Merge branches 'for-3.9/logitech', 'for-3.9/multitouch', 'for-3.9/ntrig', 'for-3...
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22
23 #include <trace/events/block.h>
24
25 #define DM_MSG_PREFIX "core"
26
27 #ifdef CONFIG_PRINTK
28 /*
29 * ratelimit state to be used in DMXXX_LIMIT().
30 */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36
37 /*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43
44 static const char *_name = DM_NAME;
45
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48
49 static DEFINE_IDR(_minor_idr);
50
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53 * For bio-based dm.
54 * One of these is allocated per bio.
55 */
56 struct dm_io {
57 struct mapped_device *md;
58 int error;
59 atomic_t io_count;
60 struct bio *bio;
61 unsigned long start_time;
62 spinlock_t endio_lock;
63 };
64
65 /*
66 * For request-based dm.
67 * One of these is allocated per request.
68 */
69 struct dm_rq_target_io {
70 struct mapped_device *md;
71 struct dm_target *ti;
72 struct request *orig, clone;
73 int error;
74 union map_info info;
75 };
76
77 /*
78 * For request-based dm - the bio clones we allocate are embedded in these
79 * structs.
80 *
81 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
82 * the bioset is created - this means the bio has to come at the end of the
83 * struct.
84 */
85 struct dm_rq_clone_bio_info {
86 struct bio *orig;
87 struct dm_rq_target_io *tio;
88 struct bio clone;
89 };
90
91 union map_info *dm_get_mapinfo(struct bio *bio)
92 {
93 if (bio && bio->bi_private)
94 return &((struct dm_target_io *)bio->bi_private)->info;
95 return NULL;
96 }
97
98 union map_info *dm_get_rq_mapinfo(struct request *rq)
99 {
100 if (rq && rq->end_io_data)
101 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
102 return NULL;
103 }
104 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
105
106 #define MINOR_ALLOCED ((void *)-1)
107
108 /*
109 * Bits for the md->flags field.
110 */
111 #define DMF_BLOCK_IO_FOR_SUSPEND 0
112 #define DMF_SUSPENDED 1
113 #define DMF_FROZEN 2
114 #define DMF_FREEING 3
115 #define DMF_DELETING 4
116 #define DMF_NOFLUSH_SUSPENDING 5
117 #define DMF_MERGE_IS_OPTIONAL 6
118
119 /*
120 * Work processed by per-device workqueue.
121 */
122 struct mapped_device {
123 struct rw_semaphore io_lock;
124 struct mutex suspend_lock;
125 rwlock_t map_lock;
126 atomic_t holders;
127 atomic_t open_count;
128
129 unsigned long flags;
130
131 struct request_queue *queue;
132 unsigned type;
133 /* Protect queue and type against concurrent access. */
134 struct mutex type_lock;
135
136 struct target_type *immutable_target_type;
137
138 struct gendisk *disk;
139 char name[16];
140
141 void *interface_ptr;
142
143 /*
144 * A list of ios that arrived while we were suspended.
145 */
146 atomic_t pending[2];
147 wait_queue_head_t wait;
148 struct work_struct work;
149 struct bio_list deferred;
150 spinlock_t deferred_lock;
151
152 /*
153 * Processing queue (flush)
154 */
155 struct workqueue_struct *wq;
156
157 /*
158 * The current mapping.
159 */
160 struct dm_table *map;
161
162 /*
163 * io objects are allocated from here.
164 */
165 mempool_t *io_pool;
166 mempool_t *tio_pool;
167
168 struct bio_set *bs;
169
170 /*
171 * Event handling.
172 */
173 atomic_t event_nr;
174 wait_queue_head_t eventq;
175 atomic_t uevent_seq;
176 struct list_head uevent_list;
177 spinlock_t uevent_lock; /* Protect access to uevent_list */
178
179 /*
180 * freeze/thaw support require holding onto a super block
181 */
182 struct super_block *frozen_sb;
183 struct block_device *bdev;
184
185 /* forced geometry settings */
186 struct hd_geometry geometry;
187
188 /* sysfs handle */
189 struct kobject kobj;
190
191 /* zero-length flush that will be cloned and submitted to targets */
192 struct bio flush_bio;
193 };
194
195 /*
196 * For mempools pre-allocation at the table loading time.
197 */
198 struct dm_md_mempools {
199 mempool_t *io_pool;
200 mempool_t *tio_pool;
201 struct bio_set *bs;
202 };
203
204 #define MIN_IOS 256
205 static struct kmem_cache *_io_cache;
206 static struct kmem_cache *_rq_tio_cache;
207
208 /*
209 * Unused now, and needs to be deleted. But since io_pool is overloaded and it's
210 * still used for _io_cache, I'm leaving this for a later cleanup
211 */
212 static struct kmem_cache *_rq_bio_info_cache;
213
214 static int __init local_init(void)
215 {
216 int r = -ENOMEM;
217
218 /* allocate a slab for the dm_ios */
219 _io_cache = KMEM_CACHE(dm_io, 0);
220 if (!_io_cache)
221 return r;
222
223 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
224 if (!_rq_tio_cache)
225 goto out_free_io_cache;
226
227 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
228 if (!_rq_bio_info_cache)
229 goto out_free_rq_tio_cache;
230
231 r = dm_uevent_init();
232 if (r)
233 goto out_free_rq_bio_info_cache;
234
235 _major = major;
236 r = register_blkdev(_major, _name);
237 if (r < 0)
238 goto out_uevent_exit;
239
240 if (!_major)
241 _major = r;
242
243 return 0;
244
245 out_uevent_exit:
246 dm_uevent_exit();
247 out_free_rq_bio_info_cache:
248 kmem_cache_destroy(_rq_bio_info_cache);
249 out_free_rq_tio_cache:
250 kmem_cache_destroy(_rq_tio_cache);
251 out_free_io_cache:
252 kmem_cache_destroy(_io_cache);
253
254 return r;
255 }
256
257 static void local_exit(void)
258 {
259 kmem_cache_destroy(_rq_bio_info_cache);
260 kmem_cache_destroy(_rq_tio_cache);
261 kmem_cache_destroy(_io_cache);
262 unregister_blkdev(_major, _name);
263 dm_uevent_exit();
264
265 _major = 0;
266
267 DMINFO("cleaned up");
268 }
269
270 static int (*_inits[])(void) __initdata = {
271 local_init,
272 dm_target_init,
273 dm_linear_init,
274 dm_stripe_init,
275 dm_io_init,
276 dm_kcopyd_init,
277 dm_interface_init,
278 };
279
280 static void (*_exits[])(void) = {
281 local_exit,
282 dm_target_exit,
283 dm_linear_exit,
284 dm_stripe_exit,
285 dm_io_exit,
286 dm_kcopyd_exit,
287 dm_interface_exit,
288 };
289
290 static int __init dm_init(void)
291 {
292 const int count = ARRAY_SIZE(_inits);
293
294 int r, i;
295
296 for (i = 0; i < count; i++) {
297 r = _inits[i]();
298 if (r)
299 goto bad;
300 }
301
302 return 0;
303
304 bad:
305 while (i--)
306 _exits[i]();
307
308 return r;
309 }
310
311 static void __exit dm_exit(void)
312 {
313 int i = ARRAY_SIZE(_exits);
314
315 while (i--)
316 _exits[i]();
317
318 /*
319 * Should be empty by this point.
320 */
321 idr_remove_all(&_minor_idr);
322 idr_destroy(&_minor_idr);
323 }
324
325 /*
326 * Block device functions
327 */
328 int dm_deleting_md(struct mapped_device *md)
329 {
330 return test_bit(DMF_DELETING, &md->flags);
331 }
332
333 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
334 {
335 struct mapped_device *md;
336
337 spin_lock(&_minor_lock);
338
339 md = bdev->bd_disk->private_data;
340 if (!md)
341 goto out;
342
343 if (test_bit(DMF_FREEING, &md->flags) ||
344 dm_deleting_md(md)) {
345 md = NULL;
346 goto out;
347 }
348
349 dm_get(md);
350 atomic_inc(&md->open_count);
351
352 out:
353 spin_unlock(&_minor_lock);
354
355 return md ? 0 : -ENXIO;
356 }
357
358 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
359 {
360 struct mapped_device *md = disk->private_data;
361
362 spin_lock(&_minor_lock);
363
364 atomic_dec(&md->open_count);
365 dm_put(md);
366
367 spin_unlock(&_minor_lock);
368
369 return 0;
370 }
371
372 int dm_open_count(struct mapped_device *md)
373 {
374 return atomic_read(&md->open_count);
375 }
376
377 /*
378 * Guarantees nothing is using the device before it's deleted.
