md: Add module.h to all files using it implicitly
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63 * by pers_lock.
64 * pers_lock does extra service to protect accesses to
65 * mddev->thread when the mutex cannot be held.
66 */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 static void md_print_devices(void);
71
72 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
73 static struct workqueue_struct *md_wq;
74 static struct workqueue_struct *md_misc_wq;
75
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
77
78 /*
79 * Default number of read corrections we'll attempt on an rdev
80 * before ejecting it from the array. We divide the read error
81 * count by 2 for every hour elapsed between read errors.
82 */
83 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
84 /*
85 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
86 * is 1000 KB/sec, so the extra system load does not show up that much.
87 * Increase it if you want to have more _guaranteed_ speed. Note that
88 * the RAID driver will use the maximum available bandwidth if the IO
89 * subsystem is idle. There is also an 'absolute maximum' reconstruction
90 * speed limit - in case reconstruction slows down your system despite
91 * idle IO detection.
92 *
93 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
94 * or /sys/block/mdX/md/sync_speed_{min,max}
95 */
96
97 static int sysctl_speed_limit_min = 1000;
98 static int sysctl_speed_limit_max = 200000;
99 static inline int speed_min(struct mddev *mddev)
100 {
101 return mddev->sync_speed_min ?
102 mddev->sync_speed_min : sysctl_speed_limit_min;
103 }
104
105 static inline int speed_max(struct mddev *mddev)
106 {
107 return mddev->sync_speed_max ?
108 mddev->sync_speed_max : sysctl_speed_limit_max;
109 }
110
111 static struct ctl_table_header *raid_table_header;
112
113 static ctl_table raid_table[] = {
114 {
115 .procname = "speed_limit_min",
116 .data = &sysctl_speed_limit_min,
117 .maxlen = sizeof(int),
118 .mode = S_IRUGO|S_IWUSR,
119 .proc_handler = proc_dointvec,
120 },
121 {
122 .procname = "speed_limit_max",
123 .data = &sysctl_speed_limit_max,
124 .maxlen = sizeof(int),
125 .mode = S_IRUGO|S_IWUSR,
126 .proc_handler = proc_dointvec,
127 },
128 { }
129 };
130
131 static ctl_table raid_dir_table[] = {
132 {
133 .procname = "raid",
134 .maxlen = 0,
135 .mode = S_IRUGO|S_IXUGO,
136 .child = raid_table,
137 },
138 { }
139 };
140
141 static ctl_table raid_root_table[] = {
142 {
143 .procname = "dev",
144 .maxlen = 0,
145 .mode = 0555,
146 .child = raid_dir_table,
147 },
148 { }
149 };
150
151 static const struct block_device_operations md_fops;
152
153 static int start_readonly;
154
155 /* bio_clone_mddev
156 * like bio_clone, but with a local bio set
157 */
158
159 static void mddev_bio_destructor(struct bio *bio)
160 {
161 struct mddev *mddev, **mddevp;
162
163 mddevp = (void*)bio;
164 mddev = mddevp[-1];
165
166 bio_free(bio, mddev->bio_set);
167 }
168
169 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
170 struct mddev *mddev)
171 {
172 struct bio *b;
173 struct mddev **mddevp;
174
175 if (!mddev || !mddev->bio_set)
176 return bio_alloc(gfp_mask, nr_iovecs);
177
178 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
179 mddev->bio_set);
180 if (!b)
181 return NULL;
182 mddevp = (void*)b;
183 mddevp[-1] = mddev;
184 b->bi_destructor = mddev_bio_destructor;
185 return b;
186 }
187 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
188
189 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
190 struct mddev *mddev)
191 {
192 struct bio *b;
193 struct mddev **mddevp;
194
195 if (!mddev || !mddev->bio_set)
196 return bio_clone(bio, gfp_mask);
197
198 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
199 mddev->bio_set);
200 if (!b)
201 return NULL;
202 mddevp = (void*)b;
203 mddevp[-1] = mddev;
204 b->bi_destructor = mddev_bio_destructor;
205 __bio_clone(b, bio);
206 if (bio_integrity(bio)) {
207 int ret;
208
209 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
210
211 if (ret < 0) {
212 bio_put(b);
213 return NULL;
214 }
215 }
216
217 return b;
218 }
219 EXPORT_SYMBOL_GPL(bio_clone_mddev);
220
221 void md_trim_bio(struct bio *bio, int offset, int size)
222 {
223 /* 'bio' is a cloned bio which we need to trim to match
224 * the given offset and size.
225 * This requires adjusting bi_sector, bi_size, and bi_io_vec
226 */
227 int i;
228 struct bio_vec *bvec;
229 int sofar = 0;
230
231 size <<= 9;
232 if (offset == 0 && size == bio->bi_size)
233 return;
234
235 bio->bi_sector += offset;
236 bio->bi_size = size;
237 offset <<= 9;
238 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
239
240 while (bio->bi_idx < bio->bi_vcnt &&
241 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
242 /* remove this whole bio_vec */
243 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
244 bio->bi_idx++;
245 }
246 if (bio->bi_idx < bio->bi_vcnt) {
247 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
248 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
249 }
250 /* avoid any complications with bi_idx being non-zero*/
251 if (bio->bi_idx) {
252 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
253 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
254 bio->bi_vcnt -= bio->bi_idx;
255 bio->bi_idx = 0;
256 }
257 /* Make sure vcnt and last bv are not too big */
258 bio_for_each_segment(bvec, bio, i) {
259 if (sofar + bvec->bv_len > size)
260 bvec->bv_len = size - sofar;
261 if (bvec->bv_len == 0) {
262 bio->bi_vcnt = i;
263 break;
264 }
265 sofar += bvec->bv_len;
266 }
267 }
268 EXPORT_SYMBOL_GPL(md_trim_bio);
269
270 /*
271 * We have a system wide 'event count' that is incremented
272 * on any 'interesting' event, and readers of /proc/mdstat
273 * can use 'poll' or 'select' to find out when the event
274 * count increases.
275 *
276 * Events are:
277 * start array, stop array, error, add device, remove device,
278 * start build, activate spare
279 */
280 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
281 static atomic_t md_event_count;
282 void md_new_event(struct mddev *mddev)
283 {
284 atomic_inc(&md_event_count);
285 wake_up(&md_event_waiters);
286 }
287 EXPORT_SYMBOL_GPL(md_new_event);
288
289 /* Alternate version that can be called from interrupts
290 * when calling sysfs_notify isn't needed.
291 */
292 static void md_new_event_inintr(struct mddev *mddev)
293 {
294 atomic_inc(&md_event_count);
295 wake_up(&md_event_waiters);
296 }
297
298 /*
299 * Enables to iterate over all existing md arrays
300 * all_mddevs_lock protects this list.
301 */
302 static LIST_HEAD(all_mddevs);
303 static DEFINE_SPINLOCK(all_mddevs_lock);
304
305
306 /*
307 * iterates through all used mddevs in the system.
308 * We take care to grab the all_mddevs_lock whenever navigating
309 * the list, and to always hold a refcount when unlocked.
310 * Any code which breaks out of this loop while own
311 * a reference to the current mddev and must mddev_put it.
312 */
313 #define for_each_mddev(_mddev,_tmp) \
314 \
315 for (({ spin_lock(&all_mddevs_lock); \
316 _tmp = all_mddevs.next; \
317 _mddev = NULL;}); \
318 ({ if (_tmp != &all_mddevs) \
319 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
320 spin_unlock(&all_mddevs_lock); \
321 if (_mddev) mddev_put(_mddev); \
322 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
323 _tmp != &all_mddevs;}); \
324 ({ spin_lock(&all_mddevs_lock); \
325 _tmp = _tmp->next;}) \
326 )
327
328
329 /* Rather than calling directly into the personality make_request function,
330 * IO requests come here first so that we can check if the device is
331 * being suspended pending a reconfiguration.
332 * We hold a refcount over the call to ->make_request. By the time that
333 * call has finished, the bio has been linked into some internal structure
334 * and so is visible to ->quiesce(), so we don't need the refcount any more.
335 */
336 static int md_make_request(struct request_queue *q, struct bio *bio)
337 {
338 const int rw = bio_data_dir(bio);
339 struct mddev *mddev = q->queuedata;
340 int rv;
341 int cpu;
342 unsigned int sectors;
343
344 if (mddev == NULL || mddev->pers == NULL
345 || !mddev->ready) {
346 bio_io_error(bio);
347 return 0;
348 }
349 smp_rmb(); /* Ensure implications of 'active' are visible */
350 rcu_read_lock();
351 if (mddev->suspended) {
352 DEFINE_WAIT(__wait);
353 for (;;) {
354 prepare_to_wait(&mddev->sb_wait, &__wait,
355 TASK_UNINTERRUPTIBLE);
356 if (!mddev->suspended)
357 break;
358 rcu_read_unlock();
359 schedule();
360 rcu_read_lock();
361 }
362 finish_wait(&mddev->sb_wait, &__wait);
363 }
364 atomic_inc(&mddev->active_io);
365 rcu_read_unlock();
366
367 /*
368 * save the sectors now since our bio can
369 * go away inside make_request
370 */
371 sectors = bio_sectors(bio);
372 rv = mddev->pers->make_request(mddev, bio);
373
374 cpu = part_stat_lock();
375 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
376 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
377 part_stat_unlock();
378
379 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
380 wake_up(&mddev->sb_wait);
381
382 return rv;
383 }
384
385 /* mddev_suspend makes sure no new requests are submitted
386 * to the device, and that any requests that have been submitted
387 * are completely handled.
388 * Once ->stop is called and completes, the module will be completely
389 * unused.
390 */
391 void mddev_suspend(struct mddev *mddev)
392 {
393 BUG_ON(mddev->suspended);
394 mddev->suspended = 1;
395 synchronize_rcu();
396 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
397 mddev->pers->quiesce(mddev, 1);
398 }
399 EXPORT_SYMBOL_GPL(mddev_suspend);
400
401 void mddev_resume(struct mddev *mddev)
402 {
403 mddev->suspended = 0;
404 wake_up(&mddev->sb_wait);
405 mddev->pers->quiesce(mddev, 0);
406
407 md_wakeup_thread(mddev->thread);
408 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
409 }
410 EXPORT_SYMBOL_GPL(mddev_resume);
411
412 int mddev_congested(struct mddev *mddev, int bits)
413 {
414 return mddev->suspended;
415 }
416 EXPORT_SYMBOL(mddev_congested);
417
418 /*
419 * Generic flush handling for md
420 */
421
422 static void md_end_flush(struct bio *bio, int err)
423 {
424 struct md_rdev *rdev = bio->bi_private;
425 struct mddev *mddev = rdev->mddev;
426
427 rdev_dec_pending(rdev, mddev);
428
429 if (atomic_dec_and_test(&mddev->flush_pending)) {
430 /* The pre-request flush has finished */
431 queue_work(md_wq, &mddev->flush_work);
432 }
433 bio_put(bio);
434 }
435
436 static void md_submit_flush_data(struct work_struct *ws);
437
438 static void submit_flushes(struct work_struct *ws)
439 {
440 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
441 struct md_rdev *rdev;
442
443 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
444 atomic_set(&mddev->flush_pending, 1);
445 rcu_read_lock();
446 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
447 if (rdev->raid_disk >= 0 &&
448 !test_bit(Faulty, &rdev->flags)) {
449 /* Take two references, one is dropped
450 * when request finishes, one after
451 * we reclaim rcu_read_lock
452 */
453 struct bio *bi;
454 atomic_inc(&rdev->nr_pending);
455 atomic_inc(&rdev->nr_pending);
456 rcu_read_unlock();
457 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
458 bi->bi_end_io = md_end_flush;
459 bi->bi_private = rdev;
460 bi->bi_bdev = rdev->bdev;
461 atomic_inc(&mddev->flush_pending);
462 submit_bio(WRITE_FLUSH, bi);
463 rcu_read_lock();
464 rdev_dec_pending(rdev, mddev);
465 }
466 rcu_read_unlock();
467 if (atomic_dec_and_test(&mddev->flush_pending))
468 queue_work(md_wq, &mddev->flush_work);
469 }
470
471 static void md_submit_flush_data(struct work_struct *ws)
472 {
473 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
474 struct bio *bio = mddev->flush_bio;
475
476 if (bio->bi_size == 0)
477 /* an empty barrier - all done */
478 bio_endio(bio, 0);
479 else {
480 bio->bi_rw &= ~REQ_FLUSH;
481 if (mddev->pers->make_request(mddev, bio))
482 generic_make_request(bio);
483 }
484
485 mddev->flush_bio = NULL;
486 wake_up(&mddev->sb_wait);
487 }
488
489 void md_flush_request(struct mddev *mddev, struct bio *bio)
490 {
491 spin_lock_irq(&mddev->write_lock);
492 wait_event_lock_irq(mddev->sb_wait,
493 !mddev->flush_bio,
494 mddev->write_lock, /*nothing*/);
495 mddev->flush_bio = bio;
496 spin_unlock_irq(&mddev->write_lock);
497
498 INIT_WORK(&mddev->flush_work, submit_flushes);
499 queue_work(md_wq, &mddev->flush_work);
500 }
501 EXPORT_SYMBOL(md_flush_request);
502
503 /* Support for plugging.
504 * This mirrors the plugging support in request_queue, but does not
505 * require having a whole queue or request structures.
506 * We allocate an md_plug_cb for each md device and each thread it gets
507 * plugged on. This links tot the private plug_handle structure in the
508 * personality data where we keep a count of the number of outstanding
509 * plugs so other code can see if a plug is active.
510 */
511 struct md_plug_cb {
512 struct blk_plug_cb cb;
513 struct mddev *mddev;
514 };
515
516 static void plugger_unplug(struct blk_plug_cb *cb)
517 {
518 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
519 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
520 md_wakeup_thread(mdcb->mddev->thread);
521 kfree(mdcb);
522 }
523
524 /* Check that an unplug wakeup will come shortly.
525 * If not, wakeup the md thread immediately
526 */
527 int mddev_check_plugged(struct mddev *mddev)
528 {
529 struct blk_plug *plug = current->plug;
530 struct md_plug_cb *mdcb;
531
532 if (!plug)
533 return 0;
534
535 list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
536 if (mdcb->cb.callback == plugger_unplug &&
537 mdcb->mddev == mddev) {
538 /* Already on the list, move to top */
539 if (mdcb != list_first_entry(&plug->cb_list,
540 struct md_plug_cb,
541 cb.list))
542 list_move(&mdcb->cb.list, &plug->cb_list);
543 return 1;
544 }
545 }
546 /* Not currently on the callback list */
547 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
548 if (!mdcb)
549 return 0;
550
551 mdcb->mddev = mddev;
552 mdcb->cb.callback = plugger_unplug;
553 atomic_inc(&mddev->plug_cnt);
554 list_add(&mdcb->cb.list, &plug->cb_list);
555 return 1;
556 }
557 EXPORT_SYMBOL_GPL(mddev_check_plugged);
558
559 static inline struct mddev *mddev_get(struct mddev *mddev)
560 {
561 atomic_inc(&mddev->active);
562 return mddev;
563 }
564
565 static void mddev_delayed_delete(struct work_struct *ws);
566
567 static void mddev_put(struct mddev *mddev)
568 {
569 struct bio_set *bs = NULL;
570
571 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
572 return;
573 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
574 mddev->ctime == 0 && !mddev->hold_active) {
575 /* Array is not configured at all, and not held active,
576 * so destroy it */
577 list_del(&mddev->all_mddevs);
578 bs = mddev->bio_set;
579 mddev->bio_set = NULL;
580 if (mddev->gendisk) {
581 /* We did a probe so need to clean up. Call
582 * queue_work inside the spinlock so that
583 * flush_workqueue() after mddev_find will
584 * succeed in waiting for the work to be done.
585 */
586 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
587 queue_work(md_misc_wq, &mddev->del_work);
588 } else
589 kfree(mddev);
590 }
591 spin_unlock(&all_mddevs_lock);
592 if (bs)
593 bioset_free(bs);
594 }
595
596 void mddev_init(struct mddev *mddev)
597 {
598 mutex_init(&mddev->open_mutex);
599 mutex_init(&mddev->reconfig_mutex);
600 mutex_init(&mddev->bitmap_info.mutex);
601 INIT_LIST_HEAD(&mddev->disks);
602 INIT_LIST_HEAD(&mddev->all_mddevs);
603 init_timer(&mddev->safemode_timer);
604 atomic_set(&mddev->active, 1);
605 atomic_set(&mddev->openers, 0);
606 atomic_set(&mddev->active_io, 0);
607 atomic_set(&mddev->plug_cnt, 0);
608 spin_lock_init(&mddev->write_lock);
609 atomic_set(&mddev->flush_pending, 0);
610 init_waitqueue_head(&mddev->sb_wait);
611 init_waitqueue_head(&mddev->recovery_wait);
612 mddev->reshape_position = MaxSector;
613 mddev->resync_min = 0;
614 mddev->resync_max = MaxSector;
615 mddev->level = LEVEL_NONE;
616 }
617 EXPORT_SYMBOL_GPL(mddev_init);
618
619 static struct mddev * mddev_find(dev_t unit)
620 {
621 struct mddev *mddev, *new = NULL;
622
623 if (unit && MAJOR(unit) != MD_MAJOR)
624 unit &= ~((1<<MdpMinorShift)-1);
625
626 retry:
627 spin_lock(&all_mddevs_lock);
628
629 if (unit) {
630 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
631 if (mddev->unit == unit) {
632 mddev_get(mddev);
633 spin_unlock(&all_mddevs_lock);
634 kfree(new);
635 return mddev;
636 }
637
638 if (new) {
639 list_add(&new->all_mddevs, &all_mddevs);
640 spin_unlock(&all_mddevs_lock);
641 new->hold_active = UNTIL_IOCTL;
642 return new;
643 }
644 } else if (new) {
645 /* find an unused unit number */
646 static int next_minor = 512;
647 int start = next_minor;
648 int is_free = 0;
649 int dev = 0;
650 while (!is_free) {
651 dev = MKDEV(MD_MAJOR, next_minor);
652 next_minor++;
653 if (next_minor > MINORMASK)
654 next_minor = 0;
655 if (next_minor == start) {
656 /* Oh dear, all in use. */
657 spin_unlock(&all_mddevs_lock);
658 kfree(new);
659 return NULL;
660 }
661
662 is_free = 1;
663 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
664 if (mddev->unit == dev) {
665 is_free = 0;
666 break;
667 }
668 }
669 new->unit = dev;
670 new->md_minor = MINOR(dev);
671 new->hold_active = UNTIL_STOP;
672 list_add(&new->all_mddevs, &all_mddevs);
673 spin_unlock(&all_mddevs_lock);
674 return new;
675 }
676 spin_unlock(&all_mddevs_lock);
677
678 new = kzalloc(sizeof(*new), GFP_KERNEL);
679 if (!new)
680 return NULL;
681
682 new->unit = unit;
683 if (MAJOR(unit) == MD_MAJOR)
684 new->md_minor = MINOR(unit);
685 else
686 new->md_minor = MINOR(unit) >> MdpMinorShift;
687
688 mddev_init(new);
689
690 goto retry;
691 }
692
693 static inline int mddev_lock(struct mddev * mddev)
694 {
695 return mutex_lock_interruptible(&mddev->reconfig_mutex);
696 }
697
698 static inline int mddev_is_locked(struct mddev *mddev)
699 {
700 return mutex_is_locked(&mddev->reconfig_mutex);
701 }
702
703 static inline int mddev_trylock(struct mddev * mddev)
704 {
705 return mutex_trylock(&mddev->reconfig_mutex);
706 }
707
708 static struct attribute_group md_redundancy_group;
709
710 static void mddev_unlock(struct mddev * mddev)
711 {
712 if (mddev->to_remove) {
713 /* These cannot be removed under reconfig_mutex as
714 * an access to the files will try to take reconfig_mutex
715 * while holding the file unremovable, which leads to
716 * a deadlock.
717 * So hold set sysfs_active while the remove in happeing,
718 * and anything else which might set ->to_remove or my
719 * otherwise change the sysfs namespace will fail with
720 * -EBUSY if sysfs_active is still set.
721 * We set sysfs_active under reconfig_mutex and elsewhere
722 * test it under the same mutex to ensure its correct value
723 * is seen.
724 */
725 struct attribute_group *to_remove = mddev->to_remove;
726 mddev->to_remove = NULL;
727 mddev->sysfs_active = 1;
728 mutex_unlock(&mddev->reconfig_mutex);
729
730 if (mddev->kobj.sd) {
731 if (to_remove != &md_redundancy_group)
732 sysfs_remove_group(&mddev->kobj, to_remove);
733 if (mddev->pers == NULL ||
734 mddev->pers->sync_request == NULL) {
735 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
736 if (mddev->sysfs_action)
737 sysfs_put(mddev->sysfs_action);
738 mddev->sysfs_action = NULL;
739 }
740 }
741 mddev->sysfs_active = 0;
742 } else
743 mutex_unlock(&mddev->reconfig_mutex);
744
745 /* As we've dropped the mutex we need a spinlock to
746 * make sure the thread doesn't disappear
747 */
748 spin_lock(&pers_lock);
749 md_wakeup_thread(mddev->thread);
750 spin_unlock(&pers_lock);
751 }
752
753 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
754 {
755 struct md_rdev *rdev;
756
757 list_for_each_entry(rdev, &mddev->disks, same_set)
758 if (rdev->desc_nr == nr)
759 return rdev;
760
761 return NULL;
762 }
763
764 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
765 {
766 struct md_rdev *rdev;
767
768 list_for_each_entry(rdev, &mddev->disks, same_set)
769 if (rdev->bdev->bd_dev == dev)
770 return rdev;
771
772 return NULL;
773 }
774
775 static struct md_personality *find_pers(int level, char *clevel)
776 {
777 struct md_personality *pers;
778 list_for_each_entry(pers, &pers_list, list) {
779 if (level != LEVEL_NONE && pers->level == level)
780 return pers;
781 if (strcmp(pers->name, clevel)==0)
782 return pers;
783 }
784 return NULL;
785 }
786
787 /* return the offset of the super block in 512byte sectors */
788 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
789 {
790 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
791 return MD_NEW_SIZE_SECTORS(num_sectors);
792 }
793
794 static int alloc_disk_sb(struct md_rdev * rdev)
795 {
796 if (rdev->sb_page)
797 MD_BUG();
798
799 rdev->sb_page = alloc_page(GFP_KERNEL);
800 if (!rdev->sb_page) {
801 printk(KERN_ALERT "md: out of memory.\n");
802 return -ENOMEM;
803 }
804
805 return 0;
806 }
807
808 static void free_disk_sb(struct md_rdev * rdev)
809 {
810 if (rdev->sb_page) {
811 put_page(rdev->sb_page);
812 rdev->sb_loaded = 0;
813 rdev->sb_page = NULL;
814 rdev->sb_start = 0;
815 rdev->sectors = 0;
816 }
817 if (rdev->bb_page) {
818 put_page(rdev->bb_page);
819 rdev->bb_page = NULL;
820 }
821 }
822
823
824 static void super_written(struct bio *bio, int error)
825 {
826 struct md_rdev *rdev = bio->bi_private;
827 struct mddev *mddev = rdev->mddev;
828
829 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
830 printk("md: super_written gets error=%d, uptodate=%d\n",
831 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
832 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
833 md_error(mddev, rdev);
834 }
835
836 if (atomic_dec_and_test(&mddev->pending_writes))
837 wake_up(&mddev->sb_wait);
838 bio_put(bio);
839 }
840
841 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
842 sector_t sector, int size, struct page *page)
843 {
844 /* write first size bytes of page to sector of rdev
845 * Increment mddev->pending_writes before returning
846 * and decrement it on completion, waking up sb_wait
847 * if zero is reached.
848 * If an error occurred, call md_error
849 */
850 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
851
852 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
853 bio->bi_sector = sector;
854 bio_add_page(bio, page, size, 0);
855 bio->bi_private = rdev;
856 bio->bi_end_io = super_written;
857
858 atomic_inc(&mddev->pending_writes);
859 submit_bio(WRITE_FLUSH_FUA, bio);
860 }
861
862 void md_super_wait(struct mddev *mddev)
863 {
864 /* wait for all superblock writes that were scheduled to complete */
865 DEFINE_WAIT(wq);
866 for(;;) {
867 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
868 if (atomic_read(&mddev->pending_writes)==0)
869 break;
870 schedule();
871 }
872 finish_wait(&mddev->sb_wait, &wq);
873 }
874
875 static void bi_complete(struct bio *bio, int error)
876 {
877 complete((struct completion*)bio->bi_private);
878 }
879
880 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
881 struct page *page, int rw, bool metadata_op)
882 {
883 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
884 struct completion event;
885 int ret;
886
887 rw |= REQ_SYNC;
888
889 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
890 rdev->meta_bdev : rdev->bdev;
891 if (metadata_op)
892 bio->bi_sector = sector + rdev->sb_start;
893 else
894 bio->bi_sector = sector + rdev->data_offset;
895 bio_add_page(bio, page, size, 0);
896 init_completion(&event);
897 bio->bi_private = &event;
898 bio->bi_end_io = bi_complete;
899 submit_bio(rw, bio);
900 wait_for_completion(&event);
901
902 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
903 bio_put(bio);
904 return ret;
905 }
906 EXPORT_SYMBOL_GPL(sync_page_io);
907
908 static int read_disk_sb(struct md_rdev * rdev, int size)
909 {
910 char b[BDEVNAME_SIZE];
911 if (!rdev->sb_page) {
912 MD_BUG();
913 return -EINVAL;
914 }
915 if (rdev->sb_loaded)
916 return 0;
917
918
919 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
920 goto fail;
921 rdev->sb_loaded = 1;
922 return 0;
923
924 fail:
925 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
926 bdevname(rdev->bdev,b));
927 return -EINVAL;
928 }
929
930 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
931 {
932 return sb1->set_uuid0 == sb2->set_uuid0 &&
933 sb1->set_uuid1 == sb2->set_uuid1 &&
934 sb1->set_uuid2 == sb2->set_uuid2 &&
935 sb1->set_uuid3 == sb2->set_uuid3;
936 }
937
938 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
939 {
940 int ret;
941 mdp_super_t *tmp1, *tmp2;
942
943 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
944 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
945
946 if (!tmp1 || !tmp2) {
947 ret = 0;
948 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
949 goto abort;
950 }
951
952 *tmp1 = *sb1;
953 *tmp2 = *sb2;
954
955 /*
956 * nr_disks is not constant
957 */
958 tmp1->nr_disks = 0;
959 tmp2->nr_disks = 0;
960
961 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
962 abort:
963 kfree(tmp1);
964 kfree(tmp2);
965 return ret;
966 }
967
968
969 static u32 md_csum_fold(u32 csum)
970 {
971 csum = (csum & 0xffff) + (csum >> 16);
972 return (csum & 0xffff) + (csum >> 16);
973 }
974
975 static unsigned int calc_sb_csum(mdp_super_t * sb)
976 {
977 u64 newcsum = 0;
978 u32 *sb32 = (u32*)sb;
979 int i;
980 unsigned int disk_csum, csum;
981
982 disk_csum = sb->sb_csum;
983 sb->sb_csum = 0;
984
985 for (i = 0; i < MD_SB_BYTES/4 ; i++)
986 newcsum += sb32[i];
987 csum = (newcsum & 0xffffffff) + (newcsum>>32);
988
989
990 #ifdef CONFIG_ALPHA
991 /* This used to use csum_partial, which was wrong for several
992 * reasons including that different results are returned on
993 * different architectures. It isn't critical that we get exactly
994 * the same return value as before (we always csum_fold before
995 * testing, and that removes any differences). However as we
996 * know that csum_partial always returned a 16bit value on
997 * alphas, do a fold to maximise conformity to previous behaviour.
998 */
999 sb->sb_csum = md_csum_fold(disk_csum);
1000 #else
1001 sb->sb_csum = disk_csum;
1002 #endif
1003 return csum;
1004 }
1005
1006
1007 /*
1008 * Handle superblock details.
1009 * We want to be able to handle multiple superblock formats
1010 * so we have a common interface to them all, and an array of
1011 * different handlers.
1012 * We rely on user-space to write the initial superblock, and support
1013 * reading and updating of superblocks.
1014 * Interface methods are:
1015 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1016 * loads and validates a superblock on dev.
1017 * if refdev != NULL, compare superblocks on both devices
1018 * Return:
1019 * 0 - dev has a superblock that is compatible with refdev
1020 * 1 - dev has a superblock that is compatible and newer than refdev
1021 * so dev should be used as the refdev in future
1022 * -EINVAL superblock incompatible or invalid
1023 * -othererror e.g. -EIO
1024 *
1025 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1026 * Verify that dev is acceptable into mddev.
1027 * The first time, mddev->raid_disks will be 0, and data from
1028 * dev should be merged in. Subsequent calls check that dev
1029 * is new enough. Return 0 or -EINVAL
1030 *
1031 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1032 * Update the superblock for rdev with data in mddev
1033 * This does not write to disc.
1034 *
1035 */
1036
1037 struct super_type {
1038 char *name;
1039 struct module *owner;
1040 int (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1041 int minor_version);
1042 int (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1043 void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1044 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1045 sector_t num_sectors);
1046 };
1047
1048 /*
1049 * Check that the given mddev has no bitmap.
1050 *
1051 * This function is called from the run method of all personalities that do not
1052 * support bitmaps. It prints an error message and returns non-zero if mddev
1053 * has a bitmap. Otherwise, it returns 0.
1054 *
1055 */
1056 int md_check_no_bitmap(struct mddev *mddev)
1057 {
1058 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1059 return 0;
1060 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1061 mdname(mddev), mddev->pers->name);
1062 return 1;
1063 }
1064 EXPORT_SYMBOL(md_check_no_bitmap);
1065
1066 /*
1067 * load_super for 0.90.0
1068 */
1069 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1070 {
1071 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1072 mdp_super_t *sb;
1073 int ret;
1074
1075 /*
1076 * Calculate the position of the superblock (512byte sectors),
1077 * it's at the end of the disk.
1078 *
1079 * It also happens to be a multiple of 4Kb.
