Merge commit 'origin/master' into next
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22
23 #include <trace/events/block.h>
24
25 #define DM_MSG_PREFIX "core"
26
27 static const char *_name = DM_NAME;
28
29 static unsigned int major = 0;
30 static unsigned int _major = 0;
31
32 static DEFINE_SPINLOCK(_minor_lock);
33 /*
34 * For bio-based dm.
35 * One of these is allocated per bio.
36 */
37 struct dm_io {
38 struct mapped_device *md;
39 int error;
40 atomic_t io_count;
41 struct bio *bio;
42 unsigned long start_time;
43 };
44
45 /*
46 * For bio-based dm.
47 * One of these is allocated per target within a bio. Hopefully
48 * this will be simplified out one day.
49 */
50 struct dm_target_io {
51 struct dm_io *io;
52 struct dm_target *ti;
53 union map_info info;
54 };
55
56 /*
57 * For request-based dm.
58 * One of these is allocated per request.
59 */
60 struct dm_rq_target_io {
61 struct mapped_device *md;
62 struct dm_target *ti;
63 struct request *orig, clone;
64 int error;
65 union map_info info;
66 };
67
68 /*
69 * For request-based dm.
70 * One of these is allocated per bio.
71 */
72 struct dm_rq_clone_bio_info {
73 struct bio *orig;
74 struct request *rq;
75 };
76
77 union map_info *dm_get_mapinfo(struct bio *bio)
78 {
79 if (bio && bio->bi_private)
80 return &((struct dm_target_io *)bio->bi_private)->info;
81 return NULL;
82 }
83
84 #define MINOR_ALLOCED ((void *)-1)
85
86 /*
87 * Bits for the md->flags field.
88 */
89 #define DMF_BLOCK_IO_FOR_SUSPEND 0
90 #define DMF_SUSPENDED 1
91 #define DMF_FROZEN 2
92 #define DMF_FREEING 3
93 #define DMF_DELETING 4
94 #define DMF_NOFLUSH_SUSPENDING 5
95 #define DMF_QUEUE_IO_TO_THREAD 6
96
97 /*
98 * Work processed by per-device workqueue.
99 */
100 struct mapped_device {
101 struct rw_semaphore io_lock;
102 struct mutex suspend_lock;
103 rwlock_t map_lock;
104 atomic_t holders;
105 atomic_t open_count;
106
107 unsigned long flags;
108
109 struct request_queue *queue;
110 struct gendisk *disk;
111 char name[16];
112
113 void *interface_ptr;
114
115 /*
116 * A list of ios that arrived while we were suspended.
117 */
118 atomic_t pending;
119 wait_queue_head_t wait;
120 struct work_struct work;
121 struct bio_list deferred;
122 spinlock_t deferred_lock;
123
124 /*
125 * An error from the barrier request currently being processed.
126 */
127 int barrier_error;
128
129 /*
130 * Processing queue (flush/barriers)
131 */
132 struct workqueue_struct *wq;
133
134 /*
135 * The current mapping.
136 */
137 struct dm_table *map;
138
139 /*
140 * io objects are allocated from here.
141 */
142 mempool_t *io_pool;
143 mempool_t *tio_pool;
144
145 struct bio_set *bs;
146
147 /*
148 * Event handling.
149 */
150 atomic_t event_nr;
151 wait_queue_head_t eventq;
152 atomic_t uevent_seq;
153 struct list_head uevent_list;
154 spinlock_t uevent_lock; /* Protect access to uevent_list */
155
156 /*
157 * freeze/thaw support require holding onto a super block
158 */
159 struct super_block *frozen_sb;
160 struct block_device *suspended_bdev;
161
162 /* forced geometry settings */
163 struct hd_geometry geometry;
164
165 /* sysfs handle */
166 struct kobject kobj;
167 };
168
169 #define MIN_IOS 256
170 static struct kmem_cache *_io_cache;
171 static struct kmem_cache *_tio_cache;
172 static struct kmem_cache *_rq_tio_cache;
173 static struct kmem_cache *_rq_bio_info_cache;
174
175 static int __init local_init(void)
176 {
177 int r = -ENOMEM;
178
179 /* allocate a slab for the dm_ios */
180 _io_cache = KMEM_CACHE(dm_io, 0);
181 if (!_io_cache)
182 return r;
183
184 /* allocate a slab for the target ios */
185 _tio_cache = KMEM_CACHE(dm_target_io, 0);
186 if (!_tio_cache)
187 goto out_free_io_cache;
188
189 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
190 if (!_rq_tio_cache)
191 goto out_free_tio_cache;
192
193 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
194 if (!_rq_bio_info_cache)
195 goto out_free_rq_tio_cache;
196
197 r = dm_uevent_init();
198 if (r)
199 goto out_free_rq_bio_info_cache;
200
201 _major = major;
202 r = register_blkdev(_major, _name);
203 if (r < 0)
204 goto out_uevent_exit;
205
206 if (!_major)
207 _major = r;
208
209 return 0;
210
211 out_uevent_exit:
212 dm_uevent_exit();
213 out_free_rq_bio_info_cache:
214 kmem_cache_destroy(_rq_bio_info_cache);
215 out_free_rq_tio_cache:
216 kmem_cache_destroy(_rq_tio_cache);
217 out_free_tio_cache:
218 kmem_cache_destroy(_tio_cache);
219 out_free_io_cache:
220 kmem_cache_destroy(_io_cache);
221
222 return r;
223 }
224
225 static void local_exit(void)
226 {
227 kmem_cache_destroy(_rq_bio_info_cache);
228 kmem_cache_destroy(_rq_tio_cache);
229 kmem_cache_destroy(_tio_cache);
230 kmem_cache_destroy(_io_cache);
231 unregister_blkdev(_major, _name);
232 dm_uevent_exit();
233
234 _major = 0;
235
236 DMINFO("cleaned up");
237 }
238
239 static int (*_inits[])(void) __initdata = {
240 local_init,
241 dm_target_init,
242 dm_linear_init,
243 dm_stripe_init,
244 dm_kcopyd_init,
245 dm_interface_init,
246 };
247
248 static void (*_exits[])(void) = {
249 local_exit,
250 dm_target_exit,
251 dm_linear_exit,
252 dm_stripe_exit,
253 dm_kcopyd_exit,
254 dm_interface_exit,
255 };
256
257 static int __init dm_init(void)
258 {
259 const int count = ARRAY_SIZE(_inits);
260
261 int r, i;
262
263 for (i = 0; i < count; i++) {
264 r = _inits[i]();
265 if (r)
266 goto bad;
267 }
268
269 return 0;
270
271 bad:
272 while (i--)
273 _exits[i]();
274
275 return r;
276 }
277
278 static void __exit dm_exit(void)
279 {
280 int i = ARRAY_SIZE(_exits);
281
282 while (i--)
283 _exits[i]();
284 }
285
286 /*
287 * Block device functions
288 */
289 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
290 {
291 struct mapped_device *md;
292
293 spin_lock(&_minor_lock);
294
295 md = bdev->bd_disk->private_data;
296 if (!md)
297 goto out;
298
299 if (test_bit(DMF_FREEING, &md->flags) ||
300 test_bit(DMF_DELETING, &md->flags)) {
301 md = NULL;
302 goto out;
303 }
304
305 dm_get(md);
306 atomic_inc(&md->open_count);
307
308 out:
309 spin_unlock(&_minor_lock);
310
311 return md ? 0 : -ENXIO;
312 }
313
314 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
315 {
316 struct mapped_device *md = disk->private_data;
317 atomic_dec(&md->open_count);
318 dm_put(md);
319 return 0;
320 }
321
322 int dm_open_count(struct mapped_device *md)
323 {
324 return atomic_read(&md->open_count);
325 }
326
327 /*
328 * Guarantees nothing is using the device before it's deleted.