379 */
380 int dm_lock_for_deletion(struct mapped_device *md)
381 {
382 int r = 0;
383
384 spin_lock(&_minor_lock);
385
386 if (dm_open_count(md))
387 r = -EBUSY;
388 else
389 set_bit(DMF_DELETING, &md->flags);
390
391 spin_unlock(&_minor_lock);
392
393 return r;
394 }
395
396 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
397 {
398 struct mapped_device *md = bdev->bd_disk->private_data;
399
400 return dm_get_geometry(md, geo);
401 }
402
403 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
404 unsigned int cmd, unsigned long arg)
405 {
406 struct mapped_device *md = bdev->bd_disk->private_data;
407 struct dm_table *map = dm_get_live_table(md);
408 struct dm_target *tgt;
409 int r = -ENOTTY;
410
411 if (!map || !dm_table_get_size(map))
412 goto out;
413
414 /* We only support devices that have a single target */
415 if (dm_table_get_num_targets(map) != 1)
416 goto out;
417
418 tgt = dm_table_get_target(map, 0);
419
420 if (dm_suspended_md(md)) {
421 r = -EAGAIN;
422 goto out;
423 }
424
425 if (tgt->type->ioctl)
426 r = tgt->type->ioctl(tgt, cmd, arg);
427
428 out:
429 dm_table_put(map);
430
431 return r;
432 }
433
434 static struct dm_io *alloc_io(struct mapped_device *md)
435 {
436 return mempool_alloc(md->io_pool, GFP_NOIO);
437 }
438
439 static void free_io(struct mapped_device *md, struct dm_io *io)
440 {
441 mempool_free(io, md->io_pool);
442 }
443
444 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
445 {
446 bio_put(&tio->clone);
447 }
448
449 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
450 gfp_t gfp_mask)
451 {
452 return mempool_alloc(md->tio_pool, gfp_mask);
453 }
454
455 static void free_rq_tio(struct dm_rq_target_io *tio)
456 {
457 mempool_free(tio, tio->md->tio_pool);
458 }
459
460 static int md_in_flight(struct mapped_device *md)
461 {
462 return atomic_read(&md->pending[READ]) +
463 atomic_read(&md->pending[WRITE]);
464 }
465
466 static void start_io_acct(struct dm_io *io)
467 {
468 struct mapped_device *md = io->md;
469 int cpu;
470 int rw = bio_data_dir(io->bio);
471
472 io->start_time = jiffies;
473
474 cpu = part_stat_lock();
475 part_round_stats(cpu, &dm_disk(md)->part0);
476 part_stat_unlock();
477 atomic_set(&dm_disk(md)->part0.in_flight[rw],
478 atomic_inc_return(&md->pending[rw]));
479 }
480
481 static void end_io_acct(struct dm_io *io)
482 {
483 struct mapped_device *md = io->md;
484 struct bio *bio = io->bio;
485 unsigned long duration = jiffies - io->start_time;
486 int pending, cpu;
487 int rw = bio_data_dir(bio);
488
489 cpu = part_stat_lock();
490 part_round_stats(cpu, &dm_disk(md)->part0);
491 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
492 part_stat_unlock();
493
494 /*
495 * After this is decremented the bio must not be touched if it is
496 * a flush.
497 */
498 pending = atomic_dec_return(&md->pending[rw]);
499 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
500 pending += atomic_read(&md->pending[rw^0x1]);
501
502 /* nudge anyone waiting on suspend queue */
503 if (!pending)
504 wake_up(&md->wait);
505 }
506
507 /*
508 * Add the bio to the list of deferred io.
509 */
510 static void queue_io(struct mapped_device *md, struct bio *bio)
511 {
512 unsigned long flags;
513
514 spin_lock_irqsave(&md->deferred_lock, flags);
515 bio_list_add(&md->deferred, bio);
516 spin_unlock_irqrestore(&md->deferred_lock, flags);
517 queue_work(md->wq, &md->work);
518 }
519
520 /*
521 * Everyone (including functions in this file), should use this
522 * function to access the md->map field, and make sure they call
523 * dm_table_put() when finished.
524 */
525 struct dm_table *dm_get_live_table(struct mapped_device *md)
526 {
527 struct dm_table *t;
528 unsigned long flags;
529
530 read_lock_irqsave(&md->map_lock, flags);
531 t = md->map;
532 if (t)
533 dm_table_get(t);
534 read_unlock_irqrestore(&md->map_lock, flags);
535
536 return t;
537 }
538
539 /*
540 * Get the geometry associated with a dm device
541 */
542 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
543 {
544 *geo = md->geometry;
545
546 return 0;
547 }
548
549 /*
550 * Set the geometry of a device.
551 */
552 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
553 {
554 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
555
556 if (geo->start > sz) {
557 DMWARN("Start sector is beyond the geometry limits.");
558 return -EINVAL;
559 }
560
561 md->geometry = *geo;
562
563 return 0;
564 }
565
566 /*-----------------------------------------------------------------
567 * CRUD START:
568 * A more elegant soln is in the works that uses the queue
569 * merge fn, unfortunately there are a couple of changes to
570 * the block layer that I want to make for this. So in the
571 * interests of getting something for people to use I give
572 * you this clearly demarcated crap.
573 *---------------------------------------------------------------*/
574
575 static int __noflush_suspending(struct mapped_device *md)
576 {
577 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
578 }
579
580 /*
581 * Decrements the number of outstanding ios that a bio has been
582 * cloned into, completing the original io if necc.
583 */
584 static void dec_pending(struct dm_io *io, int error)
585 {
586 unsigned long flags;
587 int io_error;
588 struct bio *bio;
589 struct mapped_device *md = io->md;
590
591 /* Push-back supersedes any I/O errors */
592 if (unlikely(error)) {
593 spin_lock_irqsave(&io->endio_lock, flags);
594 if (!(io->error > 0 && __noflush_suspending(md)))
595 io->error = error;
596 spin_unlock_irqrestore(&io->endio_lock, flags);
597 }
598
599 if (atomic_dec_and_test(&io->io_count)) {
600 if (io->error == DM_ENDIO_REQUEUE) {
601 /*
602 * Target requested pushing back the I/O.
603 */
604 spin_lock_irqsave(&md->deferred_lock, flags);
605 if (__noflush_suspending(md))
606 bio_list_add_head(&md->deferred, io->bio);
607 else
608 /* noflush suspend was interrupted. */
609 io->error = -EIO;
610 spin_unlock_irqrestore(&md->deferred_lock, flags);
611 }
612
613 io_error = io->error;
614 bio = io->bio;
615 end_io_acct(io);
616 free_io(md, io);
617
618 if (io_error == DM_ENDIO_REQUEUE)
619 return;
620
621 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
622 /*
623 * Preflush done for flush with data, reissue
624 * without REQ_FLUSH.
625 */
626 bio->bi_rw &= ~REQ_FLUSH;
627 queue_io(md, bio);
628 } else {
629 /* done with normal IO or empty flush */
630 trace_block_bio_complete(md->queue, bio, io_error);
631 bio_endio(bio, io_error);
632 }
633 }
634 }
635
636 static void clone_endio(struct bio *bio, int error)
637 {
638 int r = 0;
639 struct dm_target_io *tio = bio->bi_private;
640 struct dm_io *io = tio->io;
641 struct mapped_device *md = tio->io->md;
642 dm_endio_fn endio = tio->ti->type->end_io;
643
644 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
645 error = -EIO;
646
647 if (endio) {
648 r = endio(tio->ti, bio, error);
649 if (r < 0 || r == DM_ENDIO_REQUEUE)
650 /*
651 * error and requeue request are handled
652 * in dec_pending().
653 */
654 error = r;
655 else if (r == DM_ENDIO_INCOMPLETE)
656 /* The target will handle the io */
657 return;
658 else if (r) {
659 DMWARN("unimplemented target endio return value: %d", r);
660 BUG();
661 }
662 }
663
664 free_tio(md, tio);
665 dec_pending(io, error);
666 }
667
668 /*
669 * Partial completion handling for request-based dm
670 */
671 static void end_clone_bio(struct bio *clone, int error)
672 {
673 struct dm_rq_clone_bio_info *info = clone->bi_private;
674 struct dm_rq_target_io *tio = info->tio;
675 struct bio *bio = info->orig;
676 unsigned int nr_bytes = info->orig->bi_size;
677
678 bio_put(clone);
679
680 if (tio->error)
681 /*
682 * An error has already been detected on the request.
683 * Once error occurred, just let clone->end_io() handle
684 * the remainder.
685 */
686 return;
687 else if (error) {
688 /*
689 * Don't notice the error to the upper layer yet.
690 * The error handling decision is made by the target driver,
691 * when the request is completed.
692 */
693 tio->error = error;
694 return;
695 }
696
697 /*
698 * I/O for the bio successfully completed.
699 * Notice the data completion to the upper layer.
700 */
701
702 /*
703 * bios are processed from the head of the list.
704 * So the completing bio should always be rq->bio.
705 * If it's not, something wrong is happening.
706 */
707 if (tio->orig->bio != bio)
708 DMERR("bio completion is going in the middle of the request");
709
710 /*
711 * Update the original request.
712 * Do not use blk_end_request() here, because it may complete
713 * the original request before the clone, and break the ordering.
714 */
715 blk_update_request(tio->orig, 0, nr_bytes);
716 }
717
718 /*
719 * Don't touch any member of the md after calling this function because
720 * the md may be freed in dm_put() at the end of this function.
721 * Or do dm_get() before calling this function and dm_put() later.
722 */
723 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
724 {
725 atomic_dec(&md->pending[rw]);
726
727 /* nudge anyone waiting on suspend queue */
728 if (!md_in_flight(md))
729 wake_up(&md->wait);
730
731 /*
732 * Run this off this callpath, as drivers could invoke end_io while
733 * inside their request_fn (and holding the queue lock). Calling
734 * back into ->request_fn() could deadlock attempting to grab the
735 * queue lock again.
736 */
737 if (run_queue)
738 blk_run_queue_async(md->queue);
739
740 /*
741 * dm_put() must be at the end of this function. See the comment above
742 */
743 dm_put(md);
744 }
745
746 static void free_rq_clone(struct request *clone)
747 {
748 struct dm_rq_target_io *tio = clone->end_io_data;
749
750 blk_rq_unprep_clone(clone);
751 free_rq_tio(tio);
752 }
753
754 /*
755 * Complete the clone and the original request.
756 * Must be called without queue lock.
757 */
758 static void dm_end_request(struct request *clone, int error)
759 {
760 int rw = rq_data_dir(clone);
761 struct dm_rq_target_io *tio = clone->end_io_data;
762 struct mapped_device *md = tio->md;
763 struct request *rq = tio->orig;
764
765 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
766 rq->errors = clone->errors;
767 rq->resid_len = clone->resid_len;
768
769 if (rq->sense)
770 /*
771 * We are using the sense buffer of the original
772 * request.
773 * So setting the length of the sense data is enough.
774 */
775 rq->sense_len = clone->sense_len;
776 }
777
778 free_rq_clone(clone);
779 blk_end_request_all(rq, error);
780 rq_completed(md, rw, true);
781 }
782
783 static void dm_unprep_request(struct request *rq)
784 {
785 struct request *clone = rq->special;
786
787 rq->special = NULL;
788 rq->cmd_flags &= ~REQ_DONTPREP;
789
790 free_rq_clone(clone);
791 }
792
793 /*
794 * Requeue the original request of a clone.