1080 */
1081 rdev->sb_start = calc_dev_sboffset(rdev);
1082
1083 ret = read_disk_sb(rdev, MD_SB_BYTES);
1084 if (ret) return ret;
1085
1086 ret = -EINVAL;
1087
1088 bdevname(rdev->bdev, b);
1089 sb = page_address(rdev->sb_page);
1090
1091 if (sb->md_magic != MD_SB_MAGIC) {
1092 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1093 b);
1094 goto abort;
1095 }
1096
1097 if (sb->major_version != 0 ||
1098 sb->minor_version < 90 ||
1099 sb->minor_version > 91) {
1100 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1101 sb->major_version, sb->minor_version,
1102 b);
1103 goto abort;
1104 }
1105
1106 if (sb->raid_disks <= 0)
1107 goto abort;
1108
1109 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1110 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1111 b);
1112 goto abort;
1113 }
1114
1115 rdev->preferred_minor = sb->md_minor;
1116 rdev->data_offset = 0;
1117 rdev->sb_size = MD_SB_BYTES;
1118 rdev->badblocks.shift = -1;
1119
1120 if (sb->level == LEVEL_MULTIPATH)
1121 rdev->desc_nr = -1;
1122 else
1123 rdev->desc_nr = sb->this_disk.number;
1124
1125 if (!refdev) {
1126 ret = 1;
1127 } else {
1128 __u64 ev1, ev2;
1129 mdp_super_t *refsb = page_address(refdev->sb_page);
1130 if (!uuid_equal(refsb, sb)) {
1131 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1132 b, bdevname(refdev->bdev,b2));
1133 goto abort;
1134 }
1135 if (!sb_equal(refsb, sb)) {
1136 printk(KERN_WARNING "md: %s has same UUID"
1137 " but different superblock to %s\n",
1138 b, bdevname(refdev->bdev, b2));
1139 goto abort;
1140 }
1141 ev1 = md_event(sb);
1142 ev2 = md_event(refsb);
1143 if (ev1 > ev2)
1144 ret = 1;
1145 else
1146 ret = 0;
1147 }
1148 rdev->sectors = rdev->sb_start;
1149 /* Limit to 4TB as metadata cannot record more than that */
1150 if (rdev->sectors >= (2ULL << 32))
1151 rdev->sectors = (2ULL << 32) - 2;
1152
1153 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1154 /* "this cannot possibly happen" ... */
1155 ret = -EINVAL;
1156
1157 abort:
1158 return ret;
1159 }
1160
1161 /*
1162 * validate_super for 0.90.0
1163 */
1164 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1165 {
1166 mdp_disk_t *desc;
1167 mdp_super_t *sb = page_address(rdev->sb_page);
1168 __u64 ev1 = md_event(sb);
1169
1170 rdev->raid_disk = -1;
1171 clear_bit(Faulty, &rdev->flags);
1172 clear_bit(In_sync, &rdev->flags);
1173 clear_bit(WriteMostly, &rdev->flags);
1174
1175 if (mddev->raid_disks == 0) {
1176 mddev->major_version = 0;
1177 mddev->minor_version = sb->minor_version;
1178 mddev->patch_version = sb->patch_version;
1179 mddev->external = 0;
1180 mddev->chunk_sectors = sb->chunk_size >> 9;
1181 mddev->ctime = sb->ctime;
1182 mddev->utime = sb->utime;
1183 mddev->level = sb->level;
1184 mddev->clevel[0] = 0;
1185 mddev->layout = sb->layout;
1186 mddev->raid_disks = sb->raid_disks;
1187 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1188 mddev->events = ev1;
1189 mddev->bitmap_info.offset = 0;
1190 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1191
1192 if (mddev->minor_version >= 91) {
1193 mddev->reshape_position = sb->reshape_position;
1194 mddev->delta_disks = sb->delta_disks;
1195 mddev->new_level = sb->new_level;
1196 mddev->new_layout = sb->new_layout;
1197 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1198 } else {
1199 mddev->reshape_position = MaxSector;
1200 mddev->delta_disks = 0;
1201 mddev->new_level = mddev->level;
1202 mddev->new_layout = mddev->layout;
1203 mddev->new_chunk_sectors = mddev->chunk_sectors;
1204 }
1205
1206 if (sb->state & (1<<MD_SB_CLEAN))
1207 mddev->recovery_cp = MaxSector;
1208 else {
1209 if (sb->events_hi == sb->cp_events_hi &&
1210 sb->events_lo == sb->cp_events_lo) {
1211 mddev->recovery_cp = sb->recovery_cp;
1212 } else
1213 mddev->recovery_cp = 0;
1214 }
1215
1216 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1217 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1218 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1219 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1220
1221 mddev->max_disks = MD_SB_DISKS;
1222
1223 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1224 mddev->bitmap_info.file == NULL)
1225 mddev->bitmap_info.offset =
1226 mddev->bitmap_info.default_offset;
1227
1228 } else if (mddev->pers == NULL) {
1229 /* Insist on good event counter while assembling, except
1230 * for spares (which don't need an event count) */
1231 ++ev1;
1232 if (sb->disks[rdev->desc_nr].state & (
1233 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1234 if (ev1 < mddev->events)
1235 return -EINVAL;
1236 } else if (mddev->bitmap) {
1237 /* if adding to array with a bitmap, then we can accept an
1238 * older device ... but not too old.
1239 */
1240 if (ev1 < mddev->bitmap->events_cleared)
1241 return 0;
1242 } else {
1243 if (ev1 < mddev->events)
1244 /* just a hot-add of a new device, leave raid_disk at -1 */
1245 return 0;
1246 }
1247
1248 if (mddev->level != LEVEL_MULTIPATH) {
1249 desc = sb->disks + rdev->desc_nr;
1250
1251 if (desc->state & (1<<MD_DISK_FAULTY))
1252 set_bit(Faulty, &rdev->flags);
1253 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1254 desc->raid_disk < mddev->raid_disks */) {
1255 set_bit(In_sync, &rdev->flags);
1256 rdev->raid_disk = desc->raid_disk;
1257 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1258 /* active but not in sync implies recovery up to
1259 * reshape position. We don't know exactly where
1260 * that is, so set to zero for now */
1261 if (mddev->minor_version >= 91) {
1262 rdev->recovery_offset = 0;
1263 rdev->raid_disk = desc->raid_disk;
1264 }
1265 }
1266 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1267 set_bit(WriteMostly, &rdev->flags);
1268 } else /* MULTIPATH are always insync */
1269 set_bit(In_sync, &rdev->flags);
1270 return 0;
1271 }
1272
1273 /*
1274 * sync_super for 0.90.0
1275 */
1276 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1277 {
1278 mdp_super_t *sb;
1279 struct md_rdev *rdev2;
1280 int next_spare = mddev->raid_disks;
1281
1282
1283 /* make rdev->sb match mddev data..
1284 *
1285 * 1/ zero out disks
1286 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1287 * 3/ any empty disks < next_spare become removed
1288 *
1289 * disks[0] gets initialised to REMOVED because
1290 * we cannot be sure from other fields if it has
1291 * been initialised or not.
1292 */
1293 int i;
1294 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1295
1296 rdev->sb_size = MD_SB_BYTES;
1297
1298 sb = page_address(rdev->sb_page);
1299
1300 memset(sb, 0, sizeof(*sb));
1301
1302 sb->md_magic = MD_SB_MAGIC;
1303 sb->major_version = mddev->major_version;
1304 sb->patch_version = mddev->patch_version;
1305 sb->gvalid_words = 0; /* ignored */
1306 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1307 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1308 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1309 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1310
1311 sb->ctime = mddev->ctime;
1312 sb->level = mddev->level;
1313 sb->size = mddev->dev_sectors / 2;
1314 sb->raid_disks = mddev->raid_disks;
1315 sb->md_minor = mddev->md_minor;
1316 sb->not_persistent = 0;
1317 sb->utime = mddev->utime;
1318 sb->state = 0;
1319 sb->events_hi = (mddev->events>>32);
1320 sb->events_lo = (u32)mddev->events;
1321
1322 if (mddev->reshape_position == MaxSector)
1323 sb->minor_version = 90;
1324 else {
1325 sb->minor_version = 91;
1326 sb->reshape_position = mddev->reshape_position;
1327 sb->new_level = mddev->new_level;
1328 sb->delta_disks = mddev->delta_disks;
1329 sb->new_layout = mddev->new_layout;
1330 sb->new_chunk = mddev->new_chunk_sectors << 9;
1331 }
1332 mddev->minor_version = sb->minor_version;
1333 if (mddev->in_sync)
1334 {
1335 sb->recovery_cp = mddev->recovery_cp;
1336 sb->cp_events_hi = (mddev->events>>32);
1337 sb->cp_events_lo = (u32)mddev->events;
1338 if (mddev->recovery_cp == MaxSector)
1339 sb->state = (1<< MD_SB_CLEAN);
1340 } else
1341 sb->recovery_cp = 0;
1342
1343 sb->layout = mddev->layout;
1344 sb->chunk_size = mddev->chunk_sectors << 9;
1345
1346 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1347 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1348
1349 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1350 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1351 mdp_disk_t *d;
1352 int desc_nr;
1353 int is_active = test_bit(In_sync, &rdev2->flags);
1354
1355 if (rdev2->raid_disk >= 0 &&
1356 sb->minor_version >= 91)
1357 /* we have nowhere to store the recovery_offset,
1358 * but if it is not below the reshape_position,
1359 * we can piggy-back on that.
1360 */
1361 is_active = 1;
1362 if (rdev2->raid_disk < 0 ||
1363 test_bit(Faulty, &rdev2->flags))
1364 is_active = 0;
1365 if (is_active)
1366 desc_nr = rdev2->raid_disk;
1367 else
1368 desc_nr = next_spare++;
1369 rdev2->desc_nr = desc_nr;
1370 d = &sb->disks[rdev2->desc_nr];
1371 nr_disks++;
1372 d->number = rdev2->desc_nr;
1373 d->major = MAJOR(rdev2->bdev->bd_dev);
1374 d->minor = MINOR(rdev2->bdev->bd_dev);
1375 if (is_active)
1376 d->raid_disk = rdev2->raid_disk;
1377 else
1378 d->raid_disk = rdev2->desc_nr; /* compatibility */
1379 if (test_bit(Faulty, &rdev2->flags))
1380 d->state = (1<<MD_DISK_FAULTY);
1381 else if (is_active) {
1382 d->state = (1<<MD_DISK_ACTIVE);
1383 if (test_bit(In_sync, &rdev2->flags))
1384 d->state |= (1<<MD_DISK_SYNC);
1385 active++;
1386 working++;
1387 } else {
1388 d->state = 0;
1389 spare++;
1390 working++;
1391 }
1392 if (test_bit(WriteMostly, &rdev2->flags))
1393 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1394 }
1395 /* now set the "removed" and "faulty" bits on any missing devices */
1396 for (i=0 ; i < mddev->raid_disks ; i++) {
1397 mdp_disk_t *d = &sb->disks[i];
1398 if (d->state == 0 && d->number == 0) {
1399 d->number = i;
1400 d->raid_disk = i;
1401 d->state = (1<<MD_DISK_REMOVED);
1402 d->state |= (1<<MD_DISK_FAULTY);
1403 failed++;
1404 }
1405 }
1406 sb->nr_disks = nr_disks;
1407 sb->active_disks = active;
1408 sb->working_disks = working;
1409 sb->failed_disks = failed;
1410 sb->spare_disks = spare;
1411
1412 sb->this_disk = sb->disks[rdev->desc_nr];
1413 sb->sb_csum = calc_sb_csum(sb);
1414 }
1415
1416 /*
1417 * rdev_size_change for 0.90.0
1418 */
1419 static unsigned long long
1420 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1421 {
1422 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1423 return 0; /* component must fit device */
1424 if (rdev->mddev->bitmap_info.offset)
1425 return 0; /* can't move bitmap */
1426 rdev->sb_start = calc_dev_sboffset(rdev);
1427 if (!num_sectors || num_sectors > rdev->sb_start)
1428 num_sectors = rdev->sb_start;
1429 /* Limit to 4TB as metadata cannot record more than that.
1430 * 4TB == 2^32 KB, or 2*2^32 sectors.
1431 */
1432 if (num_sectors >= (2ULL << 32))
1433 num_sectors = (2ULL << 32) - 2;
1434 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1435 rdev->sb_page);
1436 md_super_wait(rdev->mddev);
1437 return num_sectors;
1438 }
1439
1440
1441 /*
1442 * version 1 superblock
1443 */
1444
1445 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1446 {
1447 __le32 disk_csum;
1448 u32 csum;
1449 unsigned long long newcsum;
1450 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1451 __le32 *isuper = (__le32*)sb;
1452 int i;
1453
1454 disk_csum = sb->sb_csum;
1455 sb->sb_csum = 0;
1456 newcsum = 0;
1457 for (i=0; size>=4; size -= 4 )
1458 newcsum += le32_to_cpu(*isuper++);
1459
1460 if (size == 2)
1461 newcsum += le16_to_cpu(*(__le16*) isuper);
1462
1463 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1464 sb->sb_csum = disk_csum;
1465 return cpu_to_le32(csum);
1466 }
1467
1468 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1469 int acknowledged);
1470 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1471 {
1472 struct mdp_superblock_1 *sb;
1473 int ret;
1474 sector_t sb_start;
1475 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1476 int bmask;
1477
1478 /*
1479 * Calculate the position of the superblock in 512byte sectors.
1480 * It is always aligned to a 4K boundary and
1481 * depeding on minor_version, it can be:
1482 * 0: At least 8K, but less than 12K, from end of device
1483 * 1: At start of device
1484 * 2: 4K from start of device.
1485 */
1486 switch(minor_version) {
1487 case 0:
1488 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1489 sb_start -= 8*2;
1490 sb_start &= ~(sector_t)(4*2-1);
1491 break;
1492 case 1:
1493 sb_start = 0;
1494 break;
1495 case 2:
1496 sb_start = 8;
1497 break;
1498 default:
1499 return -EINVAL;
1500 }
1501 rdev->sb_start = sb_start;
1502
1503 /* superblock is rarely larger than 1K, but it can be larger,
1504 * and it is safe to read 4k, so we do that
1505 */
1506 ret = read_disk_sb(rdev, 4096);
1507 if (ret) return ret;
1508
1509
1510 sb = page_address(rdev->sb_page);
1511
1512 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1513 sb->major_version != cpu_to_le32(1) ||
1514 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1515 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1516 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1517 return -EINVAL;
1518
1519 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1520 printk("md: invalid superblock checksum on %s\n",
1521 bdevname(rdev->bdev,b));
1522 return -EINVAL;
1523 }
1524 if (le64_to_cpu(sb->data_size) < 10) {
1525 printk("md: data_size too small on %s\n",
1526 bdevname(rdev->bdev,b));
1527 return -EINVAL;
1528 }
1529
1530 rdev->preferred_minor = 0xffff;
1531 rdev->data_offset = le64_to_cpu(sb->data_offset);
1532 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1533
1534 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1535 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1536 if (rdev->sb_size & bmask)
1537 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1538
1539 if (minor_version
1540 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1541 return -EINVAL;
1542
1543 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1544 rdev->desc_nr = -1;
1545 else
1546 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1547
1548 if (!rdev->bb_page) {
1549 rdev->bb_page = alloc_page(GFP_KERNEL);
1550 if (!rdev->bb_page)
1551 return -ENOMEM;
1552 }
1553 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1554 rdev->badblocks.count == 0) {
1555 /* need to load the bad block list.
1556 * Currently we limit it to one page.
1557 */
1558 s32 offset;
1559 sector_t bb_sector;
1560 u64 *bbp;
1561 int i;
1562 int sectors = le16_to_cpu(sb->bblog_size);
1563 if (sectors > (PAGE_SIZE / 512))
1564 return -EINVAL;
1565 offset = le32_to_cpu(sb->bblog_offset);
1566 if (offset == 0)
1567 return -EINVAL;
1568 bb_sector = (long long)offset;
1569 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1570 rdev->bb_page, READ, true))
1571 return -EIO;
1572 bbp = (u64 *)page_address(rdev->bb_page);
1573 rdev->badblocks.shift = sb->bblog_shift;
1574 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1575 u64 bb = le64_to_cpu(*bbp);
1576 int count = bb & (0x3ff);
1577 u64 sector = bb >> 10;
1578 sector <<= sb->bblog_shift;
1579 count <<= sb->bblog_shift;
1580 if (bb + 1 == 0)
1581 break;
1582 if (md_set_badblocks(&rdev->badblocks,
1583 sector, count, 1) == 0)
1584 return -EINVAL;
1585 }
1586 } else if (sb->bblog_offset == 0)
1587 rdev->badblocks.shift = -1;
1588
1589 if (!refdev) {
1590 ret = 1;
1591 } else {
1592 __u64 ev1, ev2;
1593 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1594
1595 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1596 sb->level != refsb->level ||
1597 sb->layout != refsb->layout ||
1598 sb->chunksize != refsb->chunksize) {
1599 printk(KERN_WARNING "md: %s has strangely different"
1600 " superblock to %s\n",
1601 bdevname(rdev->bdev,b),
1602 bdevname(refdev->bdev,b2));
1603 return -EINVAL;
1604 }
1605 ev1 = le64_to_cpu(sb->events);
1606 ev2 = le64_to_cpu(refsb->events);
1607
1608 if (ev1 > ev2)
1609 ret = 1;
1610 else
1611 ret = 0;
1612 }
1613 if (minor_version)
1614 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1615 le64_to_cpu(sb->data_offset);
1616 else
1617 rdev->sectors = rdev->sb_start;
1618 if (rdev->sectors < le64_to_cpu(sb->data_size))
1619 return -EINVAL;
1620 rdev->sectors = le64_to_cpu(sb->data_size);
1621 if (le64_to_cpu(sb->size) > rdev->sectors)
1622 return -EINVAL;
1623 return ret;
1624 }
1625
1626 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1627 {
1628 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1629 __u64 ev1 = le64_to_cpu(sb->events);
1630
1631 rdev->raid_disk = -1;
1632 clear_bit(Faulty, &rdev->flags);
1633 clear_bit(In_sync, &rdev->flags);
1634 clear_bit(WriteMostly, &rdev->flags);
1635
1636 if (mddev->raid_disks == 0) {
1637 mddev->major_version = 1;
1638 mddev->patch_version = 0;
1639 mddev->external = 0;
1640 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1641 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1642 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1643 mddev->level = le32_to_cpu(sb->level);
1644 mddev->clevel[0] = 0;
1645 mddev->layout = le32_to_cpu(sb->layout);
1646 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1647 mddev->dev_sectors = le64_to_cpu(sb->size);
1648 mddev->events = ev1;
1649 mddev->bitmap_info.offset = 0;
1650 mddev->bitmap_info.default_offset = 1024 >> 9;
1651
1652 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1653 memcpy(mddev->uuid, sb->set_uuid, 16);
1654
1655 mddev->max_disks = (4096-256)/2;
1656
1657 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1658 mddev->bitmap_info.file == NULL )
1659 mddev->bitmap_info.offset =
1660 (__s32)le32_to_cpu(sb->bitmap_offset);
1661
1662 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1663 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1664 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1665 mddev->new_level = le32_to_cpu(sb->new_level);
1666 mddev->new_layout = le32_to_cpu(sb->new_layout);
1667 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1668 } else {
1669 mddev->reshape_position = MaxSector;
1670 mddev->delta_disks = 0;
1671 mddev->new_level = mddev->level;
1672 mddev->new_layout = mddev->layout;
1673 mddev->new_chunk_sectors = mddev->chunk_sectors;
1674 }
1675
1676 } else if (mddev->pers == NULL) {
1677 /* Insist of good event counter while assembling, except for
1678 * spares (which don't need an event count) */
1679 ++ev1;
1680 if (rdev->desc_nr >= 0 &&
1681 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1682 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1683 if (ev1 < mddev->events)
1684 return -EINVAL;
1685 } else if (mddev->bitmap) {
1686 /* If adding to array with a bitmap, then we can accept an
1687 * older device, but not too old.
1688 */
1689 if (ev1 < mddev->bitmap->events_cleared)
1690 return 0;
1691 } else {
1692 if (ev1 < mddev->events)
1693 /* just a hot-add of a new device, leave raid_disk at -1 */
1694 return 0;
1695 }
1696 if (mddev->level != LEVEL_MULTIPATH) {
1697 int role;
1698 if (rdev->desc_nr < 0 ||
1699 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1700 role = 0xffff;
1701 rdev->desc_nr = -1;
1702 } else
1703 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1704 switch(role) {
1705 case 0xffff: /* spare */
1706 break;
1707 case 0xfffe: /* faulty */
1708 set_bit(Faulty, &rdev->flags);
1709 break;
1710 default:
1711 if ((le32_to_cpu(sb->feature_map) &
1712 MD_FEATURE_RECOVERY_OFFSET))
1713 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1714 else
1715 set_bit(In_sync, &rdev->flags);
1716 rdev->raid_disk = role;
1717 break;
1718 }
1719 if (sb->devflags & WriteMostly1)
1720 set_bit(WriteMostly, &rdev->flags);
1721 } else /* MULTIPATH are always insync */
1722 set_bit(In_sync, &rdev->flags);
1723
1724 return 0;
1725 }
1726
1727 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1728 {
1729 struct mdp_superblock_1 *sb;
1730 struct md_rdev *rdev2;
1731 int max_dev, i;
1732 /* make rdev->sb match mddev and rdev data. */
1733
1734 sb = page_address(rdev->sb_page);
1735
1736 sb->feature_map = 0;
1737 sb->pad0 = 0;
1738 sb->recovery_offset = cpu_to_le64(0);
1739 memset(sb->pad1, 0, sizeof(sb->pad1));
1740 memset(sb->pad3, 0, sizeof(sb->pad3));
1741
1742 sb->utime = cpu_to_le64((__u64)mddev->utime);
1743 sb->events = cpu_to_le64(mddev->events);
1744 if (mddev->in_sync)
1745 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1746 else
1747 sb->resync_offset = cpu_to_le64(0);
1748
1749 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1750
1751 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1752 sb->size = cpu_to_le64(mddev->dev_sectors);
1753 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1754 sb->level = cpu_to_le32(mddev->level);
1755 sb->layout = cpu_to_le32(mddev->layout);
1756
1757 if (test_bit(WriteMostly, &rdev->flags))
1758 sb->devflags |= WriteMostly1;
1759 else
1760 sb->devflags &= ~WriteMostly1;
1761
1762 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1763 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1764 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1765 }
1766
1767 if (rdev->raid_disk >= 0 &&
1768 !test_bit(In_sync, &rdev->flags)) {
1769 sb->feature_map |=
1770 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1771 sb->recovery_offset =
1772 cpu_to_le64(rdev->recovery_offset);
1773 }
1774
1775 if (mddev->reshape_position != MaxSector) {
1776 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1777 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1778 sb->new_layout = cpu_to_le32(mddev->new_layout);
1779 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1780 sb->new_level = cpu_to_le32(mddev->new_level);
1781 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1782 }
1783
1784 if (rdev->badblocks.count == 0)
1785 /* Nothing to do for bad blocks*/ ;
1786 else if (sb->bblog_offset == 0)
1787 /* Cannot record bad blocks on this device */
1788 md_error(mddev, rdev);
1789 else {
1790 struct badblocks *bb = &rdev->badblocks;
1791 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1792 u64 *p = bb->page;
1793 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1794 if (bb->changed) {
1795 unsigned seq;
1796
1797 retry:
1798 seq = read_seqbegin(&bb->lock);
1799
1800 memset(bbp, 0xff, PAGE_SIZE);
1801
1802 for (i = 0 ; i < bb->count ; i++) {
1803 u64 internal_bb = *p++;
1804 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1805 | BB_LEN(internal_bb));
1806 *bbp++ = cpu_to_le64(store_bb);
1807 }
1808 if (read_seqretry(&bb->lock, seq))
1809 goto retry;
1810
1811 bb->sector = (rdev->sb_start +
1812 (int)le32_to_cpu(sb->bblog_offset));
1813 bb->size = le16_to_cpu(sb->bblog_size);
1814 bb->changed = 0;
1815 }
1816 }
1817
1818 max_dev = 0;
1819 list_for_each_entry(rdev2, &mddev->disks, same_set)
1820 if (rdev2->desc_nr+1 > max_dev)
1821 max_dev = rdev2->desc_nr+1;
1822
1823 if (max_dev > le32_to_cpu(sb->max_dev)) {
1824 int bmask;
1825 sb->max_dev = cpu_to_le32(max_dev);
1826 rdev->sb_size = max_dev * 2 + 256;
1827 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1828 if (rdev->sb_size & bmask)
1829 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1830 } else
1831 max_dev = le32_to_cpu(sb->max_dev);
1832
1833 for (i=0; i<max_dev;i++)
1834 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1835
1836 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1837 i = rdev2->desc_nr;
1838 if (test_bit(Faulty, &rdev2->flags))
1839 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1840 else if (test_bit(In_sync, &rdev2->flags))
1841 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1842 else if (rdev2->raid_disk >= 0)
1843 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1844 else
1845 sb->dev_roles[i] = cpu_to_le16(0xffff);
1846 }
1847
1848 sb->sb_csum = calc_sb_1_csum(sb);
1849 }
1850
1851 static unsigned long long
1852 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1853 {
1854 struct mdp_superblock_1 *sb;
1855 sector_t max_sectors;
1856 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1857 return 0; /* component must fit device */
1858 if (rdev->sb_start < rdev->data_offset) {
1859 /* minor versions 1 and 2; superblock before data */
1860 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1861 max_sectors -= rdev->data_offset;
1862 if (!num_sectors || num_sectors > max_sectors)
1863 num_sectors = max_sectors;
1864 } else if (rdev->mddev->bitmap_info.offset) {
1865 /* minor version 0 with bitmap we can't move */
1866 return 0;
1867 } else {
1868 /* minor version 0; superblock after data */
1869 sector_t sb_start;
1870 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1871 sb_start &= ~(sector_t)(4*2 - 1);
1872 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1873 if (!num_sectors || num_sectors > max_sectors)
1874 num_sectors = max_sectors;
1875 rdev->sb_start = sb_start;
1876 }
1877 sb = page_address(rdev->sb_page);
1878 sb->data_size = cpu_to_le64(num_sectors);
1879 sb->super_offset = rdev->sb_start;
1880 sb->sb_csum = calc_sb_1_csum(sb);
1881 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1882 rdev->sb_page);
1883 md_super_wait(rdev->mddev);
1884 return num_sectors;
1885 }
1886
1887 static struct super_type super_types[] = {
1888 [0] = {
1889 .name = "0.90.0",
1890 .owner = THIS_MODULE,
1891 .load_super = super_90_load,
1892 .validate_super = super_90_validate,
1893 .sync_super = super_90_sync,
1894 .rdev_size_change = super_90_rdev_size_change,
1895 },
1896 [1] = {
1897 .name = "md-1",
1898 .owner = THIS_MODULE,
1899 .load_super = super_1_load,
1900 .validate_super = super_1_validate,
1901 .sync_super = super_1_sync,
1902 .rdev_size_change = super_1_rdev_size_change,
1903 },
1904 };
1905
1906 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1907 {
1908 if (mddev->sync_super) {
1909 mddev->sync_super(mddev, rdev);
1910 return;
1911 }
1912
1913 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1914
1915 super_types[mddev->major_version].sync_super(mddev, rdev);
1916 }
1917
1918 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1919 {
1920 struct md_rdev *rdev, *rdev2;
1921
1922 rcu_read_lock();
1923 rdev_for_each_rcu(rdev, mddev1)
1924 rdev_for_each_rcu(rdev2, mddev2)
1925 if (rdev->bdev->bd_contains ==
1926 rdev2->bdev->bd_contains) {
1927 rcu_read_unlock();
1928 return 1;
1929 }
1930 rcu_read_unlock();
1931 return 0;
1932 }
1933
1934 static LIST_HEAD(pending_raid_disks);
1935
1936 /*
1937 * Try to register data integrity profile for an mddev
1938 *
1939 * This is called when an array is started and after a disk has been kicked
1940 * from the array. It only succeeds if all working and active component devices
1941 * are integrity capable with matching profiles.
1942 */
1943 int md_integrity_register(struct mddev *mddev)
1944 {
1945 struct md_rdev *rdev, *reference = NULL;
1946
1947 if (list_empty(&mddev->disks))
1948 return 0; /* nothing to do */
1949 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1950 return 0; /* shouldn't register, or already is */
1951 list_for_each_entry(rdev, &mddev->disks, same_set) {
1952 /* skip spares and non-functional disks */
1953 if (test_bit(Faulty, &rdev->flags))
1954 continue;
1955 if (rdev->raid_disk < 0)
1956 continue;
1957 if (!reference) {
1958 /* Use the first rdev as the reference */
1959 reference = rdev;
1960 continue;
1961 }
1962 /* does this rdev's profile match the reference profile? */
1963 if (blk_integrity_compare(reference->bdev->bd_disk,
1964 rdev->bdev->bd_disk) < 0)
1965 return -EINVAL;
1966 }
1967 if (!reference || !bdev_get_integrity(reference->bdev))
1968 return 0;
1969 /*
1970 * All component devices are integrity capable and have matching
1971 * profiles, register the common profile for the md device.
1972 */
1973 if (blk_integrity_register(mddev->gendisk,
1974 bdev_get_integrity(reference->bdev)) != 0) {
1975 printk(KERN_ERR "md: failed to register integrity for %s\n",
1976 mdname(mddev));
1977 return -EINVAL;
1978 }
1979 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1980 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1981 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1982 mdname(mddev));
1983 return -EINVAL;
1984 }
1985 return 0;
1986 }
1987 EXPORT_SYMBOL(md_integrity_register);
1988
1989 /* Disable data integrity if non-capable/non-matching disk is being added */
1990 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1991 {
1992 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1993 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1994
1995 if (!bi_mddev) /* nothing to do */
1996 return;
1997 if (rdev->raid_disk < 0) /* skip spares */
1998 return;
1999 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2000 rdev->bdev->bd_disk) >= 0)
2001 return;
2002 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2003 blk_integrity_unregister(mddev->gendisk);
2004 }
2005 EXPORT_SYMBOL(md_integrity_add_rdev);
2006
2007 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2008 {
2009 char b[BDEVNAME_SIZE];
2010 struct kobject *ko;
2011 char *s;
2012 int err;
2013
2014 if (rdev->mddev) {
2015 MD_BUG();
2016 return -EINVAL;
2017 }
2018
2019 /* prevent duplicates */
2020 if (find_rdev(mddev, rdev->bdev->bd_dev))
2021 return -EEXIST;
2022
2023 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2024 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2025 rdev->sectors < mddev->dev_sectors)) {
2026 if (mddev->pers) {
2027 /* Cannot change size, so fail
2028 * If mddev->level <= 0, then we don't care
2029 * about aligning sizes (e.g. linear)
2030 */
2031 if (mddev->level > 0)
2032 return -ENOSPC;
2033 } else
2034 mddev->dev_sectors = rdev->sectors;
2035 }
2036
2037 /* Verify rdev->desc_nr is unique.