329 */
330 int dm_lock_for_deletion(struct mapped_device *md)
331 {
332 int r = 0;
333
334 spin_lock(&_minor_lock);
335
336 if (dm_open_count(md))
337 r = -EBUSY;
338 else
339 set_bit(DMF_DELETING, &md->flags);
340
341 spin_unlock(&_minor_lock);
342
343 return r;
344 }
345
346 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
347 {
348 struct mapped_device *md = bdev->bd_disk->private_data;
349
350 return dm_get_geometry(md, geo);
351 }
352
353 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
354 unsigned int cmd, unsigned long arg)
355 {
356 struct mapped_device *md = bdev->bd_disk->private_data;
357 struct dm_table *map = dm_get_table(md);
358 struct dm_target *tgt;
359 int r = -ENOTTY;
360
361 if (!map || !dm_table_get_size(map))
362 goto out;
363
364 /* We only support devices that have a single target */
365 if (dm_table_get_num_targets(map) != 1)
366 goto out;
367
368 tgt = dm_table_get_target(map, 0);
369
370 if (dm_suspended(md)) {
371 r = -EAGAIN;
372 goto out;
373 }
374
375 if (tgt->type->ioctl)
376 r = tgt->type->ioctl(tgt, cmd, arg);
377
378 out:
379 dm_table_put(map);
380
381 return r;
382 }
383
384 static struct dm_io *alloc_io(struct mapped_device *md)
385 {
386 return mempool_alloc(md->io_pool, GFP_NOIO);
387 }
388
389 static void free_io(struct mapped_device *md, struct dm_io *io)
390 {
391 mempool_free(io, md->io_pool);
392 }
393
394 static struct dm_target_io *alloc_tio(struct mapped_device *md)
395 {
396 return mempool_alloc(md->tio_pool, GFP_NOIO);
397 }
398
399 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
400 {
401 mempool_free(tio, md->tio_pool);
402 }
403
404 static void start_io_acct(struct dm_io *io)
405 {
406 struct mapped_device *md = io->md;
407 int cpu;
408
409 io->start_time = jiffies;
410
411 cpu = part_stat_lock();
412 part_round_stats(cpu, &dm_disk(md)->part0);
413 part_stat_unlock();
414 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
415 }
416
417 static void end_io_acct(struct dm_io *io)
418 {
419 struct mapped_device *md = io->md;
420 struct bio *bio = io->bio;
421 unsigned long duration = jiffies - io->start_time;
422 int pending, cpu;
423 int rw = bio_data_dir(bio);
424
425 cpu = part_stat_lock();
426 part_round_stats(cpu, &dm_disk(md)->part0);
427 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
428 part_stat_unlock();
429
430 /*
431 * After this is decremented the bio must not be touched if it is
432 * a barrier.
433 */
434 dm_disk(md)->part0.in_flight = pending =
435 atomic_dec_return(&md->pending);
436
437 /* nudge anyone waiting on suspend queue */
438 if (!pending)
439 wake_up(&md->wait);
440 }
441
442 /*
443 * Add the bio to the list of deferred io.
444 */
445 static void queue_io(struct mapped_device *md, struct bio *bio)
446 {
447 down_write(&md->io_lock);
448
449 spin_lock_irq(&md->deferred_lock);
450 bio_list_add(&md->deferred, bio);
451 spin_unlock_irq(&md->deferred_lock);
452
453 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
454 queue_work(md->wq, &md->work);
455
456 up_write(&md->io_lock);
457 }
458
459 /*
460 * Everyone (including functions in this file), should use this
461 * function to access the md->map field, and make sure they call
462 * dm_table_put() when finished.
463 */
464 struct dm_table *dm_get_table(struct mapped_device *md)
465 {
466 struct dm_table *t;
467
468 read_lock(&md->map_lock);
469 t = md->map;
470 if (t)
471 dm_table_get(t);
472 read_unlock(&md->map_lock);
473
474 return t;
475 }
476
477 /*
478 * Get the geometry associated with a dm device
479 */
480 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
481 {
482 *geo = md->geometry;
483
484 return 0;
485 }
486
487 /*
488 * Set the geometry of a device.
489 */
490 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
491 {
492 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
493
494 if (geo->start > sz) {
495 DMWARN("Start sector is beyond the geometry limits.");
496 return -EINVAL;
497 }
498
499 md->geometry = *geo;
500
501 return 0;
502 }
503
504 /*-----------------------------------------------------------------
505 * CRUD START:
506 * A more elegant soln is in the works that uses the queue
507 * merge fn, unfortunately there are a couple of changes to
508 * the block layer that I want to make for this. So in the
509 * interests of getting something for people to use I give
510 * you this clearly demarcated crap.