795 */
796 void dm_requeue_unmapped_request(struct request *clone)
797 {
798 int rw = rq_data_dir(clone);
799 struct dm_rq_target_io *tio = clone->end_io_data;
800 struct mapped_device *md = tio->md;
801 struct request *rq = tio->orig;
802 struct request_queue *q = rq->q;
803 unsigned long flags;
804
805 dm_unprep_request(rq);
806
807 spin_lock_irqsave(q->queue_lock, flags);
808 blk_requeue_request(q, rq);
809 spin_unlock_irqrestore(q->queue_lock, flags);
810
811 rq_completed(md, rw, 0);
812 }
813 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
814
815 static void __stop_queue(struct request_queue *q)
816 {
817 blk_stop_queue(q);
818 }
819
820 static void stop_queue(struct request_queue *q)
821 {
822 unsigned long flags;
823
824 spin_lock_irqsave(q->queue_lock, flags);
825 __stop_queue(q);
826 spin_unlock_irqrestore(q->queue_lock, flags);
827 }
828
829 static void __start_queue(struct request_queue *q)
830 {
831 if (blk_queue_stopped(q))
832 blk_start_queue(q);
833 }
834
835 static void start_queue(struct request_queue *q)
836 {
837 unsigned long flags;
838
839 spin_lock_irqsave(q->queue_lock, flags);
840 __start_queue(q);
841 spin_unlock_irqrestore(q->queue_lock, flags);
842 }
843
844 static void dm_done(struct request *clone, int error, bool mapped)
845 {
846 int r = error;
847 struct dm_rq_target_io *tio = clone->end_io_data;
848 dm_request_endio_fn rq_end_io = NULL;
849
850 if (tio->ti) {
851 rq_end_io = tio->ti->type->rq_end_io;
852
853 if (mapped && rq_end_io)
854 r = rq_end_io(tio->ti, clone, error, &tio->info);
855 }
856
857 if (r <= 0)
858 /* The target wants to complete the I/O */
859 dm_end_request(clone, r);
860 else if (r == DM_ENDIO_INCOMPLETE)
861 /* The target will handle the I/O */
862 return;
863 else if (r == DM_ENDIO_REQUEUE)
864 /* The target wants to requeue the I/O */
865 dm_requeue_unmapped_request(clone);
866 else {
867 DMWARN("unimplemented target endio return value: %d", r);
868 BUG();
869 }
870 }
871
872 /*
873 * Request completion handler for request-based dm
874 */
875 static void dm_softirq_done(struct request *rq)
876 {
877 bool mapped = true;
878 struct request *clone = rq->completion_data;
879 struct dm_rq_target_io *tio = clone->end_io_data;
880
881 if (rq->cmd_flags & REQ_FAILED)
882 mapped = false;
883
884 dm_done(clone, tio->error, mapped);
885 }
886
887 /*
888 * Complete the clone and the original request with the error status
889 * through softirq context.
890 */
891 static void dm_complete_request(struct request *clone, int error)
892 {
893 struct dm_rq_target_io *tio = clone->end_io_data;
894 struct request *rq = tio->orig;
895
896 tio->error = error;
897 rq->completion_data = clone;
898 blk_complete_request(rq);
899 }
900
901 /*
902 * Complete the not-mapped clone and the original request with the error status
903 * through softirq context.
904 * Target's rq_end_io() function isn't called.
905 * This may be used when the target's map_rq() function fails.
906 */
907 void dm_kill_unmapped_request(struct request *clone, int error)
908 {
909 struct dm_rq_target_io *tio = clone->end_io_data;
910 struct request *rq = tio->orig;
911
912 rq->cmd_flags |= REQ_FAILED;
913 dm_complete_request(clone, error);
914 }
915 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
916
917 /*
918 * Called with the queue lock held
919 */
920 static void end_clone_request(struct request *clone, int error)
921 {
922 /*
923 * For just cleaning up the information of the queue in which
924 * the clone was dispatched.
925 * The clone is *NOT* freed actually here because it is alloced from
926 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
927 */
928 __blk_put_request(clone->q, clone);
929
930 /*
931 * Actual request completion is done in a softirq context which doesn't
932 * hold the queue lock. Otherwise, deadlock could occur because:
933 * - another request may be submitted by the upper level driver
934 * of the stacking during the completion
935 * - the submission which requires queue lock may be done
936 * against this queue
937 */
938 dm_complete_request(clone, error);
939 }
940
941 /*
942 * Return maximum size of I/O possible at the supplied sector up to the current
943 * target boundary.
944 */
945 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
946 {
947 sector_t target_offset = dm_target_offset(ti, sector);
948
949 return ti->len - target_offset;
950 }
951
952 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
953 {
954 sector_t len = max_io_len_target_boundary(sector, ti);
955 sector_t offset, max_len;
956
957 /*
958 * Does the target need to split even further?
959 */
960 if (ti->max_io_len) {
961 offset = dm_target_offset(ti, sector);
962 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
963 max_len = sector_div(offset, ti->max_io_len);
964 else
965 max_len = offset & (ti->max_io_len - 1);
966 max_len = ti->max_io_len - max_len;
967
968 if (len > max_len)
969 len = max_len;
970 }
971
972 return len;
973 }
974
975 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
976 {
977 if (len > UINT_MAX) {
978 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
979 (unsigned long long)len, UINT_MAX);
980 ti->error = "Maximum size of target IO is too large";
981 return -EINVAL;
982 }
983
984 ti->max_io_len = (uint32_t) len;
985
986 return 0;
987 }
988 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
989
990 static void __map_bio(struct dm_target *ti, struct dm_target_io *tio)
991 {
992 int r;
993 sector_t sector;
994 struct mapped_device *md;
995 struct bio *clone = &tio->clone;
996
997 clone->bi_end_io = clone_endio;
998 clone->bi_private = tio;
999
1000 /*
1001 * Map the clone. If r == 0 we don't need to do
1002 * anything, the target has assumed ownership of
1003 * this io.
1004 */
1005 atomic_inc(&tio->io->io_count);
1006 sector = clone->bi_sector;
1007 r = ti->type->map(ti, clone);
1008 if (r == DM_MAPIO_REMAPPED) {
1009 /* the bio has been remapped so dispatch it */
1010
1011 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1012 tio->io->bio->bi_bdev->bd_dev, sector);
1013
1014 generic_make_request(clone);
1015 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1016 /* error the io and bail out, or requeue it if needed */
1017 md = tio->io->md;
1018 dec_pending(tio->io, r);
1019 free_tio(md, tio);
1020 } else if (r) {
1021 DMWARN("unimplemented target map return value: %d", r);
1022 BUG();
1023 }
1024 }
1025
1026 struct clone_info {
1027 struct mapped_device *md;
1028 struct dm_table *map;
1029 struct bio *bio;
1030 struct dm_io *io;
1031 sector_t sector;
1032 sector_t sector_count;
1033 unsigned short idx;
1034 };
1035
1036 /*
1037 * Creates a little bio that just does part of a bvec.
1038 */
1039 static void split_bvec(struct dm_target_io *tio, struct bio *bio,
1040 sector_t sector, unsigned short idx, unsigned int offset,
1041 unsigned int len, struct bio_set *bs)
1042 {
1043 struct bio *clone = &tio->clone;
1044 struct bio_vec *bv = bio->bi_io_vec + idx;
1045
1046 *clone->bi_io_vec = *bv;
1047
1048 clone->bi_sector = sector;
1049 clone->bi_bdev = bio->bi_bdev;
1050 clone->bi_rw = bio->bi_rw;
1051 clone->bi_vcnt = 1;
1052 clone->bi_size = to_bytes(len);
1053 clone->bi_io_vec->bv_offset = offset;
1054 clone->bi_io_vec->bv_len = clone->bi_size;
1055 clone->bi_flags |= 1 << BIO_CLONED;
1056
1057 if (bio_integrity(bio)) {
1058 bio_integrity_clone(clone, bio, GFP_NOIO);
1059 bio_integrity_trim(clone,
1060 bio_sector_offset(bio, idx, offset), len);
1061 }
1062 }
1063
1064 /*
1065 * Creates a bio that consists of range of complete bvecs.
1066 */
1067 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1068 sector_t sector, unsigned short idx,
1069 unsigned short bv_count, unsigned int len,
1070 struct bio_set *bs)
1071 {
1072 struct bio *clone = &tio->clone;
1073
1074 __bio_clone(clone, bio);
1075 clone->bi_sector = sector;
1076 clone->bi_idx = idx;
1077 clone->bi_vcnt = idx + bv_count;
1078 clone->bi_size = to_bytes(len);
1079 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1080
1081 if (bio_integrity(bio)) {
1082 bio_integrity_clone(clone, bio, GFP_NOIO);
1083
1084 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1085 bio_integrity_trim(clone,
1086 bio_sector_offset(bio, idx, 0), len);
1087 }
1088 }
1089
1090 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1091 struct dm_target *ti, int nr_iovecs)
1092 {
1093 struct dm_target_io *tio;
1094 struct bio *clone;
1095
1096 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1097 tio = container_of(clone, struct dm_target_io, clone);
1098
1099 tio->io = ci->io;
1100 tio->ti = ti;
1101 memset(&tio->info, 0, sizeof(tio->info));
1102 tio->target_request_nr = 0;
1103
1104 return tio;
1105 }
1106
1107 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1108 unsigned request_nr, sector_t len)
1109 {
1110 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs);
1111 struct bio *clone = &tio->clone;
1112
1113 tio->target_request_nr = request_nr;
1114
1115 /*
1116 * Discard requests require the bio's inline iovecs be initialized.
1117 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1118 * and discard, so no need for concern about wasted bvec allocations.