2038 * If it is -1, assign a free number, else
2039 * check number is not in use
2040 */
2041 if (rdev->desc_nr < 0) {
2042 int choice = 0;
2043 if (mddev->pers) choice = mddev->raid_disks;
2044 while (find_rdev_nr(mddev, choice))
2045 choice++;
2046 rdev->desc_nr = choice;
2047 } else {
2048 if (find_rdev_nr(mddev, rdev->desc_nr))
2049 return -EBUSY;
2050 }
2051 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2052 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2053 mdname(mddev), mddev->max_disks);
2054 return -EBUSY;
2055 }
2056 bdevname(rdev->bdev,b);
2057 while ( (s=strchr(b, '/')) != NULL)
2058 *s = '!';
2059
2060 rdev->mddev = mddev;
2061 printk(KERN_INFO "md: bind<%s>\n", b);
2062
2063 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2064 goto fail;
2065
2066 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2067 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2068 /* failure here is OK */;
2069 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2070
2071 list_add_rcu(&rdev->same_set, &mddev->disks);
2072 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2073
2074 /* May as well allow recovery to be retried once */
2075 mddev->recovery_disabled++;
2076
2077 return 0;
2078
2079 fail:
2080 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2081 b, mdname(mddev));
2082 return err;
2083 }
2084
2085 static void md_delayed_delete(struct work_struct *ws)
2086 {
2087 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2088 kobject_del(&rdev->kobj);
2089 kobject_put(&rdev->kobj);
2090 }
2091
2092 static void unbind_rdev_from_array(struct md_rdev * rdev)
2093 {
2094 char b[BDEVNAME_SIZE];
2095 if (!rdev->mddev) {
2096 MD_BUG();
2097 return;
2098 }
2099 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2100 list_del_rcu(&rdev->same_set);
2101 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2102 rdev->mddev = NULL;
2103 sysfs_remove_link(&rdev->kobj, "block");
2104 sysfs_put(rdev->sysfs_state);
2105 rdev->sysfs_state = NULL;
2106 kfree(rdev->badblocks.page);
2107 rdev->badblocks.count = 0;
2108 rdev->badblocks.page = NULL;
2109 /* We need to delay this, otherwise we can deadlock when
2110 * writing to 'remove' to "dev/state". We also need
2111 * to delay it due to rcu usage.
2112 */
2113 synchronize_rcu();
2114 INIT_WORK(&rdev->del_work, md_delayed_delete);
2115 kobject_get(&rdev->kobj);
2116 queue_work(md_misc_wq, &rdev->del_work);
2117 }
2118
2119 /*
2120 * prevent the device from being mounted, repartitioned or
2121 * otherwise reused by a RAID array (or any other kernel
2122 * subsystem), by bd_claiming the device.
2123 */
2124 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2125 {
2126 int err = 0;
2127 struct block_device *bdev;
2128 char b[BDEVNAME_SIZE];
2129
2130 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2131 shared ? (struct md_rdev *)lock_rdev : rdev);
2132 if (IS_ERR(bdev)) {
2133 printk(KERN_ERR "md: could not open %s.\n",
2134 __bdevname(dev, b));
2135 return PTR_ERR(bdev);
2136 }
2137 rdev->bdev = bdev;
2138 return err;
2139 }
2140
2141 static void unlock_rdev(struct md_rdev *rdev)
2142 {
2143 struct block_device *bdev = rdev->bdev;
2144 rdev->bdev = NULL;
2145 if (!bdev)
2146 MD_BUG();
2147 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2148 }
2149
2150 void md_autodetect_dev(dev_t dev);
2151
2152 static void export_rdev(struct md_rdev * rdev)
2153 {
2154 char b[BDEVNAME_SIZE];
2155 printk(KERN_INFO "md: export_rdev(%s)\n",
2156 bdevname(rdev->bdev,b));
2157 if (rdev->mddev)
2158 MD_BUG();
2159 free_disk_sb(rdev);
2160 #ifndef MODULE
2161 if (test_bit(AutoDetected, &rdev->flags))
2162 md_autodetect_dev(rdev->bdev->bd_dev);
2163 #endif
2164 unlock_rdev(rdev);
2165 kobject_put(&rdev->kobj);
2166 }
2167
2168 static void kick_rdev_from_array(struct md_rdev * rdev)
2169 {
2170 unbind_rdev_from_array(rdev);
2171 export_rdev(rdev);
2172 }
2173
2174 static void export_array(struct mddev *mddev)
2175 {
2176 struct md_rdev *rdev, *tmp;
2177
2178 rdev_for_each(rdev, tmp, mddev) {
2179 if (!rdev->mddev) {
2180 MD_BUG();
2181 continue;
2182 }
2183 kick_rdev_from_array(rdev);
2184 }
2185 if (!list_empty(&mddev->disks))
2186 MD_BUG();
2187 mddev->raid_disks = 0;
2188 mddev->major_version = 0;
2189 }
2190
2191 static void print_desc(mdp_disk_t *desc)
2192 {
2193 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2194 desc->major,desc->minor,desc->raid_disk,desc->state);
2195 }
2196
2197 static void print_sb_90(mdp_super_t *sb)
2198 {
2199 int i;
2200
2201 printk(KERN_INFO
2202 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2203 sb->major_version, sb->minor_version, sb->patch_version,
2204 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2205 sb->ctime);
2206 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2207 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2208 sb->md_minor, sb->layout, sb->chunk_size);
2209 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2210 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2211 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2212 sb->failed_disks, sb->spare_disks,
2213 sb->sb_csum, (unsigned long)sb->events_lo);
2214
2215 printk(KERN_INFO);
2216 for (i = 0; i < MD_SB_DISKS; i++) {
2217 mdp_disk_t *desc;
2218
2219 desc = sb->disks + i;
2220 if (desc->number || desc->major || desc->minor ||
2221 desc->raid_disk || (desc->state && (desc->state != 4))) {
2222 printk(" D %2d: ", i);
2223 print_desc(desc);
2224 }
2225 }
2226 printk(KERN_INFO "md: THIS: ");
2227 print_desc(&sb->this_disk);
2228 }
2229
2230 static void print_sb_1(struct mdp_superblock_1 *sb)
2231 {
2232 __u8 *uuid;
2233
2234 uuid = sb->set_uuid;
2235 printk(KERN_INFO
2236 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2237 "md: Name: \"%s\" CT:%llu\n",
2238 le32_to_cpu(sb->major_version),
2239 le32_to_cpu(sb->feature_map),
2240 uuid,
2241 sb->set_name,
2242 (unsigned long long)le64_to_cpu(sb->ctime)
2243 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2244
2245 uuid = sb->device_uuid;
2246 printk(KERN_INFO
2247 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2248 " RO:%llu\n"
2249 "md: Dev:%08x UUID: %pU\n"
2250 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2251 "md: (MaxDev:%u) \n",
2252 le32_to_cpu(sb->level),
2253 (unsigned long long)le64_to_cpu(sb->size),
2254 le32_to_cpu(sb->raid_disks),
2255 le32_to_cpu(sb->layout),
2256 le32_to_cpu(sb->chunksize),
2257 (unsigned long long)le64_to_cpu(sb->data_offset),
2258 (unsigned long long)le64_to_cpu(sb->data_size),
2259 (unsigned long long)le64_to_cpu(sb->super_offset),
2260 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2261 le32_to_cpu(sb->dev_number),
2262 uuid,
2263 sb->devflags,
2264 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2265 (unsigned long long)le64_to_cpu(sb->events),
2266 (unsigned long long)le64_to_cpu(sb->resync_offset),
2267 le32_to_cpu(sb->sb_csum),
2268 le32_to_cpu(sb->max_dev)
2269 );
2270 }
2271
2272 static void print_rdev(struct md_rdev *rdev, int major_version)
2273 {
2274 char b[BDEVNAME_SIZE];
2275 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2276 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2277 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2278 rdev->desc_nr);
2279 if (rdev->sb_loaded) {
2280 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2281 switch (major_version) {
2282 case 0:
2283 print_sb_90(page_address(rdev->sb_page));
2284 break;
2285 case 1:
2286 print_sb_1(page_address(rdev->sb_page));
2287 break;
2288 }
2289 } else
2290 printk(KERN_INFO "md: no rdev superblock!\n");
2291 }
2292
2293 static void md_print_devices(void)
2294 {
2295 struct list_head *tmp;
2296 struct md_rdev *rdev;
2297 struct mddev *mddev;
2298 char b[BDEVNAME_SIZE];
2299
2300 printk("\n");
2301 printk("md: **********************************\n");
2302 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2303 printk("md: **********************************\n");
2304 for_each_mddev(mddev, tmp) {
2305
2306 if (mddev->bitmap)
2307 bitmap_print_sb(mddev->bitmap);
2308 else
2309 printk("%s: ", mdname(mddev));
2310 list_for_each_entry(rdev, &mddev->disks, same_set)
2311 printk("<%s>", bdevname(rdev->bdev,b));
2312 printk("\n");
2313
2314 list_for_each_entry(rdev, &mddev->disks, same_set)
2315 print_rdev(rdev, mddev->major_version);
2316 }
2317 printk("md: **********************************\n");
2318 printk("\n");
2319 }
2320
2321
2322 static void sync_sbs(struct mddev * mddev, int nospares)
2323 {
2324 /* Update each superblock (in-memory image), but
2325 * if we are allowed to, skip spares which already
2326 * have the right event counter, or have one earlier
2327 * (which would mean they aren't being marked as dirty
2328 * with the rest of the array)
2329 */
2330 struct md_rdev *rdev;
2331 list_for_each_entry(rdev, &mddev->disks, same_set) {
2332 if (rdev->sb_events == mddev->events ||
2333 (nospares &&
2334 rdev->raid_disk < 0 &&
2335 rdev->sb_events+1 == mddev->events)) {
2336 /* Don't update this superblock */
2337 rdev->sb_loaded = 2;
2338 } else {
2339 sync_super(mddev, rdev);
2340 rdev->sb_loaded = 1;
2341 }
2342 }
2343 }
2344
2345 static void md_update_sb(struct mddev * mddev, int force_change)
2346 {
2347 struct md_rdev *rdev;
2348 int sync_req;
2349 int nospares = 0;
2350 int any_badblocks_changed = 0;
2351
2352 repeat:
2353 /* First make sure individual recovery_offsets are correct */
2354 list_for_each_entry(rdev, &mddev->disks, same_set) {
2355 if (rdev->raid_disk >= 0 &&
2356 mddev->delta_disks >= 0 &&
2357 !test_bit(In_sync, &rdev->flags) &&
2358 mddev->curr_resync_completed > rdev->recovery_offset)
2359 rdev->recovery_offset = mddev->curr_resync_completed;
2360
2361 }
2362 if (!mddev->persistent) {
2363 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2364 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2365 if (!mddev->external) {
2366 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2367 list_for_each_entry(rdev, &mddev->disks, same_set) {
2368 if (rdev->badblocks.changed) {
2369 md_ack_all_badblocks(&rdev->badblocks);
2370 md_error(mddev, rdev);
2371 }
2372 clear_bit(Blocked, &rdev->flags);
2373 clear_bit(BlockedBadBlocks, &rdev->flags);
2374 wake_up(&rdev->blocked_wait);
2375 }
2376 }
2377 wake_up(&mddev->sb_wait);
2378 return;
2379 }
2380
2381 spin_lock_irq(&mddev->write_lock);
2382
2383 mddev->utime = get_seconds();
2384
2385 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2386 force_change = 1;
2387 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2388 /* just a clean<-> dirty transition, possibly leave spares alone,
2389 * though if events isn't the right even/odd, we will have to do
2390 * spares after all
2391 */
2392 nospares = 1;
2393 if (force_change)
2394 nospares = 0;
2395 if (mddev->degraded)
2396 /* If the array is degraded, then skipping spares is both
2397 * dangerous and fairly pointless.
2398 * Dangerous because a device that was removed from the array
2399 * might have a event_count that still looks up-to-date,
2400 * so it can be re-added without a resync.
2401 * Pointless because if there are any spares to skip,
2402 * then a recovery will happen and soon that array won't
2403 * be degraded any more and the spare can go back to sleep then.
2404 */
2405 nospares = 0;
2406
2407 sync_req = mddev->in_sync;
2408
2409 /* If this is just a dirty<->clean transition, and the array is clean
2410 * and 'events' is odd, we can roll back to the previous clean state */
2411 if (nospares
2412 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2413 && mddev->can_decrease_events
2414 && mddev->events != 1) {
2415 mddev->events--;
2416 mddev->can_decrease_events = 0;
2417 } else {
2418 /* otherwise we have to go forward and ... */
2419 mddev->events ++;
2420 mddev->can_decrease_events = nospares;
2421 }
2422
2423 if (!mddev->events) {
2424 /*
2425 * oops, this 64-bit counter should never wrap.
2426 * Either we are in around ~1 trillion A.C., assuming
2427 * 1 reboot per second, or we have a bug:
2428 */
2429 MD_BUG();
2430 mddev->events --;
2431 }
2432
2433 list_for_each_entry(rdev, &mddev->disks, same_set) {
2434 if (rdev->badblocks.changed)
2435 any_badblocks_changed++;
2436 if (test_bit(Faulty, &rdev->flags))
2437 set_bit(FaultRecorded, &rdev->flags);
2438 }
2439
2440 sync_sbs(mddev, nospares);
2441 spin_unlock_irq(&mddev->write_lock);
2442
2443 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2444 mdname(mddev), mddev->in_sync);
2445
2446 bitmap_update_sb(mddev->bitmap);
2447 list_for_each_entry(rdev, &mddev->disks, same_set) {
2448 char b[BDEVNAME_SIZE];
2449
2450 if (rdev->sb_loaded != 1)
2451 continue; /* no noise on spare devices */
2452
2453 if (!test_bit(Faulty, &rdev->flags) &&
2454 rdev->saved_raid_disk == -1) {
2455 md_super_write(mddev,rdev,
2456 rdev->sb_start, rdev->sb_size,
2457 rdev->sb_page);
2458 pr_debug("md: (write) %s's sb offset: %llu\n",
2459 bdevname(rdev->bdev, b),
2460 (unsigned long long)rdev->sb_start);
2461 rdev->sb_events = mddev->events;
2462 if (rdev->badblocks.size) {
2463 md_super_write(mddev, rdev,
2464 rdev->badblocks.sector,
2465 rdev->badblocks.size << 9,
2466 rdev->bb_page);
2467 rdev->badblocks.size = 0;
2468 }
2469
2470 } else if (test_bit(Faulty, &rdev->flags))
2471 pr_debug("md: %s (skipping faulty)\n",
2472 bdevname(rdev->bdev, b));
2473 else
2474 pr_debug("(skipping incremental s/r ");
2475
2476 if (mddev->level == LEVEL_MULTIPATH)
2477 /* only need to write one superblock... */
2478 break;
2479 }
2480 md_super_wait(mddev);
2481 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2482
2483 spin_lock_irq(&mddev->write_lock);
2484 if (mddev->in_sync != sync_req ||
2485 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2486 /* have to write it out again */
2487 spin_unlock_irq(&mddev->write_lock);
2488 goto repeat;
2489 }
2490 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2491 spin_unlock_irq(&mddev->write_lock);
2492 wake_up(&mddev->sb_wait);
2493 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2494 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2495
2496 list_for_each_entry(rdev, &mddev->disks, same_set) {
2497 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2498 clear_bit(Blocked, &rdev->flags);
2499
2500 if (any_badblocks_changed)
2501 md_ack_all_badblocks(&rdev->badblocks);
2502 clear_bit(BlockedBadBlocks, &rdev->flags);
2503 wake_up(&rdev->blocked_wait);
2504 }
2505 }
2506
2507 /* words written to sysfs files may, or may not, be \n terminated.
2508 * We want to accept with case. For this we use cmd_match.
2509 */
2510 static int cmd_match(const char *cmd, const char *str)
2511 {
2512 /* See if cmd, written into a sysfs file, matches
2513 * str. They must either be the same, or cmd can
2514 * have a trailing newline
2515 */
2516 while (*cmd && *str && *cmd == *str) {
2517 cmd++;
2518 str++;
2519 }
2520 if (*cmd == '\n')
2521 cmd++;
2522 if (*str || *cmd)
2523 return 0;
2524 return 1;
2525 }
2526
2527 struct rdev_sysfs_entry {
2528 struct attribute attr;
2529 ssize_t (*show)(struct md_rdev *, char *);
2530 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2531 };
2532
2533 static ssize_t
2534 state_show(struct md_rdev *rdev, char *page)
2535 {
2536 char *sep = "";
2537 size_t len = 0;
2538
2539 if (test_bit(Faulty, &rdev->flags) ||
2540 rdev->badblocks.unacked_exist) {
2541 len+= sprintf(page+len, "%sfaulty",sep);
2542 sep = ",";
2543 }
2544 if (test_bit(In_sync, &rdev->flags)) {
2545 len += sprintf(page+len, "%sin_sync",sep);
2546 sep = ",";
2547 }
2548 if (test_bit(WriteMostly, &rdev->flags)) {
2549 len += sprintf(page+len, "%swrite_mostly",sep);
2550 sep = ",";
2551 }
2552 if (test_bit(Blocked, &rdev->flags) ||
2553 rdev->badblocks.unacked_exist) {
2554 len += sprintf(page+len, "%sblocked", sep);
2555 sep = ",";
2556 }
2557 if (!test_bit(Faulty, &rdev->flags) &&
2558 !test_bit(In_sync, &rdev->flags)) {
2559 len += sprintf(page+len, "%sspare", sep);
2560 sep = ",";
2561 }
2562 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2563 len += sprintf(page+len, "%swrite_error", sep);
2564 sep = ",";
2565 }
2566 return len+sprintf(page+len, "\n");
2567 }
2568
2569 static ssize_t
2570 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2571 {
2572 /* can write
2573 * faulty - simulates an error
2574 * remove - disconnects the device
2575 * writemostly - sets write_mostly
2576 * -writemostly - clears write_mostly
2577 * blocked - sets the Blocked flags
2578 * -blocked - clears the Blocked and possibly simulates an error
2579 * insync - sets Insync providing device isn't active
2580 * write_error - sets WriteErrorSeen
2581 * -write_error - clears WriteErrorSeen
2582 */
2583 int err = -EINVAL;
2584 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2585 md_error(rdev->mddev, rdev);
2586 if (test_bit(Faulty, &rdev->flags))
2587 err = 0;
2588 else
2589 err = -EBUSY;
2590 } else if (cmd_match(buf, "remove")) {
2591 if (rdev->raid_disk >= 0)
2592 err = -EBUSY;
2593 else {
2594 struct mddev *mddev = rdev->mddev;
2595 kick_rdev_from_array(rdev);
2596 if (mddev->pers)
2597 md_update_sb(mddev, 1);
2598 md_new_event(mddev);
2599 err = 0;
2600 }
2601 } else if (cmd_match(buf, "writemostly")) {
2602 set_bit(WriteMostly, &rdev->flags);
2603 err = 0;
2604 } else if (cmd_match(buf, "-writemostly")) {
2605 clear_bit(WriteMostly, &rdev->flags);
2606 err = 0;
2607 } else if (cmd_match(buf, "blocked")) {
2608 set_bit(Blocked, &rdev->flags);
2609 err = 0;
2610 } else if (cmd_match(buf, "-blocked")) {
2611 if (!test_bit(Faulty, &rdev->flags) &&
2612 rdev->badblocks.unacked_exist) {
2613 /* metadata handler doesn't understand badblocks,
2614 * so we need to fail the device
2615 */
2616 md_error(rdev->mddev, rdev);
2617 }
2618 clear_bit(Blocked, &rdev->flags);
2619 clear_bit(BlockedBadBlocks, &rdev->flags);
2620 wake_up(&rdev->blocked_wait);
2621 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2622 md_wakeup_thread(rdev->mddev->thread);
2623
2624 err = 0;
2625 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2626 set_bit(In_sync, &rdev->flags);
2627 err = 0;
2628 } else if (cmd_match(buf, "write_error")) {
2629 set_bit(WriteErrorSeen, &rdev->flags);
2630 err = 0;
2631 } else if (cmd_match(buf, "-write_error")) {
2632 clear_bit(WriteErrorSeen, &rdev->flags);
2633 err = 0;
2634 }
2635 if (!err)
2636 sysfs_notify_dirent_safe(rdev->sysfs_state);
2637 return err ? err : len;
2638 }
2639 static struct rdev_sysfs_entry rdev_state =
2640 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2641
2642 static ssize_t
2643 errors_show(struct md_rdev *rdev, char *page)
2644 {
2645 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2646 }
2647
2648 static ssize_t
2649 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2650 {
2651 char *e;
2652 unsigned long n = simple_strtoul(buf, &e, 10);
2653 if (*buf && (*e == 0 || *e == '\n')) {
2654 atomic_set(&rdev->corrected_errors, n);
2655 return len;
2656 }
2657 return -EINVAL;
2658 }
2659 static struct rdev_sysfs_entry rdev_errors =
2660 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2661
2662 static ssize_t
2663 slot_show(struct md_rdev *rdev, char *page)
2664 {
2665 if (rdev->raid_disk < 0)
2666 return sprintf(page, "none\n");
2667 else
2668 return sprintf(page, "%d\n", rdev->raid_disk);
2669 }
2670
2671 static ssize_t
2672 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2673 {
2674 char *e;
2675 int err;
2676 int slot = simple_strtoul(buf, &e, 10);
2677 if (strncmp(buf, "none", 4)==0)
2678 slot = -1;
2679 else if (e==buf || (*e && *e!= '\n'))
2680 return -EINVAL;
2681 if (rdev->mddev->pers && slot == -1) {
2682 /* Setting 'slot' on an active array requires also
2683 * updating the 'rd%d' link, and communicating
2684 * with the personality with ->hot_*_disk.
2685 * For now we only support removing
2686 * failed/spare devices. This normally happens automatically,
2687 * but not when the metadata is externally managed.
2688 */
2689 if (rdev->raid_disk == -1)
2690 return -EEXIST;
2691 /* personality does all needed checks */
2692 if (rdev->mddev->pers->hot_remove_disk == NULL)
2693 return -EINVAL;
2694 err = rdev->mddev->pers->
2695 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2696 if (err)
2697 return err;
2698 sysfs_unlink_rdev(rdev->mddev, rdev);
2699 rdev->raid_disk = -1;
2700 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2701 md_wakeup_thread(rdev->mddev->thread);
2702 } else if (rdev->mddev->pers) {
2703 struct md_rdev *rdev2;
2704 /* Activating a spare .. or possibly reactivating
2705 * if we ever get bitmaps working here.
2706 */
2707
2708 if (rdev->raid_disk != -1)
2709 return -EBUSY;
2710
2711 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2712 return -EBUSY;
2713
2714 if (rdev->mddev->pers->hot_add_disk == NULL)
2715 return -EINVAL;
2716
2717 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2718 if (rdev2->raid_disk == slot)
2719 return -EEXIST;
2720
2721 if (slot >= rdev->mddev->raid_disks &&
2722 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2723 return -ENOSPC;
2724
2725 rdev->raid_disk = slot;
2726 if (test_bit(In_sync, &rdev->flags))
2727 rdev->saved_raid_disk = slot;
2728 else
2729 rdev->saved_raid_disk = -1;
2730 clear_bit(In_sync, &rdev->flags);
2731 err = rdev->mddev->pers->
2732 hot_add_disk(rdev->mddev, rdev);
2733 if (err) {
2734 rdev->raid_disk = -1;
2735 return err;
2736 } else
2737 sysfs_notify_dirent_safe(rdev->sysfs_state);
2738 if (sysfs_link_rdev(rdev->mddev, rdev))
2739 /* failure here is OK */;
2740 /* don't wakeup anyone, leave that to userspace. */
2741 } else {
2742 if (slot >= rdev->mddev->raid_disks &&
2743 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2744 return -ENOSPC;
2745 rdev->raid_disk = slot;
2746 /* assume it is working */
2747 clear_bit(Faulty, &rdev->flags);
2748 clear_bit(WriteMostly, &rdev->flags);
2749 set_bit(In_sync, &rdev->flags);
2750 sysfs_notify_dirent_safe(rdev->sysfs_state);
2751 }
2752 return len;
2753 }
2754
2755
2756 static struct rdev_sysfs_entry rdev_slot =
2757 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2758
2759 static ssize_t
2760 offset_show(struct md_rdev *rdev, char *page)
2761 {
2762 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2763 }
2764
2765 static ssize_t
2766 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2767 {
2768 char *e;
2769 unsigned long long offset = simple_strtoull(buf, &e, 10);
2770 if (e==buf || (*e && *e != '\n'))
2771 return -EINVAL;
2772 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2773 return -EBUSY;
2774 if (rdev->sectors && rdev->mddev->external)
2775 /* Must set offset before size, so overlap checks
2776 * can be sane */
2777 return -EBUSY;
2778 rdev->data_offset = offset;
2779 return len;
2780 }
2781
2782 static struct rdev_sysfs_entry rdev_offset =
2783 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2784
2785 static ssize_t
2786 rdev_size_show(struct md_rdev *rdev, char *page)
2787 {
2788 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2789 }
2790
2791 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2792 {
2793 /* check if two start/length pairs overlap */
2794 if (s1+l1 <= s2)
2795 return 0;
2796 if (s2+l2 <= s1)
2797 return 0;
2798 return 1;
2799 }
2800
2801 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2802 {
2803 unsigned long long blocks;
2804 sector_t new;
2805
2806 if (strict_strtoull(buf, 10, &blocks) < 0)
2807 return -EINVAL;
2808
2809 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2810 return -EINVAL; /* sector conversion overflow */
2811
2812 new = blocks * 2;
2813 if (new != blocks * 2)
2814 return -EINVAL; /* unsigned long long to sector_t overflow */
2815
2816 *sectors = new;
2817 return 0;
2818 }
2819
2820 static ssize_t
2821 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2822 {
2823 struct mddev *my_mddev = rdev->mddev;
2824 sector_t oldsectors = rdev->sectors;
2825 sector_t sectors;
2826
2827 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2828 return -EINVAL;
2829 if (my_mddev->pers && rdev->raid_disk >= 0) {
2830 if (my_mddev->persistent) {
2831 sectors = super_types[my_mddev->major_version].
2832 rdev_size_change(rdev, sectors);
2833 if (!sectors)
2834 return -EBUSY;
2835 } else if (!sectors)
2836 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2837 rdev->data_offset;
2838 }
2839 if (sectors < my_mddev->dev_sectors)
2840 return -EINVAL; /* component must fit device */
2841
2842 rdev->sectors = sectors;
2843 if (sectors > oldsectors && my_mddev->external) {
2844 /* need to check that all other rdevs with the same ->bdev
2845 * do not overlap. We need to unlock the mddev to avoid
2846 * a deadlock. We have already changed rdev->sectors, and if
2847 * we have to change it back, we will have the lock again.
2848 */
2849 struct mddev *mddev;
2850 int overlap = 0;
2851 struct list_head *tmp;
2852
2853 mddev_unlock(my_mddev);
2854 for_each_mddev(mddev, tmp) {
2855 struct md_rdev *rdev2;
2856
2857 mddev_lock(mddev);
2858 list_for_each_entry(rdev2, &mddev->disks, same_set)
2859 if (rdev->bdev == rdev2->bdev &&
2860 rdev != rdev2 &&
2861 overlaps(rdev->data_offset, rdev->sectors,
2862 rdev2->data_offset,
2863 rdev2->sectors)) {
2864 overlap = 1;
2865 break;
2866 }
2867 mddev_unlock(mddev);
2868 if (overlap) {
2869 mddev_put(mddev);
2870 break;
2871 }
2872 }
2873 mddev_lock(my_mddev);
2874 if (overlap) {
2875 /* Someone else could have slipped in a size
2876 * change here, but doing so is just silly.
2877 * We put oldsectors back because we *know* it is
2878 * safe, and trust userspace not to race with
2879 * itself
2880 */
2881 rdev->sectors = oldsectors;
2882 return -EBUSY;
2883 }
2884 }
2885 return len;
2886 }
2887
2888 static struct rdev_sysfs_entry rdev_size =
2889 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2890
2891
2892 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2893 {
2894 unsigned long long recovery_start = rdev->recovery_offset;
2895
2896 if (test_bit(In_sync, &rdev->flags) ||
2897 recovery_start == MaxSector)
2898 return sprintf(page, "none\n");
2899
2900 return sprintf(page, "%llu\n", recovery_start);
2901 }
2902
2903 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2904 {
2905 unsigned long long recovery_start;
2906
2907 if (cmd_match(buf, "none"))
2908 recovery_start = MaxSector;
2909 else if (strict_strtoull(buf, 10, &recovery_start))
2910 return -EINVAL;
2911
2912 if (rdev->mddev->pers &&
2913 rdev->raid_disk >= 0)
2914 return -EBUSY;
2915
2916 rdev->recovery_offset = recovery_start;
2917 if (recovery_start == MaxSector)
2918 set_bit(In_sync, &rdev->flags);
2919 else
2920 clear_bit(In_sync, &rdev->flags);
2921 return len;
2922 }
2923
2924 static struct rdev_sysfs_entry rdev_recovery_start =
2925 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2926
2927
2928 static ssize_t
2929 badblocks_show(struct badblocks *bb, char *page, int unack);
2930 static ssize_t
2931 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2932
2933 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2934 {
2935 return badblocks_show(&rdev->badblocks, page, 0);
2936 }
2937 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2938 {
2939 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2940 /* Maybe that ack was all we needed */
2941 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2942 wake_up(&rdev->blocked_wait);
2943 return rv;
2944 }
2945 static struct rdev_sysfs_entry rdev_bad_blocks =
2946 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2947
2948
2949 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2950 {
2951 return badblocks_show(&rdev->badblocks, page, 1);
2952 }
2953 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2954 {
2955 return badblocks_store(&rdev->badblocks, page, len, 1);
2956 }
2957 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2958 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2959
2960 static struct attribute *rdev_default_attrs[] = {
2961 &rdev_state.attr,
2962 &rdev_errors.attr,
2963 &rdev_slot.attr,
2964 &rdev_offset.attr,
2965 &rdev_size.attr,
2966 &rdev_recovery_start.attr,
2967 &rdev_bad_blocks.attr,
2968 &rdev_unack_bad_blocks.attr,
2969 NULL,
2970 };
2971 static ssize_t
2972 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2973 {
2974 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2975 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2976 struct mddev *mddev = rdev->mddev;
2977 ssize_t rv;
2978
2979 if (!entry->show)
2980 return -EIO;
2981
2982 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2983 if (!rv) {
2984 if (rdev->mddev == NULL)
2985 rv = -EBUSY;
2986 else
2987 rv = entry->show(rdev, page);
2988 mddev_unlock(mddev);
2989 }
2990 return rv;
2991 }
2992
2993 static ssize_t
2994 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2995 const char *page, size_t length)
2996 {
2997 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2998 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2999 ssize_t rv;
3000 struct mddev *mddev = rdev->mddev;
3001
3002 if (!entry->store)
3003 return -EIO;
3004 if (!capable(CAP_SYS_ADMIN))
3005 return -EACCES;
3006 rv = mddev ? mddev_lock(mddev): -EBUSY;
3007 if (!rv) {
3008 if (rdev->mddev == NULL)
3009 rv = -EBUSY;
3010 else
3011 rv = entry->store(rdev, page, length);
3012 mddev_unlock(mddev);
3013 }
3014 return rv;
3015 }
3016
3017 static void rdev_free(struct kobject *ko)
3018 {
3019 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3020 kfree(rdev);
3021 }
3022 static const struct sysfs_ops rdev_sysfs_ops = {
3023 .show = rdev_attr_show,
3024 .store = rdev_attr_store,
3025 };
3026 static struct kobj_type rdev_ktype = {
3027 .release = rdev_free,
3028 .sysfs_ops = &rdev_sysfs_ops,
3029 .default_attrs = rdev_default_attrs,
3030 };
3031
3032 int md_rdev_init(struct md_rdev *rdev)
3033 {
3034 rdev->desc_nr = -1;
3035 rdev->saved_raid_disk = -1;
3036 rdev->raid_disk = -1;
3037 rdev->flags = 0;
3038 rdev->data_offset = 0;
3039 rdev->sb_events = 0;
3040 rdev->last_read_error.tv_sec = 0;
3041 rdev->last_read_error.tv_nsec = 0;
3042 rdev->sb_loaded = 0;
3043 rdev->bb_page = NULL;
3044 atomic_set(&rdev->nr_pending, 0);
3045 atomic_set(&rdev->read_errors, 0);
3046 atomic_set(&rdev->corrected_errors, 0);
3047
3048 INIT_LIST_HEAD(&rdev->same_set);
3049 init_waitqueue_head(&rdev->blocked_wait);
3050
3051 /* Add space to store bad block list.