511 *---------------------------------------------------------------*/
512
513 static int __noflush_suspending(struct mapped_device *md)
514 {
515 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
516 }
517
518 /*
519 * Decrements the number of outstanding ios that a bio has been
520 * cloned into, completing the original io if necc.
521 */
522 static void dec_pending(struct dm_io *io, int error)
523 {
524 unsigned long flags;
525 int io_error;
526 struct bio *bio;
527 struct mapped_device *md = io->md;
528
529 /* Push-back supersedes any I/O errors */
530 if (error && !(io->error > 0 && __noflush_suspending(md)))
531 io->error = error;
532
533 if (atomic_dec_and_test(&io->io_count)) {
534 if (io->error == DM_ENDIO_REQUEUE) {
535 /*
536 * Target requested pushing back the I/O.
537 */
538 spin_lock_irqsave(&md->deferred_lock, flags);
539 if (__noflush_suspending(md))
540 bio_list_add_head(&md->deferred, io->bio);
541 else
542 /* noflush suspend was interrupted. */
543 io->error = -EIO;
544 spin_unlock_irqrestore(&md->deferred_lock, flags);
545 }
546
547 io_error = io->error;
548 bio = io->bio;
549
550 if (bio_barrier(bio)) {
551 /*
552 * There can be just one barrier request so we use
553 * a per-device variable for error reporting.
554 * Note that you can't touch the bio after end_io_acct
555 */
556 md->barrier_error = io_error;
557 end_io_acct(io);
558 } else {
559 end_io_acct(io);
560
561 if (io_error != DM_ENDIO_REQUEUE) {
562 trace_block_bio_complete(md->queue, bio);
563
564 bio_endio(bio, io_error);
565 }
566 }
567
568 free_io(md, io);
569 }
570 }
571
572 static void clone_endio(struct bio *bio, int error)
573 {
574 int r = 0;
575 struct dm_target_io *tio = bio->bi_private;
576 struct dm_io *io = tio->io;
577 struct mapped_device *md = tio->io->md;
578 dm_endio_fn endio = tio->ti->type->end_io;
579
580 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
581 error = -EIO;
582
583 if (endio) {
584 r = endio(tio->ti, bio, error, &tio->info);
585 if (r < 0 || r == DM_ENDIO_REQUEUE)
586 /*
587 * error and requeue request are handled
588 * in dec_pending().
589 */
590 error = r;
591 else if (r == DM_ENDIO_INCOMPLETE)
592 /* The target will handle the io */
593 return;
594 else if (r) {
595 DMWARN("unimplemented target endio return value: %d", r);
596 BUG();
597 }
598 }
599
600 /*
601 * Store md for cleanup instead of tio which is about to get freed.
602 */
603 bio->bi_private = md->bs;
604
605 free_tio(md, tio);
606 bio_put(bio);
607 dec_pending(io, error);
608 }
609
610 static sector_t max_io_len(struct mapped_device *md,
611 sector_t sector, struct dm_target *ti)
612 {
613 sector_t offset = sector - ti->begin;
614 sector_t len = ti->len - offset;
615
616 /*
617 * Does the target need to split even further ?
618 */
619 if (ti->split_io) {
620 sector_t boundary;
621 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
622 - offset;
623 if (len > boundary)
624 len = boundary;
625 }
626
627 return len;
628 }
629
630 static void __map_bio(struct dm_target *ti, struct bio *clone,
631 struct dm_target_io *tio)
632 {
633 int r;
634 sector_t sector;
635 struct mapped_device *md;
636
637 /*
638 * Sanity checks.
639 */
640 BUG_ON(!clone->bi_size);
641
642 clone->bi_end_io = clone_endio;
643 clone->bi_private = tio;
644
645 /*
646 * Map the clone. If r == 0 we don't need to do
647 * anything, the target has assumed ownership of
648 * this io.
649 */
650 atomic_inc(&tio->io->io_count);
651 sector = clone->bi_sector;
652 r = ti->type->map(ti, clone, &tio->info);
653 if (r == DM_MAPIO_REMAPPED) {
654 /* the bio has been remapped so dispatch it */
655
656 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
657 tio->io->bio->bi_bdev->bd_dev, sector);
658
659 generic_make_request(clone);
660 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
661 /* error the io and bail out, or requeue it if needed */
662 md = tio->io->md;
663 dec_pending(tio->io, r);
664 /*
665 * Store bio_set for cleanup.
666 */
667 clone->bi_private = md->bs;
668 bio_put(clone);
669 free_tio(md, tio);
670 } else if (r) {
671 DMWARN("unimplemented target map return value: %d", r);
672 BUG();
673 }
674 }
675
676 struct clone_info {
677 struct mapped_device *md;
678 struct dm_table *map;
679 struct bio *bio;
680 struct dm_io *io;
681 sector_t sector;
682 sector_t sector_count;
683 unsigned short idx;
684 };
685
686 static void dm_bio_destructor(struct bio *bio)
687 {
688 struct bio_set *bs = bio->bi_private;
689
690 bio_free(bio, bs);
691 }
692
693 /*
694 * Creates a little bio that is just does part of a bvec.
695 */
696 static struct bio *split_bvec(struct bio *bio, sector_t sector,
697 unsigned short idx, unsigned int offset,
698 unsigned int len, struct bio_set *bs)
699 {
700 struct bio *clone;
701 struct bio_vec *bv = bio->bi_io_vec + idx;
702
703 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
704 clone->bi_destructor = dm_bio_destructor;
705 *clone->bi_io_vec = *bv;
706
707 clone->bi_sector = sector;
708 clone->bi_bdev = bio->bi_bdev;
709 clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
710 clone->bi_vcnt = 1;
711 clone->bi_size = to_bytes(len);
712 clone->bi_io_vec->bv_offset = offset;
713 clone->bi_io_vec->bv_len = clone->bi_size;
714 clone->bi_flags |= 1 << BIO_CLONED;
715
716 if (bio_integrity(bio)) {
717 bio_integrity_clone(clone, bio, GFP_NOIO);
718 bio_integrity_trim(clone,
719 bio_sector_offset(bio, idx, offset), len);
720 }
721
722 return clone;
723 }
724
725 /*
726 * Creates a bio that consists of range of complete bvecs.