1119 */
1120
1121 __bio_clone(clone, ci->bio);
1122 if (len) {
1123 clone->bi_sector = ci->sector;
1124 clone->bi_size = to_bytes(len);
1125 }
1126
1127 __map_bio(ti, tio);
1128 }
1129
1130 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1131 unsigned num_requests, sector_t len)
1132 {
1133 unsigned request_nr;
1134
1135 for (request_nr = 0; request_nr < num_requests; request_nr++)
1136 __issue_target_request(ci, ti, request_nr, len);
1137 }
1138
1139 static int __clone_and_map_empty_flush(struct clone_info *ci)
1140 {
1141 unsigned target_nr = 0;
1142 struct dm_target *ti;
1143
1144 BUG_ON(bio_has_data(ci->bio));
1145 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1146 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1147
1148 return 0;
1149 }
1150
1151 /*
1152 * Perform all io with a single clone.
1153 */
1154 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1155 {
1156 struct bio *bio = ci->bio;
1157 struct dm_target_io *tio;
1158
1159 tio = alloc_tio(ci, ti, bio->bi_max_vecs);
1160 clone_bio(tio, bio, ci->sector, ci->idx, bio->bi_vcnt - ci->idx,
1161 ci->sector_count, ci->md->bs);
1162 __map_bio(ti, tio);
1163 ci->sector_count = 0;
1164 }
1165
1166 typedef unsigned (*get_num_requests_fn)(struct dm_target *ti);
1167
1168 static unsigned get_num_discard_requests(struct dm_target *ti)
1169 {
1170 return ti->num_discard_requests;
1171 }
1172
1173 static unsigned get_num_write_same_requests(struct dm_target *ti)
1174 {
1175 return ti->num_write_same_requests;
1176 }
1177
1178 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1179
1180 static bool is_split_required_for_discard(struct dm_target *ti)
1181 {
1182 return ti->split_discard_requests;
1183 }
1184
1185 static int __clone_and_map_changing_extent_only(struct clone_info *ci,
1186 get_num_requests_fn get_num_requests,
1187 is_split_required_fn is_split_required)
1188 {
1189 struct dm_target *ti;
1190 sector_t len;
1191
1192 do {
1193 ti = dm_table_find_target(ci->map, ci->sector);
1194 if (!dm_target_is_valid(ti))
1195 return -EIO;
1196
1197 /*
1198 * Even though the device advertised support for this type of
1199 * request, that does not mean every target supports it, and
1200 * reconfiguration might also have changed that since the
1201 * check was performed.
1202 */
1203 if (!get_num_requests || !get_num_requests(ti))
1204 return -EOPNOTSUPP;
1205
1206 if (is_split_required && !is_split_required(ti))
1207 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1208 else
1209 len = min(ci->sector_count, max_io_len(ci->sector, ti));
1210
1211 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1212
1213 ci->sector += len;
1214 } while (ci->sector_count -= len);
1215
1216 return 0;
1217 }
1218
1219 static int __clone_and_map_discard(struct clone_info *ci)
1220 {
1221 return __clone_and_map_changing_extent_only(ci, get_num_discard_requests,
1222 is_split_required_for_discard);
1223 }
1224
1225 static int __clone_and_map_write_same(struct clone_info *ci)
1226 {
1227 return __clone_and_map_changing_extent_only(ci, get_num_write_same_requests, NULL);
1228 }
1229
1230 static int __clone_and_map(struct clone_info *ci)
1231 {
1232 struct bio *bio = ci->bio;
1233 struct dm_target *ti;
1234 sector_t len = 0, max;
1235 struct dm_target_io *tio;
1236
1237 if (unlikely(bio->bi_rw & REQ_DISCARD))
1238 return __clone_and_map_discard(ci);
1239 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1240 return __clone_and_map_write_same(ci);
1241
1242 ti = dm_table_find_target(ci->map, ci->sector);
1243 if (!dm_target_is_valid(ti))
1244 return -EIO;
1245
1246 max = max_io_len(ci->sector, ti);
1247
1248 if (ci->sector_count <= max) {
1249 /*
1250 * Optimise for the simple case where we can do all of
1251 * the remaining io with a single clone.
1252 */
1253 __clone_and_map_simple(ci, ti);
1254
1255 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1256 /*
1257 * There are some bvecs that don't span targets.
1258 * Do as many of these as possible.
1259 */
1260 int i;
1261 sector_t remaining = max;
1262 sector_t bv_len;
1263
1264 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1265 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1266
1267 if (bv_len > remaining)
1268 break;
1269
1270 remaining -= bv_len;
1271 len += bv_len;
1272 }
1273
1274 tio = alloc_tio(ci, ti, bio->bi_max_vecs);
1275 clone_bio(tio, bio, ci->sector, ci->idx, i - ci->idx, len,
1276 ci->md->bs);
1277 __map_bio(ti, tio);
1278
1279 ci->sector += len;
1280 ci->sector_count -= len;
1281 ci->idx = i;
1282
1283 } else {
1284 /*
1285 * Handle a bvec that must be split between two or more targets.
1286 */
1287 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1288 sector_t remaining = to_sector(bv->bv_len);
1289 unsigned int offset = 0;
1290
1291 do {
1292 if (offset) {
1293 ti = dm_table_find_target(ci->map, ci->sector);
1294 if (!dm_target_is_valid(ti))
1295 return -EIO;
1296
1297 max = max_io_len(ci->sector, ti);
1298 }
1299
1300 len = min(remaining, max);
1301
1302 tio = alloc_tio(ci, ti, 1);
1303 split_bvec(tio, bio, ci->sector, ci->idx,
1304 bv->bv_offset + offset, len, ci->md->bs);
1305
1306 __map_bio(ti, tio);
1307
1308 ci->sector += len;
1309 ci->sector_count -= len;
1310 offset += to_bytes(len);
1311 } while (remaining -= len);
1312
1313 ci->idx++;
1314 }
1315
1316 return 0;
1317 }
1318
1319 /*
1320 * Split the bio into several clones and submit it to targets.
1321 */
1322 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1323 {
1324 struct clone_info ci;
1325 int error = 0;
1326
1327 ci.map = dm_get_live_table(md);
1328 if (unlikely(!ci.map)) {
1329 bio_io_error(bio);
1330 return;
1331 }
1332
1333 ci.md = md;
1334 ci.io = alloc_io(md);
1335 ci.io->error = 0;
1336 atomic_set(&ci.io->io_count, 1);
1337 ci.io->bio = bio;
1338 ci.io->md = md;
1339 spin_lock_init(&ci.io->endio_lock);
1340 ci.sector = bio->bi_sector;
1341 ci.idx = bio->bi_idx;
1342
1343 start_io_acct(ci.io);
1344 if (bio->bi_rw & REQ_FLUSH) {
1345 ci.bio = &ci.md->flush_bio;
1346 ci.sector_count = 0;
1347 error = __clone_and_map_empty_flush(&ci);
1348 /* dec_pending submits any data associated with flush */
1349 } else {
1350 ci.bio = bio;
1351 ci.sector_count = bio_sectors(bio);
1352 while (ci.sector_count && !error)
1353 error = __clone_and_map(&ci);
1354 }
1355
1356 /* drop the extra reference count */
1357 dec_pending(ci.io, error);
1358 dm_table_put(ci.map);
1359 }
1360 /*-----------------------------------------------------------------
1361 * CRUD END
1362 *---------------------------------------------------------------*/
1363
1364 static int dm_merge_bvec(struct request_queue *q,
1365 struct bvec_merge_data *bvm,
1366 struct bio_vec *biovec)
1367 {
1368 struct mapped_device *md = q->queuedata;
1369 struct dm_table *map = dm_get_live_table(md);
1370 struct dm_target *ti;
1371 sector_t max_sectors;
1372 int max_size = 0;
1373
1374 if (unlikely(!map))
1375 goto out;
1376
1377 ti = dm_table_find_target(map, bvm->bi_sector);
1378 if (!dm_target_is_valid(ti))
1379 goto out_table;
1380
1381 /*
1382 * Find maximum amount of I/O that won't need splitting
1383 */
1384 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1385 (sector_t) BIO_MAX_SECTORS);
1386 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1387 if (max_size < 0)
1388 max_size = 0;
1389
1390 /*
1391 * merge_bvec_fn() returns number of bytes
1392 * it can accept at this offset
1393 * max is precomputed maximal io size
1394 */
1395 if (max_size && ti->type->merge)
1396 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1397 /*
1398 * If the target doesn't support merge method and some of the devices
1399 * provided their merge_bvec method (we know this by looking at
1400 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1401 * entries. So always set max_size to 0, and the code below allows
1402 * just one page.
1403 */
1404 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1405
1406 max_size = 0;
1407
1408 out_table:
1409 dm_table_put(map);
1410
1411 out:
1412 /*
1413 * Always allow an entire first page
1414 */
1415 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1416 max_size = biovec->bv_len;
1417
1418 return max_size;
1419 }
1420
1421 /*
1422 * The request function that just remaps the bio built up by
1423 * dm_merge_bvec.