3052 * This reserves the space even on arrays where it cannot
3053 * be used - I wonder if that matters
3054 */
3055 rdev->badblocks.count = 0;
3056 rdev->badblocks.shift = 0;
3057 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3058 seqlock_init(&rdev->badblocks.lock);
3059 if (rdev->badblocks.page == NULL)
3060 return -ENOMEM;
3061
3062 return 0;
3063 }
3064 EXPORT_SYMBOL_GPL(md_rdev_init);
3065 /*
3066 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3067 *
3068 * mark the device faulty if:
3069 *
3070 * - the device is nonexistent (zero size)
3071 * - the device has no valid superblock
3072 *
3073 * a faulty rdev _never_ has rdev->sb set.
3074 */
3075 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3076 {
3077 char b[BDEVNAME_SIZE];
3078 int err;
3079 struct md_rdev *rdev;
3080 sector_t size;
3081
3082 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3083 if (!rdev) {
3084 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3085 return ERR_PTR(-ENOMEM);
3086 }
3087
3088 err = md_rdev_init(rdev);
3089 if (err)
3090 goto abort_free;
3091 err = alloc_disk_sb(rdev);
3092 if (err)
3093 goto abort_free;
3094
3095 err = lock_rdev(rdev, newdev, super_format == -2);
3096 if (err)
3097 goto abort_free;
3098
3099 kobject_init(&rdev->kobj, &rdev_ktype);
3100
3101 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3102 if (!size) {
3103 printk(KERN_WARNING
3104 "md: %s has zero or unknown size, marking faulty!\n",
3105 bdevname(rdev->bdev,b));
3106 err = -EINVAL;
3107 goto abort_free;
3108 }
3109
3110 if (super_format >= 0) {
3111 err = super_types[super_format].
3112 load_super(rdev, NULL, super_minor);
3113 if (err == -EINVAL) {
3114 printk(KERN_WARNING
3115 "md: %s does not have a valid v%d.%d "
3116 "superblock, not importing!\n",
3117 bdevname(rdev->bdev,b),
3118 super_format, super_minor);
3119 goto abort_free;
3120 }
3121 if (err < 0) {
3122 printk(KERN_WARNING
3123 "md: could not read %s's sb, not importing!\n",
3124 bdevname(rdev->bdev,b));
3125 goto abort_free;
3126 }
3127 }
3128 if (super_format == -1)
3129 /* hot-add for 0.90, or non-persistent: so no badblocks */
3130 rdev->badblocks.shift = -1;
3131
3132 return rdev;
3133
3134 abort_free:
3135 if (rdev->bdev)
3136 unlock_rdev(rdev);
3137 free_disk_sb(rdev);
3138 kfree(rdev->badblocks.page);
3139 kfree(rdev);
3140 return ERR_PTR(err);
3141 }
3142
3143 /*
3144 * Check a full RAID array for plausibility
3145 */
3146
3147
3148 static void analyze_sbs(struct mddev * mddev)
3149 {
3150 int i;
3151 struct md_rdev *rdev, *freshest, *tmp;
3152 char b[BDEVNAME_SIZE];
3153
3154 freshest = NULL;
3155 rdev_for_each(rdev, tmp, mddev)
3156 switch (super_types[mddev->major_version].
3157 load_super(rdev, freshest, mddev->minor_version)) {
3158 case 1:
3159 freshest = rdev;
3160 break;
3161 case 0:
3162 break;
3163 default:
3164 printk( KERN_ERR \
3165 "md: fatal superblock inconsistency in %s"
3166 " -- removing from array\n",
3167 bdevname(rdev->bdev,b));
3168 kick_rdev_from_array(rdev);
3169 }
3170
3171
3172 super_types[mddev->major_version].
3173 validate_super(mddev, freshest);
3174
3175 i = 0;
3176 rdev_for_each(rdev, tmp, mddev) {
3177 if (mddev->max_disks &&
3178 (rdev->desc_nr >= mddev->max_disks ||
3179 i > mddev->max_disks)) {
3180 printk(KERN_WARNING
3181 "md: %s: %s: only %d devices permitted\n",
3182 mdname(mddev), bdevname(rdev->bdev, b),
3183 mddev->max_disks);
3184 kick_rdev_from_array(rdev);
3185 continue;
3186 }
3187 if (rdev != freshest)
3188 if (super_types[mddev->major_version].
3189 validate_super(mddev, rdev)) {
3190 printk(KERN_WARNING "md: kicking non-fresh %s"
3191 " from array!\n",
3192 bdevname(rdev->bdev,b));
3193 kick_rdev_from_array(rdev);
3194 continue;
3195 }
3196 if (mddev->level == LEVEL_MULTIPATH) {
3197 rdev->desc_nr = i++;
3198 rdev->raid_disk = rdev->desc_nr;
3199 set_bit(In_sync, &rdev->flags);
3200 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3201 rdev->raid_disk = -1;
3202 clear_bit(In_sync, &rdev->flags);
3203 }
3204 }
3205 }
3206
3207 /* Read a fixed-point number.
3208 * Numbers in sysfs attributes should be in "standard" units where
3209 * possible, so time should be in seconds.
3210 * However we internally use a a much smaller unit such as
3211 * milliseconds or jiffies.
3212 * This function takes a decimal number with a possible fractional
3213 * component, and produces an integer which is the result of
3214 * multiplying that number by 10^'scale'.
3215 * all without any floating-point arithmetic.
3216 */
3217 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3218 {
3219 unsigned long result = 0;
3220 long decimals = -1;
3221 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3222 if (*cp == '.')
3223 decimals = 0;
3224 else if (decimals < scale) {
3225 unsigned int value;
3226 value = *cp - '0';
3227 result = result * 10 + value;
3228 if (decimals >= 0)
3229 decimals++;
3230 }
3231 cp++;
3232 }
3233 if (*cp == '\n')
3234 cp++;
3235 if (*cp)
3236 return -EINVAL;
3237 if (decimals < 0)
3238 decimals = 0;
3239 while (decimals < scale) {
3240 result *= 10;
3241 decimals ++;
3242 }
3243 *res = result;
3244 return 0;
3245 }
3246
3247
3248 static void md_safemode_timeout(unsigned long data);
3249
3250 static ssize_t
3251 safe_delay_show(struct mddev *mddev, char *page)
3252 {
3253 int msec = (mddev->safemode_delay*1000)/HZ;
3254 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3255 }
3256 static ssize_t
3257 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3258 {
3259 unsigned long msec;
3260
3261 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3262 return -EINVAL;
3263 if (msec == 0)
3264 mddev->safemode_delay = 0;
3265 else {
3266 unsigned long old_delay = mddev->safemode_delay;
3267 mddev->safemode_delay = (msec*HZ)/1000;
3268 if (mddev->safemode_delay == 0)
3269 mddev->safemode_delay = 1;
3270 if (mddev->safemode_delay < old_delay)
3271 md_safemode_timeout((unsigned long)mddev);
3272 }
3273 return len;
3274 }
3275 static struct md_sysfs_entry md_safe_delay =
3276 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3277
3278 static ssize_t
3279 level_show(struct mddev *mddev, char *page)
3280 {
3281 struct md_personality *p = mddev->pers;
3282 if (p)
3283 return sprintf(page, "%s\n", p->name);
3284 else if (mddev->clevel[0])
3285 return sprintf(page, "%s\n", mddev->clevel);
3286 else if (mddev->level != LEVEL_NONE)
3287 return sprintf(page, "%d\n", mddev->level);
3288 else
3289 return 0;
3290 }
3291
3292 static ssize_t
3293 level_store(struct mddev *mddev, const char *buf, size_t len)
3294 {
3295 char clevel[16];
3296 ssize_t rv = len;
3297 struct md_personality *pers;
3298 long level;
3299 void *priv;
3300 struct md_rdev *rdev;
3301
3302 if (mddev->pers == NULL) {
3303 if (len == 0)
3304 return 0;
3305 if (len >= sizeof(mddev->clevel))
3306 return -ENOSPC;
3307 strncpy(mddev->clevel, buf, len);
3308 if (mddev->clevel[len-1] == '\n')
3309 len--;
3310 mddev->clevel[len] = 0;
3311 mddev->level = LEVEL_NONE;
3312 return rv;
3313 }
3314
3315 /* request to change the personality. Need to ensure:
3316 * - array is not engaged in resync/recovery/reshape
3317 * - old personality can be suspended
3318 * - new personality will access other array.
3319 */
3320
3321 if (mddev->sync_thread ||
3322 mddev->reshape_position != MaxSector ||
3323 mddev->sysfs_active)
3324 return -EBUSY;
3325
3326 if (!mddev->pers->quiesce) {
3327 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3328 mdname(mddev), mddev->pers->name);
3329 return -EINVAL;
3330 }
3331
3332 /* Now find the new personality */
3333 if (len == 0 || len >= sizeof(clevel))
3334 return -EINVAL;
3335 strncpy(clevel, buf, len);
3336 if (clevel[len-1] == '\n')
3337 len--;
3338 clevel[len] = 0;
3339 if (strict_strtol(clevel, 10, &level))
3340 level = LEVEL_NONE;
3341
3342 if (request_module("md-%s", clevel) != 0)
3343 request_module("md-level-%s", clevel);
3344 spin_lock(&pers_lock);
3345 pers = find_pers(level, clevel);
3346 if (!pers || !try_module_get(pers->owner)) {
3347 spin_unlock(&pers_lock);
3348 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3349 return -EINVAL;
3350 }
3351 spin_unlock(&pers_lock);
3352
3353 if (pers == mddev->pers) {
3354 /* Nothing to do! */
3355 module_put(pers->owner);
3356 return rv;
3357 }
3358 if (!pers->takeover) {
3359 module_put(pers->owner);
3360 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3361 mdname(mddev), clevel);
3362 return -EINVAL;
3363 }
3364
3365 list_for_each_entry(rdev, &mddev->disks, same_set)
3366 rdev->new_raid_disk = rdev->raid_disk;
3367
3368 /* ->takeover must set new_* and/or delta_disks
3369 * if it succeeds, and may set them when it fails.
3370 */
3371 priv = pers->takeover(mddev);
3372 if (IS_ERR(priv)) {
3373 mddev->new_level = mddev->level;
3374 mddev->new_layout = mddev->layout;
3375 mddev->new_chunk_sectors = mddev->chunk_sectors;
3376 mddev->raid_disks -= mddev->delta_disks;
3377 mddev->delta_disks = 0;
3378 module_put(pers->owner);
3379 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3380 mdname(mddev), clevel);
3381 return PTR_ERR(priv);
3382 }
3383
3384 /* Looks like we have a winner */
3385 mddev_suspend(mddev);
3386 mddev->pers->stop(mddev);
3387
3388 if (mddev->pers->sync_request == NULL &&
3389 pers->sync_request != NULL) {
3390 /* need to add the md_redundancy_group */
3391 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3392 printk(KERN_WARNING
3393 "md: cannot register extra attributes for %s\n",
3394 mdname(mddev));
3395 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3396 }
3397 if (mddev->pers->sync_request != NULL &&
3398 pers->sync_request == NULL) {
3399 /* need to remove the md_redundancy_group */
3400 if (mddev->to_remove == NULL)
3401 mddev->to_remove = &md_redundancy_group;
3402 }
3403
3404 if (mddev->pers->sync_request == NULL &&
3405 mddev->external) {
3406 /* We are converting from a no-redundancy array
3407 * to a redundancy array and metadata is managed
3408 * externally so we need to be sure that writes
3409 * won't block due to a need to transition
3410 * clean->dirty
3411 * until external management is started.
3412 */
3413 mddev->in_sync = 0;
3414 mddev->safemode_delay = 0;
3415 mddev->safemode = 0;
3416 }
3417
3418 list_for_each_entry(rdev, &mddev->disks, same_set) {
3419 if (rdev->raid_disk < 0)
3420 continue;
3421 if (rdev->new_raid_disk >= mddev->raid_disks)
3422 rdev->new_raid_disk = -1;
3423 if (rdev->new_raid_disk == rdev->raid_disk)
3424 continue;
3425 sysfs_unlink_rdev(mddev, rdev);
3426 }
3427 list_for_each_entry(rdev, &mddev->disks, same_set) {
3428 if (rdev->raid_disk < 0)
3429 continue;
3430 if (rdev->new_raid_disk == rdev->raid_disk)
3431 continue;
3432 rdev->raid_disk = rdev->new_raid_disk;
3433 if (rdev->raid_disk < 0)
3434 clear_bit(In_sync, &rdev->flags);
3435 else {
3436 if (sysfs_link_rdev(mddev, rdev))
3437 printk(KERN_WARNING "md: cannot register rd%d"
3438 " for %s after level change\n",
3439 rdev->raid_disk, mdname(mddev));
3440 }
3441 }
3442
3443 module_put(mddev->pers->owner);
3444 mddev->pers = pers;
3445 mddev->private = priv;
3446 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3447 mddev->level = mddev->new_level;
3448 mddev->layout = mddev->new_layout;
3449 mddev->chunk_sectors = mddev->new_chunk_sectors;
3450 mddev->delta_disks = 0;
3451 mddev->degraded = 0;
3452 if (mddev->pers->sync_request == NULL) {
3453 /* this is now an array without redundancy, so
3454 * it must always be in_sync
3455 */
3456 mddev->in_sync = 1;
3457 del_timer_sync(&mddev->safemode_timer);
3458 }
3459 pers->run(mddev);
3460 mddev_resume(mddev);
3461 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3462 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3463 md_wakeup_thread(mddev->thread);
3464 sysfs_notify(&mddev->kobj, NULL, "level");
3465 md_new_event(mddev);
3466 return rv;
3467 }
3468
3469 static struct md_sysfs_entry md_level =
3470 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3471
3472
3473 static ssize_t
3474 layout_show(struct mddev *mddev, char *page)
3475 {
3476 /* just a number, not meaningful for all levels */
3477 if (mddev->reshape_position != MaxSector &&
3478 mddev->layout != mddev->new_layout)
3479 return sprintf(page, "%d (%d)\n",
3480 mddev->new_layout, mddev->layout);
3481 return sprintf(page, "%d\n", mddev->layout);
3482 }
3483
3484 static ssize_t
3485 layout_store(struct mddev *mddev, const char *buf, size_t len)
3486 {
3487 char *e;
3488 unsigned long n = simple_strtoul(buf, &e, 10);
3489
3490 if (!*buf || (*e && *e != '\n'))
3491 return -EINVAL;
3492
3493 if (mddev->pers) {
3494 int err;
3495 if (mddev->pers->check_reshape == NULL)
3496 return -EBUSY;
3497 mddev->new_layout = n;
3498 err = mddev->pers->check_reshape(mddev);
3499 if (err) {
3500 mddev->new_layout = mddev->layout;
3501 return err;
3502 }
3503 } else {
3504 mddev->new_layout = n;
3505 if (mddev->reshape_position == MaxSector)
3506 mddev->layout = n;
3507 }
3508 return len;
3509 }
3510 static struct md_sysfs_entry md_layout =
3511 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3512
3513
3514 static ssize_t
3515 raid_disks_show(struct mddev *mddev, char *page)
3516 {
3517 if (mddev->raid_disks == 0)
3518 return 0;
3519 if (mddev->reshape_position != MaxSector &&
3520 mddev->delta_disks != 0)
3521 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3522 mddev->raid_disks - mddev->delta_disks);
3523 return sprintf(page, "%d\n", mddev->raid_disks);
3524 }
3525
3526 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3527
3528 static ssize_t
3529 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3530 {
3531 char *e;
3532 int rv = 0;
3533 unsigned long n = simple_strtoul(buf, &e, 10);
3534
3535 if (!*buf || (*e && *e != '\n'))
3536 return -EINVAL;
3537
3538 if (mddev->pers)
3539 rv = update_raid_disks(mddev, n);
3540 else if (mddev->reshape_position != MaxSector) {
3541 int olddisks = mddev->raid_disks - mddev->delta_disks;
3542 mddev->delta_disks = n - olddisks;
3543 mddev->raid_disks = n;
3544 } else
3545 mddev->raid_disks = n;
3546 return rv ? rv : len;
3547 }
3548 static struct md_sysfs_entry md_raid_disks =
3549 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3550
3551 static ssize_t
3552 chunk_size_show(struct mddev *mddev, char *page)
3553 {
3554 if (mddev->reshape_position != MaxSector &&
3555 mddev->chunk_sectors != mddev->new_chunk_sectors)
3556 return sprintf(page, "%d (%d)\n",
3557 mddev->new_chunk_sectors << 9,
3558 mddev->chunk_sectors << 9);
3559 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3560 }
3561
3562 static ssize_t
3563 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3564 {
3565 char *e;
3566 unsigned long n = simple_strtoul(buf, &e, 10);
3567
3568 if (!*buf || (*e && *e != '\n'))
3569 return -EINVAL;
3570
3571 if (mddev->pers) {
3572 int err;
3573 if (mddev->pers->check_reshape == NULL)
3574 return -EBUSY;
3575 mddev->new_chunk_sectors = n >> 9;
3576 err = mddev->pers->check_reshape(mddev);
3577 if (err) {
3578 mddev->new_chunk_sectors = mddev->chunk_sectors;
3579 return err;
3580 }
3581 } else {
3582 mddev->new_chunk_sectors = n >> 9;
3583 if (mddev->reshape_position == MaxSector)
3584 mddev->chunk_sectors = n >> 9;
3585 }
3586 return len;
3587 }
3588 static struct md_sysfs_entry md_chunk_size =
3589 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3590
3591 static ssize_t
3592 resync_start_show(struct mddev *mddev, char *page)
3593 {
3594 if (mddev->recovery_cp == MaxSector)
3595 return sprintf(page, "none\n");
3596 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3597 }
3598
3599 static ssize_t
3600 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3601 {
3602 char *e;
3603 unsigned long long n = simple_strtoull(buf, &e, 10);
3604
3605 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3606 return -EBUSY;
3607 if (cmd_match(buf, "none"))
3608 n = MaxSector;
3609 else if (!*buf || (*e && *e != '\n'))
3610 return -EINVAL;
3611
3612 mddev->recovery_cp = n;
3613 return len;
3614 }
3615 static struct md_sysfs_entry md_resync_start =
3616 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3617
3618 /*
3619 * The array state can be:
3620 *
3621 * clear
3622 * No devices, no size, no level
3623 * Equivalent to STOP_ARRAY ioctl
3624 * inactive
3625 * May have some settings, but array is not active
3626 * all IO results in error
3627 * When written, doesn't tear down array, but just stops it
3628 * suspended (not supported yet)
3629 * All IO requests will block. The array can be reconfigured.
3630 * Writing this, if accepted, will block until array is quiescent
3631 * readonly
3632 * no resync can happen. no superblocks get written.
3633 * write requests fail
3634 * read-auto
3635 * like readonly, but behaves like 'clean' on a write request.
3636 *
3637 * clean - no pending writes, but otherwise active.
3638 * When written to inactive array, starts without resync
3639 * If a write request arrives then
3640 * if metadata is known, mark 'dirty' and switch to 'active'.
3641 * if not known, block and switch to write-pending
3642 * If written to an active array that has pending writes, then fails.
3643 * active
3644 * fully active: IO and resync can be happening.
3645 * When written to inactive array, starts with resync
3646 *
3647 * write-pending
3648 * clean, but writes are blocked waiting for 'active' to be written.
3649 *
3650 * active-idle
3651 * like active, but no writes have been seen for a while (100msec).
3652 *
3653 */
3654 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3655 write_pending, active_idle, bad_word};
3656 static char *array_states[] = {
3657 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3658 "write-pending", "active-idle", NULL };
3659
3660 static int match_word(const char *word, char **list)
3661 {
3662 int n;
3663 for (n=0; list[n]; n++)
3664 if (cmd_match(word, list[n]))
3665 break;
3666 return n;
3667 }
3668
3669 static ssize_t
3670 array_state_show(struct mddev *mddev, char *page)
3671 {
3672 enum array_state st = inactive;
3673
3674 if (mddev->pers)
3675 switch(mddev->ro) {
3676 case 1:
3677 st = readonly;
3678 break;
3679 case 2:
3680 st = read_auto;
3681 break;
3682 case 0:
3683 if (mddev->in_sync)
3684 st = clean;
3685 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3686 st = write_pending;
3687 else if (mddev->safemode)
3688 st = active_idle;
3689 else
3690 st = active;
3691 }
3692 else {
3693 if (list_empty(&mddev->disks) &&
3694 mddev->raid_disks == 0 &&
3695 mddev->dev_sectors == 0)
3696 st = clear;
3697 else
3698 st = inactive;
3699 }
3700 return sprintf(page, "%s\n", array_states[st]);
3701 }
3702
3703 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3704 static int md_set_readonly(struct mddev * mddev, int is_open);
3705 static int do_md_run(struct mddev * mddev);
3706 static int restart_array(struct mddev *mddev);
3707
3708 static ssize_t
3709 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3710 {
3711 int err = -EINVAL;
3712 enum array_state st = match_word(buf, array_states);
3713 switch(st) {
3714 case bad_word:
3715 break;
3716 case clear:
3717 /* stopping an active array */
3718 if (atomic_read(&mddev->openers) > 0)
3719 return -EBUSY;
3720 err = do_md_stop(mddev, 0, 0);
3721 break;
3722 case inactive:
3723 /* stopping an active array */
3724 if (mddev->pers) {
3725 if (atomic_read(&mddev->openers) > 0)
3726 return -EBUSY;
3727 err = do_md_stop(mddev, 2, 0);
3728 } else
3729 err = 0; /* already inactive */
3730 break;
3731 case suspended:
3732 break; /* not supported yet */
3733 case readonly:
3734 if (mddev->pers)
3735 err = md_set_readonly(mddev, 0);
3736 else {
3737 mddev->ro = 1;
3738 set_disk_ro(mddev->gendisk, 1);
3739 err = do_md_run(mddev);
3740 }
3741 break;
3742 case read_auto:
3743 if (mddev->pers) {
3744 if (mddev->ro == 0)
3745 err = md_set_readonly(mddev, 0);
3746 else if (mddev->ro == 1)
3747 err = restart_array(mddev);
3748 if (err == 0) {
3749 mddev->ro = 2;
3750 set_disk_ro(mddev->gendisk, 0);
3751 }
3752 } else {
3753 mddev->ro = 2;
3754 err = do_md_run(mddev);
3755 }
3756 break;
3757 case clean:
3758 if (mddev->pers) {
3759 restart_array(mddev);
3760 spin_lock_irq(&mddev->write_lock);
3761 if (atomic_read(&mddev->writes_pending) == 0) {
3762 if (mddev->in_sync == 0) {
3763 mddev->in_sync = 1;
3764 if (mddev->safemode == 1)
3765 mddev->safemode = 0;
3766 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3767 }
3768 err = 0;
3769 } else
3770 err = -EBUSY;
3771 spin_unlock_irq(&mddev->write_lock);
3772 } else
3773 err = -EINVAL;
3774 break;
3775 case active:
3776 if (mddev->pers) {
3777 restart_array(mddev);
3778 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3779 wake_up(&mddev->sb_wait);
3780 err = 0;
3781 } else {
3782 mddev->ro = 0;
3783 set_disk_ro(mddev->gendisk, 0);
3784 err = do_md_run(mddev);
3785 }
3786 break;
3787 case write_pending:
3788 case active_idle:
3789 /* these cannot be set */
3790 break;
3791 }
3792 if (err)
3793 return err;
3794 else {
3795 sysfs_notify_dirent_safe(mddev->sysfs_state);
3796 return len;
3797 }
3798 }
3799 static struct md_sysfs_entry md_array_state =
3800 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3801
3802 static ssize_t
3803 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3804 return sprintf(page, "%d\n",
3805 atomic_read(&mddev->max_corr_read_errors));
3806 }
3807
3808 static ssize_t
3809 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3810 {
3811 char *e;
3812 unsigned long n = simple_strtoul(buf, &e, 10);
3813
3814 if (*buf && (*e == 0 || *e == '\n')) {
3815 atomic_set(&mddev->max_corr_read_errors, n);
3816 return len;
3817 }
3818 return -EINVAL;
3819 }
3820
3821 static struct md_sysfs_entry max_corr_read_errors =
3822 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3823 max_corrected_read_errors_store);
3824
3825 static ssize_t
3826 null_show(struct mddev *mddev, char *page)
3827 {
3828 return -EINVAL;
3829 }
3830
3831 static ssize_t
3832 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3833 {
3834 /* buf must be %d:%d\n? giving major and minor numbers */
3835 /* The new device is added to the array.
3836 * If the array has a persistent superblock, we read the
3837 * superblock to initialise info and check validity.
3838 * Otherwise, only checking done is that in bind_rdev_to_array,
3839 * which mainly checks size.
3840 */
3841 char *e;
3842 int major = simple_strtoul(buf, &e, 10);
3843 int minor;
3844 dev_t dev;
3845 struct md_rdev *rdev;
3846 int err;
3847
3848 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3849 return -EINVAL;
3850 minor = simple_strtoul(e+1, &e, 10);
3851 if (*e && *e != '\n')
3852 return -EINVAL;
3853 dev = MKDEV(major, minor);
3854 if (major != MAJOR(dev) ||
3855 minor != MINOR(dev))
3856 return -EOVERFLOW;
3857
3858
3859 if (mddev->persistent) {
3860 rdev = md_import_device(dev, mddev->major_version,
3861 mddev->minor_version);
3862 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3863 struct md_rdev *rdev0
3864 = list_entry(mddev->disks.next,
3865 struct md_rdev, same_set);
3866 err = super_types[mddev->major_version]
3867 .load_super(rdev, rdev0, mddev->minor_version);
3868 if (err < 0)
3869 goto out;
3870 }
3871 } else if (mddev->external)
3872 rdev = md_import_device(dev, -2, -1);
3873 else
3874 rdev = md_import_device(dev, -1, -1);
3875
3876 if (IS_ERR(rdev))
3877 return PTR_ERR(rdev);
3878 err = bind_rdev_to_array(rdev, mddev);
3879 out:
3880 if (err)
3881 export_rdev(rdev);
3882 return err ? err : len;
3883 }
3884
3885 static struct md_sysfs_entry md_new_device =
3886 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3887
3888 static ssize_t
3889 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3890 {
3891 char *end;
3892 unsigned long chunk, end_chunk;
3893
3894 if (!mddev->bitmap)
3895 goto out;
3896 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3897 while (*buf) {
3898 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3899 if (buf == end) break;
3900 if (*end == '-') { /* range */
3901 buf = end + 1;
3902 end_chunk = simple_strtoul(buf, &end, 0);
3903 if (buf == end) break;
3904 }
3905 if (*end && !isspace(*end)) break;
3906 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3907 buf = skip_spaces(end);
3908 }
3909 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3910 out:
3911 return len;
3912 }
3913
3914 static struct md_sysfs_entry md_bitmap =
3915 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3916
3917 static ssize_t
3918 size_show(struct mddev *mddev, char *page)
3919 {
3920 return sprintf(page, "%llu\n",
3921 (unsigned long long)mddev->dev_sectors / 2);
3922 }
3923
3924 static int update_size(struct mddev *mddev, sector_t num_sectors);
3925
3926 static ssize_t
3927 size_store(struct mddev *mddev, const char *buf, size_t len)
3928 {
3929 /* If array is inactive, we can reduce the component size, but
3930 * not increase it (except from 0).
3931 * If array is active, we can try an on-line resize
3932 */
3933 sector_t sectors;
3934 int err = strict_blocks_to_sectors(buf, &sectors);
3935
3936 if (err < 0)
3937 return err;
3938 if (mddev->pers) {
3939 err = update_size(mddev, sectors);
3940 md_update_sb(mddev, 1);
3941 } else {
3942 if (mddev->dev_sectors == 0 ||
3943 mddev->dev_sectors > sectors)
3944 mddev->dev_sectors = sectors;
3945 else
3946 err = -ENOSPC;
3947 }
3948 return err ? err : len;
3949 }
3950
3951 static struct md_sysfs_entry md_size =
3952 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3953
3954
3955 /* Metdata version.
3956 * This is one of
3957 * 'none' for arrays with no metadata (good luck...)
3958 * 'external' for arrays with externally managed metadata,
3959 * or N.M for internally known formats
3960 */
3961 static ssize_t
3962 metadata_show(struct mddev *mddev, char *page)
3963 {
3964 if (mddev->persistent)
3965 return sprintf(page, "%d.%d\n",
3966 mddev->major_version, mddev->minor_version);
3967 else if (mddev->external)
3968 return sprintf(page, "external:%s\n", mddev->metadata_type);
3969 else
3970 return sprintf(page, "none\n");
3971 }
3972
3973 static ssize_t
3974 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3975 {
3976 int major, minor;
3977 char *e;
3978 /* Changing the details of 'external' metadata is
3979 * always permitted. Otherwise there must be
3980 * no devices attached to the array.