727 */
728 static struct bio *clone_bio(struct bio *bio, sector_t sector,
729 unsigned short idx, unsigned short bv_count,
730 unsigned int len, struct bio_set *bs)
731 {
732 struct bio *clone;
733
734 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
735 __bio_clone(clone, bio);
736 clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
737 clone->bi_destructor = dm_bio_destructor;
738 clone->bi_sector = sector;
739 clone->bi_idx = idx;
740 clone->bi_vcnt = idx + bv_count;
741 clone->bi_size = to_bytes(len);
742 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
743
744 if (bio_integrity(bio)) {
745 bio_integrity_clone(clone, bio, GFP_NOIO);
746
747 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
748 bio_integrity_trim(clone,
749 bio_sector_offset(bio, idx, 0), len);
750 }
751
752 return clone;
753 }
754
755 static int __clone_and_map(struct clone_info *ci)
756 {
757 struct bio *clone, *bio = ci->bio;
758 struct dm_target *ti;
759 sector_t len = 0, max;
760 struct dm_target_io *tio;
761
762 ti = dm_table_find_target(ci->map, ci->sector);
763 if (!dm_target_is_valid(ti))
764 return -EIO;
765
766 max = max_io_len(ci->md, ci->sector, ti);
767
768 /*
769 * Allocate a target io object.
770 */
771 tio = alloc_tio(ci->md);
772 tio->io = ci->io;
773 tio->ti = ti;
774 memset(&tio->info, 0, sizeof(tio->info));
775
776 if (ci->sector_count <= max) {
777 /*
778 * Optimise for the simple case where we can do all of
779 * the remaining io with a single clone.
780 */
781 clone = clone_bio(bio, ci->sector, ci->idx,
782 bio->bi_vcnt - ci->idx, ci->sector_count,
783 ci->md->bs);
784 __map_bio(ti, clone, tio);
785 ci->sector_count = 0;
786
787 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
788 /*
789 * There are some bvecs that don't span targets.
790 * Do as many of these as possible.
791 */
792 int i;
793 sector_t remaining = max;
794 sector_t bv_len;
795
796 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
797 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
798
799 if (bv_len > remaining)
800 break;
801
802 remaining -= bv_len;
803 len += bv_len;
804 }
805
806 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
807 ci->md->bs);
808 __map_bio(ti, clone, tio);
809
810 ci->sector += len;
811 ci->sector_count -= len;
812 ci->idx = i;
813
814 } else {
815 /*
816 * Handle a bvec that must be split between two or more targets.
817 */
818 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
819 sector_t remaining = to_sector(bv->bv_len);
820 unsigned int offset = 0;
821
822 do {
823 if (offset) {
824 ti = dm_table_find_target(ci->map, ci->sector);
825 if (!dm_target_is_valid(ti))
826 return -EIO;
827
828 max = max_io_len(ci->md, ci->sector, ti);
829
830 tio = alloc_tio(ci->md);
831 tio->io = ci->io;
832 tio->ti = ti;
833 memset(&tio->info, 0, sizeof(tio->info));
834 }
835
836 len = min(remaining, max);
837
838 clone = split_bvec(bio, ci->sector, ci->idx,
839 bv->bv_offset + offset, len,
840 ci->md->bs);
841
842 __map_bio(ti, clone, tio);
843
844 ci->sector += len;
845 ci->sector_count -= len;
846 offset += to_bytes(len);
847 } while (remaining -= len);
848
849 ci->idx++;
850 }
851
852 return 0;
853 }
854
855 /*
856 * Split the bio into several clones and submit it to targets.
857 */
858 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
859 {
860 struct clone_info ci;
861 int error = 0;
862
863 ci.map = dm_get_table(md);
864 if (unlikely(!ci.map)) {
865 if (!bio_barrier(bio))
866 bio_io_error(bio);
867 else
868 md->barrier_error = -EIO;
869 return;
870 }
871
872 ci.md = md;
873 ci.bio = bio;
874 ci.io = alloc_io(md);
875 ci.io->error = 0;
876 atomic_set(&ci.io->io_count, 1);
877 ci.io->bio = bio;
878 ci.io->md = md;
879 ci.sector = bio->bi_sector;
880 ci.sector_count = bio_sectors(bio);
881 ci.idx = bio->bi_idx;
882
883 start_io_acct(ci.io);
884 while (ci.sector_count && !error)
885 error = __clone_and_map(&ci);
886
887 /* drop the extra reference count */
888 dec_pending(ci.io, error);
889 dm_table_put(ci.map);
890 }
891 /*-----------------------------------------------------------------
892 * CRUD END
893 *---------------------------------------------------------------*/
894
895 static int dm_merge_bvec(struct request_queue *q,
896 struct bvec_merge_data *bvm,
897 struct bio_vec *biovec)
898 {
899 struct mapped_device *md = q->queuedata;
900 struct dm_table *map = dm_get_table(md);
901 struct dm_target *ti;
902 sector_t max_sectors;
903 int max_size = 0;
904
905 if (unlikely(!map))
906 goto out;
907
908 ti = dm_table_find_target(map, bvm->bi_sector);
909 if (!dm_target_is_valid(ti))
910 goto out_table;
911
912 /*
913 * Find maximum amount of I/O that won't need splitting
914 */
915 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
916 (sector_t) BIO_MAX_SECTORS);
917 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
918 if (max_size < 0)
919 max_size = 0;
920
921 /*
922 * merge_bvec_fn() returns number of bytes
923 * it can accept at this offset
924 * max is precomputed maximal io size
925 */
926 if (max_size && ti->type->merge)
927 max_size = ti->type->merge(ti, bvm, biovec, max_size);
928
929 out_table:
930 dm_table_put(map);
931
932 out:
933 /*
934 * Always allow an entire first page
935 */
936 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
937 max_size = biovec->bv_len;
938
939 return max_size;
940 }
941
942 /*
943 * The request function that just remaps the bio built up by
944 * dm_merge_bvec.