1424 */
1425 static void _dm_request(struct request_queue *q, struct bio *bio)
1426 {
1427 int rw = bio_data_dir(bio);
1428 struct mapped_device *md = q->queuedata;
1429 int cpu;
1430
1431 down_read(&md->io_lock);
1432
1433 cpu = part_stat_lock();
1434 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1435 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1436 part_stat_unlock();
1437
1438 /* if we're suspended, we have to queue this io for later */
1439 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1440 up_read(&md->io_lock);
1441
1442 if (bio_rw(bio) != READA)
1443 queue_io(md, bio);
1444 else
1445 bio_io_error(bio);
1446 return;
1447 }
1448
1449 __split_and_process_bio(md, bio);
1450 up_read(&md->io_lock);
1451 return;
1452 }
1453
1454 static int dm_request_based(struct mapped_device *md)
1455 {
1456 return blk_queue_stackable(md->queue);
1457 }
1458
1459 static void dm_request(struct request_queue *q, struct bio *bio)
1460 {
1461 struct mapped_device *md = q->queuedata;
1462
1463 if (dm_request_based(md))
1464 blk_queue_bio(q, bio);
1465 else
1466 _dm_request(q, bio);
1467 }
1468
1469 void dm_dispatch_request(struct request *rq)
1470 {
1471 int r;
1472
1473 if (blk_queue_io_stat(rq->q))
1474 rq->cmd_flags |= REQ_IO_STAT;
1475
1476 rq->start_time = jiffies;
1477 r = blk_insert_cloned_request(rq->q, rq);
1478 if (r)
1479 dm_complete_request(rq, r);
1480 }
1481 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1482
1483 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1484 void *data)
1485 {
1486 struct dm_rq_target_io *tio = data;
1487 struct dm_rq_clone_bio_info *info =
1488 container_of(bio, struct dm_rq_clone_bio_info, clone);
1489
1490 info->orig = bio_orig;
1491 info->tio = tio;
1492 bio->bi_end_io = end_clone_bio;
1493 bio->bi_private = info;
1494
1495 return 0;
1496 }
1497
1498 static int setup_clone(struct request *clone, struct request *rq,
1499 struct dm_rq_target_io *tio)
1500 {
1501 int r;
1502
1503 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1504 dm_rq_bio_constructor, tio);
1505 if (r)
1506 return r;
1507
1508 clone->cmd = rq->cmd;
1509 clone->cmd_len = rq->cmd_len;
1510 clone->sense = rq->sense;
1511 clone->buffer = rq->buffer;
1512 clone->end_io = end_clone_request;
1513 clone->end_io_data = tio;
1514
1515 return 0;
1516 }
1517
1518 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1519 gfp_t gfp_mask)
1520 {
1521 struct request *clone;
1522 struct dm_rq_target_io *tio;
1523
1524 tio = alloc_rq_tio(md, gfp_mask);
1525 if (!tio)
1526 return NULL;
1527
1528 tio->md = md;
1529 tio->ti = NULL;
1530 tio->orig = rq;
1531 tio->error = 0;
1532 memset(&tio->info, 0, sizeof(tio->info));
1533
1534 clone = &tio->clone;
1535 if (setup_clone(clone, rq, tio)) {
1536 /* -ENOMEM */
1537 free_rq_tio(tio);
1538 return NULL;
1539 }
1540
1541 return clone;
1542 }
1543
1544 /*
1545 * Called with the queue lock held.
1546 */
1547 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1548 {
1549 struct mapped_device *md = q->queuedata;
1550 struct request *clone;
1551
1552 if (unlikely(rq->special)) {
1553 DMWARN("Already has something in rq->special.");
1554 return BLKPREP_KILL;
1555 }
1556
1557 clone = clone_rq(rq, md, GFP_ATOMIC);
1558 if (!clone)
1559 return BLKPREP_DEFER;
1560
1561 rq->special = clone;
1562 rq->cmd_flags |= REQ_DONTPREP;
1563
1564 return BLKPREP_OK;
1565 }
1566
1567 /*
1568 * Returns:
1569 * 0 : the request has been processed (not requeued)
1570 * !0 : the request has been requeued
1571 */
1572 static int map_request(struct dm_target *ti, struct request *clone,
1573 struct mapped_device *md)
1574 {
1575 int r, requeued = 0;
1576 struct dm_rq_target_io *tio = clone->end_io_data;
1577
1578 tio->ti = ti;
1579 r = ti->type->map_rq(ti, clone, &tio->info);
1580 switch (r) {
1581 case DM_MAPIO_SUBMITTED:
1582 /* The target has taken the I/O to submit by itself later */
1583 break;
1584 case DM_MAPIO_REMAPPED:
1585 /* The target has remapped the I/O so dispatch it */
1586 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1587 blk_rq_pos(tio->orig));
1588 dm_dispatch_request(clone);
1589 break;
1590 case DM_MAPIO_REQUEUE:
1591 /* The target wants to requeue the I/O */
1592 dm_requeue_unmapped_request(clone);
1593 requeued = 1;
1594 break;
1595 default:
1596 if (r > 0) {
1597 DMWARN("unimplemented target map return value: %d", r);
1598 BUG();
1599 }
1600
1601 /* The target wants to complete the I/O */
1602 dm_kill_unmapped_request(clone, r);
1603 break;
1604 }
1605
1606 return requeued;
1607 }
1608
1609 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1610 {
1611 struct request *clone;
1612
1613 blk_start_request(orig);
1614 clone = orig->special;
1615 atomic_inc(&md->pending[rq_data_dir(clone)]);
1616
1617 /*
1618 * Hold the md reference here for the in-flight I/O.
1619 * We can't rely on the reference count by device opener,
1620 * because the device may be closed during the request completion
1621 * when all bios are completed.
1622 * See the comment in rq_completed() too.
1623 */
1624 dm_get(md);
1625
1626 return clone;
1627 }
1628
1629 /*
1630 * q->request_fn for request-based dm.
1631 * Called with the queue lock held.
1632 */
1633 static void dm_request_fn(struct request_queue *q)
1634 {
1635 struct mapped_device *md = q->queuedata;
1636 struct dm_table *map = dm_get_live_table(md);
1637 struct dm_target *ti;
1638 struct request *rq, *clone;
1639 sector_t pos;
1640
1641 /*
1642 * For suspend, check blk_queue_stopped() and increment
1643 * ->pending within a single queue_lock not to increment the
1644 * number of in-flight I/Os after the queue is stopped in
1645 * dm_suspend().
1646 */
1647 while (!blk_queue_stopped(q)) {
1648 rq = blk_peek_request(q);
1649 if (!rq)
1650 goto delay_and_out;
1651
1652 /* always use block 0 to find the target for flushes for now */
1653 pos = 0;
1654 if (!(rq->cmd_flags & REQ_FLUSH))
1655 pos = blk_rq_pos(rq);
1656
1657 ti = dm_table_find_target(map, pos);
1658 if (!dm_target_is_valid(ti)) {
1659 /*
1660 * Must perform setup, that dm_done() requires,
1661 * before calling dm_kill_unmapped_request
1662 */
1663 DMERR_LIMIT("request attempted access beyond the end of device");
1664 clone = dm_start_request(md, rq);
1665 dm_kill_unmapped_request(clone, -EIO);
1666 continue;
1667 }
1668
1669 if (ti->type->busy && ti->type->busy(ti))
1670 goto delay_and_out;
1671
1672 clone = dm_start_request(md, rq);
1673
1674 spin_unlock(q->queue_lock);
1675 if (map_request(ti, clone, md))
1676 goto requeued;
1677
1678 BUG_ON(!irqs_disabled());
1679 spin_lock(q->queue_lock);
1680 }
1681
1682 goto out;
1683
1684 requeued:
1685 BUG_ON(!irqs_disabled());
1686 spin_lock(q->queue_lock);
1687
1688 delay_and_out:
1689 blk_delay_queue(q, HZ / 10);
1690 out:
1691 dm_table_put(map);
1692 }
1693
1694 int dm_underlying_device_busy(struct request_queue *q)
1695 {
1696 return blk_lld_busy(q);
1697 }
1698 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1699
1700 static int dm_lld_busy(struct request_queue *q)
1701 {
1702 int r;
1703 struct mapped_device *md = q->queuedata;
1704 struct dm_table *map = dm_get_live_table(md);
1705
1706 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1707 r = 1;
1708 else
1709 r = dm_table_any_busy_target(map);
1710
1711 dm_table_put(map);
1712
1713 return r;
1714 }
1715
1716 static int dm_any_congested(void *congested_data, int bdi_bits)
1717 {
1718 int r = bdi_bits;
1719 struct mapped_device *md = congested_data;
1720 struct dm_table *map;
1721
1722 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1723 map = dm_get_live_table(md);
1724 if (map) {
1725 /*
1726 * Request-based dm cares about only own queue for
1727 * the query about congestion status of request_queue
1728 */
1729 if (dm_request_based(md))
1730 r = md->queue->backing_dev_info.state &
1731 bdi_bits;
1732 else
1733 r = dm_table_any_congested(map, bdi_bits);
1734
1735 dm_table_put(map);
1736 }
1737 }
1738
1739 return r;
1740 }
1741
1742 /*-----------------------------------------------------------------
1743 * An IDR is used to keep track of allocated minor numbers.
1744 *---------------------------------------------------------------*/
1745 static void free_minor(int minor)
1746 {
1747 spin_lock(&_minor_lock);
1748 idr_remove(&_minor_idr, minor);
1749 spin_unlock(&_minor_lock);
1750 }
1751
1752 /*
1753 * See if the device with a specific minor # is free.
1754 */
1755 static int specific_minor(int minor)
1756 {
1757 int r, m;
1758
1759 if (minor >= (1 << MINORBITS))
1760 return -EINVAL;
1761
1762 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1763 if (!r)
1764 return -ENOMEM;
1765
1766 spin_lock(&_minor_lock);
1767
1768 if (idr_find(&_minor_idr, minor)) {
1769 r = -EBUSY;
1770 goto out;
1771 }
1772
1773 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1774 if (r)
1775 goto out;
1776
1777 if (m != minor) {
1778 idr_remove(&_minor_idr, m);
1779 r = -EBUSY;
1780 goto out;
1781 }
1782
1783 out:
1784 spin_unlock(&_minor_lock);
1785 return r;
1786 }
1787
1788 static int next_free_minor(int *minor)
1789 {
1790 int r, m;
1791
1792 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1793 if (!r)
1794 return -ENOMEM;
1795
1796 spin_lock(&_minor_lock);
1797
1798 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1799 if (r)
1800 goto out;
1801
1802 if (m >= (1 << MINORBITS)) {
1803 idr_remove(&_minor_idr, m);
1804 r = -ENOSPC;
1805 goto out;
1806 }
1807
1808 *minor = m;
1809
1810 out:
1811 spin_unlock(&_minor_lock);
1812 return r;
1813 }
1814
1815 static const struct block_device_operations dm_blk_dops;
1816
1817 static void dm_wq_work(struct work_struct *work);
1818
1819 static void dm_init_md_queue(struct mapped_device *md)
1820 {
1821 /*
1822 * Request-based dm devices cannot be stacked on top of bio-based dm
1823 * devices. The type of this dm device has not been decided yet.