3981 */
3982 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3983 ;
3984 else if (!list_empty(&mddev->disks))
3985 return -EBUSY;
3986
3987 if (cmd_match(buf, "none")) {
3988 mddev->persistent = 0;
3989 mddev->external = 0;
3990 mddev->major_version = 0;
3991 mddev->minor_version = 90;
3992 return len;
3993 }
3994 if (strncmp(buf, "external:", 9) == 0) {
3995 size_t namelen = len-9;
3996 if (namelen >= sizeof(mddev->metadata_type))
3997 namelen = sizeof(mddev->metadata_type)-1;
3998 strncpy(mddev->metadata_type, buf+9, namelen);
3999 mddev->metadata_type[namelen] = 0;
4000 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4001 mddev->metadata_type[--namelen] = 0;
4002 mddev->persistent = 0;
4003 mddev->external = 1;
4004 mddev->major_version = 0;
4005 mddev->minor_version = 90;
4006 return len;
4007 }
4008 major = simple_strtoul(buf, &e, 10);
4009 if (e==buf || *e != '.')
4010 return -EINVAL;
4011 buf = e+1;
4012 minor = simple_strtoul(buf, &e, 10);
4013 if (e==buf || (*e && *e != '\n') )
4014 return -EINVAL;
4015 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4016 return -ENOENT;
4017 mddev->major_version = major;
4018 mddev->minor_version = minor;
4019 mddev->persistent = 1;
4020 mddev->external = 0;
4021 return len;
4022 }
4023
4024 static struct md_sysfs_entry md_metadata =
4025 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4026
4027 static ssize_t
4028 action_show(struct mddev *mddev, char *page)
4029 {
4030 char *type = "idle";
4031 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4032 type = "frozen";
4033 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4034 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4035 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4036 type = "reshape";
4037 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4038 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4039 type = "resync";
4040 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4041 type = "check";
4042 else
4043 type = "repair";
4044 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4045 type = "recover";
4046 }
4047 return sprintf(page, "%s\n", type);
4048 }
4049
4050 static void reap_sync_thread(struct mddev *mddev);
4051
4052 static ssize_t
4053 action_store(struct mddev *mddev, const char *page, size_t len)
4054 {
4055 if (!mddev->pers || !mddev->pers->sync_request)
4056 return -EINVAL;
4057
4058 if (cmd_match(page, "frozen"))
4059 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4060 else
4061 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4062
4063 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4064 if (mddev->sync_thread) {
4065 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4066 reap_sync_thread(mddev);
4067 }
4068 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4069 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4070 return -EBUSY;
4071 else if (cmd_match(page, "resync"))
4072 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4073 else if (cmd_match(page, "recover")) {
4074 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4075 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4076 } else if (cmd_match(page, "reshape")) {
4077 int err;
4078 if (mddev->pers->start_reshape == NULL)
4079 return -EINVAL;
4080 err = mddev->pers->start_reshape(mddev);
4081 if (err)
4082 return err;
4083 sysfs_notify(&mddev->kobj, NULL, "degraded");
4084 } else {
4085 if (cmd_match(page, "check"))
4086 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4087 else if (!cmd_match(page, "repair"))
4088 return -EINVAL;
4089 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4090 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4091 }
4092 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4093 md_wakeup_thread(mddev->thread);
4094 sysfs_notify_dirent_safe(mddev->sysfs_action);
4095 return len;
4096 }
4097
4098 static ssize_t
4099 mismatch_cnt_show(struct mddev *mddev, char *page)
4100 {
4101 return sprintf(page, "%llu\n",
4102 (unsigned long long) mddev->resync_mismatches);
4103 }
4104
4105 static struct md_sysfs_entry md_scan_mode =
4106 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4107
4108
4109 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4110
4111 static ssize_t
4112 sync_min_show(struct mddev *mddev, char *page)
4113 {
4114 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4115 mddev->sync_speed_min ? "local": "system");
4116 }
4117
4118 static ssize_t
4119 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4120 {
4121 int min;
4122 char *e;
4123 if (strncmp(buf, "system", 6)==0) {
4124 mddev->sync_speed_min = 0;
4125 return len;
4126 }
4127 min = simple_strtoul(buf, &e, 10);
4128 if (buf == e || (*e && *e != '\n') || min <= 0)
4129 return -EINVAL;
4130 mddev->sync_speed_min = min;
4131 return len;
4132 }
4133
4134 static struct md_sysfs_entry md_sync_min =
4135 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4136
4137 static ssize_t
4138 sync_max_show(struct mddev *mddev, char *page)
4139 {
4140 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4141 mddev->sync_speed_max ? "local": "system");
4142 }
4143
4144 static ssize_t
4145 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4146 {
4147 int max;
4148 char *e;
4149 if (strncmp(buf, "system", 6)==0) {
4150 mddev->sync_speed_max = 0;
4151 return len;
4152 }
4153 max = simple_strtoul(buf, &e, 10);
4154 if (buf == e || (*e && *e != '\n') || max <= 0)
4155 return -EINVAL;
4156 mddev->sync_speed_max = max;
4157 return len;
4158 }
4159
4160 static struct md_sysfs_entry md_sync_max =
4161 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4162
4163 static ssize_t
4164 degraded_show(struct mddev *mddev, char *page)
4165 {
4166 return sprintf(page, "%d\n", mddev->degraded);
4167 }
4168 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4169
4170 static ssize_t
4171 sync_force_parallel_show(struct mddev *mddev, char *page)
4172 {
4173 return sprintf(page, "%d\n", mddev->parallel_resync);
4174 }
4175
4176 static ssize_t
4177 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4178 {
4179 long n;
4180
4181 if (strict_strtol(buf, 10, &n))
4182 return -EINVAL;
4183
4184 if (n != 0 && n != 1)
4185 return -EINVAL;
4186
4187 mddev->parallel_resync = n;
4188
4189 if (mddev->sync_thread)
4190 wake_up(&resync_wait);
4191
4192 return len;
4193 }
4194
4195 /* force parallel resync, even with shared block devices */
4196 static struct md_sysfs_entry md_sync_force_parallel =
4197 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4198 sync_force_parallel_show, sync_force_parallel_store);
4199
4200 static ssize_t
4201 sync_speed_show(struct mddev *mddev, char *page)
4202 {
4203 unsigned long resync, dt, db;
4204 if (mddev->curr_resync == 0)
4205 return sprintf(page, "none\n");
4206 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4207 dt = (jiffies - mddev->resync_mark) / HZ;
4208 if (!dt) dt++;
4209 db = resync - mddev->resync_mark_cnt;
4210 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4211 }
4212
4213 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4214
4215 static ssize_t
4216 sync_completed_show(struct mddev *mddev, char *page)
4217 {
4218 unsigned long long max_sectors, resync;
4219
4220 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4221 return sprintf(page, "none\n");
4222
4223 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4224 max_sectors = mddev->resync_max_sectors;
4225 else
4226 max_sectors = mddev->dev_sectors;
4227
4228 resync = mddev->curr_resync_completed;
4229 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4230 }
4231
4232 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4233
4234 static ssize_t
4235 min_sync_show(struct mddev *mddev, char *page)
4236 {
4237 return sprintf(page, "%llu\n",
4238 (unsigned long long)mddev->resync_min);
4239 }
4240 static ssize_t
4241 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4242 {
4243 unsigned long long min;
4244 if (strict_strtoull(buf, 10, &min))
4245 return -EINVAL;
4246 if (min > mddev->resync_max)
4247 return -EINVAL;
4248 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4249 return -EBUSY;
4250
4251 /* Must be a multiple of chunk_size */
4252 if (mddev->chunk_sectors) {
4253 sector_t temp = min;
4254 if (sector_div(temp, mddev->chunk_sectors))
4255 return -EINVAL;
4256 }
4257 mddev->resync_min = min;
4258
4259 return len;
4260 }
4261
4262 static struct md_sysfs_entry md_min_sync =
4263 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4264
4265 static ssize_t
4266 max_sync_show(struct mddev *mddev, char *page)
4267 {
4268 if (mddev->resync_max == MaxSector)
4269 return sprintf(page, "max\n");
4270 else
4271 return sprintf(page, "%llu\n",
4272 (unsigned long long)mddev->resync_max);
4273 }
4274 static ssize_t
4275 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4276 {
4277 if (strncmp(buf, "max", 3) == 0)
4278 mddev->resync_max = MaxSector;
4279 else {
4280 unsigned long long max;
4281 if (strict_strtoull(buf, 10, &max))
4282 return -EINVAL;
4283 if (max < mddev->resync_min)
4284 return -EINVAL;
4285 if (max < mddev->resync_max &&
4286 mddev->ro == 0 &&
4287 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4288 return -EBUSY;
4289
4290 /* Must be a multiple of chunk_size */
4291 if (mddev->chunk_sectors) {
4292 sector_t temp = max;
4293 if (sector_div(temp, mddev->chunk_sectors))
4294 return -EINVAL;
4295 }
4296 mddev->resync_max = max;
4297 }
4298 wake_up(&mddev->recovery_wait);
4299 return len;
4300 }
4301
4302 static struct md_sysfs_entry md_max_sync =
4303 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4304
4305 static ssize_t
4306 suspend_lo_show(struct mddev *mddev, char *page)
4307 {
4308 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4309 }
4310
4311 static ssize_t
4312 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4313 {
4314 char *e;
4315 unsigned long long new = simple_strtoull(buf, &e, 10);
4316 unsigned long long old = mddev->suspend_lo;
4317
4318 if (mddev->pers == NULL ||
4319 mddev->pers->quiesce == NULL)
4320 return -EINVAL;
4321 if (buf == e || (*e && *e != '\n'))
4322 return -EINVAL;
4323
4324 mddev->suspend_lo = new;
4325 if (new >= old)
4326 /* Shrinking suspended region */
4327 mddev->pers->quiesce(mddev, 2);
4328 else {
4329 /* Expanding suspended region - need to wait */
4330 mddev->pers->quiesce(mddev, 1);
4331 mddev->pers->quiesce(mddev, 0);
4332 }
4333 return len;
4334 }
4335 static struct md_sysfs_entry md_suspend_lo =
4336 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4337
4338
4339 static ssize_t
4340 suspend_hi_show(struct mddev *mddev, char *page)
4341 {
4342 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4343 }
4344
4345 static ssize_t
4346 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4347 {
4348 char *e;
4349 unsigned long long new = simple_strtoull(buf, &e, 10);
4350 unsigned long long old = mddev->suspend_hi;
4351
4352 if (mddev->pers == NULL ||
4353 mddev->pers->quiesce == NULL)
4354 return -EINVAL;
4355 if (buf == e || (*e && *e != '\n'))
4356 return -EINVAL;
4357
4358 mddev->suspend_hi = new;
4359 if (new <= old)
4360 /* Shrinking suspended region */
4361 mddev->pers->quiesce(mddev, 2);
4362 else {
4363 /* Expanding suspended region - need to wait */
4364 mddev->pers->quiesce(mddev, 1);
4365 mddev->pers->quiesce(mddev, 0);
4366 }
4367 return len;
4368 }
4369 static struct md_sysfs_entry md_suspend_hi =
4370 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4371
4372 static ssize_t
4373 reshape_position_show(struct mddev *mddev, char *page)
4374 {
4375 if (mddev->reshape_position != MaxSector)
4376 return sprintf(page, "%llu\n",
4377 (unsigned long long)mddev->reshape_position);
4378 strcpy(page, "none\n");
4379 return 5;
4380 }
4381
4382 static ssize_t
4383 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4384 {
4385 char *e;
4386 unsigned long long new = simple_strtoull(buf, &e, 10);
4387 if (mddev->pers)
4388 return -EBUSY;
4389 if (buf == e || (*e && *e != '\n'))
4390 return -EINVAL;
4391 mddev->reshape_position = new;
4392 mddev->delta_disks = 0;
4393 mddev->new_level = mddev->level;
4394 mddev->new_layout = mddev->layout;
4395 mddev->new_chunk_sectors = mddev->chunk_sectors;
4396 return len;
4397 }
4398
4399 static struct md_sysfs_entry md_reshape_position =
4400 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4401 reshape_position_store);
4402
4403 static ssize_t
4404 array_size_show(struct mddev *mddev, char *page)
4405 {
4406 if (mddev->external_size)
4407 return sprintf(page, "%llu\n",
4408 (unsigned long long)mddev->array_sectors/2);
4409 else
4410 return sprintf(page, "default\n");
4411 }
4412
4413 static ssize_t
4414 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4415 {
4416 sector_t sectors;
4417
4418 if (strncmp(buf, "default", 7) == 0) {
4419 if (mddev->pers)
4420 sectors = mddev->pers->size(mddev, 0, 0);
4421 else
4422 sectors = mddev->array_sectors;
4423
4424 mddev->external_size = 0;
4425 } else {
4426 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4427 return -EINVAL;
4428 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4429 return -E2BIG;
4430
4431 mddev->external_size = 1;
4432 }
4433
4434 mddev->array_sectors = sectors;
4435 if (mddev->pers) {
4436 set_capacity(mddev->gendisk, mddev->array_sectors);
4437 revalidate_disk(mddev->gendisk);
4438 }
4439 return len;
4440 }
4441
4442 static struct md_sysfs_entry md_array_size =
4443 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4444 array_size_store);
4445
4446 static struct attribute *md_default_attrs[] = {
4447 &md_level.attr,
4448 &md_layout.attr,
4449 &md_raid_disks.attr,
4450 &md_chunk_size.attr,
4451 &md_size.attr,
4452 &md_resync_start.attr,
4453 &md_metadata.attr,
4454 &md_new_device.attr,
4455 &md_safe_delay.attr,
4456 &md_array_state.attr,
4457 &md_reshape_position.attr,
4458 &md_array_size.attr,
4459 &max_corr_read_errors.attr,
4460 NULL,
4461 };
4462
4463 static struct attribute *md_redundancy_attrs[] = {
4464 &md_scan_mode.attr,
4465 &md_mismatches.attr,
4466 &md_sync_min.attr,
4467 &md_sync_max.attr,
4468 &md_sync_speed.attr,
4469 &md_sync_force_parallel.attr,
4470 &md_sync_completed.attr,
4471 &md_min_sync.attr,
4472 &md_max_sync.attr,
4473 &md_suspend_lo.attr,
4474 &md_suspend_hi.attr,
4475 &md_bitmap.attr,
4476 &md_degraded.attr,
4477 NULL,
4478 };
4479 static struct attribute_group md_redundancy_group = {
4480 .name = NULL,
4481 .attrs = md_redundancy_attrs,
4482 };
4483
4484
4485 static ssize_t
4486 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4487 {
4488 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4489 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4490 ssize_t rv;
4491
4492 if (!entry->show)
4493 return -EIO;
4494 rv = mddev_lock(mddev);
4495 if (!rv) {
4496 rv = entry->show(mddev, page);
4497 mddev_unlock(mddev);
4498 }
4499 return rv;
4500 }
4501
4502 static ssize_t
4503 md_attr_store(struct kobject *kobj, struct attribute *attr,
4504 const char *page, size_t length)
4505 {
4506 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4507 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4508 ssize_t rv;
4509
4510 if (!entry->store)
4511 return -EIO;
4512 if (!capable(CAP_SYS_ADMIN))
4513 return -EACCES;
4514 rv = mddev_lock(mddev);
4515 if (mddev->hold_active == UNTIL_IOCTL)
4516 mddev->hold_active = 0;
4517 if (!rv) {
4518 rv = entry->store(mddev, page, length);
4519 mddev_unlock(mddev);
4520 }
4521 return rv;
4522 }
4523
4524 static void md_free(struct kobject *ko)
4525 {
4526 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4527
4528 if (mddev->sysfs_state)
4529 sysfs_put(mddev->sysfs_state);
4530
4531 if (mddev->gendisk) {
4532 del_gendisk(mddev->gendisk);
4533 put_disk(mddev->gendisk);
4534 }
4535 if (mddev->queue)
4536 blk_cleanup_queue(mddev->queue);
4537
4538 kfree(mddev);
4539 }
4540
4541 static const struct sysfs_ops md_sysfs_ops = {
4542 .show = md_attr_show,
4543 .store = md_attr_store,
4544 };
4545 static struct kobj_type md_ktype = {
4546 .release = md_free,
4547 .sysfs_ops = &md_sysfs_ops,
4548 .default_attrs = md_default_attrs,
4549 };
4550
4551 int mdp_major = 0;
4552
4553 static void mddev_delayed_delete(struct work_struct *ws)
4554 {
4555 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4556
4557 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4558 kobject_del(&mddev->kobj);
4559 kobject_put(&mddev->kobj);
4560 }
4561
4562 static int md_alloc(dev_t dev, char *name)
4563 {
4564 static DEFINE_MUTEX(disks_mutex);
4565 struct mddev *mddev = mddev_find(dev);
4566 struct gendisk *disk;
4567 int partitioned;
4568 int shift;
4569 int unit;
4570 int error;
4571
4572 if (!mddev)
4573 return -ENODEV;
4574
4575 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4576 shift = partitioned ? MdpMinorShift : 0;
4577 unit = MINOR(mddev->unit) >> shift;
4578
4579 /* wait for any previous instance of this device to be
4580 * completely removed (mddev_delayed_delete).
4581 */
4582 flush_workqueue(md_misc_wq);
4583
4584 mutex_lock(&disks_mutex);
4585 error = -EEXIST;
4586 if (mddev->gendisk)
4587 goto abort;
4588
4589 if (name) {
4590 /* Need to ensure that 'name' is not a duplicate.
4591 */
4592 struct mddev *mddev2;
4593 spin_lock(&all_mddevs_lock);
4594
4595 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4596 if (mddev2->gendisk &&
4597 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4598 spin_unlock(&all_mddevs_lock);
4599 goto abort;
4600 }
4601 spin_unlock(&all_mddevs_lock);
4602 }
4603
4604 error = -ENOMEM;
4605 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4606 if (!mddev->queue)
4607 goto abort;
4608 mddev->queue->queuedata = mddev;
4609
4610 blk_queue_make_request(mddev->queue, md_make_request);
4611
4612 disk = alloc_disk(1 << shift);
4613 if (!disk) {
4614 blk_cleanup_queue(mddev->queue);
4615 mddev->queue = NULL;
4616 goto abort;
4617 }
4618 disk->major = MAJOR(mddev->unit);
4619 disk->first_minor = unit << shift;
4620 if (name)
4621 strcpy(disk->disk_name, name);
4622 else if (partitioned)
4623 sprintf(disk->disk_name, "md_d%d", unit);
4624 else
4625 sprintf(disk->disk_name, "md%d", unit);
4626 disk->fops = &md_fops;
4627 disk->private_data = mddev;
4628 disk->queue = mddev->queue;
4629 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4630 /* Allow extended partitions. This makes the
4631 * 'mdp' device redundant, but we can't really
4632 * remove it now.
4633 */
4634 disk->flags |= GENHD_FL_EXT_DEVT;
4635 mddev->gendisk = disk;
4636 /* As soon as we call add_disk(), another thread could get
4637 * through to md_open, so make sure it doesn't get too far
4638 */
4639 mutex_lock(&mddev->open_mutex);
4640 add_disk(disk);
4641
4642 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4643 &disk_to_dev(disk)->kobj, "%s", "md");
4644 if (error) {
4645 /* This isn't possible, but as kobject_init_and_add is marked
4646 * __must_check, we must do something with the result
4647 */
4648 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4649 disk->disk_name);
4650 error = 0;
4651 }
4652 if (mddev->kobj.sd &&
4653 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4654 printk(KERN_DEBUG "pointless warning\n");
4655 mutex_unlock(&mddev->open_mutex);
4656 abort:
4657 mutex_unlock(&disks_mutex);
4658 if (!error && mddev->kobj.sd) {
4659 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4660 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4661 }
4662 mddev_put(mddev);
4663 return error;
4664 }
4665
4666 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4667 {
4668 md_alloc(dev, NULL);
4669 return NULL;
4670 }
4671
4672 static int add_named_array(const char *val, struct kernel_param *kp)
4673 {
4674 /* val must be "md_*" where * is not all digits.
4675 * We allocate an array with a large free minor number, and
4676 * set the name to val. val must not already be an active name.
4677 */
4678 int len = strlen(val);
4679 char buf[DISK_NAME_LEN];
4680
4681 while (len && val[len-1] == '\n')
4682 len--;
4683 if (len >= DISK_NAME_LEN)
4684 return -E2BIG;
4685 strlcpy(buf, val, len+1);
4686 if (strncmp(buf, "md_", 3) != 0)
4687 return -EINVAL;
4688 return md_alloc(0, buf);
4689 }
4690
4691 static void md_safemode_timeout(unsigned long data)
4692 {
4693 struct mddev *mddev = (struct mddev *) data;
4694
4695 if (!atomic_read(&mddev->writes_pending)) {
4696 mddev->safemode = 1;
4697 if (mddev->external)
4698 sysfs_notify_dirent_safe(mddev->sysfs_state);
4699 }
4700 md_wakeup_thread(mddev->thread);
4701 }
4702
4703 static int start_dirty_degraded;
4704
4705 int md_run(struct mddev *mddev)
4706 {
4707 int err;
4708 struct md_rdev *rdev;
4709 struct md_personality *pers;
4710
4711 if (list_empty(&mddev->disks))
4712 /* cannot run an array with no devices.. */
4713 return -EINVAL;
4714
4715 if (mddev->pers)
4716 return -EBUSY;
4717 /* Cannot run until previous stop completes properly */
4718 if (mddev->sysfs_active)
4719 return -EBUSY;
4720
4721 /*
4722 * Analyze all RAID superblock(s)
4723 */
4724 if (!mddev->raid_disks) {
4725 if (!mddev->persistent)
4726 return -EINVAL;
4727 analyze_sbs(mddev);
4728 }
4729
4730 if (mddev->level != LEVEL_NONE)
4731 request_module("md-level-%d", mddev->level);
4732 else if (mddev->clevel[0])
4733 request_module("md-%s", mddev->clevel);
4734
4735 /*
4736 * Drop all container device buffers, from now on
4737 * the only valid external interface is through the md
4738 * device.
4739 */
4740 list_for_each_entry(rdev, &mddev->disks, same_set) {
4741 if (test_bit(Faulty, &rdev->flags))
4742 continue;
4743 sync_blockdev(rdev->bdev);
4744 invalidate_bdev(rdev->bdev);
4745
4746 /* perform some consistency tests on the device.
4747 * We don't want the data to overlap the metadata,
4748 * Internal Bitmap issues have been handled elsewhere.
4749 */
4750 if (rdev->meta_bdev) {
4751 /* Nothing to check */;
4752 } else if (rdev->data_offset < rdev->sb_start) {
4753 if (mddev->dev_sectors &&
4754 rdev->data_offset + mddev->dev_sectors
4755 > rdev->sb_start) {
4756 printk("md: %s: data overlaps metadata\n",
4757 mdname(mddev));
4758 return -EINVAL;
4759 }
4760 } else {
4761 if (rdev->sb_start + rdev->sb_size/512
4762 > rdev->data_offset) {
4763 printk("md: %s: metadata overlaps data\n",
4764 mdname(mddev));
4765 return -EINVAL;
4766 }
4767 }
4768 sysfs_notify_dirent_safe(rdev->sysfs_state);
4769 }
4770
4771 if (mddev->bio_set == NULL)
4772 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4773 sizeof(struct mddev *));
4774
4775 spin_lock(&pers_lock);
4776 pers = find_pers(mddev->level, mddev->clevel);
4777 if (!pers || !try_module_get(pers->owner)) {
4778 spin_unlock(&pers_lock);
4779 if (mddev->level != LEVEL_NONE)
4780 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4781 mddev->level);
4782 else
4783 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4784 mddev->clevel);
4785 return -EINVAL;
4786 }
4787 mddev->pers = pers;
4788 spin_unlock(&pers_lock);
4789 if (mddev->level != pers->level) {
4790 mddev->level = pers->level;
4791 mddev->new_level = pers->level;
4792 }
4793 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4794
4795 if (mddev->reshape_position != MaxSector &&
4796 pers->start_reshape == NULL) {
4797 /* This personality cannot handle reshaping... */
4798 mddev->pers = NULL;
4799 module_put(pers->owner);
4800 return -EINVAL;
4801 }
4802
4803 if (pers->sync_request) {
4804 /* Warn if this is a potentially silly
4805 * configuration.