945 */
946 static int dm_request(struct request_queue *q, struct bio *bio)
947 {
948 int rw = bio_data_dir(bio);
949 struct mapped_device *md = q->queuedata;
950 int cpu;
951
952 down_read(&md->io_lock);
953
954 cpu = part_stat_lock();
955 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
956 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
957 part_stat_unlock();
958
959 /*
960 * If we're suspended or the thread is processing barriers
961 * we have to queue this io for later.
962 */
963 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
964 unlikely(bio_barrier(bio))) {
965 up_read(&md->io_lock);
966
967 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
968 bio_rw(bio) == READA) {
969 bio_io_error(bio);
970 return 0;
971 }
972
973 queue_io(md, bio);
974
975 return 0;
976 }
977
978 __split_and_process_bio(md, bio);
979 up_read(&md->io_lock);
980 return 0;
981 }
982
983 static void dm_unplug_all(struct request_queue *q)
984 {
985 struct mapped_device *md = q->queuedata;
986 struct dm_table *map = dm_get_table(md);
987
988 if (map) {
989 dm_table_unplug_all(map);
990 dm_table_put(map);
991 }
992 }
993
994 static int dm_any_congested(void *congested_data, int bdi_bits)
995 {
996 int r = bdi_bits;
997 struct mapped_device *md = congested_data;
998 struct dm_table *map;
999
1000 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1001 map = dm_get_table(md);
1002 if (map) {
1003 r = dm_table_any_congested(map, bdi_bits);
1004 dm_table_put(map);
1005 }
1006 }
1007
1008 return r;
1009 }
1010
1011 /*-----------------------------------------------------------------
1012 * An IDR is used to keep track of allocated minor numbers.
1013 *---------------------------------------------------------------*/
1014 static DEFINE_IDR(_minor_idr);
1015
1016 static void free_minor(int minor)
1017 {
1018 spin_lock(&_minor_lock);
1019 idr_remove(&_minor_idr, minor);
1020 spin_unlock(&_minor_lock);
1021 }
1022
1023 /*
1024 * See if the device with a specific minor # is free.
1025 */
1026 static int specific_minor(int minor)
1027 {
1028 int r, m;
1029
1030 if (minor >= (1 << MINORBITS))
1031 return -EINVAL;
1032
1033 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1034 if (!r)
1035 return -ENOMEM;
1036
1037 spin_lock(&_minor_lock);
1038
1039 if (idr_find(&_minor_idr, minor)) {
1040 r = -EBUSY;
1041 goto out;
1042 }
1043
1044 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1045 if (r)
1046 goto out;
1047
1048 if (m != minor) {
1049 idr_remove(&_minor_idr, m);
1050 r = -EBUSY;
1051 goto out;
1052 }
1053
1054 out:
1055 spin_unlock(&_minor_lock);
1056 return r;
1057 }
1058
1059 static int next_free_minor(int *minor)
1060 {
1061 int r, m;
1062
1063 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1064 if (!r)
1065 return -ENOMEM;
1066
1067 spin_lock(&_minor_lock);
1068
1069 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1070 if (r)
1071 goto out;
1072
1073 if (m >= (1 << MINORBITS)) {
1074 idr_remove(&_minor_idr, m);
1075 r = -ENOSPC;
1076 goto out;
1077 }
1078
1079 *minor = m;
1080
1081 out:
1082 spin_unlock(&_minor_lock);
1083 return r;
1084 }
1085
1086 static struct block_device_operations dm_blk_dops;
1087
1088 static void dm_wq_work(struct work_struct *work);
1089
1090 /*
1091 * Allocate and initialise a blank device with a given minor.
1092 */
1093 static struct mapped_device *alloc_dev(int minor)
1094 {
1095 int r;
1096 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1097 void *old_md;
1098
1099 if (!md) {
1100 DMWARN("unable to allocate device, out of memory.");
1101 return NULL;
1102 }
1103
1104 if (!try_module_get(THIS_MODULE))
1105 goto bad_module_get;
1106
1107 /* get a minor number for the dev */
1108 if (minor == DM_ANY_MINOR)
1109 r = next_free_minor(&minor);
1110 else
1111 r = specific_minor(minor);
1112 if (r < 0)
1113 goto bad_minor;
1114
1115 init_rwsem(&md->io_lock);
1116 mutex_init(&md->suspend_lock);
1117 spin_lock_init(&md->deferred_lock);
1118 rwlock_init(&md->map_lock);
1119 atomic_set(&md->holders, 1);
1120 atomic_set(&md->open_count, 0);
1121 atomic_set(&md->event_nr, 0);
1122 atomic_set(&md->uevent_seq, 0);
1123 INIT_LIST_HEAD(&md->uevent_list);
1124 spin_lock_init(&md->uevent_lock);
1125
1126 md->queue = blk_alloc_queue(GFP_KERNEL);
1127 if (!md->queue)
1128 goto bad_queue;
1129
1130 md->queue->queuedata = md;
1131 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1132 md->queue->backing_dev_info.congested_data = md;
1133 blk_queue_make_request(md->queue, dm_request);
1134 blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
1135 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1136 md->queue->unplug_fn = dm_unplug_all;
1137 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1138
1139 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1140 if (!md->io_pool)
1141 goto bad_io_pool;
1142
1143 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1144 if (!md->tio_pool)
1145 goto bad_tio_pool;
1146
1147 md->bs = bioset_create(16, 0);
1148 if (!md->bs)
1149 goto bad_no_bioset;
1150
1151 md->disk = alloc_disk(1);
1152 if (!md->disk)
1153 goto bad_disk;
1154
1155 atomic_set(&md->pending, 0);
1156 init_waitqueue_head(&md->wait);
1157 INIT_WORK(&md->work, dm_wq_work);
1158 init_waitqueue_head(&md->eventq);
1159
1160 md->disk->major = _major;
1161 md->disk->first_minor = minor;