1824 * The type is decided at the first table loading time.
1825 * To prevent problematic device stacking, clear the queue flag
1826 * for request stacking support until then.
1827 *
1828 * This queue is new, so no concurrency on the queue_flags.
1829 */
1830 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1831
1832 md->queue->queuedata = md;
1833 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1834 md->queue->backing_dev_info.congested_data = md;
1835 blk_queue_make_request(md->queue, dm_request);
1836 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1837 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1838 }
1839
1840 /*
1841 * Allocate and initialise a blank device with a given minor.
1842 */
1843 static struct mapped_device *alloc_dev(int minor)
1844 {
1845 int r;
1846 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1847 void *old_md;
1848
1849 if (!md) {
1850 DMWARN("unable to allocate device, out of memory.");
1851 return NULL;
1852 }
1853
1854 if (!try_module_get(THIS_MODULE))
1855 goto bad_module_get;
1856
1857 /* get a minor number for the dev */
1858 if (minor == DM_ANY_MINOR)
1859 r = next_free_minor(&minor);
1860 else
1861 r = specific_minor(minor);
1862 if (r < 0)
1863 goto bad_minor;
1864
1865 md->type = DM_TYPE_NONE;
1866 init_rwsem(&md->io_lock);
1867 mutex_init(&md->suspend_lock);
1868 mutex_init(&md->type_lock);
1869 spin_lock_init(&md->deferred_lock);
1870 rwlock_init(&md->map_lock);
1871 atomic_set(&md->holders, 1);
1872 atomic_set(&md->open_count, 0);
1873 atomic_set(&md->event_nr, 0);
1874 atomic_set(&md->uevent_seq, 0);
1875 INIT_LIST_HEAD(&md->uevent_list);
1876 spin_lock_init(&md->uevent_lock);
1877
1878 md->queue = blk_alloc_queue(GFP_KERNEL);
1879 if (!md->queue)
1880 goto bad_queue;
1881
1882 dm_init_md_queue(md);
1883
1884 md->disk = alloc_disk(1);
1885 if (!md->disk)
1886 goto bad_disk;
1887
1888 atomic_set(&md->pending[0], 0);
1889 atomic_set(&md->pending[1], 0);
1890 init_waitqueue_head(&md->wait);
1891 INIT_WORK(&md->work, dm_wq_work);
1892 init_waitqueue_head(&md->eventq);
1893
1894 md->disk->major = _major;
1895 md->disk->first_minor = minor;
1896 md->disk->fops = &dm_blk_dops;
1897 md->disk->queue = md->queue;
1898 md->disk->private_data = md;
1899 sprintf(md->disk->disk_name, "dm-%d", minor);
1900 add_disk(md->disk);
1901 format_dev_t(md->name, MKDEV(_major, minor));
1902
1903 md->wq = alloc_workqueue("kdmflush",
1904 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1905 if (!md->wq)
1906 goto bad_thread;
1907
1908 md->bdev = bdget_disk(md->disk, 0);
1909 if (!md->bdev)
1910 goto bad_bdev;
1911
1912 bio_init(&md->flush_bio);
1913 md->flush_bio.bi_bdev = md->bdev;
1914 md->flush_bio.bi_rw = WRITE_FLUSH;
1915
1916 /* Populate the mapping, nobody knows we exist yet */
1917 spin_lock(&_minor_lock);
1918 old_md = idr_replace(&_minor_idr, md, minor);
1919 spin_unlock(&_minor_lock);
1920
1921 BUG_ON(old_md != MINOR_ALLOCED);
1922
1923 return md;
1924
1925 bad_bdev:
1926 destroy_workqueue(md->wq);
1927 bad_thread:
1928 del_gendisk(md->disk);
1929 put_disk(md->disk);
1930 bad_disk:
1931 blk_cleanup_queue(md->queue);
1932 bad_queue:
1933 free_minor(minor);
1934 bad_minor:
1935 module_put(THIS_MODULE);
1936 bad_module_get:
1937 kfree(md);
1938 return NULL;
1939 }
1940
1941 static void unlock_fs(struct mapped_device *md);
1942
1943 static void free_dev(struct mapped_device *md)
1944 {
1945 int minor = MINOR(disk_devt(md->disk));
1946
1947 unlock_fs(md);
1948 bdput(md->bdev);
1949 destroy_workqueue(md->wq);
1950 if (md->tio_pool)
1951 mempool_destroy(md->tio_pool);
1952 if (md->io_pool)
1953 mempool_destroy(md->io_pool);
1954 if (md->bs)
1955 bioset_free(md->bs);
1956 blk_integrity_unregister(md->disk);
1957 del_gendisk(md->disk);
1958 free_minor(minor);
1959
1960 spin_lock(&_minor_lock);
1961 md->disk->private_data = NULL;
1962 spin_unlock(&_minor_lock);
1963
1964 put_disk(md->disk);
1965 blk_cleanup_queue(md->queue);
1966 module_put(THIS_MODULE);
1967 kfree(md);
1968 }
1969
1970 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1971 {
1972 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1973
1974 if (md->io_pool && (md->tio_pool || dm_table_get_type(t) == DM_TYPE_BIO_BASED) && md->bs) {
1975 /*
1976 * The md already has necessary mempools. Reload just the
1977 * bioset because front_pad may have changed because
1978 * a different table was loaded.
1979 */
1980 bioset_free(md->bs);
1981 md->bs = p->bs;
1982 p->bs = NULL;
1983 goto out;
1984 }
1985
1986 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1987
1988 md->io_pool = p->io_pool;
1989 p->io_pool = NULL;
1990 md->tio_pool = p->tio_pool;
1991 p->tio_pool = NULL;
1992 md->bs = p->bs;
1993 p->bs = NULL;
1994
1995 out:
1996 /* mempool bind completed, now no need any mempools in the table */
1997 dm_table_free_md_mempools(t);
1998 }
1999
2000 /*
2001 * Bind a table to the device.
2002 */
2003 static void event_callback(void *context)
2004 {
2005 unsigned long flags;
2006 LIST_HEAD(uevents);
2007 struct mapped_device *md = (struct mapped_device *) context;
2008
2009 spin_lock_irqsave(&md->uevent_lock, flags);
2010 list_splice_init(&md->uevent_list, &uevents);
2011 spin_unlock_irqrestore(&md->uevent_lock, flags);
2012
2013 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2014
2015 atomic_inc(&md->event_nr);
2016 wake_up(&md->eventq);
2017 }
2018
2019 /*
2020 * Protected by md->suspend_lock obtained by dm_swap_table().
2021 */
2022 static void __set_size(struct mapped_device *md, sector_t size)
2023 {
2024 set_capacity(md->disk, size);
2025
2026 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2027 }
2028
2029 /*
2030 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2031 *
2032 * If this function returns 0, then the device is either a non-dm
2033 * device without a merge_bvec_fn, or it is a dm device that is
2034 * able to split any bios it receives that are too big.
2035 */
2036 int dm_queue_merge_is_compulsory(struct request_queue *q)
2037 {
2038 struct mapped_device *dev_md;
2039
2040 if (!q->merge_bvec_fn)
2041 return 0;
2042
2043 if (q->make_request_fn == dm_request) {
2044 dev_md = q->queuedata;
2045 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2046 return 0;
2047 }
2048
2049 return 1;
2050 }
2051
2052 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2053 struct dm_dev *dev, sector_t start,
2054 sector_t len, void *data)
2055 {
2056 struct block_device *bdev = dev->bdev;
2057 struct request_queue *q = bdev_get_queue(bdev);
2058
2059 return dm_queue_merge_is_compulsory(q);
2060 }
2061
2062 /*
2063 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2064 * on the properties of the underlying devices.
2065 */
2066 static int dm_table_merge_is_optional(struct dm_table *table)
2067 {
2068 unsigned i = 0;
2069 struct dm_target *ti;
2070
2071 while (i < dm_table_get_num_targets(table)) {
2072 ti = dm_table_get_target(table, i++);
2073
2074 if (ti->type->iterate_devices &&
2075 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2076 return 0;
2077 }
2078
2079 return 1;
2080 }
2081
2082 /*
2083 * Returns old map, which caller must destroy.
2084 */
2085 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2086 struct queue_limits *limits)
2087 {
2088 struct dm_table *old_map;
2089 struct request_queue *q = md->queue;
2090 sector_t size;
2091 unsigned long flags;
2092 int merge_is_optional;
2093
2094 size = dm_table_get_size(t);
2095
2096 /*
2097 * Wipe any geometry if the size of the table changed.
2098 */
2099 if (size != get_capacity(md->disk))
2100 memset(&md->geometry, 0, sizeof(md->geometry));
2101
2102 __set_size(md, size);
2103
2104 dm_table_event_callback(t, event_callback, md);
2105
2106 /*
2107 * The queue hasn't been stopped yet, if the old table type wasn't
2108 * for request-based during suspension. So stop it to prevent
2109 * I/O mapping before resume.
2110 * This must be done before setting the queue restrictions,
2111 * because request-based dm may be run just after the setting.
2112 */
2113 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2114 stop_queue(q);
2115
2116 __bind_mempools(md, t);
2117
2118 merge_is_optional = dm_table_merge_is_optional(t);
2119
2120 write_lock_irqsave(&md->map_lock, flags);
2121 old_map = md->map;
2122 md->map = t;
2123 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2124
2125 dm_table_set_restrictions(t, q, limits);
2126 if (merge_is_optional)
2127 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2128 else
2129 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2130 write_unlock_irqrestore(&md->map_lock, flags);
2131
2132 return old_map;
2133 }
2134
2135 /*
2136 * Returns unbound table for the caller to free.