4806 */
4807 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4808 struct md_rdev *rdev2;
4809 int warned = 0;
4810
4811 list_for_each_entry(rdev, &mddev->disks, same_set)
4812 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4813 if (rdev < rdev2 &&
4814 rdev->bdev->bd_contains ==
4815 rdev2->bdev->bd_contains) {
4816 printk(KERN_WARNING
4817 "%s: WARNING: %s appears to be"
4818 " on the same physical disk as"
4819 " %s.\n",
4820 mdname(mddev),
4821 bdevname(rdev->bdev,b),
4822 bdevname(rdev2->bdev,b2));
4823 warned = 1;
4824 }
4825 }
4826
4827 if (warned)
4828 printk(KERN_WARNING
4829 "True protection against single-disk"
4830 " failure might be compromised.\n");
4831 }
4832
4833 mddev->recovery = 0;
4834 /* may be over-ridden by personality */
4835 mddev->resync_max_sectors = mddev->dev_sectors;
4836
4837 mddev->ok_start_degraded = start_dirty_degraded;
4838
4839 if (start_readonly && mddev->ro == 0)
4840 mddev->ro = 2; /* read-only, but switch on first write */
4841
4842 err = mddev->pers->run(mddev);
4843 if (err)
4844 printk(KERN_ERR "md: pers->run() failed ...\n");
4845 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4846 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4847 " but 'external_size' not in effect?\n", __func__);
4848 printk(KERN_ERR
4849 "md: invalid array_size %llu > default size %llu\n",
4850 (unsigned long long)mddev->array_sectors / 2,
4851 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4852 err = -EINVAL;
4853 mddev->pers->stop(mddev);
4854 }
4855 if (err == 0 && mddev->pers->sync_request) {
4856 err = bitmap_create(mddev);
4857 if (err) {
4858 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4859 mdname(mddev), err);
4860 mddev->pers->stop(mddev);
4861 }
4862 }
4863 if (err) {
4864 module_put(mddev->pers->owner);
4865 mddev->pers = NULL;
4866 bitmap_destroy(mddev);
4867 return err;
4868 }
4869 if (mddev->pers->sync_request) {
4870 if (mddev->kobj.sd &&
4871 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4872 printk(KERN_WARNING
4873 "md: cannot register extra attributes for %s\n",
4874 mdname(mddev));
4875 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4876 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4877 mddev->ro = 0;
4878
4879 atomic_set(&mddev->writes_pending,0);
4880 atomic_set(&mddev->max_corr_read_errors,
4881 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4882 mddev->safemode = 0;
4883 mddev->safemode_timer.function = md_safemode_timeout;
4884 mddev->safemode_timer.data = (unsigned long) mddev;
4885 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4886 mddev->in_sync = 1;
4887 smp_wmb();
4888 mddev->ready = 1;
4889 list_for_each_entry(rdev, &mddev->disks, same_set)
4890 if (rdev->raid_disk >= 0)
4891 if (sysfs_link_rdev(mddev, rdev))
4892 /* failure here is OK */;
4893
4894 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4895
4896 if (mddev->flags)
4897 md_update_sb(mddev, 0);
4898
4899 md_new_event(mddev);
4900 sysfs_notify_dirent_safe(mddev->sysfs_state);
4901 sysfs_notify_dirent_safe(mddev->sysfs_action);
4902 sysfs_notify(&mddev->kobj, NULL, "degraded");
4903 return 0;
4904 }
4905 EXPORT_SYMBOL_GPL(md_run);
4906
4907 static int do_md_run(struct mddev *mddev)
4908 {
4909 int err;
4910
4911 err = md_run(mddev);
4912 if (err)
4913 goto out;
4914 err = bitmap_load(mddev);
4915 if (err) {
4916 bitmap_destroy(mddev);
4917 goto out;
4918 }
4919
4920 md_wakeup_thread(mddev->thread);
4921 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4922
4923 set_capacity(mddev->gendisk, mddev->array_sectors);
4924 revalidate_disk(mddev->gendisk);
4925 mddev->changed = 1;
4926 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4927 out:
4928 return err;
4929 }
4930
4931 static int restart_array(struct mddev *mddev)
4932 {
4933 struct gendisk *disk = mddev->gendisk;
4934
4935 /* Complain if it has no devices */
4936 if (list_empty(&mddev->disks))
4937 return -ENXIO;
4938 if (!mddev->pers)
4939 return -EINVAL;
4940 if (!mddev->ro)
4941 return -EBUSY;
4942 mddev->safemode = 0;
4943 mddev->ro = 0;
4944 set_disk_ro(disk, 0);
4945 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4946 mdname(mddev));
4947 /* Kick recovery or resync if necessary */
4948 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4949 md_wakeup_thread(mddev->thread);
4950 md_wakeup_thread(mddev->sync_thread);
4951 sysfs_notify_dirent_safe(mddev->sysfs_state);
4952 return 0;
4953 }
4954
4955 /* similar to deny_write_access, but accounts for our holding a reference
4956 * to the file ourselves */
4957 static int deny_bitmap_write_access(struct file * file)
4958 {
4959 struct inode *inode = file->f_mapping->host;
4960
4961 spin_lock(&inode->i_lock);
4962 if (atomic_read(&inode->i_writecount) > 1) {
4963 spin_unlock(&inode->i_lock);
4964 return -ETXTBSY;
4965 }
4966 atomic_set(&inode->i_writecount, -1);
4967 spin_unlock(&inode->i_lock);
4968
4969 return 0;
4970 }
4971
4972 void restore_bitmap_write_access(struct file *file)
4973 {
4974 struct inode *inode = file->f_mapping->host;
4975
4976 spin_lock(&inode->i_lock);
4977 atomic_set(&inode->i_writecount, 1);
4978 spin_unlock(&inode->i_lock);
4979 }
4980
4981 static void md_clean(struct mddev *mddev)
4982 {
4983 mddev->array_sectors = 0;
4984 mddev->external_size = 0;
4985 mddev->dev_sectors = 0;
4986 mddev->raid_disks = 0;
4987 mddev->recovery_cp = 0;
4988 mddev->resync_min = 0;
4989 mddev->resync_max = MaxSector;
4990 mddev->reshape_position = MaxSector;
4991 mddev->external = 0;
4992 mddev->persistent = 0;
4993 mddev->level = LEVEL_NONE;
4994 mddev->clevel[0] = 0;
4995 mddev->flags = 0;
4996 mddev->ro = 0;
4997 mddev->metadata_type[0] = 0;
4998 mddev->chunk_sectors = 0;
4999 mddev->ctime = mddev->utime = 0;
5000 mddev->layout = 0;
5001 mddev->max_disks = 0;
5002 mddev->events = 0;
5003 mddev->can_decrease_events = 0;
5004 mddev->delta_disks = 0;
5005 mddev->new_level = LEVEL_NONE;
5006 mddev->new_layout = 0;
5007 mddev->new_chunk_sectors = 0;
5008 mddev->curr_resync = 0;
5009 mddev->resync_mismatches = 0;
5010 mddev->suspend_lo = mddev->suspend_hi = 0;
5011 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5012 mddev->recovery = 0;
5013 mddev->in_sync = 0;
5014 mddev->changed = 0;
5015 mddev->degraded = 0;
5016 mddev->safemode = 0;
5017 mddev->bitmap_info.offset = 0;
5018 mddev->bitmap_info.default_offset = 0;
5019 mddev->bitmap_info.chunksize = 0;
5020 mddev->bitmap_info.daemon_sleep = 0;
5021 mddev->bitmap_info.max_write_behind = 0;
5022 }
5023
5024 static void __md_stop_writes(struct mddev *mddev)
5025 {
5026 if (mddev->sync_thread) {
5027 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5028 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5029 reap_sync_thread(mddev);
5030 }
5031
5032 del_timer_sync(&mddev->safemode_timer);
5033
5034 bitmap_flush(mddev);
5035 md_super_wait(mddev);
5036
5037 if (!mddev->in_sync || mddev->flags) {
5038 /* mark array as shutdown cleanly */
5039 mddev->in_sync = 1;
5040 md_update_sb(mddev, 1);
5041 }
5042 }
5043
5044 void md_stop_writes(struct mddev *mddev)
5045 {
5046 mddev_lock(mddev);
5047 __md_stop_writes(mddev);
5048 mddev_unlock(mddev);
5049 }
5050 EXPORT_SYMBOL_GPL(md_stop_writes);
5051
5052 void md_stop(struct mddev *mddev)
5053 {
5054 mddev->ready = 0;
5055 mddev->pers->stop(mddev);
5056 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5057 mddev->to_remove = &md_redundancy_group;
5058 module_put(mddev->pers->owner);
5059 mddev->pers = NULL;
5060 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5061 }
5062 EXPORT_SYMBOL_GPL(md_stop);
5063
5064 static int md_set_readonly(struct mddev *mddev, int is_open)
5065 {
5066 int err = 0;
5067 mutex_lock(&mddev->open_mutex);
5068 if (atomic_read(&mddev->openers) > is_open) {
5069 printk("md: %s still in use.\n",mdname(mddev));
5070 err = -EBUSY;
5071 goto out;
5072 }
5073 if (mddev->pers) {
5074 __md_stop_writes(mddev);
5075
5076 err = -ENXIO;
5077 if (mddev->ro==1)
5078 goto out;
5079 mddev->ro = 1;
5080 set_disk_ro(mddev->gendisk, 1);
5081 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5082 sysfs_notify_dirent_safe(mddev->sysfs_state);
5083 err = 0;
5084 }
5085 out:
5086 mutex_unlock(&mddev->open_mutex);
5087 return err;
5088 }
5089
5090 /* mode:
5091 * 0 - completely stop and dis-assemble array
5092 * 2 - stop but do not disassemble array
5093 */
5094 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5095 {
5096 struct gendisk *disk = mddev->gendisk;
5097 struct md_rdev *rdev;
5098
5099 mutex_lock(&mddev->open_mutex);
5100 if (atomic_read(&mddev->openers) > is_open ||
5101 mddev->sysfs_active) {
5102 printk("md: %s still in use.\n",mdname(mddev));
5103 mutex_unlock(&mddev->open_mutex);
5104 return -EBUSY;
5105 }
5106
5107 if (mddev->pers) {
5108 if (mddev->ro)
5109 set_disk_ro(disk, 0);
5110
5111 __md_stop_writes(mddev);
5112 md_stop(mddev);
5113 mddev->queue->merge_bvec_fn = NULL;
5114 mddev->queue->backing_dev_info.congested_fn = NULL;
5115
5116 /* tell userspace to handle 'inactive' */
5117 sysfs_notify_dirent_safe(mddev->sysfs_state);
5118
5119 list_for_each_entry(rdev, &mddev->disks, same_set)
5120 if (rdev->raid_disk >= 0)
5121 sysfs_unlink_rdev(mddev, rdev);
5122
5123 set_capacity(disk, 0);
5124 mutex_unlock(&mddev->open_mutex);
5125 mddev->changed = 1;
5126 revalidate_disk(disk);
5127
5128 if (mddev->ro)
5129 mddev->ro = 0;
5130 } else
5131 mutex_unlock(&mddev->open_mutex);
5132 /*
5133 * Free resources if final stop
5134 */
5135 if (mode == 0) {
5136 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5137
5138 bitmap_destroy(mddev);
5139 if (mddev->bitmap_info.file) {
5140 restore_bitmap_write_access(mddev->bitmap_info.file);
5141 fput(mddev->bitmap_info.file);
5142 mddev->bitmap_info.file = NULL;
5143 }
5144 mddev->bitmap_info.offset = 0;
5145
5146 export_array(mddev);
5147
5148 md_clean(mddev);
5149 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5150 if (mddev->hold_active == UNTIL_STOP)
5151 mddev->hold_active = 0;
5152 }
5153 blk_integrity_unregister(disk);
5154 md_new_event(mddev);
5155 sysfs_notify_dirent_safe(mddev->sysfs_state);
5156 return 0;
5157 }
5158
5159 #ifndef MODULE
5160 static void autorun_array(struct mddev *mddev)
5161 {
5162 struct md_rdev *rdev;
5163 int err;
5164
5165 if (list_empty(&mddev->disks))
5166 return;
5167
5168 printk(KERN_INFO "md: running: ");
5169
5170 list_for_each_entry(rdev, &mddev->disks, same_set) {
5171 char b[BDEVNAME_SIZE];
5172 printk("<%s>", bdevname(rdev->bdev,b));
5173 }
5174 printk("\n");
5175
5176 err = do_md_run(mddev);
5177 if (err) {
5178 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5179 do_md_stop(mddev, 0, 0);
5180 }
5181 }
5182
5183 /*
5184 * lets try to run arrays based on all disks that have arrived
5185 * until now. (those are in pending_raid_disks)
5186 *
5187 * the method: pick the first pending disk, collect all disks with
5188 * the same UUID, remove all from the pending list and put them into
5189 * the 'same_array' list. Then order this list based on superblock
5190 * update time (freshest comes first), kick out 'old' disks and
5191 * compare superblocks. If everything's fine then run it.
5192 *
5193 * If "unit" is allocated, then bump its reference count
5194 */
5195 static void autorun_devices(int part)
5196 {
5197 struct md_rdev *rdev0, *rdev, *tmp;
5198 struct mddev *mddev;
5199 char b[BDEVNAME_SIZE];
5200
5201 printk(KERN_INFO "md: autorun ...\n");
5202 while (!list_empty(&pending_raid_disks)) {
5203 int unit;
5204 dev_t dev;
5205 LIST_HEAD(candidates);
5206 rdev0 = list_entry(pending_raid_disks.next,
5207 struct md_rdev, same_set);
5208
5209 printk(KERN_INFO "md: considering %s ...\n",
5210 bdevname(rdev0->bdev,b));
5211 INIT_LIST_HEAD(&candidates);
5212 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5213 if (super_90_load(rdev, rdev0, 0) >= 0) {
5214 printk(KERN_INFO "md: adding %s ...\n",
5215 bdevname(rdev->bdev,b));
5216 list_move(&rdev->same_set, &candidates);
5217 }
5218 /*
5219 * now we have a set of devices, with all of them having
5220 * mostly sane superblocks. It's time to allocate the
5221 * mddev.
5222 */
5223 if (part) {
5224 dev = MKDEV(mdp_major,
5225 rdev0->preferred_minor << MdpMinorShift);
5226 unit = MINOR(dev) >> MdpMinorShift;
5227 } else {
5228 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5229 unit = MINOR(dev);
5230 }
5231 if (rdev0->preferred_minor != unit) {
5232 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5233 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5234 break;
5235 }
5236
5237 md_probe(dev, NULL, NULL);
5238 mddev = mddev_find(dev);
5239 if (!mddev || !mddev->gendisk) {
5240 if (mddev)
5241 mddev_put(mddev);
5242 printk(KERN_ERR
5243 "md: cannot allocate memory for md drive.\n");
5244 break;
5245 }
5246 if (mddev_lock(mddev))
5247 printk(KERN_WARNING "md: %s locked, cannot run\n",
5248 mdname(mddev));
5249 else if (mddev->raid_disks || mddev->major_version
5250 || !list_empty(&mddev->disks)) {
5251 printk(KERN_WARNING
5252 "md: %s already running, cannot run %s\n",
5253 mdname(mddev), bdevname(rdev0->bdev,b));
5254 mddev_unlock(mddev);
5255 } else {
5256 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5257 mddev->persistent = 1;
5258 rdev_for_each_list(rdev, tmp, &candidates) {
5259 list_del_init(&rdev->same_set);
5260 if (bind_rdev_to_array(rdev, mddev))
5261 export_rdev(rdev);
5262 }
5263 autorun_array(mddev);
5264 mddev_unlock(mddev);
5265 }
5266 /* on success, candidates will be empty, on error
5267 * it won't...
5268 */
5269 rdev_for_each_list(rdev, tmp, &candidates) {
5270 list_del_init(&rdev->same_set);
5271 export_rdev(rdev);
5272 }
5273 mddev_put(mddev);
5274 }
5275 printk(KERN_INFO "md: ... autorun DONE.\n");
5276 }
5277 #endif /* !MODULE */
5278
5279 static int get_version(void __user * arg)
5280 {
5281 mdu_version_t ver;
5282
5283 ver.major = MD_MAJOR_VERSION;
5284 ver.minor = MD_MINOR_VERSION;
5285 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5286
5287 if (copy_to_user(arg, &ver, sizeof(ver)))
5288 return -EFAULT;
5289
5290 return 0;
5291 }
5292
5293 static int get_array_info(struct mddev * mddev, void __user * arg)
5294 {
5295 mdu_array_info_t info;
5296 int nr,working,insync,failed,spare;
5297 struct md_rdev *rdev;
5298
5299 nr=working=insync=failed=spare=0;
5300 list_for_each_entry(rdev, &mddev->disks, same_set) {
5301 nr++;
5302 if (test_bit(Faulty, &rdev->flags))
5303 failed++;
5304 else {
5305 working++;
5306 if (test_bit(In_sync, &rdev->flags))
5307 insync++;
5308 else
5309 spare++;
5310 }
5311 }
5312
5313 info.major_version = mddev->major_version;
5314 info.minor_version = mddev->minor_version;
5315 info.patch_version = MD_PATCHLEVEL_VERSION;
5316 info.ctime = mddev->ctime;
5317 info.level = mddev->level;
5318 info.size = mddev->dev_sectors / 2;
5319 if (info.size != mddev->dev_sectors / 2) /* overflow */
5320 info.size = -1;
5321 info.nr_disks = nr;
5322 info.raid_disks = mddev->raid_disks;
5323 info.md_minor = mddev->md_minor;
5324 info.not_persistent= !mddev->persistent;
5325
5326 info.utime = mddev->utime;
5327 info.state = 0;
5328 if (mddev->in_sync)
5329 info.state = (1<<MD_SB_CLEAN);
5330 if (mddev->bitmap && mddev->bitmap_info.offset)
5331 info.state = (1<<MD_SB_BITMAP_PRESENT);
5332 info.active_disks = insync;
5333 info.working_disks = working;
5334 info.failed_disks = failed;
5335 info.spare_disks = spare;
5336
5337 info.layout = mddev->layout;
5338 info.chunk_size = mddev->chunk_sectors << 9;
5339
5340 if (copy_to_user(arg, &info, sizeof(info)))
5341 return -EFAULT;
5342
5343 return 0;
5344 }
5345
5346 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5347 {
5348 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5349 char *ptr, *buf = NULL;
5350 int err = -ENOMEM;
5351
5352 if (md_allow_write(mddev))
5353 file = kmalloc(sizeof(*file), GFP_NOIO);
5354 else
5355 file = kmalloc(sizeof(*file), GFP_KERNEL);
5356
5357 if (!file)
5358 goto out;
5359
5360 /* bitmap disabled, zero the first byte and copy out */
5361 if (!mddev->bitmap || !mddev->bitmap->file) {
5362 file->pathname[0] = '\0';
5363 goto copy_out;
5364 }
5365
5366 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5367 if (!buf)
5368 goto out;
5369
5370 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5371 if (IS_ERR(ptr))
5372 goto out;
5373
5374 strcpy(file->pathname, ptr);
5375
5376 copy_out:
5377 err = 0;
5378 if (copy_to_user(arg, file, sizeof(*file)))
5379 err = -EFAULT;
5380 out:
5381 kfree(buf);
5382 kfree(file);
5383 return err;
5384 }
5385
5386 static int get_disk_info(struct mddev * mddev, void __user * arg)
5387 {
5388 mdu_disk_info_t info;
5389 struct md_rdev *rdev;
5390
5391 if (copy_from_user(&info, arg, sizeof(info)))
5392 return -EFAULT;
5393
5394 rdev = find_rdev_nr(mddev, info.number);
5395 if (rdev) {
5396 info.major = MAJOR(rdev->bdev->bd_dev);
5397 info.minor = MINOR(rdev->bdev->bd_dev);
5398 info.raid_disk = rdev->raid_disk;
5399 info.state = 0;
5400 if (test_bit(Faulty, &rdev->flags))
5401 info.state |= (1<<MD_DISK_FAULTY);
5402 else if (test_bit(In_sync, &rdev->flags)) {
5403 info.state |= (1<<MD_DISK_ACTIVE);
5404 info.state |= (1<<MD_DISK_SYNC);
5405 }
5406 if (test_bit(WriteMostly, &rdev->flags))
5407 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5408 } else {
5409 info.major = info.minor = 0;
5410 info.raid_disk = -1;
5411 info.state = (1<<MD_DISK_REMOVED);
5412 }
5413
5414 if (copy_to_user(arg, &info, sizeof(info)))
5415 return -EFAULT;
5416
5417 return 0;
5418 }
5419
5420 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5421 {
5422 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5423 struct md_rdev *rdev;
5424 dev_t dev = MKDEV(info->major,info->minor);
5425
5426 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5427 return -EOVERFLOW;
5428
5429 if (!mddev->raid_disks) {
5430 int err;
5431 /* expecting a device which has a superblock */
5432 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5433 if (IS_ERR(rdev)) {
5434 printk(KERN_WARNING
5435 "md: md_import_device returned %ld\n",
5436 PTR_ERR(rdev));
5437 return PTR_ERR(rdev);
5438 }
5439 if (!list_empty(&mddev->disks)) {
5440 struct md_rdev *rdev0
5441 = list_entry(mddev->disks.next,
5442 struct md_rdev, same_set);
5443 err = super_types[mddev->major_version]
5444 .load_super(rdev, rdev0, mddev->minor_version);
5445 if (err < 0) {
5446 printk(KERN_WARNING
5447 "md: %s has different UUID to %s\n",
5448 bdevname(rdev->bdev,b),
5449 bdevname(rdev0->bdev,b2));
5450 export_rdev(rdev);
5451 return -EINVAL;
5452 }
5453 }
5454 err = bind_rdev_to_array(rdev, mddev);
5455 if (err)
5456 export_rdev(rdev);
5457 return err;
5458 }
5459
5460 /*
5461 * add_new_disk can be used once the array is assembled
5462 * to add "hot spares". They must already have a superblock
5463 * written
5464 */
5465 if (mddev->pers) {
5466 int err;
5467 if (!mddev->pers->hot_add_disk) {
5468 printk(KERN_WARNING
5469 "%s: personality does not support diskops!\n",
5470 mdname(mddev));
5471 return -EINVAL;
5472 }
5473 if (mddev->persistent)
5474 rdev = md_import_device(dev, mddev->major_version,
5475 mddev->minor_version);
5476 else
5477 rdev = md_import_device(dev, -1, -1);
5478 if (IS_ERR(rdev)) {
5479 printk(KERN_WARNING
5480 "md: md_import_device returned %ld\n",
5481 PTR_ERR(rdev));
5482 return PTR_ERR(rdev);
5483 }
5484 /* set saved_raid_disk if appropriate */
5485 if (!mddev->persistent) {
5486 if (info->state & (1<<MD_DISK_SYNC) &&
5487 info->raid_disk < mddev->raid_disks) {
5488 rdev->raid_disk = info->raid_disk;
5489 set_bit(In_sync, &rdev->flags);
5490 } else
5491 rdev->raid_disk = -1;
5492 } else
5493 super_types[mddev->major_version].
5494 validate_super(mddev, rdev);
5495 if ((info->state & (1<<MD_DISK_SYNC)) &&
5496 (!test_bit(In_sync, &rdev->flags) ||
5497 rdev->raid_disk != info->raid_disk)) {
5498 /* This was a hot-add request, but events doesn't
5499 * match, so reject it.
5500 */
5501 export_rdev(rdev);
5502 return -EINVAL;
5503 }
5504
5505 if (test_bit(In_sync, &rdev->flags))
5506 rdev->saved_raid_disk = rdev->raid_disk;
5507 else
5508 rdev->saved_raid_disk = -1;
5509
5510 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5511 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5512 set_bit(WriteMostly, &rdev->flags);
5513 else
5514 clear_bit(WriteMostly, &rdev->flags);
5515
5516 rdev->raid_disk = -1;
5517 err = bind_rdev_to_array(rdev, mddev);
5518 if (!err && !mddev->pers->hot_remove_disk) {
5519 /* If there is hot_add_disk but no hot_remove_disk
5520 * then added disks for geometry changes,
5521 * and should be added immediately.
5522 */
5523 super_types[mddev->major_version].
5524 validate_super(mddev, rdev);
5525 err = mddev->pers->hot_add_disk(mddev, rdev);
5526 if (err)
5527 unbind_rdev_from_array(rdev);
5528 }
5529 if (err)
5530 export_rdev(rdev);
5531 else
5532 sysfs_notify_dirent_safe(rdev->sysfs_state);
5533
5534 md_update_sb(mddev, 1);
5535 if (mddev->degraded)
5536 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5537 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5538 if (!err)
5539 md_new_event(mddev);
5540 md_wakeup_thread(mddev->thread);
5541 return err;
5542 }
5543
5544 /* otherwise, add_new_disk is only allowed
5545 * for major_version==0 superblocks
5546 */
5547 if (mddev->major_version != 0) {
5548 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5549 mdname(mddev));
5550 return -EINVAL;
5551 }
5552
5553 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5554 int err;
5555 rdev = md_import_device(dev, -1, 0);
5556 if (IS_ERR(rdev)) {
5557 printk(KERN_WARNING
5558 "md: error, md_import_device() returned %ld\n",
5559 PTR_ERR(rdev));
5560 return PTR_ERR(rdev);
5561 }
5562 rdev->desc_nr = info->number;
5563 if (info->raid_disk < mddev->raid_disks)
5564 rdev->raid_disk = info->raid_disk;
5565 else
5566 rdev->raid_disk = -1;
5567
5568 if (rdev->raid_disk < mddev->raid_disks)
5569 if (info->state & (1<<MD_DISK_SYNC))
5570 set_bit(In_sync, &rdev->flags);
5571
5572 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5573 set_bit(WriteMostly, &rdev->flags);
5574
5575 if (!mddev->persistent) {
5576 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5577 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5578 } else
5579 rdev->sb_start = calc_dev_sboffset(rdev);
5580 rdev->sectors = rdev->sb_start;
5581
5582 err = bind_rdev_to_array(rdev, mddev);
5583 if (err) {
5584 export_rdev(rdev);
5585 return err;
5586 }
5587 }
5588
5589 return 0;
5590 }
5591
5592 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5593 {
5594 char b[BDEVNAME_SIZE];
5595 struct md_rdev *rdev;
5596
5597 rdev = find_rdev(mddev, dev);
5598 if (!rdev)
5599 return -ENXIO;
5600
5601 if (rdev->raid_disk >= 0)
5602 goto busy;
5603
5604 kick_rdev_from_array(rdev);
5605 md_update_sb(mddev, 1);
5606 md_new_event(mddev);
5607
5608 return 0;
5609 busy:
5610 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5611 bdevname(rdev->bdev,b), mdname(mddev));
5612 return -EBUSY;
5613 }
5614
5615 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5616 {
5617 char b[BDEVNAME_SIZE];
5618 int err;
5619 struct md_rdev *rdev;
5620
5621 if (!mddev->pers)
5622 return -ENODEV;
5623
5624 if (mddev->major_version != 0) {
5625 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5626 " version-0 superblocks.\n",
5627 mdname(mddev));
5628 return -EINVAL;
5629 }
5630 if (!mddev->pers->hot_add_disk) {
5631 printk(KERN_WARNING
5632 "%s: personality does not support diskops!\n",
5633 mdname(mddev));
5634 return -EINVAL;
5635 }
5636
5637 rdev = md_import_device(dev, -1, 0);
5638 if (IS_ERR(rdev)) {
5639 printk(KERN_WARNING
5640 "md: error, md_import_device() returned %ld\n",
5641 PTR_ERR(rdev));
5642 return -EINVAL;
5643 }
5644
5645 if (mddev->persistent)
5646 rdev->sb_start = calc_dev_sboffset(rdev);
5647 else
5648 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5649
5650 rdev->sectors = rdev->sb_start;
5651
5652 if (test_bit(Faulty, &rdev->flags)) {
5653 printk(KERN_WARNING
5654 "md: can not hot-add faulty %s disk to %s!\n",
5655 bdevname(rdev->bdev,b), mdname(mddev));
5656 err = -EINVAL;
5657 goto abort_export;
5658 }
5659 clear_bit(In_sync, &rdev->flags);
5660 rdev->desc_nr = -1;
5661 rdev->saved_raid_disk = -1;
5662 err = bind_rdev_to_array(rdev, mddev);
5663 if (err)
5664 goto abort_export;
5665
5666 /*
5667 * The rest should better be atomic, we can have disk failures
5668 * noticed in interrupt contexts ...
5669 */
5670
5671 rdev->raid_disk = -1;
5672
5673 md_update_sb(mddev, 1);
5674
5675 /*
5676 * Kick recovery, maybe this spare has to be added to the
5677 * array immediately.
5678 */
5679 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5680 md_wakeup_thread(mddev->thread);
5681 md_new_event(mddev);
5682 return 0;
5683
5684 abort_export:
5685 export_rdev(rdev);
5686 return err;
5687 }
5688
5689 static int set_bitmap_file(struct mddev *mddev, int fd)
5690 {
5691 int err;
5692
5693 if (mddev->pers) {
5694 if (!mddev->pers->quiesce)
5695 return -EBUSY;
5696 if (mddev->recovery || mddev->sync_thread)
5697 return -EBUSY;
5698 /* we should be able to change the bitmap.. */
5699 }
5700
5701
5702 if (fd >= 0) {
5703 if (mddev->bitmap)
5704 return -EEXIST; /* cannot add when bitmap is present */
5705 mddev->bitmap_info.file = fget(fd);
5706
5707 if (mddev->bitmap_info.file == NULL) {
5708 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5709 mdname(mddev));
5710 return -EBADF;
5711 }
5712
5713 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5714 if (err) {
5715 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5716 mdname(mddev));
5717 fput(mddev->bitmap_info.file);
5718 mddev->bitmap_info.file = NULL;
5719 return err;
5720 }
5721 mddev->bitmap_info.offset = 0; /* file overrides offset */
5722 } else if (mddev->bitmap == NULL)
5723 return -ENOENT; /* cannot remove what isn't there */
5724 err = 0;
5725 if (mddev->pers) {
5726 mddev->pers->quiesce(mddev, 1);
5727 if (fd >= 0) {
5728 err = bitmap_create(mddev);
5729 if (!err)
5730 err = bitmap_load(mddev);
5731 }
5732 if (fd < 0 || err) {
5733 bitmap_destroy(mddev);
5734 fd = -1; /* make sure to put the file */
5735 }
5736 mddev->pers->quiesce(mddev, 0);
5737 }
5738 if (fd < 0) {
5739 if (mddev->bitmap_info.file) {
5740 restore_bitmap_write_access(mddev->bitmap_info.file);
5741 fput(mddev->bitmap_info.file);
5742 }
5743 mddev->bitmap_info.file = NULL;
5744 }
5745
5746 return err;
5747 }
5748
5749 /*
5750 * set_array_info is used two different ways
5751 * The original usage is when creating a new array.
5752 * In this usage, raid_disks is > 0 and it together with
5753 * level, size, not_persistent,layout,chunksize determine the
5754 * shape of the array.
5755 * This will always create an array with a type-0.90.0 superblock.
5756 * The newer usage is when assembling an array.
5757 * In this case raid_disks will be 0, and the major_version field is
5758 * use to determine which style super-blocks are to be found on the devices.
5759 * The minor and patch _version numbers are also kept incase the
5760 * super_block handler wishes to interpret them.
5761 */
5762 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5763 {
5764
5765 if (info->raid_disks == 0) {
5766 /* just setting version number for superblock loading */
5767 if (info->major_version < 0 ||
5768 info->major_version >= ARRAY_SIZE(super_types) ||
5769 super_types[info->major_version].name == NULL) {
5770 /* maybe try to auto-load a module? */
5771 printk(KERN_INFO
5772 "md: superblock version %d not known\n",
5773 info->major_version);
5774 return -EINVAL;
5775 }
5776 mddev->major_version = info->major_version;
5777 mddev->minor_version = info->minor_version;
5778 mddev->patch_version = info->patch_version;
5779 mddev->persistent = !info->not_persistent;
5780 /* ensure mddev_put doesn't delete this now that there
5781 * is some minimal configuration.
5782 */
5783 mddev->ctime = get_seconds();
5784 return 0;
5785 }
5786 mddev->major_version = MD_MAJOR_VERSION;
5787 mddev->minor_version = MD_MINOR_VERSION;
5788 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5789 mddev->ctime = get_seconds();
5790
5791 mddev->level = info->level;
5792 mddev->clevel[0] = 0;
5793 mddev->dev_sectors = 2 * (sector_t)info->size;
5794 mddev->raid_disks = info->raid_disks;
5795 /* don't set md_minor, it is determined by which /dev/md* was
5796 * openned
5797 */
5798 if (info->state & (1<<MD_SB_CLEAN))
5799 mddev->recovery_cp = MaxSector;
5800 else
5801 mddev->recovery_cp = 0;
5802 mddev->persistent = ! info->not_persistent;
5803 mddev->external = 0;
5804
5805 mddev->layout = info->layout;
5806 mddev->chunk_sectors = info->chunk_size >> 9;
5807
5808 mddev->max_disks = MD_SB_DISKS;
5809
5810 if (mddev->persistent)
5811 mddev->flags = 0;
5812 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5813
5814 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5815 mddev->bitmap_info.offset = 0;
5816
5817 mddev->reshape_position = MaxSector;
5818
5819 /*
5820 * Generate a 128 bit UUID
5821 */
5822 get_random_bytes(mddev->uuid, 16);
5823
5824 mddev->new_level = mddev->level;
5825 mddev->new_chunk_sectors = mddev->chunk_sectors;
5826 mddev->new_layout = mddev->layout;
5827 mddev->delta_disks = 0;
5828
5829 return 0;
5830 }
5831
5832 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5833 {
5834 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5835
5836 if (mddev->external_size)
5837 return;
5838
5839 mddev->array_sectors = array_sectors;
5840 }
5841 EXPORT_SYMBOL(md_set_array_sectors);
5842
5843 static int update_size(struct mddev *mddev, sector_t num_sectors)
5844 {
5845 struct md_rdev *rdev;
5846 int rv;
5847 int fit = (num_sectors == 0);
5848
5849 if (mddev->pers->resize == NULL)
5850 return -EINVAL;
5851 /* The "num_sectors" is the number of sectors of each device that
5852 * is used. This can only make sense for arrays with redundancy.
5853 * linear and raid0 always use whatever space is available. We can only
5854 * consider changing this number if no resync or reconstruction is
5855 * happening, and if the new size is acceptable. It must fit before the
5856 * sb_start or, if that is <data_offset, it must fit before the size
5857 * of each device. If num_sectors is zero, we find the largest size
5858 * that fits.
5859 */
5860 if (mddev->sync_thread)
5861 return -EBUSY;
5862 if (mddev->bitmap)
5863 /* Sorry, cannot grow a bitmap yet, just remove it,
5864 * grow, and re-add.
5865 */
5866 return -EBUSY;
5867 list_for_each_entry(rdev, &mddev->disks, same_set) {
5868 sector_t avail = rdev->sectors;
5869
5870 if (fit && (num_sectors == 0 || num_sectors > avail))
5871 num_sectors = avail;
5872 if (avail < num_sectors)
5873 return -ENOSPC;
5874 }
5875 rv = mddev->pers->resize(mddev, num_sectors);
5876 if (!rv)
5877 revalidate_disk(mddev->gendisk);
5878 return rv;
5879 }
5880
5881 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5882 {
5883 int rv;
5884 /* change the number of raid disks */
5885 if (mddev->pers->check_reshape == NULL)
5886 return -EINVAL;
5887 if (raid_disks <= 0 ||
5888 (mddev->max_disks && raid_disks >= mddev->max_disks))
5889 return -EINVAL;
5890 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5891 return -EBUSY;
5892 mddev->delta_disks = raid_disks - mddev->raid_disks;
5893
5894 rv = mddev->pers->check_reshape(mddev);
5895 if (rv < 0)
5896 mddev->delta_disks = 0;
5897 return rv;
5898 }
5899
5900
5901 /*
5902 * update_array_info is used to change the configuration of an
5903 * on-line array.
5904 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5905 * fields in the info are checked against the array.
5906 * Any differences that cannot be handled will cause an error.
5907 * Normally, only one change can be managed at a time.