1162 md->disk->fops = &dm_blk_dops;
1163 md->disk->queue = md->queue;
1164 md->disk->private_data = md;
1165 sprintf(md->disk->disk_name, "dm-%d", minor);
1166 add_disk(md->disk);
1167 format_dev_t(md->name, MKDEV(_major, minor));
1168
1169 md->wq = create_singlethread_workqueue("kdmflush");
1170 if (!md->wq)
1171 goto bad_thread;
1172
1173 /* Populate the mapping, nobody knows we exist yet */
1174 spin_lock(&_minor_lock);
1175 old_md = idr_replace(&_minor_idr, md, minor);
1176 spin_unlock(&_minor_lock);
1177
1178 BUG_ON(old_md != MINOR_ALLOCED);
1179
1180 return md;
1181
1182 bad_thread:
1183 put_disk(md->disk);
1184 bad_disk:
1185 bioset_free(md->bs);
1186 bad_no_bioset:
1187 mempool_destroy(md->tio_pool);
1188 bad_tio_pool:
1189 mempool_destroy(md->io_pool);
1190 bad_io_pool:
1191 blk_cleanup_queue(md->queue);
1192 bad_queue:
1193 free_minor(minor);
1194 bad_minor:
1195 module_put(THIS_MODULE);
1196 bad_module_get:
1197 kfree(md);
1198 return NULL;
1199 }
1200
1201 static void unlock_fs(struct mapped_device *md);
1202
1203 static void free_dev(struct mapped_device *md)
1204 {
1205 int minor = MINOR(disk_devt(md->disk));
1206
1207 if (md->suspended_bdev) {
1208 unlock_fs(md);
1209 bdput(md->suspended_bdev);
1210 }
1211 destroy_workqueue(md->wq);
1212 mempool_destroy(md->tio_pool);
1213 mempool_destroy(md->io_pool);
1214 bioset_free(md->bs);
1215 blk_integrity_unregister(md->disk);
1216 del_gendisk(md->disk);
1217 free_minor(minor);
1218
1219 spin_lock(&_minor_lock);
1220 md->disk->private_data = NULL;
1221 spin_unlock(&_minor_lock);
1222
1223 put_disk(md->disk);
1224 blk_cleanup_queue(md->queue);
1225 module_put(THIS_MODULE);
1226 kfree(md);
1227 }
1228
1229 /*
1230 * Bind a table to the device.
1231 */
1232 static void event_callback(void *context)
1233 {
1234 unsigned long flags;
1235 LIST_HEAD(uevents);
1236 struct mapped_device *md = (struct mapped_device *) context;
1237
1238 spin_lock_irqsave(&md->uevent_lock, flags);
1239 list_splice_init(&md->uevent_list, &uevents);
1240 spin_unlock_irqrestore(&md->uevent_lock, flags);
1241
1242 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1243
1244 atomic_inc(&md->event_nr);
1245 wake_up(&md->eventq);
1246 }
1247
1248 static void __set_size(struct mapped_device *md, sector_t size)
1249 {
1250 set_capacity(md->disk, size);
1251
1252 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1253 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1254 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1255 }
1256
1257 static int __bind(struct mapped_device *md, struct dm_table *t)
1258 {
1259 struct request_queue *q = md->queue;
1260 sector_t size;
1261
1262 size = dm_table_get_size(t);
1263
1264 /*
1265 * Wipe any geometry if the size of the table changed.
1266 */
1267 if (size != get_capacity(md->disk))
1268 memset(&md->geometry, 0, sizeof(md->geometry));
1269
1270 if (md->suspended_bdev)
1271 __set_size(md, size);
1272
1273 if (!size) {
1274 dm_table_destroy(t);
1275 return 0;
1276 }
1277
1278 dm_table_event_callback(t, event_callback, md);
1279
1280 write_lock(&md->map_lock);
1281 md->map = t;
1282 dm_table_set_restrictions(t, q);
1283 write_unlock(&md->map_lock);
1284
1285 return 0;
1286 }
1287
1288 static void __unbind(struct mapped_device *md)
1289 {
1290 struct dm_table *map = md->map;
1291
1292 if (!map)
1293 return;
1294
1295 dm_table_event_callback(map, NULL, NULL);
1296 write_lock(&md->map_lock);
1297 md->map = NULL;
1298 write_unlock(&md->map_lock);
1299 dm_table_destroy(map);
1300 }
1301
1302 /*
1303 * Constructor for a new device.
1304 */
1305 int dm_create(int minor, struct mapped_device **result)
1306 {
1307 struct mapped_device *md;
1308
1309 md = alloc_dev(minor);
1310 if (!md)
1311 return -ENXIO;
1312
1313 dm_sysfs_init(md);
1314
1315 *result = md;
1316 return 0;
1317 }
1318
1319 static struct mapped_device *dm_find_md(dev_t dev)
1320 {
1321 struct mapped_device *md;
1322 unsigned minor = MINOR(dev);
1323
1324 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1325 return NULL;
1326
1327 spin_lock(&_minor_lock);
1328
1329 md = idr_find(&_minor_idr, minor);
1330 if (md && (md == MINOR_ALLOCED ||
1331 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1332 test_bit(DMF_FREEING, &md->flags))) {
1333 md = NULL;
1334 goto out;
1335 }
1336
1337 out:
1338 spin_unlock(&_minor_lock);
1339
1340 return md;
1341 }
1342
1343 struct mapped_device *dm_get_md(dev_t dev)
1344 {
1345 struct mapped_device *md = dm_find_md(dev);
1346
1347 if (md)
1348 dm_get(md);
1349
1350 return md;
1351 }
1352
1353 void *dm_get_mdptr(struct mapped_device *md)
1354 {
1355 return md->interface_ptr;
1356 }
1357
1358 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1359 {
1360 md->interface_ptr = ptr;
1361 }
1362
1363 void dm_get(struct mapped_device *md)
1364 {
1365 atomic_inc(&md->holders);
1366 }
1367
1368 const char *dm_device_name(struct mapped_device *md)
1369 {
1370 return md->name;
1371 }
1372 EXPORT_SYMBOL_GPL(dm_device_name);
1373
1374 void dm_put(struct mapped_device *md)
1375 {
1376 struct dm_table *map;
1377
1378 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1379
1380 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1381 map = dm_get_table(md);
1382 idr_replace(&_minor_idr, MINOR_ALLOCED,
1383 MINOR(disk_devt(dm_disk(md))));
1384 set_bit(DMF_FREEING, &md->flags);