2137 */
2138 static struct dm_table *__unbind(struct mapped_device *md)
2139 {
2140 struct dm_table *map = md->map;
2141 unsigned long flags;
2142
2143 if (!map)
2144 return NULL;
2145
2146 dm_table_event_callback(map, NULL, NULL);
2147 write_lock_irqsave(&md->map_lock, flags);
2148 md->map = NULL;
2149 write_unlock_irqrestore(&md->map_lock, flags);
2150
2151 return map;
2152 }
2153
2154 /*
2155 * Constructor for a new device.
2156 */
2157 int dm_create(int minor, struct mapped_device **result)
2158 {
2159 struct mapped_device *md;
2160
2161 md = alloc_dev(minor);
2162 if (!md)
2163 return -ENXIO;
2164
2165 dm_sysfs_init(md);
2166
2167 *result = md;
2168 return 0;
2169 }
2170
2171 /*
2172 * Functions to manage md->type.
2173 * All are required to hold md->type_lock.
2174 */
2175 void dm_lock_md_type(struct mapped_device *md)
2176 {
2177 mutex_lock(&md->type_lock);
2178 }
2179
2180 void dm_unlock_md_type(struct mapped_device *md)
2181 {
2182 mutex_unlock(&md->type_lock);
2183 }
2184
2185 void dm_set_md_type(struct mapped_device *md, unsigned type)
2186 {
2187 md->type = type;
2188 }
2189
2190 unsigned dm_get_md_type(struct mapped_device *md)
2191 {
2192 return md->type;
2193 }
2194
2195 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2196 {
2197 return md->immutable_target_type;
2198 }
2199
2200 /*
2201 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2202 */
2203 static int dm_init_request_based_queue(struct mapped_device *md)
2204 {
2205 struct request_queue *q = NULL;
2206
2207 if (md->queue->elevator)
2208 return 1;
2209
2210 /* Fully initialize the queue */
2211 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2212 if (!q)
2213 return 0;
2214
2215 md->queue = q;
2216 dm_init_md_queue(md);
2217 blk_queue_softirq_done(md->queue, dm_softirq_done);
2218 blk_queue_prep_rq(md->queue, dm_prep_fn);
2219 blk_queue_lld_busy(md->queue, dm_lld_busy);
2220
2221 elv_register_queue(md->queue);
2222
2223 return 1;
2224 }
2225
2226 /*
2227 * Setup the DM device's queue based on md's type
2228 */
2229 int dm_setup_md_queue(struct mapped_device *md)
2230 {
2231 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2232 !dm_init_request_based_queue(md)) {
2233 DMWARN("Cannot initialize queue for request-based mapped device");
2234 return -EINVAL;
2235 }
2236
2237 return 0;
2238 }
2239
2240 static struct mapped_device *dm_find_md(dev_t dev)
2241 {
2242 struct mapped_device *md;
2243 unsigned minor = MINOR(dev);
2244
2245 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2246 return NULL;
2247
2248 spin_lock(&_minor_lock);
2249
2250 md = idr_find(&_minor_idr, minor);
2251 if (md && (md == MINOR_ALLOCED ||
2252 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2253 dm_deleting_md(md) ||
2254 test_bit(DMF_FREEING, &md->flags))) {
2255 md = NULL;
2256 goto out;
2257 }
2258
2259 out:
2260 spin_unlock(&_minor_lock);
2261
2262 return md;
2263 }
2264
2265 struct mapped_device *dm_get_md(dev_t dev)
2266 {
2267 struct mapped_device *md = dm_find_md(dev);
2268
2269 if (md)
2270 dm_get(md);
2271
2272 return md;
2273 }
2274 EXPORT_SYMBOL_GPL(dm_get_md);
2275
2276 void *dm_get_mdptr(struct mapped_device *md)
2277 {
2278 return md->interface_ptr;
2279 }
2280
2281 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2282 {
2283 md->interface_ptr = ptr;
2284 }
2285
2286 void dm_get(struct mapped_device *md)
2287 {
2288 atomic_inc(&md->holders);
2289 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2290 }
2291
2292 const char *dm_device_name(struct mapped_device *md)
2293 {
2294 return md->name;
2295 }
2296 EXPORT_SYMBOL_GPL(dm_device_name);
2297
2298 static void __dm_destroy(struct mapped_device *md, bool wait)
2299 {
2300 struct dm_table *map;
2301
2302 might_sleep();
2303
2304 spin_lock(&_minor_lock);
2305 map = dm_get_live_table(md);
2306 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2307 set_bit(DMF_FREEING, &md->flags);
2308 spin_unlock(&_minor_lock);
2309
2310 if (!dm_suspended_md(md)) {
2311 dm_table_presuspend_targets(map);
2312 dm_table_postsuspend_targets(map);
2313 }
2314
2315 /*
2316 * Rare, but there may be I/O requests still going to complete,
2317 * for example. Wait for all references to disappear.
2318 * No one should increment the reference count of the mapped_device,
2319 * after the mapped_device state becomes DMF_FREEING.
2320 */
2321 if (wait)
2322 while (atomic_read(&md->holders))
2323 msleep(1);
2324 else if (atomic_read(&md->holders))
2325 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2326 dm_device_name(md), atomic_read(&md->holders));
2327
2328 dm_sysfs_exit(md);
2329 dm_table_put(map);
2330 dm_table_destroy(__unbind(md));
2331 free_dev(md);
2332 }
2333
2334 void dm_destroy(struct mapped_device *md)
2335 {
2336 __dm_destroy(md, true);
2337 }
2338
2339 void dm_destroy_immediate(struct mapped_device *md)
2340 {
2341 __dm_destroy(md, false);
2342 }
2343
2344 void dm_put(struct mapped_device *md)
2345 {
2346 atomic_dec(&md->holders);
2347 }
2348 EXPORT_SYMBOL_GPL(dm_put);
2349
2350 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2351 {
2352 int r = 0;
2353 DECLARE_WAITQUEUE(wait, current);
2354
2355 add_wait_queue(&md->wait, &wait);
2356
2357 while (1) {
2358 set_current_state(interruptible);
2359
2360 if (!md_in_flight(md))
2361 break;
2362
2363 if (interruptible == TASK_INTERRUPTIBLE &&
2364 signal_pending(current)) {
2365 r = -EINTR;
2366 break;
2367 }
2368
2369 io_schedule();
2370 }
2371 set_current_state(TASK_RUNNING);
2372
2373 remove_wait_queue(&md->wait, &wait);
2374
2375 return r;
2376 }
2377
2378 /*
2379 * Process the deferred bios
2380 */
2381 static void dm_wq_work(struct work_struct *work)
2382 {
2383 struct mapped_device *md = container_of(work, struct mapped_device,
2384 work);
2385 struct bio *c;
2386
2387 down_read(&md->io_lock);
2388
2389 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2390 spin_lock_irq(&md->deferred_lock);
2391 c = bio_list_pop(&md->deferred);
2392 spin_unlock_irq(&md->deferred_lock);
2393
2394 if (!c)
2395 break;
2396
2397 up_read(&md->io_lock);
2398
2399 if (dm_request_based(md))
2400 generic_make_request(c);
2401 else
2402 __split_and_process_bio(md, c);
2403
2404 down_read(&md->io_lock);
2405 }
2406
2407 up_read(&md->io_lock);
2408 }
2409
2410 static void dm_queue_flush(struct mapped_device *md)
2411 {
2412 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2413 smp_mb__after_clear_bit();
2414 queue_work(md->wq, &md->work);
2415 }
2416
2417 /*
2418 * Swap in a new table, returning the old one for the caller to destroy.
2419 */
2420 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2421 {
2422 struct dm_table *live_map, *map = ERR_PTR(-EINVAL);
2423 struct queue_limits limits;
2424 int r;
2425
2426 mutex_lock(&md->suspend_lock);
2427
2428 /* device must be suspended */
2429 if (!dm_suspended_md(md))
2430 goto out;
2431
2432 /*
2433 * If the new table has no data devices, retain the existing limits.
2434 * This helps multipath with queue_if_no_path if all paths disappear,
2435 * then new I/O is queued based on these limits, and then some paths
2436 * reappear.
2437 */
2438 if (dm_table_has_no_data_devices(table)) {
2439 live_map = dm_get_live_table(md);
2440 if (live_map)
2441 limits = md->queue->limits;
2442 dm_table_put(live_map);
2443 }
2444
2445 r = dm_calculate_queue_limits(table, &limits);
2446 if (r) {
2447 map = ERR_PTR(r);
2448 goto out;
2449 }
2450
2451 map = __bind(md, table, &limits);
2452
2453 out:
2454 mutex_unlock(&md->suspend_lock);
2455 return map;
2456 }
2457
2458 /*
2459 * Functions to lock and unlock any filesystem running on the
2460 * device.
2461 */
2462 static int lock_fs(struct mapped_device *md)
2463 {
2464 int r;
2465
2466 WARN_ON(md->frozen_sb);
2467
2468 md->frozen_sb = freeze_bdev(md->bdev);
2469 if (IS_ERR(md->frozen_sb)) {
2470 r = PTR_ERR(md->frozen_sb);
2471 md->frozen_sb = NULL;
2472 return r;
2473 }
2474
2475 set_bit(DMF_FROZEN, &md->flags);
2476
2477 return 0;
2478 }
2479
2480 static void unlock_fs(struct mapped_device *md)
2481 {
2482 if (!test_bit(DMF_FROZEN, &md->flags))
2483 return;
2484
2485 thaw_bdev(md->bdev, md->frozen_sb);
2486 md->frozen_sb = NULL;
2487 clear_bit(DMF_FROZEN, &md->flags);
2488 }
2489
2490 /*
2491 * We need to be able to change a mapping table under a mounted
2492 * filesystem. For example we might want to move some data in
2493 * the background. Before the table can be swapped with
2494 * dm_bind_table, dm_suspend must be called to flush any in
2495 * flight bios and ensure that any further io gets deferred.
