split_and_process_bio(md, bio);
1450
1451 error = dm_flush(md);
1452
1453 if (!error && md->barrier_error)
1454 error = md->barrier_error;
1455
1456 if (md->barrier_error != DM_ENDIO_REQUEUE)
1457 bio_endio(bio, error);
1458 }
1459
1460 /*
1461 * Process the deferred bios
1462 */
1463 static void dm_wq_work(struct work_struct *work)
1464 {
1465 struct mapped_device *md = container_of(work, struct mapped_device,
1466 work);
1467 struct bio *c;
1468
1469 down_write(&md->io_lock);
1470
1471 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1472 spin_lock_irq(&md->deferred_lock);
1473 c = bio_list_pop(&md->deferred);
1474 spin_unlock_irq(&md->deferred_lock);
1475
1476 if (!c) {
1477 clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1478 break;
1479 }
1480
1481 up_write(&md->io_lock);
1482
1483 if (bio_barrier(c))
1484 process_barrier(md, c);
1485 else
1486 __split_and_process_bio(md, c);
1487
1488 down_write(&md->io_lock);
1489 }
1490
1491 up_write(&md->io_lock);
1492 }
1493
1494 static void dm_queue_flush(struct mapped_device *md)
1495 {
1496 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1497 smp_mb__after_clear_bit();
1498 queue_work(md->wq, &md->work);
1499 }
1500
1501 /*
1502 * Swap in a new table (destroying old one).
1503 */
1504 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1505 {
1506 int r = -EINVAL;
1507
1508 mutex_lock(&md->suspend_lock);
1509
1510 /* device must be suspended */
1511 if (!dm_suspended(md))
1512 goto out;
1513
1514 /* without bdev, the device size cannot be changed */
1515 if (!md->suspended_bdev)
1516 if (get_capacity(md->disk) != dm_table_get_size(table))
1517 goto out;
1518
1519 __unbind(md);
1520 r = __bind(md, table);
1521
1522 out:
1523 mutex_unlock(&md->suspend_lock);
1524 return r;
1525 }
1526
1527 /*
1528 * Functions to lock and unlock any filesystem running on the
1529 * device.
1530 */
1531 static int lock_fs(struct mapped_device *md)
1532 {
1533 int r;
1534
1535 WARN_ON(md->frozen_sb);
1536
1537 md->frozen_sb = freeze_bdev(md->suspended_bdev);
1538 if (IS_ERR(md->frozen_sb)) {
1539 r = PTR_ERR(md->frozen_sb);
1540 md->frozen_sb = NULL;
1541 return r;
1542 }
1543
1544 set_bit(DMF_FROZEN, &md->flags);
1545
1546 /* don't bdput right now, we don't want the bdev
1547 * to go away while it is locked.
1548 */
1549 return 0;
1550 }
1551
1552 static void unlock_fs(struct mapped_device *md)
1553 {
1554 if (!test_bit(DMF_FROZEN, &md->flags))
1555 return;
1556
1557 thaw_bdev(md->suspended_bdev, md->frozen_sb);
1558 md->frozen_sb = NULL;
1559 clear_bit(DMF_FROZEN, &md->flags);
1560 }
1561
1562 /*
1563 * We need to be able to change a mapping table under a mounted
1564 * filesystem. For example we might want to move some data in
1565 * the background. Before the table can be swapped with
1566 * dm_bind_table, dm_suspend must be called to flush any in
1567 * flight bios and ensure that any further io gets deferred.
1568 */
1569 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1570 {
1571 struct dm_table *map = NULL;
1572 int r = 0;
1573 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1574 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1575
1576 mutex_lock(&md->suspend_lock);
1577
1578 if (dm_suspended(md)) {
1579 r = -EINVAL;
1580 goto out_unlock;
1581 }
1582
1583 map = dm_get_table(md);
1584
1585 /*
1586 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1587 * This flag is cleared before dm_suspend returns.
1588 */
1589 if (noflush)
1590 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1591
1592 /* This does not get reverted if there's an error later. */
1593 dm_table_presuspend_targets(map);
1594
1595 /* bdget() can stall if the pending I/Os are not flushed */
1596 if (!noflush) {
1597 md->suspended_bdev = bdget_disk(md->disk, 0);
1598 if (!md->suspended_bdev) {
1599 DMWARN("bdget failed in dm_suspend");
1600 r = -ENOMEM;
1601 goto out;
1602 }
1603
1604 /*
1605 * Flush I/O to the device. noflush supersedes do_lockfs,
1606 * because lock_fs() needs to flush I/Os.
1607 */
1608 if (do_lockfs) {
1609 r = lock_fs(md);
1610 if (r)
1611 goto out;
1612 }
1613 }
1614
1615 /*
1616 * Here we must make sure that no processes are submitting requests
1617 * to target drivers i.e. no one may be executing
1618 * __split_and_process_bio. This is called from dm_request and
1619 * dm_wq_work.
1620 *
1621 * To get all processes out of __split_and_process_bio in dm_request,
1622 * we take the write lock. To prevent any process from reentering
1623 * __split_and_process_bio from dm_request, we set
1624 * DMF_QUEUE_IO_TO_THREAD.
1625 *
1626 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
1627 * and call flush_workqueue(md->wq). flush_workqueue will wait until
1628 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
1629 * further calls to __split_and_process_bio from dm_wq_work.