1385 spin_unlock(&_minor_lock);
1386 if (!dm_suspended(md)) {
1387 dm_table_presuspend_targets(map);
1388 dm_table_postsuspend_targets(map);
1389 }
1390 dm_sysfs_exit(md);
1391 dm_table_put(map);
1392 __unbind(md);
1393 free_dev(md);
1394 }
1395 }
1396 EXPORT_SYMBOL_GPL(dm_put);
1397
1398 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
1399 {
1400 int r = 0;
1401 DECLARE_WAITQUEUE(wait, current);
1402
1403 dm_unplug_all(md->queue);
1404
1405 add_wait_queue(&md->wait, &wait);
1406
1407 while (1) {
1408 set_current_state(interruptible);
1409
1410 smp_mb();
1411 if (!atomic_read(&md->pending))
1412 break;
1413
1414 if (interruptible == TASK_INTERRUPTIBLE &&
1415 signal_pending(current)) {
1416 r = -EINTR;
1417 break;
1418 }
1419
1420 io_schedule();
1421 }
1422 set_current_state(TASK_RUNNING);
1423
1424 remove_wait_queue(&md->wait, &wait);
1425
1426 return r;
1427 }
1428
1429 static int dm_flush(struct mapped_device *md)
1430 {
1431 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
1432 return 0;
1433 }
1434
1435 static void process_barrier(struct mapped_device *md, struct bio *bio)
1436 {
1437 int error = dm_flush(md);
1438
1439 if (unlikely(error)) {
1440 bio_endio(bio, error);
1441 return;
1442 }
1443 if (bio_empty_barrier(bio)) {
1444 bio_endio(bio, 0);
1445 return;
1446 }
1447
1448 __split_and_process_bio(md, bio);
1449
1450 error = dm_flush(md);
1451
1452 if (!error && md->barrier_error)
1453 error = md->barrier_error;
1454
1455 if (md->barrier_error != DM_ENDIO_REQUEUE)
1456 bio_endio(bio, error);
1457 }
1458
1459 /*
1460 * Process the deferred bios
1461 */
1462 static void dm_wq_work(struct work_struct *work)
1463 {
1464 struct mapped_device *md = container_of(work, struct mapped_device,
1465 work);
1466 struct bio *c;
1467
1468 down_write(&md->io_lock);
1469
1470 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1471 spin_lock_irq(&md->deferred_lock);
1472 c = bio_list_pop(&md->deferred);
1473 spin_unlock_irq(&md->deferred_lock);
1474
1475 if (!c) {
1476 clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1477 break;
1478 }
1479
1480 up_write(&md->io_lock);
1481
1482 if (bio_barrier(c))
1483 process_barrier(md, c);
1484 else
1485 __split_and_process_bio(md, c);
1486
1487 down_write(&md->io_lock);
1488 }
1489
1490 up_write(&md->io_lock);
1491 }
1492
1493 static void dm_queue_flush(struct mapped_device *md)
1494 {
1495 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1496 smp_mb__after_clear_bit();
1497 queue_work(md->wq, &md->work);
1498 }
1499
1500 /*
1501 * Swap in a new table (destroying old one).
1502 */
1503 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1504 {
1505 int r = -EINVAL;
1506
1507 mutex_lock(&md->suspend_lock);
1508
1509 /* device must be suspended */
1510 if (!dm_suspended(md))
1511 goto out;
1512
1513 /* without bdev, the device size cannot be changed */
1514 if (!md->suspended_bdev)
1515 if (get_capacity(md->disk) != dm_table_get_size(table))
1516 goto out;
1517
1518 __unbind(md);
1519 r = __bind(md, table);
1520
1521 out:
1522 mutex_unlock(&md->suspend_lock);
1523 return r;
1524 }
1525
1526 /*
1527 * Functions to lock and unlock any filesystem running on the
1528 * device.
1529 */
1530 static int lock_fs(struct mapped_device *md)
1531 {
1532 int r;
1533
1534 WARN_ON(md->frozen_sb);
1535
1536 md->frozen_sb = freeze_bdev(md->suspended_bdev);
1537 if (IS_ERR(md->frozen_sb)) {
1538 r = PTR_ERR(md->frozen_sb);
1539 md->frozen_sb = NULL;
1540 return r;
1541 }
1542
1543 set_bit(DMF_FROZEN, &md->flags);
1544
1545 /* don't bdput right now, we don't want the bdev
1546 * to go away while it is locked.
1547 */
1548 return 0;
1549 }
1550
1551 static void unlock_fs(struct mapped_device *md)
1552 {
1553 if (!test_bit(DMF_FROZEN, &md->flags))
1554 return;
1555
1556 thaw_bdev(md->suspended_bdev, md->frozen_sb);
1557 md->frozen_sb = NULL;
1558 clear_bit(DMF_FROZEN, &md->flags);
1559 }
1560
1561 /*
1562 * We need to be able to change a mapping table under a mounted
1563 * filesystem. For example we might want to move some data in
1564 * the background. Before the table can be swapped with
1565 * dm_bind_table, dm_suspend must be called to flush any in
1566 * flight bios and ensure that any further io gets deferred.
1567 */
1568 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1569 {
1570 struct dm_table *map = NULL;
1571 int r = 0;
1572 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1573 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1574
1575 mutex_lock(&md->suspend_lock);
1576
1577 if (dm_suspended(md)) {
1578 r = -EINVAL;
1579 goto out_unlock;
1580 }
1581
1582 map = dm_get_table(md);
1583
1584 /*
1585 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1586 * This flag is cleared before dm_suspend returns.
1587 */
1588 if (noflush)
1589 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1590
1591 /* This does not get reverted if there's an error later. */
1592 dm_table_presuspend_targets(map);
1593
1594 /* bdget() can stall if the pending I/Os are not flushed */
1595 if (!noflush) {
1596 md->suspended_bdev = bdget_disk(md->disk, 0);
1597 if (!md->suspended_bdev) {
1598 DMWARN("bdget failed in dm_suspend");
1599 r = -ENOMEM;
1600 goto out;
1601 }
1602
1603 /*
1604 * Flush I/O to the device. noflush supersedes do_lockfs,
1605 * because lock_fs() needs to flush I/Os.