2496 */
2497 /*
2498 * Suspend mechanism in request-based dm.
2499 *
2500 * 1. Flush all I/Os by lock_fs() if needed.
2501 * 2. Stop dispatching any I/O by stopping the request_queue.
2502 * 3. Wait for all in-flight I/Os to be completed or requeued.
2503 *
2504 * To abort suspend, start the request_queue.
2505 */
2506 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2507 {
2508 struct dm_table *map = NULL;
2509 int r = 0;
2510 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2511 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2512
2513 mutex_lock(&md->suspend_lock);
2514
2515 if (dm_suspended_md(md)) {
2516 r = -EINVAL;
2517 goto out_unlock;
2518 }
2519
2520 map = dm_get_live_table(md);
2521
2522 /*
2523 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2524 * This flag is cleared before dm_suspend returns.
2525 */
2526 if (noflush)
2527 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2528
2529 /* This does not get reverted if there's an error later. */
2530 dm_table_presuspend_targets(map);
2531
2532 /*
2533 * Flush I/O to the device.
2534 * Any I/O submitted after lock_fs() may not be flushed.
2535 * noflush takes precedence over do_lockfs.
2536 * (lock_fs() flushes I/Os and waits for them to complete.)
2537 */
2538 if (!noflush && do_lockfs) {
2539 r = lock_fs(md);
2540 if (r)
2541 goto out;
2542 }
2543
2544 /*
2545 * Here we must make sure that no processes are submitting requests
2546 * to target drivers i.e. no one may be executing
2547 * __split_and_process_bio. This is called from dm_request and
2548 * dm_wq_work.
2549 *
2550 * To get all processes out of __split_and_process_bio in dm_request,
2551 * we take the write lock. To prevent any process from reentering
2552 * __split_and_process_bio from dm_request and quiesce the thread
2553 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2554 * flush_workqueue(md->wq).
2555 */
2556 down_write(&md->io_lock);
2557 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2558 up_write(&md->io_lock);
2559
2560 /*
2561 * Stop md->queue before flushing md->wq in case request-based
2562 * dm defers requests to md->wq from md->queue.
2563 */
2564 if (dm_request_based(md))
2565 stop_queue(md->queue);
2566
2567 flush_workqueue(md->wq);
2568
2569 /*
2570 * At this point no more requests are entering target request routines.
2571 * We call dm_wait_for_completion to wait for all existing requests
2572 * to finish.
2573 */
2574 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2575
2576 down_write(&md->io_lock);
2577 if (noflush)
2578 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2579 up_write(&md->io_lock);
2580
2581 /* were we interrupted ? */
2582 if (r < 0) {
2583 dm_queue_flush(md);
2584
2585 if (dm_request_based(md))
2586 start_queue(md->queue);
2587
2588 unlock_fs(md);
2589 goto out; /* pushback list is already flushed, so skip flush */
2590 }
2591
2592 /*
2593 * If dm_wait_for_completion returned 0, the device is completely
2594 * quiescent now. There is no request-processing activity. All new
2595 * requests are being added to md->deferred list.
2596 */
2597
2598 set_bit(DMF_SUSPENDED, &md->flags);
2599
2600 dm_table_postsuspend_targets(map);
2601
2602 out:
2603 dm_table_put(map);
2604
2605 out_unlock:
2606 mutex_unlock(&md->suspend_lock);
2607 return r;
2608 }
2609
2610 int dm_resume(struct mapped_device *md)
2611 {
2612 int r = -EINVAL;
2613 struct dm_table *map = NULL;
2614
2615 mutex_lock(&md->suspend_lock);
2616 if (!dm_suspended_md(md))
2617 goto out;
2618
2619 map = dm_get_live_table(md);
2620 if (!map || !dm_table_get_size(map))
2621 goto out;
2622
2623 r = dm_table_resume_targets(map);
2624 if (r)
2625 goto out;
2626
2627 dm_queue_flush(md);
2628
2629 /*
2630 * Flushing deferred I/Os must be done after targets are resumed
2631 * so that mapping of targets can work correctly.
2632 * Request-based dm is queueing the deferred I/Os in its request_queue.
2633 */
2634 if (dm_request_based(md))
2635 start_queue(md->queue);
2636
2637 unlock_fs(md);
2638
2639 clear_bit(DMF_SUSPENDED, &md->flags);
2640
2641 r = 0;
2642 out:
2643 dm_table_put(map);
2644 mutex_unlock(&md->suspend_lock);
2645
2646 return r;
2647 }
2648
2649 /*-----------------------------------------------------------------
2650 * Event notification.
2651 *---------------------------------------------------------------*/
2652 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2653 unsigned cookie)
2654 {
2655 char udev_cookie[DM_COOKIE_LENGTH];
2656 char *envp[] = { udev_cookie, NULL };
2657
2658 if (!cookie)
2659 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2660 else {
2661 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2662 DM_COOKIE_ENV_VAR_NAME, cookie);
2663 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2664 action, envp);
2665 }
2666 }
2667
2668 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2669 {
2670 return atomic_add_return(1, &md->uevent_seq);
2671 }
2672
2673 uint32_t dm_get_event_nr(struct mapped_device *md)
2674 {
2675 return atomic_read(&md->event_nr);
2676 }
2677
2678 int dm_wait_event(struct mapped_device *md, int event_nr)
2679 {
2680 return wait_event_interruptible(md->eventq,
2681 (event_nr != atomic_read(&md->event_nr)));
2682 }
2683
2684 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2685 {
2686 unsigned long flags;
2687
2688 spin_lock_irqsave(&md->uevent_lock, flags);
2689 list_add(elist, &md->uevent_list);
2690 spin_unlock_irqrestore(&md->uevent_lock, flags);
2691 }
2692
2693 /*
2694 * The gendisk is only valid as long as you have a reference
2695 * count on 'md'.
2696 */
2697 struct gendisk *dm_disk(struct mapped_device *md)
2698 {
2699 return md->disk;
2700 }
2701
2702 struct kobject *dm_kobject(struct mapped_device *md)
2703 {
2704 return &md->kobj;
2705 }
2706
2707 /*
2708 * struct mapped_device should not be exported outside of dm.c
2709 * so use this check to verify that kobj is part of md structure
2710 */
2711 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2712 {
2713 struct mapped_device *md;
2714
2715 md = container_of(kobj, struct mapped_device, kobj);
2716 if (&md->kobj != kobj)
2717 return NULL;
2718
2719 if (test_bit(DMF_FREEING, &md->flags) ||
2720 dm_deleting_md(md))
2721 return NULL;
2722
2723 dm_get(md);
2724 return md;
2725 }
2726
2727 int dm_suspended_md(struct mapped_device *md)
2728 {
2729 return test_bit(DMF_SUSPENDED, &md->flags);
2730 }
2731
2732 int dm_suspended(struct dm_target *ti)
2733 {
2734 return dm_suspended_md(dm_table_get_md(ti->table));
2735 }
2736 EXPORT_SYMBOL_GPL(dm_suspended);
2737
2738 int dm_noflush_suspending(struct dm_target *ti)
2739 {
2740 return __noflush_suspending(dm_table_get_md(ti->table));
2741 }
2742 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2743
2744 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2745 {
2746 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2747 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2748
2749 if (!pools)
2750 return NULL;
2751
2752 per_bio_data_size = roundup(per_bio_data_size, __alignof__(struct dm_target_io));
2753
2754 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2755 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2756 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2757 if (!pools->io_pool)
2758 goto free_pools_and_out;
2759
2760 pools->tio_pool = NULL;
2761 if (type == DM_TYPE_REQUEST_BASED) {
2762 pools->tio_pool = mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2763 if (!pools->tio_pool)
2764 goto free_io_pool_and_out;
2765 }
2766
2767 pools->bs = (type == DM_TYPE_BIO_BASED) ?
2768 bioset_create(pool_size,
2769 per_bio_data_size + offsetof(struct dm_target_io, clone)) :
2770 bioset_create(pool_size,
2771 offsetof(struct dm_rq_clone_bio_info, clone));
2772 if (!pools->bs)
2773 goto free_tio_pool_and_out;
2774
2775 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2776 goto free_bioset_and_out;
2777
2778 return pools;
2779
2780 free_bioset_and_out:
2781 bioset_free(pools->bs);
2782
2783 free_tio_pool_and_out:
2784 if (pools->tio_pool)
2785 mempool_destroy(pools->tio_pool);
2786
2787 free_io_pool_and_out:
2788 mempool_destroy(pools->io_pool);
2789
2790 free_pools_and_out:
2791 kfree(pools);
2792
2793 return NULL;
2794 }
2795
2796 void dm_free_md_mempools(struct dm_md_mempools *pools)
2797 {
2798 if (!pools)
2799 return;
2800
2801 if (pools->io_pool)
2802 mempool_destroy(pools->io_pool);
2803
2804 if (pools->tio_pool)
2805 mempool_destroy(pools->tio_pool);
2806
2807 if (pools->bs)
2808 bioset_free(pools->bs);
2809
2810 kfree(pools);
2811 }
2812
2813 static const struct block_device_operations dm_blk_dops = {
2814 .open = dm_blk_open,
2815 .release = dm_blk_close,
2816 .ioctl = dm_blk_ioctl,
2817 .getgeo = dm_blk_getgeo,
2818 .owner = THIS_MODULE
2819 };
2820
2821 EXPORT_SYMBOL(dm_get_mapinfo);
2822
2823 /*
2824 * module hooks
2825 */
2826 module_init(dm_init);
2827 module_exit(dm_exit);
2828
2829 module_param(major, uint, 0);
2830 MODULE_PARM_DESC(major, "The major number of the device mapper");
2831 MODULE_DESCRIPTION(DM_NAME " driver");
2832 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2833 MODULE_LICENSE("GPL");
This page took 0.091693 seconds and 6 git commands to generate.