5908 */
5909 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5910 {
5911 int rv = 0;
5912 int cnt = 0;
5913 int state = 0;
5914
5915 /* calculate expected state,ignoring low bits */
5916 if (mddev->bitmap && mddev->bitmap_info.offset)
5917 state |= (1 << MD_SB_BITMAP_PRESENT);
5918
5919 if (mddev->major_version != info->major_version ||
5920 mddev->minor_version != info->minor_version ||
5921 /* mddev->patch_version != info->patch_version || */
5922 mddev->ctime != info->ctime ||
5923 mddev->level != info->level ||
5924 /* mddev->layout != info->layout || */
5925 !mddev->persistent != info->not_persistent||
5926 mddev->chunk_sectors != info->chunk_size >> 9 ||
5927 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5928 ((state^info->state) & 0xfffffe00)
5929 )
5930 return -EINVAL;
5931 /* Check there is only one change */
5932 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5933 cnt++;
5934 if (mddev->raid_disks != info->raid_disks)
5935 cnt++;
5936 if (mddev->layout != info->layout)
5937 cnt++;
5938 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5939 cnt++;
5940 if (cnt == 0)
5941 return 0;
5942 if (cnt > 1)
5943 return -EINVAL;
5944
5945 if (mddev->layout != info->layout) {
5946 /* Change layout
5947 * we don't need to do anything at the md level, the
5948 * personality will take care of it all.
5949 */
5950 if (mddev->pers->check_reshape == NULL)
5951 return -EINVAL;
5952 else {
5953 mddev->new_layout = info->layout;
5954 rv = mddev->pers->check_reshape(mddev);
5955 if (rv)
5956 mddev->new_layout = mddev->layout;
5957 return rv;
5958 }
5959 }
5960 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5961 rv = update_size(mddev, (sector_t)info->size * 2);
5962
5963 if (mddev->raid_disks != info->raid_disks)
5964 rv = update_raid_disks(mddev, info->raid_disks);
5965
5966 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5967 if (mddev->pers->quiesce == NULL)
5968 return -EINVAL;
5969 if (mddev->recovery || mddev->sync_thread)
5970 return -EBUSY;
5971 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5972 /* add the bitmap */
5973 if (mddev->bitmap)
5974 return -EEXIST;
5975 if (mddev->bitmap_info.default_offset == 0)
5976 return -EINVAL;
5977 mddev->bitmap_info.offset =
5978 mddev->bitmap_info.default_offset;
5979 mddev->pers->quiesce(mddev, 1);
5980 rv = bitmap_create(mddev);
5981 if (!rv)
5982 rv = bitmap_load(mddev);
5983 if (rv)
5984 bitmap_destroy(mddev);
5985 mddev->pers->quiesce(mddev, 0);
5986 } else {
5987 /* remove the bitmap */
5988 if (!mddev->bitmap)
5989 return -ENOENT;
5990 if (mddev->bitmap->file)
5991 return -EINVAL;
5992 mddev->pers->quiesce(mddev, 1);
5993 bitmap_destroy(mddev);
5994 mddev->pers->quiesce(mddev, 0);
5995 mddev->bitmap_info.offset = 0;
5996 }
5997 }
5998 md_update_sb(mddev, 1);
5999 return rv;
6000 }
6001
6002 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6003 {
6004 struct md_rdev *rdev;
6005
6006 if (mddev->pers == NULL)
6007 return -ENODEV;
6008
6009 rdev = find_rdev(mddev, dev);
6010 if (!rdev)
6011 return -ENODEV;
6012
6013 md_error(mddev, rdev);
6014 if (!test_bit(Faulty, &rdev->flags))
6015 return -EBUSY;
6016 return 0;
6017 }
6018
6019 /*
6020 * We have a problem here : there is no easy way to give a CHS
6021 * virtual geometry. We currently pretend that we have a 2 heads
6022 * 4 sectors (with a BIG number of cylinders...). This drives
6023 * dosfs just mad... ;-)
6024 */
6025 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6026 {
6027 struct mddev *mddev = bdev->bd_disk->private_data;
6028
6029 geo->heads = 2;
6030 geo->sectors = 4;
6031 geo->cylinders = mddev->array_sectors / 8;
6032 return 0;
6033 }
6034
6035 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6036 unsigned int cmd, unsigned long arg)
6037 {
6038 int err = 0;
6039 void __user *argp = (void __user *)arg;
6040 struct mddev *mddev = NULL;
6041 int ro;
6042
6043 if (!capable(CAP_SYS_ADMIN))
6044 return -EACCES;
6045
6046 /*
6047 * Commands dealing with the RAID driver but not any
6048 * particular array:
6049 */
6050 switch (cmd)
6051 {
6052 case RAID_VERSION:
6053 err = get_version(argp);
6054 goto done;
6055
6056 case PRINT_RAID_DEBUG:
6057 err = 0;
6058 md_print_devices();
6059 goto done;
6060
6061 #ifndef MODULE
6062 case RAID_AUTORUN:
6063 err = 0;
6064 autostart_arrays(arg);
6065 goto done;
6066 #endif
6067 default:;
6068 }
6069
6070 /*
6071 * Commands creating/starting a new array:
6072 */
6073
6074 mddev = bdev->bd_disk->private_data;
6075
6076 if (!mddev) {
6077 BUG();
6078 goto abort;
6079 }
6080
6081 err = mddev_lock(mddev);
6082 if (err) {
6083 printk(KERN_INFO
6084 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6085 err, cmd);
6086 goto abort;
6087 }
6088
6089 switch (cmd)
6090 {
6091 case SET_ARRAY_INFO:
6092 {
6093 mdu_array_info_t info;
6094 if (!arg)
6095 memset(&info, 0, sizeof(info));
6096 else if (copy_from_user(&info, argp, sizeof(info))) {
6097 err = -EFAULT;
6098 goto abort_unlock;
6099 }
6100 if (mddev->pers) {
6101 err = update_array_info(mddev, &info);
6102 if (err) {
6103 printk(KERN_WARNING "md: couldn't update"
6104 " array info. %d\n", err);
6105 goto abort_unlock;
6106 }
6107 goto done_unlock;
6108 }
6109 if (!list_empty(&mddev->disks)) {
6110 printk(KERN_WARNING
6111 "md: array %s already has disks!\n",
6112 mdname(mddev));
6113 err = -EBUSY;
6114 goto abort_unlock;
6115 }
6116 if (mddev->raid_disks) {
6117 printk(KERN_WARNING
6118 "md: array %s already initialised!\n",
6119 mdname(mddev));
6120 err = -EBUSY;
6121 goto abort_unlock;
6122 }
6123 err = set_array_info(mddev, &info);
6124 if (err) {
6125 printk(KERN_WARNING "md: couldn't set"
6126 " array info. %d\n", err);
6127 goto abort_unlock;
6128 }
6129 }
6130 goto done_unlock;
6131
6132 default:;
6133 }
6134
6135 /*
6136 * Commands querying/configuring an existing array:
6137 */
6138 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6139 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6140 if ((!mddev->raid_disks && !mddev->external)
6141 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6142 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6143 && cmd != GET_BITMAP_FILE) {
6144 err = -ENODEV;
6145 goto abort_unlock;
6146 }
6147
6148 /*
6149 * Commands even a read-only array can execute:
6150 */
6151 switch (cmd)
6152 {
6153 case GET_ARRAY_INFO:
6154 err = get_array_info(mddev, argp);
6155 goto done_unlock;
6156
6157 case GET_BITMAP_FILE:
6158 err = get_bitmap_file(mddev, argp);
6159 goto done_unlock;
6160
6161 case GET_DISK_INFO:
6162 err = get_disk_info(mddev, argp);
6163 goto done_unlock;
6164
6165 case RESTART_ARRAY_RW:
6166 err = restart_array(mddev);
6167 goto done_unlock;
6168
6169 case STOP_ARRAY:
6170 err = do_md_stop(mddev, 0, 1);
6171 goto done_unlock;
6172
6173 case STOP_ARRAY_RO:
6174 err = md_set_readonly(mddev, 1);
6175 goto done_unlock;
6176
6177 case BLKROSET:
6178 if (get_user(ro, (int __user *)(arg))) {
6179 err = -EFAULT;
6180 goto done_unlock;
6181 }
6182 err = -EINVAL;
6183
6184 /* if the bdev is going readonly the value of mddev->ro
6185 * does not matter, no writes are coming
6186 */
6187 if (ro)
6188 goto done_unlock;
6189
6190 /* are we are already prepared for writes? */
6191 if (mddev->ro != 1)
6192 goto done_unlock;
6193
6194 /* transitioning to readauto need only happen for
6195 * arrays that call md_write_start
6196 */
6197 if (mddev->pers) {
6198 err = restart_array(mddev);
6199 if (err == 0) {
6200 mddev->ro = 2;
6201 set_disk_ro(mddev->gendisk, 0);
6202 }
6203 }
6204 goto done_unlock;
6205 }
6206
6207 /*
6208 * The remaining ioctls are changing the state of the
6209 * superblock, so we do not allow them on read-only arrays.
6210 * However non-MD ioctls (e.g. get-size) will still come through
6211 * here and hit the 'default' below, so only disallow
6212 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6213 */
6214 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6215 if (mddev->ro == 2) {
6216 mddev->ro = 0;
6217 sysfs_notify_dirent_safe(mddev->sysfs_state);
6218 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6219 md_wakeup_thread(mddev->thread);
6220 } else {
6221 err = -EROFS;
6222 goto abort_unlock;
6223 }
6224 }
6225
6226 switch (cmd)
6227 {
6228 case ADD_NEW_DISK:
6229 {
6230 mdu_disk_info_t info;
6231 if (copy_from_user(&info, argp, sizeof(info)))
6232 err = -EFAULT;
6233 else
6234 err = add_new_disk(mddev, &info);
6235 goto done_unlock;
6236 }
6237
6238 case HOT_REMOVE_DISK:
6239 err = hot_remove_disk(mddev, new_decode_dev(arg));
6240 goto done_unlock;
6241
6242 case HOT_ADD_DISK:
6243 err = hot_add_disk(mddev, new_decode_dev(arg));
6244 goto done_unlock;
6245
6246 case SET_DISK_FAULTY:
6247 err = set_disk_faulty(mddev, new_decode_dev(arg));
6248 goto done_unlock;
6249
6250 case RUN_ARRAY:
6251 err = do_md_run(mddev);
6252 goto done_unlock;
6253
6254 case SET_BITMAP_FILE:
6255 err = set_bitmap_file(mddev, (int)arg);
6256 goto done_unlock;
6257
6258 default:
6259 err = -EINVAL;
6260 goto abort_unlock;
6261 }
6262
6263 done_unlock:
6264 abort_unlock:
6265 if (mddev->hold_active == UNTIL_IOCTL &&
6266 err != -EINVAL)
6267 mddev->hold_active = 0;
6268 mddev_unlock(mddev);
6269
6270 return err;
6271 done:
6272 if (err)
6273 MD_BUG();
6274 abort:
6275 return err;
6276 }
6277 #ifdef CONFIG_COMPAT
6278 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6279 unsigned int cmd, unsigned long arg)
6280 {
6281 switch (cmd) {
6282 case HOT_REMOVE_DISK:
6283 case HOT_ADD_DISK:
6284 case SET_DISK_FAULTY:
6285 case SET_BITMAP_FILE:
6286 /* These take in integer arg, do not convert */
6287 break;
6288 default:
6289 arg = (unsigned long)compat_ptr(arg);
6290 break;
6291 }
6292
6293 return md_ioctl(bdev, mode, cmd, arg);
6294 }
6295 #endif /* CONFIG_COMPAT */
6296
6297 static int md_open(struct block_device *bdev, fmode_t mode)
6298 {
6299 /*
6300 * Succeed if we can lock the mddev, which confirms that
6301 * it isn't being stopped right now.
6302 */
6303 struct mddev *mddev = mddev_find(bdev->bd_dev);
6304 int err;
6305
6306 if (mddev->gendisk != bdev->bd_disk) {
6307 /* we are racing with mddev_put which is discarding this
6308 * bd_disk.
6309 */
6310 mddev_put(mddev);
6311 /* Wait until bdev->bd_disk is definitely gone */
6312 flush_workqueue(md_misc_wq);
6313 /* Then retry the open from the top */
6314 return -ERESTARTSYS;
6315 }
6316 BUG_ON(mddev != bdev->bd_disk->private_data);
6317
6318 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6319 goto out;
6320
6321 err = 0;
6322 atomic_inc(&mddev->openers);
6323 mutex_unlock(&mddev->open_mutex);
6324
6325 check_disk_change(bdev);
6326 out:
6327 return err;
6328 }
6329
6330 static int md_release(struct gendisk *disk, fmode_t mode)
6331 {
6332 struct mddev *mddev = disk->private_data;
6333
6334 BUG_ON(!mddev);
6335 atomic_dec(&mddev->openers);
6336 mddev_put(mddev);
6337
6338 return 0;
6339 }
6340
6341 static int md_media_changed(struct gendisk *disk)
6342 {
6343 struct mddev *mddev = disk->private_data;
6344
6345 return mddev->changed;
6346 }
6347
6348 static int md_revalidate(struct gendisk *disk)
6349 {
6350 struct mddev *mddev = disk->private_data;
6351
6352 mddev->changed = 0;
6353 return 0;
6354 }
6355 static const struct block_device_operations md_fops =
6356 {
6357 .owner = THIS_MODULE,
6358 .open = md_open,
6359 .release = md_release,
6360 .ioctl = md_ioctl,
6361 #ifdef CONFIG_COMPAT
6362 .compat_ioctl = md_compat_ioctl,
6363 #endif
6364 .getgeo = md_getgeo,
6365 .media_changed = md_media_changed,
6366 .revalidate_disk= md_revalidate,
6367 };
6368
6369 static int md_thread(void * arg)
6370 {
6371 struct md_thread *thread = arg;
6372
6373 /*
6374 * md_thread is a 'system-thread', it's priority should be very
6375 * high. We avoid resource deadlocks individually in each
6376 * raid personality. (RAID5 does preallocation) We also use RR and
6377 * the very same RT priority as kswapd, thus we will never get
6378 * into a priority inversion deadlock.
6379 *
6380 * we definitely have to have equal or higher priority than
6381 * bdflush, otherwise bdflush will deadlock if there are too
6382 * many dirty RAID5 blocks.
6383 */
6384
6385 allow_signal(SIGKILL);
6386 while (!kthread_should_stop()) {
6387
6388 /* We need to wait INTERRUPTIBLE so that
6389 * we don't add to the load-average.
6390 * That means we need to be sure no signals are
6391 * pending
6392 */
6393 if (signal_pending(current))
6394 flush_signals(current);
6395
6396 wait_event_interruptible_timeout
6397 (thread->wqueue,
6398 test_bit(THREAD_WAKEUP, &thread->flags)
6399 || kthread_should_stop(),
6400 thread->timeout);
6401
6402 clear_bit(THREAD_WAKEUP, &thread->flags);
6403 if (!kthread_should_stop())
6404 thread->run(thread->mddev);
6405 }
6406
6407 return 0;
6408 }
6409
6410 void md_wakeup_thread(struct md_thread *thread)
6411 {
6412 if (thread) {
6413 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6414 set_bit(THREAD_WAKEUP, &thread->flags);
6415 wake_up(&thread->wqueue);
6416 }
6417 }
6418
6419 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6420 const char *name)
6421 {
6422 struct md_thread *thread;
6423
6424 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6425 if (!thread)
6426 return NULL;
6427
6428 init_waitqueue_head(&thread->wqueue);
6429
6430 thread->run = run;
6431 thread->mddev = mddev;
6432 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6433 thread->tsk = kthread_run(md_thread, thread,
6434 "%s_%s",
6435 mdname(thread->mddev),
6436 name ?: mddev->pers->name);
6437 if (IS_ERR(thread->tsk)) {
6438 kfree(thread);
6439 return NULL;
6440 }
6441 return thread;
6442 }
6443
6444 void md_unregister_thread(struct md_thread **threadp)
6445 {
6446 struct md_thread *thread = *threadp;
6447 if (!thread)
6448 return;
6449 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6450 /* Locking ensures that mddev_unlock does not wake_up a
6451 * non-existent thread
6452 */
6453 spin_lock(&pers_lock);
6454 *threadp = NULL;
6455 spin_unlock(&pers_lock);
6456
6457 kthread_stop(thread->tsk);
6458 kfree(thread);
6459 }
6460
6461 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6462 {
6463 if (!mddev) {
6464 MD_BUG();
6465 return;
6466 }
6467
6468 if (!rdev || test_bit(Faulty, &rdev->flags))
6469 return;
6470
6471 if (!mddev->pers || !mddev->pers->error_handler)
6472 return;
6473 mddev->pers->error_handler(mddev,rdev);
6474 if (mddev->degraded)
6475 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6476 sysfs_notify_dirent_safe(rdev->sysfs_state);
6477 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6478 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6479 md_wakeup_thread(mddev->thread);
6480 if (mddev->event_work.func)
6481 queue_work(md_misc_wq, &mddev->event_work);
6482 md_new_event_inintr(mddev);
6483 }
6484
6485 /* seq_file implementation /proc/mdstat */
6486
6487 static void status_unused(struct seq_file *seq)
6488 {
6489 int i = 0;
6490 struct md_rdev *rdev;
6491
6492 seq_printf(seq, "unused devices: ");
6493
6494 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6495 char b[BDEVNAME_SIZE];
6496 i++;
6497 seq_printf(seq, "%s ",
6498 bdevname(rdev->bdev,b));
6499 }
6500 if (!i)
6501 seq_printf(seq, "<none>");
6502
6503 seq_printf(seq, "\n");
6504 }
6505
6506
6507 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6508 {
6509 sector_t max_sectors, resync, res;
6510 unsigned long dt, db;
6511 sector_t rt;
6512 int scale;
6513 unsigned int per_milli;
6514
6515 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6516
6517 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6518 max_sectors = mddev->resync_max_sectors;
6519 else
6520 max_sectors = mddev->dev_sectors;
6521
6522 /*
6523 * Should not happen.
6524 */
6525 if (!max_sectors) {
6526 MD_BUG();
6527 return;
6528 }
6529 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6530 * in a sector_t, and (max_sectors>>scale) will fit in a
6531 * u32, as those are the requirements for sector_div.
6532 * Thus 'scale' must be at least 10
6533 */
6534 scale = 10;
6535 if (sizeof(sector_t) > sizeof(unsigned long)) {
6536 while ( max_sectors/2 > (1ULL<<(scale+32)))
6537 scale++;
6538 }
6539 res = (resync>>scale)*1000;
6540 sector_div(res, (u32)((max_sectors>>scale)+1));
6541
6542 per_milli = res;
6543 {
6544 int i, x = per_milli/50, y = 20-x;
6545 seq_printf(seq, "[");
6546 for (i = 0; i < x; i++)
6547 seq_printf(seq, "=");
6548 seq_printf(seq, ">");
6549 for (i = 0; i < y; i++)
6550 seq_printf(seq, ".");
6551 seq_printf(seq, "] ");
6552 }
6553 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6554 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6555 "reshape" :
6556 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6557 "check" :
6558 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6559 "resync" : "recovery"))),
6560 per_milli/10, per_milli % 10,
6561 (unsigned long long) resync/2,
6562 (unsigned long long) max_sectors/2);
6563
6564 /*
6565 * dt: time from mark until now
6566 * db: blocks written from mark until now
6567 * rt: remaining time
6568 *
6569 * rt is a sector_t, so could be 32bit or 64bit.
6570 * So we divide before multiply in case it is 32bit and close
6571 * to the limit.
6572 * We scale the divisor (db) by 32 to avoid losing precision
6573 * near the end of resync when the number of remaining sectors
6574 * is close to 'db'.
6575 * We then divide rt by 32 after multiplying by db to compensate.
6576 * The '+1' avoids division by zero if db is very small.
6577 */
6578 dt = ((jiffies - mddev->resync_mark) / HZ);
6579 if (!dt) dt++;
6580 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6581 - mddev->resync_mark_cnt;
6582
6583 rt = max_sectors - resync; /* number of remaining sectors */
6584 sector_div(rt, db/32+1);
6585 rt *= dt;
6586 rt >>= 5;
6587
6588 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6589 ((unsigned long)rt % 60)/6);
6590
6591 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6592 }
6593
6594 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6595 {
6596 struct list_head *tmp;
6597 loff_t l = *pos;
6598 struct mddev *mddev;
6599
6600 if (l >= 0x10000)
6601 return NULL;
6602 if (!l--)
6603 /* header */
6604 return (void*)1;
6605
6606 spin_lock(&all_mddevs_lock);
6607 list_for_each(tmp,&all_mddevs)
6608 if (!l--) {
6609 mddev = list_entry(tmp, struct mddev, all_mddevs);
6610 mddev_get(mddev);
6611 spin_unlock(&all_mddevs_lock);
6612 return mddev;
6613 }
6614 spin_unlock(&all_mddevs_lock);
6615 if (!l--)
6616 return (void*)2;/* tail */
6617 return NULL;
6618 }
6619
6620 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6621 {
6622 struct list_head *tmp;
6623 struct mddev *next_mddev, *mddev = v;
6624
6625 ++*pos;
6626 if (v == (void*)2)
6627 return NULL;
6628
6629 spin_lock(&all_mddevs_lock);
6630 if (v == (void*)1)
6631 tmp = all_mddevs.next;
6632 else
6633 tmp = mddev->all_mddevs.next;
6634 if (tmp != &all_mddevs)
6635 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6636 else {
6637 next_mddev = (void*)2;
6638 *pos = 0x10000;
6639 }
6640 spin_unlock(&all_mddevs_lock);
6641
6642 if (v != (void*)1)
6643 mddev_put(mddev);
6644 return next_mddev;
6645
6646 }
6647
6648 static void md_seq_stop(struct seq_file *seq, void *v)
6649 {
6650 struct mddev *mddev = v;
6651
6652 if (mddev && v != (void*)1 && v != (void*)2)
6653 mddev_put(mddev);
6654 }
6655
6656 static int md_seq_show(struct seq_file *seq, void *v)
6657 {
6658 struct mddev *mddev = v;
6659 sector_t sectors;
6660 struct md_rdev *rdev;
6661 struct bitmap *bitmap;
6662
6663 if (v == (void*)1) {
6664 struct md_personality *pers;
6665 seq_printf(seq, "Personalities : ");
6666 spin_lock(&pers_lock);
6667 list_for_each_entry(pers, &pers_list, list)
6668 seq_printf(seq, "[%s] ", pers->name);
6669
6670 spin_unlock(&pers_lock);
6671 seq_printf(seq, "\n");
6672 seq->poll_event = atomic_read(&md_event_count);
6673 return 0;
6674 }
6675 if (v == (void*)2) {
6676 status_unused(seq);
6677 return 0;
6678 }
6679
6680 if (mddev_lock(mddev) < 0)
6681 return -EINTR;
6682
6683 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6684 seq_printf(seq, "%s : %sactive", mdname(mddev),
6685 mddev->pers ? "" : "in");
6686 if (mddev->pers) {
6687 if (mddev->ro==1)
6688 seq_printf(seq, " (read-only)");
6689 if (mddev->ro==2)
6690 seq_printf(seq, " (auto-read-only)");
6691 seq_printf(seq, " %s", mddev->pers->name);
6692 }
6693
6694 sectors = 0;
6695 list_for_each_entry(rdev, &mddev->disks, same_set) {
6696 char b[BDEVNAME_SIZE];
6697 seq_printf(seq, " %s[%d]",
6698 bdevname(rdev->bdev,b), rdev->desc_nr);
6699 if (test_bit(WriteMostly, &rdev->flags))
6700 seq_printf(seq, "(W)");
6701 if (test_bit(Faulty, &rdev->flags)) {
6702 seq_printf(seq, "(F)");
6703 continue;
6704 } else if (rdev->raid_disk < 0)
6705 seq_printf(seq, "(S)"); /* spare */
6706 sectors += rdev->sectors;
6707 }
6708
6709 if (!list_empty(&mddev->disks)) {
6710 if (mddev->pers)
6711 seq_printf(seq, "\n %llu blocks",
6712 (unsigned long long)
6713 mddev->array_sectors / 2);
6714 else
6715 seq_printf(seq, "\n %llu blocks",
6716 (unsigned long long)sectors / 2);
6717 }
6718 if (mddev->persistent) {
6719 if (mddev->major_version != 0 ||
6720 mddev->minor_version != 90) {
6721 seq_printf(seq," super %d.%d",
6722 mddev->major_version,
6723 mddev->minor_version);
6724 }
6725 } else if (mddev->external)
6726 seq_printf(seq, " super external:%s",
6727 mddev->metadata_type);
6728 else
6729 seq_printf(seq, " super non-persistent");
6730
6731 if (mddev->pers) {
6732 mddev->pers->status(seq, mddev);
6733 seq_printf(seq, "\n ");
6734 if (mddev->pers->sync_request) {
6735 if (mddev->curr_resync > 2) {
6736 status_resync(seq, mddev);
6737 seq_printf(seq, "\n ");
6738 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6739 seq_printf(seq, "\tresync=DELAYED\n ");
6740 else if (mddev->recovery_cp < MaxSector)
6741 seq_printf(seq, "\tresync=PENDING\n ");
6742 }
6743 } else
6744 seq_printf(seq, "\n ");
6745
6746 if ((bitmap = mddev->bitmap)) {
6747 unsigned long chunk_kb;
6748 unsigned long flags;
6749 spin_lock_irqsave(&bitmap->lock, flags);
6750 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6751 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6752 "%lu%s chunk",
6753 bitmap->pages - bitmap->missing_pages,
6754 bitmap->pages,
6755 (bitmap->pages - bitmap->missing_pages)
6756 << (PAGE_SHIFT - 10),
6757 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6758 chunk_kb ? "KB" : "B");
6759 if (bitmap->file) {
6760 seq_printf(seq, ", file: ");
6761 seq_path(seq, &bitmap->file->f_path, " \t\n");
6762 }
6763
6764 seq_printf(seq, "\n");
6765 spin_unlock_irqrestore(&bitmap->lock, flags);
6766 }
6767
6768 seq_printf(seq, "\n");
6769 }
6770 mddev_unlock(mddev);
6771
6772 return 0;
6773 }
6774
6775 static const struct seq_operations md_seq_ops = {
6776 .start = md_seq_start,
6777 .next = md_seq_next,
6778 .stop = md_seq_stop,
6779 .show = md_seq_show,
6780 };
6781
6782 static int md_seq_open(struct inode *inode, struct file *file)
6783 {
6784 struct seq_file *seq;
6785 int error;
6786
6787 error = seq_open(file, &md_seq_ops);
6788 if (error)
6789 return error;
6790
6791 seq = file->private_data;
6792 seq->poll_event = atomic_read(&md_event_count);
6793 return error;
6794 }
6795
6796 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6797 {
6798 struct seq_file *seq = filp->private_data;
6799 int mask;
6800
6801 poll_wait(filp, &md_event_waiters, wait);
6802
6803 /* always allow read */
6804 mask = POLLIN | POLLRDNORM;
6805
6806 if (seq->poll_event != atomic_read(&md_event_count))
6807 mask |= POLLERR | POLLPRI;
6808 return mask;
6809 }
6810
6811 static const struct file_operations md_seq_fops = {
6812 .owner = THIS_MODULE,
6813 .open = md_seq_open,
6814 .read = seq_read,
6815 .llseek = seq_lseek,
6816 .release = seq_release_private,
6817 .poll = mdstat_poll,
6818 };
6819
6820 int register_md_personality(struct md_personality *p)
6821 {
6822 spin_lock(&pers_lock);
6823 list_add_tail(&p->list, &pers_list);
6824 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6825 spin_unlock(&pers_lock);
6826 return 0;
6827 }
6828
6829 int unregister_md_personality(struct md_personality *p)
6830 {
6831 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6832 spin_lock(&pers_lock);
6833 list_del_init(&p->list);
6834 spin_unlock(&pers_lock);
6835 return 0;
6836 }
6837
6838 static int is_mddev_idle(struct mddev *mddev, int init)
6839 {
6840 struct md_rdev * rdev;
6841 int idle;
6842 int curr_events;
6843
6844 idle = 1;
6845 rcu_read_lock();
6846 rdev_for_each_rcu(rdev, mddev) {
6847 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6848 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6849 (int)part_stat_read(&disk->part0, sectors[1]) -
6850 atomic_read(&disk->sync_io);
6851 /* sync IO will cause sync_io to increase before the disk_stats
6852 * as sync_io is counted when a request starts, and
6853 * disk_stats is counted when it completes.
6854 * So resync activity will cause curr_events to be smaller than
6855 * when there was no such activity.
6856 * non-sync IO will cause disk_stat to increase without
6857 * increasing sync_io so curr_events will (eventually)
6858 * be larger than it was before. Once it becomes
6859 * substantially larger, the test below will cause
6860 * the array to appear non-idle, and resync will slow
6861 * down.
6862 * If there is a lot of outstanding resync activity when
6863 * we set last_event to curr_events, then all that activity
6864 * completing might cause the array to appear non-idle
6865 * and resync will be slowed down even though there might
6866 * not have been non-resync activity. This will only
6867 * happen once though. 'last_events' will soon reflect
6868 * the state where there is little or no outstanding
6869 * resync requests, and further resync activity will
6870 * always make curr_events less than last_events.
6871 *
6872 */
6873 if (init || curr_events - rdev->last_events > 64) {
6874 rdev->last_events = curr_events;
6875 idle = 0;
6876 }
6877 }
6878 rcu_read_unlock();
6879 return idle;
6880 }
6881
6882 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6883 {
6884 /* another "blocks" (512byte) blocks have been synced */
6885 atomic_sub(blocks, &mddev->recovery_active);
6886 wake_up(&mddev->recovery_wait);
6887 if (!ok) {
6888 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6889 md_wakeup_thread(mddev->thread);
6890 // stop recovery, signal do_sync ....
6891 }
6892 }
6893
6894
6895 /* md_write_start(mddev, bi)
6896 * If we need to update some array metadata (e.g. 'active' flag
6897 * in superblock) before writing, schedule a superblock update
6898 * and wait for it to complete.
6899 */
6900 void md_write_start(struct mddev *mddev, struct bio *bi)
6901 {
6902 int did_change = 0;
6903 if (bio_data_dir(bi) != WRITE)
6904 return;
6905
6906 BUG_ON(mddev->ro == 1);
6907 if (mddev->ro == 2) {
6908 /* need to switch to read/write */
6909 mddev->ro = 0;
6910 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6911 md_wakeup_thread(mddev->thread);
6912 md_wakeup_thread(mddev->sync_thread);
6913 did_change = 1;
6914 }
6915 atomic_inc(&mddev->writes_pending);
6916 if (mddev->safemode == 1)
6917 mddev->safemode = 0;
6918 if (mddev->in_sync) {
6919 spin_lock_irq(&mddev->write_lock);
6920 if (mddev->in_sync) {
6921 mddev->in_sync = 0;
6922 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6923 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6924 md_wakeup_thread(mddev->thread);
6925 did_change = 1;
6926 }
6927 spin_unlock_irq(&mddev->write_lock);
6928 }
6929 if (did_change)
6930 sysfs_notify_dirent_safe(mddev->sysfs_state);
6931 wait_event(mddev->sb_wait,
6932 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6933 }
6934
6935 void md_write_end(struct mddev *mddev)
6936 {
6937 if (atomic_dec_and_test(&mddev->writes_pending)) {
6938 if (mddev->safemode == 2)
6939 md_wakeup_thread(mddev->thread);
6940 else if (mddev->safemode_delay)
6941 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6942 }
6943 }
6944
6945 /* md_allow_write(mddev)
6946 * Calling this ensures that the array is marked 'active' so that writes
6947 * may proceed without blocking. It is important to call this before
6948 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6949 * Must be called with mddev_lock held.