1606 */
1607 if (do_lockfs) {
1608 r = lock_fs(md);
1609 if (r)
1610 goto out;
1611 }
1612 }
1613
1614 /*
1615 * Here we must make sure that no processes are submitting requests
1616 * to target drivers i.e. no one may be executing
1617 * __split_and_process_bio. This is called from dm_request and
1618 * dm_wq_work.
1619 *
1620 * To get all processes out of __split_and_process_bio in dm_request,
1621 * we take the write lock. To prevent any process from reentering
1622 * __split_and_process_bio from dm_request, we set
1623 * DMF_QUEUE_IO_TO_THREAD.
1624 *
1625 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
1626 * and call flush_workqueue(md->wq). flush_workqueue will wait until
1627 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
1628 * further calls to __split_and_process_bio from dm_wq_work.
1629 */
1630 down_write(&md->io_lock);
1631 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1632 set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1633 up_write(&md->io_lock);
1634
1635 flush_workqueue(md->wq);
1636
1637 /*
1638 * At this point no more requests are entering target request routines.
1639 * We call dm_wait_for_completion to wait for all existing requests
1640 * to finish.
1641 */
1642 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
1643
1644 down_write(&md->io_lock);
1645 if (noflush)
1646 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1647 up_write(&md->io_lock);
1648
1649 /* were we interrupted ? */
1650 if (r < 0) {
1651 dm_queue_flush(md);
1652
1653 unlock_fs(md);
1654 goto out; /* pushback list is already flushed, so skip flush */
1655 }
1656
1657 /*
1658 * If dm_wait_for_completion returned 0, the device is completely
1659 * quiescent now. There is no request-processing activity. All new
1660 * requests are being added to md->deferred list.
1661 */
1662
1663 dm_table_postsuspend_targets(map);
1664
1665 set_bit(DMF_SUSPENDED, &md->flags);
1666
1667 out:
1668 if (r && md->suspended_bdev) {
1669 bdput(md->suspended_bdev);
1670 md->suspended_bdev = NULL;
1671 }
1672
1673 dm_table_put(map);
1674
1675 out_unlock:
1676 mutex_unlock(&md->suspend_lock);
1677 return r;
1678 }
1679
1680 int dm_resume(struct mapped_device *md)
1681 {
1682 int r = -EINVAL;
1683 struct dm_table *map = NULL;
1684
1685 mutex_lock(&md->suspend_lock);
1686 if (!dm_suspended(md))
1687 goto out;
1688
1689 map = dm_get_table(md);
1690 if (!map || !dm_table_get_size(map))
1691 goto out;
1692
1693 r = dm_table_resume_targets(map);
1694 if (r)
1695 goto out;
1696
1697 dm_queue_flush(md);
1698
1699 unlock_fs(md);
1700
1701 if (md->suspended_bdev) {
1702 bdput(md->suspended_bdev);
1703 md->suspended_bdev = NULL;
1704 }
1705
1706 clear_bit(DMF_SUSPENDED, &md->flags);
1707
1708 dm_table_unplug_all(map);
1709
1710 dm_kobject_uevent(md);
1711
1712 r = 0;
1713
1714 out:
1715 dm_table_put(map);
1716 mutex_unlock(&md->suspend_lock);
1717
1718 return r;
1719 }
1720
1721 /*-----------------------------------------------------------------
1722 * Event notification.
1723 *---------------------------------------------------------------*/
1724 void dm_kobject_uevent(struct mapped_device *md)
1725 {
1726 kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1727 }
1728
1729 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1730 {
1731 return atomic_add_return(1, &md->uevent_seq);
1732 }
1733
1734 uint32_t dm_get_event_nr(struct mapped_device *md)
1735 {
1736 return atomic_read(&md->event_nr);
1737 }
1738
1739 int dm_wait_event(struct mapped_device *md, int event_nr)
1740 {
1741 return wait_event_interruptible(md->eventq,
1742 (event_nr != atomic_read(&md->event_nr)));
1743 }
1744
1745 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1746 {
1747 unsigned long flags;
1748
1749 spin_lock_irqsave(&md->uevent_lock, flags);
1750 list_add(elist, &md->uevent_list);
1751 spin_unlock_irqrestore(&md->uevent_lock, flags);
1752 }
1753
1754 /*
1755 * The gendisk is only valid as long as you have a reference
1756 * count on 'md'.
1757 */
1758 struct gendisk *dm_disk(struct mapped_device *md)
1759 {
1760 return md->disk;
1761 }
1762
1763 struct kobject *dm_kobject(struct mapped_device *md)
1764 {
1765 return &md->kobj;
1766 }
1767
1768 /*
1769 * struct mapped_device should not be exported outside of dm.c
1770 * so use this check to verify that kobj is part of md structure
1771 */
1772 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
1773 {
1774 struct mapped_device *md;
1775
1776 md = container_of(kobj, struct mapped_device, kobj);
1777 if (&md->kobj != kobj)
1778 return NULL;
1779
1780 dm_get(md);
1781 return md;
1782 }
1783
1784 int dm_suspended(struct mapped_device *md)
1785 {
1786 return test_bit(DMF_SUSPENDED, &md->flags);
1787 }
1788
1789 int dm_noflush_suspending(struct dm_target *ti)
1790 {
1791 struct mapped_device *md = dm_table_get_md(ti->table);
1792 int r = __noflush_suspending(md);
1793
1794 dm_put(md);
1795
1796 return r;
1797 }
1798 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1799
1800 static struct block_device_operations dm_blk_dops = {
1801 .open = dm_blk_open,
1802 .release = dm_blk_close,
1803 .ioctl = dm_blk_ioctl,
1804 .getgeo = dm_blk_getgeo,
1805 .owner = THIS_MODULE
1806 };
1807
1808 EXPORT_SYMBOL(dm_get_mapinfo);
1809
1810 /*
1811 * module hooks
1812 */
1813 module_init(dm_init);
1814 module_exit(dm_exit);
1815
1816 module_param(major, uint, 0);
1817 MODULE_PARM_DESC(major, "The major number of the device mapper");
1818 MODULE_DESCRIPTION(DM_NAME " driver");
1819 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1820 MODULE_LICENSE("GPL");
This page took 0.064759 seconds and 6 git commands to generate.