1630 */
1631 down_write(&md->io_lock);
1632 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1633 set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1634 up_write(&md->io_lock);
1635
1636 flush_workqueue(md->wq);
1637
1638 /*
1639 * At this point no more requests are entering target request routines.
1640 * We call dm_wait_for_completion to wait for all existing requests
1641 * to finish.
1642 */
1643 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
1644
1645 down_write(&md->io_lock);
1646 if (noflush)
1647 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1648 up_write(&md->io_lock);
1649
1650 /* were we interrupted ? */
1651 if (r < 0) {
1652 dm_queue_flush(md);
1653
1654 unlock_fs(md);
1655 goto out; /* pushback list is already flushed, so skip flush */
1656 }
1657
1658 /*
1659 * If dm_wait_for_completion returned 0, the device is completely
1660 * quiescent now. There is no request-processing activity. All new
1661 * requests are being added to md->deferred list.
1662 */
1663
1664 dm_table_postsuspend_targets(map);
1665
1666 set_bit(DMF_SUSPENDED, &md->flags);
1667
1668 out:
1669 if (r && md->suspended_bdev) {
1670 bdput(md->suspended_bdev);
1671 md->suspended_bdev = NULL;
1672 }
1673
1674 dm_table_put(map);
1675
1676 out_unlock:
1677 mutex_unlock(&md->suspend_lock);
1678 return r;
1679 }
1680
1681 int dm_resume(struct mapped_device *md)
1682 {
1683 int r = -EINVAL;
1684 struct dm_table *map = NULL;
1685
1686 mutex_lock(&md->suspend_lock);
1687 if (!dm_suspended(md))
1688 goto out;
1689
1690 map = dm_get_table(md);
1691 if (!map || !dm_table_get_size(map))
1692 goto out;
1693
1694 r = dm_table_resume_targets(map);
1695 if (r)
1696 goto out;
1697
1698 dm_queue_flush(md);
1699
1700 unlock_fs(md);
1701
1702 if (md->suspended_bdev) {
1703 bdput(md->suspended_bdev);
1704 md->suspended_bdev = NULL;
1705 }
1706
1707 clear_bit(DMF_SUSPENDED, &md->flags);
1708
1709 dm_table_unplug_all(map);
1710
1711 dm_kobject_uevent(md);
1712
1713 r = 0;
1714
1715 out:
1716 dm_table_put(map);
1717 mutex_unlock(&md->suspend_lock);
1718
1719 return r;
1720 }
1721
1722 /*-----------------------------------------------------------------
1723 * Event notification.
1724 *---------------------------------------------------------------*/
1725 void dm_kobject_uevent(struct mapped_device *md)
1726 {
1727 kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1728 }
1729
1730 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1731 {
1732 return atomic_add_return(1, &md->uevent_seq);
1733 }
1734
1735 uint32_t dm_get_event_nr(struct mapped_device *md)
1736 {
1737 return atomic_read(&md->event_nr);
1738 }
1739
1740 int dm_wait_event(struct mapped_device *md, int event_nr)
1741 {
1742 return wait_event_interruptible(md->eventq,
1743 (event_nr != atomic_read(&md->event_nr)));
1744 }
1745
1746 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1747 {
1748 unsigned long flags;
1749
1750 spin_lock_irqsave(&md->uevent_lock, flags);
1751 list_add(elist, &md->uevent_list);
1752 spin_unlock_irqrestore(&md->uevent_lock, flags);
1753 }
1754
1755 /*
1756 * The gendisk is only valid as long as you have a reference
1757 * count on 'md'.
1758 */
1759 struct gendisk *dm_disk(struct mapped_device *md)
1760 {
1761 return md->disk;
1762 }
1763
1764 struct kobject *dm_kobject(struct mapped_device *md)
1765 {
1766 return &md->kobj;
1767 }
1768
1769 /*
1770 * struct mapped_device should not be exported outside of dm.c
1771 * so use this check to verify that kobj is part of md structure
1772 */
1773 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
1774 {
1775 struct mapped_device *md;
1776
1777 md = container_of(kobj, struct mapped_device, kobj);
1778 if (&md->kobj != kobj)
1779 return NULL;
1780
1781 dm_get(md);
1782 return md;
1783 }
1784
1785 int dm_suspended(struct mapped_device *md)
1786 {
1787 return test_bit(DMF_SUSPENDED, &md->flags);
1788 }
1789
1790 int dm_noflush_suspending(struct dm_target *ti)
1791 {
1792 struct mapped_device *md = dm_table_get_md(ti->table);
1793 int r = __noflush_suspending(md);
1794
1795 dm_put(md);
1796
1797 return r;
1798 }
1799 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1800
1801 static struct block_device_operations dm_blk_dops = {
1802 .open = dm_blk_open,
1803 .release = dm_blk_close,
1804 .ioctl = dm_blk_ioctl,
1805 .getgeo = dm_blk_getgeo,
1806 .owner = THIS_MODULE
1807 };
1808
1809 EXPORT_SYMBOL(dm_get_mapinfo);
1810
1811 /*
1812 * module hooks
1813 */
1814 module_init(dm_init);
1815 module_exit(dm_exit);
1816
1817 module_param(major, uint, 0);
1818 MODULE_PARM_DESC(major, "The major number of the device mapper");
1819 MODULE_DESCRIPTION(DM_NAME " driver");
1820 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1821 MODULE_LICENSE("GPL");
This page took 0.065149 seconds and 6 git commands to generate.