6950 *
6951 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6952 * is dropped, so return -EAGAIN after notifying userspace.
6953 */
6954 int md_allow_write(struct mddev *mddev)
6955 {
6956 if (!mddev->pers)
6957 return 0;
6958 if (mddev->ro)
6959 return 0;
6960 if (!mddev->pers->sync_request)
6961 return 0;
6962
6963 spin_lock_irq(&mddev->write_lock);
6964 if (mddev->in_sync) {
6965 mddev->in_sync = 0;
6966 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6967 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6968 if (mddev->safemode_delay &&
6969 mddev->safemode == 0)
6970 mddev->safemode = 1;
6971 spin_unlock_irq(&mddev->write_lock);
6972 md_update_sb(mddev, 0);
6973 sysfs_notify_dirent_safe(mddev->sysfs_state);
6974 } else
6975 spin_unlock_irq(&mddev->write_lock);
6976
6977 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6978 return -EAGAIN;
6979 else
6980 return 0;
6981 }
6982 EXPORT_SYMBOL_GPL(md_allow_write);
6983
6984 #define SYNC_MARKS 10
6985 #define SYNC_MARK_STEP (3*HZ)
6986 void md_do_sync(struct mddev *mddev)
6987 {
6988 struct mddev *mddev2;
6989 unsigned int currspeed = 0,
6990 window;
6991 sector_t max_sectors,j, io_sectors;
6992 unsigned long mark[SYNC_MARKS];
6993 sector_t mark_cnt[SYNC_MARKS];
6994 int last_mark,m;
6995 struct list_head *tmp;
6996 sector_t last_check;
6997 int skipped = 0;
6998 struct md_rdev *rdev;
6999 char *desc;
7000
7001 /* just incase thread restarts... */
7002 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7003 return;
7004 if (mddev->ro) /* never try to sync a read-only array */
7005 return;
7006
7007 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7008 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7009 desc = "data-check";
7010 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7011 desc = "requested-resync";
7012 else
7013 desc = "resync";
7014 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7015 desc = "reshape";
7016 else
7017 desc = "recovery";
7018
7019 /* we overload curr_resync somewhat here.
7020 * 0 == not engaged in resync at all
7021 * 2 == checking that there is no conflict with another sync
7022 * 1 == like 2, but have yielded to allow conflicting resync to
7023 * commense
7024 * other == active in resync - this many blocks
7025 *
7026 * Before starting a resync we must have set curr_resync to
7027 * 2, and then checked that every "conflicting" array has curr_resync
7028 * less than ours. When we find one that is the same or higher
7029 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7030 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7031 * This will mean we have to start checking from the beginning again.
7032 *
7033 */
7034
7035 do {
7036 mddev->curr_resync = 2;
7037
7038 try_again:
7039 if (kthread_should_stop())
7040 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7041
7042 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7043 goto skip;
7044 for_each_mddev(mddev2, tmp) {
7045 if (mddev2 == mddev)
7046 continue;
7047 if (!mddev->parallel_resync
7048 && mddev2->curr_resync
7049 && match_mddev_units(mddev, mddev2)) {
7050 DEFINE_WAIT(wq);
7051 if (mddev < mddev2 && mddev->curr_resync == 2) {
7052 /* arbitrarily yield */
7053 mddev->curr_resync = 1;
7054 wake_up(&resync_wait);
7055 }
7056 if (mddev > mddev2 && mddev->curr_resync == 1)
7057 /* no need to wait here, we can wait the next
7058 * time 'round when curr_resync == 2
7059 */
7060 continue;
7061 /* We need to wait 'interruptible' so as not to
7062 * contribute to the load average, and not to
7063 * be caught by 'softlockup'
7064 */
7065 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7066 if (!kthread_should_stop() &&
7067 mddev2->curr_resync >= mddev->curr_resync) {
7068 printk(KERN_INFO "md: delaying %s of %s"
7069 " until %s has finished (they"
7070 " share one or more physical units)\n",
7071 desc, mdname(mddev), mdname(mddev2));
7072 mddev_put(mddev2);
7073 if (signal_pending(current))
7074 flush_signals(current);
7075 schedule();
7076 finish_wait(&resync_wait, &wq);
7077 goto try_again;
7078 }
7079 finish_wait(&resync_wait, &wq);
7080 }
7081 }
7082 } while (mddev->curr_resync < 2);
7083
7084 j = 0;
7085 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7086 /* resync follows the size requested by the personality,
7087 * which defaults to physical size, but can be virtual size
7088 */
7089 max_sectors = mddev->resync_max_sectors;
7090 mddev->resync_mismatches = 0;
7091 /* we don't use the checkpoint if there's a bitmap */
7092 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7093 j = mddev->resync_min;
7094 else if (!mddev->bitmap)
7095 j = mddev->recovery_cp;
7096
7097 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7098 max_sectors = mddev->dev_sectors;
7099 else {
7100 /* recovery follows the physical size of devices */
7101 max_sectors = mddev->dev_sectors;
7102 j = MaxSector;
7103 rcu_read_lock();
7104 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7105 if (rdev->raid_disk >= 0 &&
7106 !test_bit(Faulty, &rdev->flags) &&
7107 !test_bit(In_sync, &rdev->flags) &&
7108 rdev->recovery_offset < j)
7109 j = rdev->recovery_offset;
7110 rcu_read_unlock();
7111 }
7112
7113 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7114 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7115 " %d KB/sec/disk.\n", speed_min(mddev));
7116 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7117 "(but not more than %d KB/sec) for %s.\n",
7118 speed_max(mddev), desc);
7119
7120 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7121
7122 io_sectors = 0;
7123 for (m = 0; m < SYNC_MARKS; m++) {
7124 mark[m] = jiffies;
7125 mark_cnt[m] = io_sectors;
7126 }
7127 last_mark = 0;
7128 mddev->resync_mark = mark[last_mark];
7129 mddev->resync_mark_cnt = mark_cnt[last_mark];
7130
7131 /*
7132 * Tune reconstruction:
7133 */
7134 window = 32*(PAGE_SIZE/512);
7135 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7136 window/2, (unsigned long long)max_sectors/2);
7137
7138 atomic_set(&mddev->recovery_active, 0);
7139 last_check = 0;
7140
7141 if (j>2) {
7142 printk(KERN_INFO
7143 "md: resuming %s of %s from checkpoint.\n",
7144 desc, mdname(mddev));
7145 mddev->curr_resync = j;
7146 }
7147 mddev->curr_resync_completed = j;
7148
7149 while (j < max_sectors) {
7150 sector_t sectors;
7151
7152 skipped = 0;
7153
7154 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7155 ((mddev->curr_resync > mddev->curr_resync_completed &&
7156 (mddev->curr_resync - mddev->curr_resync_completed)
7157 > (max_sectors >> 4)) ||
7158 (j - mddev->curr_resync_completed)*2
7159 >= mddev->resync_max - mddev->curr_resync_completed
7160 )) {
7161 /* time to update curr_resync_completed */
7162 wait_event(mddev->recovery_wait,
7163 atomic_read(&mddev->recovery_active) == 0);
7164 mddev->curr_resync_completed = j;
7165 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7166 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7167 }
7168
7169 while (j >= mddev->resync_max && !kthread_should_stop()) {
7170 /* As this condition is controlled by user-space,
7171 * we can block indefinitely, so use '_interruptible'
7172 * to avoid triggering warnings.
7173 */
7174 flush_signals(current); /* just in case */
7175 wait_event_interruptible(mddev->recovery_wait,
7176 mddev->resync_max > j
7177 || kthread_should_stop());
7178 }
7179
7180 if (kthread_should_stop())
7181 goto interrupted;
7182
7183 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7184 currspeed < speed_min(mddev));
7185 if (sectors == 0) {
7186 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7187 goto out;
7188 }
7189
7190 if (!skipped) { /* actual IO requested */
7191 io_sectors += sectors;
7192 atomic_add(sectors, &mddev->recovery_active);
7193 }
7194
7195 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7196 break;
7197
7198 j += sectors;
7199 if (j>1) mddev->curr_resync = j;
7200 mddev->curr_mark_cnt = io_sectors;
7201 if (last_check == 0)
7202 /* this is the earliest that rebuild will be
7203 * visible in /proc/mdstat
7204 */
7205 md_new_event(mddev);
7206
7207 if (last_check + window > io_sectors || j == max_sectors)
7208 continue;
7209
7210 last_check = io_sectors;
7211 repeat:
7212 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7213 /* step marks */
7214 int next = (last_mark+1) % SYNC_MARKS;
7215
7216 mddev->resync_mark = mark[next];
7217 mddev->resync_mark_cnt = mark_cnt[next];
7218 mark[next] = jiffies;
7219 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7220 last_mark = next;
7221 }
7222
7223
7224 if (kthread_should_stop())
7225 goto interrupted;
7226
7227
7228 /*
7229 * this loop exits only if either when we are slower than
7230 * the 'hard' speed limit, or the system was IO-idle for
7231 * a jiffy.
7232 * the system might be non-idle CPU-wise, but we only care
7233 * about not overloading the IO subsystem. (things like an
7234 * e2fsck being done on the RAID array should execute fast)
7235 */
7236 cond_resched();
7237
7238 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7239 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7240
7241 if (currspeed > speed_min(mddev)) {
7242 if ((currspeed > speed_max(mddev)) ||
7243 !is_mddev_idle(mddev, 0)) {
7244 msleep(500);
7245 goto repeat;
7246 }
7247 }
7248 }
7249 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7250 /*
7251 * this also signals 'finished resyncing' to md_stop
7252 */
7253 out:
7254 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7255
7256 /* tell personality that we are finished */
7257 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7258
7259 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7260 mddev->curr_resync > 2) {
7261 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7262 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7263 if (mddev->curr_resync >= mddev->recovery_cp) {
7264 printk(KERN_INFO
7265 "md: checkpointing %s of %s.\n",
7266 desc, mdname(mddev));
7267 mddev->recovery_cp = mddev->curr_resync;
7268 }
7269 } else
7270 mddev->recovery_cp = MaxSector;
7271 } else {
7272 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7273 mddev->curr_resync = MaxSector;
7274 rcu_read_lock();
7275 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7276 if (rdev->raid_disk >= 0 &&
7277 mddev->delta_disks >= 0 &&
7278 !test_bit(Faulty, &rdev->flags) &&
7279 !test_bit(In_sync, &rdev->flags) &&
7280 rdev->recovery_offset < mddev->curr_resync)
7281 rdev->recovery_offset = mddev->curr_resync;
7282 rcu_read_unlock();
7283 }
7284 }
7285 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7286
7287 skip:
7288 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7289 /* We completed so min/max setting can be forgotten if used. */
7290 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7291 mddev->resync_min = 0;
7292 mddev->resync_max = MaxSector;
7293 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7294 mddev->resync_min = mddev->curr_resync_completed;
7295 mddev->curr_resync = 0;
7296 wake_up(&resync_wait);
7297 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7298 md_wakeup_thread(mddev->thread);
7299 return;
7300
7301 interrupted:
7302 /*
7303 * got a signal, exit.
7304 */
7305 printk(KERN_INFO
7306 "md: md_do_sync() got signal ... exiting\n");
7307 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7308 goto out;
7309
7310 }
7311 EXPORT_SYMBOL_GPL(md_do_sync);
7312
7313 static int remove_and_add_spares(struct mddev *mddev)
7314 {
7315 struct md_rdev *rdev;
7316 int spares = 0;
7317
7318 mddev->curr_resync_completed = 0;
7319
7320 list_for_each_entry(rdev, &mddev->disks, same_set)
7321 if (rdev->raid_disk >= 0 &&
7322 !test_bit(Blocked, &rdev->flags) &&
7323 (test_bit(Faulty, &rdev->flags) ||
7324 ! test_bit(In_sync, &rdev->flags)) &&
7325 atomic_read(&rdev->nr_pending)==0) {
7326 if (mddev->pers->hot_remove_disk(
7327 mddev, rdev->raid_disk)==0) {
7328 sysfs_unlink_rdev(mddev, rdev);
7329 rdev->raid_disk = -1;
7330 }
7331 }
7332
7333 if (mddev->degraded) {
7334 list_for_each_entry(rdev, &mddev->disks, same_set) {
7335 if (rdev->raid_disk >= 0 &&
7336 !test_bit(In_sync, &rdev->flags) &&
7337 !test_bit(Faulty, &rdev->flags))
7338 spares++;
7339 if (rdev->raid_disk < 0
7340 && !test_bit(Faulty, &rdev->flags)) {
7341 rdev->recovery_offset = 0;
7342 if (mddev->pers->
7343 hot_add_disk(mddev, rdev) == 0) {
7344 if (sysfs_link_rdev(mddev, rdev))
7345 /* failure here is OK */;
7346 spares++;
7347 md_new_event(mddev);
7348 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7349 } else
7350 break;
7351 }
7352 }
7353 }
7354 return spares;
7355 }
7356
7357 static void reap_sync_thread(struct mddev *mddev)
7358 {
7359 struct md_rdev *rdev;
7360
7361 /* resync has finished, collect result */
7362 md_unregister_thread(&mddev->sync_thread);
7363 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7364 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7365 /* success...*/
7366 /* activate any spares */
7367 if (mddev->pers->spare_active(mddev))
7368 sysfs_notify(&mddev->kobj, NULL,
7369 "degraded");
7370 }
7371 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7372 mddev->pers->finish_reshape)
7373 mddev->pers->finish_reshape(mddev);
7374
7375 /* If array is no-longer degraded, then any saved_raid_disk
7376 * information must be scrapped. Also if any device is now
7377 * In_sync we must scrape the saved_raid_disk for that device
7378 * do the superblock for an incrementally recovered device
7379 * written out.
7380 */
7381 list_for_each_entry(rdev, &mddev->disks, same_set)
7382 if (!mddev->degraded ||
7383 test_bit(In_sync, &rdev->flags))
7384 rdev->saved_raid_disk = -1;
7385
7386 md_update_sb(mddev, 1);
7387 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7388 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7389 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7390 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7391 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7392 /* flag recovery needed just to double check */
7393 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7394 sysfs_notify_dirent_safe(mddev->sysfs_action);
7395 md_new_event(mddev);
7396 if (mddev->event_work.func)
7397 queue_work(md_misc_wq, &mddev->event_work);
7398 }
7399
7400 /*
7401 * This routine is regularly called by all per-raid-array threads to
7402 * deal with generic issues like resync and super-block update.
7403 * Raid personalities that don't have a thread (linear/raid0) do not
7404 * need this as they never do any recovery or update the superblock.
7405 *
7406 * It does not do any resync itself, but rather "forks" off other threads
7407 * to do that as needed.
7408 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7409 * "->recovery" and create a thread at ->sync_thread.
7410 * When the thread finishes it sets MD_RECOVERY_DONE
7411 * and wakeups up this thread which will reap the thread and finish up.
7412 * This thread also removes any faulty devices (with nr_pending == 0).
7413 *
7414 * The overall approach is:
7415 * 1/ if the superblock needs updating, update it.
7416 * 2/ If a recovery thread is running, don't do anything else.
7417 * 3/ If recovery has finished, clean up, possibly marking spares active.
7418 * 4/ If there are any faulty devices, remove them.
7419 * 5/ If array is degraded, try to add spares devices
7420 * 6/ If array has spares or is not in-sync, start a resync thread.
7421 */
7422 void md_check_recovery(struct mddev *mddev)
7423 {
7424 if (mddev->suspended)
7425 return;
7426
7427 if (mddev->bitmap)
7428 bitmap_daemon_work(mddev);
7429
7430 if (signal_pending(current)) {
7431 if (mddev->pers->sync_request && !mddev->external) {
7432 printk(KERN_INFO "md: %s in immediate safe mode\n",
7433 mdname(mddev));
7434 mddev->safemode = 2;
7435 }
7436 flush_signals(current);
7437 }
7438
7439 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7440 return;
7441 if ( ! (
7442 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7443 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7444 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7445 (mddev->external == 0 && mddev->safemode == 1) ||
7446 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7447 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7448 ))
7449 return;
7450
7451 if (mddev_trylock(mddev)) {
7452 int spares = 0;
7453
7454 if (mddev->ro) {
7455 /* Only thing we do on a ro array is remove
7456 * failed devices.
7457 */
7458 struct md_rdev *rdev;
7459 list_for_each_entry(rdev, &mddev->disks, same_set)
7460 if (rdev->raid_disk >= 0 &&
7461 !test_bit(Blocked, &rdev->flags) &&
7462 test_bit(Faulty, &rdev->flags) &&
7463 atomic_read(&rdev->nr_pending)==0) {
7464 if (mddev->pers->hot_remove_disk(
7465 mddev, rdev->raid_disk)==0) {
7466 sysfs_unlink_rdev(mddev, rdev);
7467 rdev->raid_disk = -1;
7468 }
7469 }
7470 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7471 goto unlock;
7472 }
7473
7474 if (!mddev->external) {
7475 int did_change = 0;
7476 spin_lock_irq(&mddev->write_lock);
7477 if (mddev->safemode &&
7478 !atomic_read(&mddev->writes_pending) &&
7479 !mddev->in_sync &&
7480 mddev->recovery_cp == MaxSector) {
7481 mddev->in_sync = 1;
7482 did_change = 1;
7483 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7484 }
7485 if (mddev->safemode == 1)
7486 mddev->safemode = 0;
7487 spin_unlock_irq(&mddev->write_lock);
7488 if (did_change)
7489 sysfs_notify_dirent_safe(mddev->sysfs_state);
7490 }
7491
7492 if (mddev->flags)
7493 md_update_sb(mddev, 0);
7494
7495 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7496 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7497 /* resync/recovery still happening */
7498 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7499 goto unlock;
7500 }
7501 if (mddev->sync_thread) {
7502 reap_sync_thread(mddev);
7503 goto unlock;
7504 }
7505 /* Set RUNNING before clearing NEEDED to avoid
7506 * any transients in the value of "sync_action".
7507 */
7508 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7509 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7510 /* Clear some bits that don't mean anything, but
7511 * might be left set
7512 */
7513 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7514 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7515
7516 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7517 goto unlock;
7518 /* no recovery is running.
7519 * remove any failed drives, then
7520 * add spares if possible.
7521 * Spare are also removed and re-added, to allow
7522 * the personality to fail the re-add.
7523 */
7524
7525 if (mddev->reshape_position != MaxSector) {
7526 if (mddev->pers->check_reshape == NULL ||
7527 mddev->pers->check_reshape(mddev) != 0)
7528 /* Cannot proceed */
7529 goto unlock;
7530 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7531 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7532 } else if ((spares = remove_and_add_spares(mddev))) {
7533 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7534 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7535 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7536 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7537 } else if (mddev->recovery_cp < MaxSector) {
7538 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7539 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7540 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7541 /* nothing to be done ... */
7542 goto unlock;
7543
7544 if (mddev->pers->sync_request) {
7545 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7546 /* We are adding a device or devices to an array
7547 * which has the bitmap stored on all devices.
7548 * So make sure all bitmap pages get written
7549 */
7550 bitmap_write_all(mddev->bitmap);
7551 }
7552 mddev->sync_thread = md_register_thread(md_do_sync,
7553 mddev,
7554 "resync");
7555 if (!mddev->sync_thread) {
7556 printk(KERN_ERR "%s: could not start resync"
7557 " thread...\n",
7558 mdname(mddev));
7559 /* leave the spares where they are, it shouldn't hurt */
7560 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7561 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7562 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7563 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7564 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7565 } else
7566 md_wakeup_thread(mddev->sync_thread);
7567 sysfs_notify_dirent_safe(mddev->sysfs_action);
7568 md_new_event(mddev);
7569 }
7570 unlock:
7571 if (!mddev->sync_thread) {
7572 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7573 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7574 &mddev->recovery))
7575 if (mddev->sysfs_action)
7576 sysfs_notify_dirent_safe(mddev->sysfs_action);
7577 }
7578 mddev_unlock(mddev);
7579 }
7580 }
7581
7582 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7583 {
7584 sysfs_notify_dirent_safe(rdev->sysfs_state);
7585 wait_event_timeout(rdev->blocked_wait,
7586 !test_bit(Blocked, &rdev->flags) &&
7587 !test_bit(BlockedBadBlocks, &rdev->flags),
7588 msecs_to_jiffies(5000));
7589 rdev_dec_pending(rdev, mddev);
7590 }
7591 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7592
7593
7594 /* Bad block management.
7595 * We can record which blocks on each device are 'bad' and so just
7596 * fail those blocks, or that stripe, rather than the whole device.
7597 * Entries in the bad-block table are 64bits wide. This comprises:
7598 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7599 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7600 * A 'shift' can be set so that larger blocks are tracked and
7601 * consequently larger devices can be covered.
7602 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7603 *
7604 * Locking of the bad-block table uses a seqlock so md_is_badblock
7605 * might need to retry if it is very unlucky.
7606 * We will sometimes want to check for bad blocks in a bi_end_io function,
7607 * so we use the write_seqlock_irq variant.
7608 *
7609 * When looking for a bad block we specify a range and want to
7610 * know if any block in the range is bad. So we binary-search
7611 * to the last range that starts at-or-before the given endpoint,
7612 * (or "before the sector after the target range")
7613 * then see if it ends after the given start.
7614 * We return
7615 * 0 if there are no known bad blocks in the range
7616 * 1 if there are known bad block which are all acknowledged
7617 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7618 * plus the start/length of the first bad section we overlap.
7619 */
7620 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7621 sector_t *first_bad, int *bad_sectors)
7622 {
7623 int hi;
7624 int lo = 0;
7625 u64 *p = bb->page;
7626 int rv = 0;
7627 sector_t target = s + sectors;
7628 unsigned seq;
7629
7630 if (bb->shift > 0) {
7631 /* round the start down, and the end up */
7632 s >>= bb->shift;
7633 target += (1<<bb->shift) - 1;
7634 target >>= bb->shift;
7635 sectors = target - s;
7636 }
7637 /* 'target' is now the first block after the bad range */
7638
7639 retry:
7640 seq = read_seqbegin(&bb->lock);
7641
7642 hi = bb->count;
7643
7644 /* Binary search between lo and hi for 'target'
7645 * i.e. for the last range that starts before 'target'
7646 */
7647 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7648 * are known not to be the last range before target.
7649 * VARIANT: hi-lo is the number of possible
7650 * ranges, and decreases until it reaches 1
7651 */
7652 while (hi - lo > 1) {
7653 int mid = (lo + hi) / 2;
7654 sector_t a = BB_OFFSET(p[mid]);
7655 if (a < target)
7656 /* This could still be the one, earlier ranges
7657 * could not. */
7658 lo = mid;
7659 else
7660 /* This and later ranges are definitely out. */
7661 hi = mid;
7662 }
7663 /* 'lo' might be the last that started before target, but 'hi' isn't */
7664 if (hi > lo) {
7665 /* need to check all range that end after 's' to see if
7666 * any are unacknowledged.
7667 */
7668 while (lo >= 0 &&
7669 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7670 if (BB_OFFSET(p[lo]) < target) {
7671 /* starts before the end, and finishes after
7672 * the start, so they must overlap
7673 */
7674 if (rv != -1 && BB_ACK(p[lo]))
7675 rv = 1;
7676 else
7677 rv = -1;
7678 *first_bad = BB_OFFSET(p[lo]);
7679 *bad_sectors = BB_LEN(p[lo]);
7680 }
7681 lo--;
7682 }
7683 }
7684
7685 if (read_seqretry(&bb->lock, seq))
7686 goto retry;
7687
7688 return rv;
7689 }
7690 EXPORT_SYMBOL_GPL(md_is_badblock);
7691
7692 /*
7693 * Add a range of bad blocks to the table.
7694 * This might extend the table, or might contract it
7695 * if two adjacent ranges can be merged.
7696 * We binary-search to find the 'insertion' point, then
7697 * decide how best to handle it.
7698 */
7699 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7700 int acknowledged)
7701 {
7702 u64 *p;
7703 int lo, hi;
7704 int rv = 1;
7705
7706 if (bb->shift < 0)
7707 /* badblocks are disabled */
7708 return 0;
7709
7710 if (bb->shift) {
7711 /* round the start down, and the end up */
7712 sector_t next = s + sectors;
7713 s >>= bb->shift;
7714 next += (1<<bb->shift) - 1;
7715 next >>= bb->shift;
7716 sectors = next - s;
7717 }
7718
7719 write_seqlock_irq(&bb->lock);
7720
7721 p = bb->page;
7722 lo = 0;
7723 hi = bb->count;
7724 /* Find the last range that starts at-or-before 's' */
7725 while (hi - lo > 1) {
7726 int mid = (lo + hi) / 2;
7727 sector_t a = BB_OFFSET(p[mid]);
7728 if (a <= s)
7729 lo = mid;
7730 else
7731 hi = mid;
7732 }
7733 if (hi > lo && BB_OFFSET(p[lo]) > s)
7734 hi = lo;
7735
7736 if (hi > lo) {
7737 /* we found a range that might merge with the start
7738 * of our new range
7739 */
7740 sector_t a = BB_OFFSET(p[lo]);
7741 sector_t e = a + BB_LEN(p[lo]);
7742 int ack = BB_ACK(p[lo]);
7743 if (e >= s) {
7744 /* Yes, we can merge with a previous range */
7745 if (s == a && s + sectors >= e)
7746 /* new range covers old */
7747 ack = acknowledged;
7748 else
7749 ack = ack && acknowledged;
7750
7751 if (e < s + sectors)
7752 e = s + sectors;
7753 if (e - a <= BB_MAX_LEN) {
7754 p[lo] = BB_MAKE(a, e-a, ack);
7755 s = e;
7756 } else {
7757 /* does not all fit in one range,
7758 * make p[lo] maximal
7759 */
7760 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7761 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7762 s = a + BB_MAX_LEN;
7763 }
7764 sectors = e - s;
7765 }
7766 }
7767 if (sectors && hi < bb->count) {
7768 /* 'hi' points to the first range that starts after 's'.
7769 * Maybe we can merge with the start of that range */
7770 sector_t a = BB_OFFSET(p[hi]);
7771 sector_t e = a + BB_LEN(p[hi]);
7772 int ack = BB_ACK(p[hi]);
7773 if (a <= s + sectors) {
7774 /* merging is possible */
7775 if (e <= s + sectors) {
7776 /* full overlap */
7777 e = s + sectors;
7778 ack = acknowledged;
7779 } else
7780 ack = ack && acknowledged;
7781
7782 a = s;
7783 if (e - a <= BB_MAX_LEN) {
7784 p[hi] = BB_MAKE(a, e-a, ack);
7785 s = e;
7786 } else {
7787 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7788 s = a + BB_MAX_LEN;
7789 }
7790 sectors = e - s;
7791 lo = hi;
7792 hi++;
7793 }
7794 }
7795 if (sectors == 0 && hi < bb->count) {
7796 /* we might be able to combine lo and hi */
7797 /* Note: 's' is at the end of 'lo' */
7798 sector_t a = BB_OFFSET(p[hi]);
7799 int lolen = BB_LEN(p[lo]);
7800 int hilen = BB_LEN(p[hi]);
7801 int newlen = lolen + hilen - (s - a);
7802 if (s >= a && newlen < BB_MAX_LEN) {
7803 /* yes, we can combine them */
7804 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7805 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7806 memmove(p + hi, p + hi + 1,
7807 (bb->count - hi - 1) * 8);
7808 bb->count--;
7809 }
7810 }
7811 while (sectors) {
7812 /* didn't merge (it all).
7813 * Need to add a range just before 'hi' */
7814 if (bb->count >= MD_MAX_BADBLOCKS) {
7815 /* No room for more */
7816 rv = 0;
7817 break;
7818 } else {
7819 int this_sectors = sectors;
7820 memmove(p + hi + 1, p + hi,
7821 (bb->count - hi) * 8);
7822 bb->count++;
7823
7824 if (this_sectors > BB_MAX_LEN)
7825 this_sectors = BB_MAX_LEN;
7826 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7827 sectors -= this_sectors;
7828 s += this_sectors;
7829 }
7830 }
7831
7832 bb->changed = 1;
7833 if (!acknowledged)
7834 bb->unacked_exist = 1;
7835 write_sequnlock_irq(&bb->lock);
7836
7837 return rv;
7838 }
7839
7840 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7841 int acknowledged)
7842 {
7843 int rv = md_set_badblocks(&rdev->badblocks,
7844 s + rdev->data_offset, sectors, acknowledged);
7845 if (rv) {
7846 /* Make sure they get written out promptly */
7847 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7848 md_wakeup_thread(rdev->mddev->thread);
7849 }
7850 return rv;
7851 }
7852 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7853
7854 /*
7855 * Remove a range of bad blocks from the table.
7856 * This may involve extending the table if we spilt a region,
7857 * but it must not fail. So if the table becomes full, we just
7858 * drop the remove request.
7859 */
7860 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7861 {
7862 u64 *p;
7863 int lo, hi;
7864 sector_t target = s + sectors;
7865 int rv = 0;
7866
7867 if (bb->shift > 0) {
7868 /* When clearing we round the start up and the end down.
7869 * This should not matter as the shift should align with
7870 * the block size and no rounding should ever be needed.
7871 * However it is better the think a block is bad when it
7872 * isn't than to think a block is not bad when it is.
7873 */
7874 s += (1<<bb->shift) - 1;
7875 s >>= bb->shift;
7876 target >>= bb->shift;
7877 sectors = target - s;
7878 }
7879
7880 write_seqlock_irq(&bb->lock);
7881
7882 p = bb->page;
7883 lo = 0;
7884 hi = bb->count;
7885 /* Find the last range that starts before 'target' */
7886 while (hi - lo > 1) {
7887 int mid = (lo + hi) / 2;
7888 sector_t a = BB_OFFSET(p[mid]);
7889 if (a < target)
7890 lo = mid;
7891 else
7892 hi = mid;
7893 }
7894 if (hi > lo) {
7895 /* p[lo] is the last range that could overlap the
7896 * current range. Earlier ranges could also overlap,
7897 * but only this one can overlap the end of the range.
7898 */
7899 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7900 /* Partial overlap, leave the tail of this range */
7901 int ack = BB_ACK(p[lo]);
7902 sector_t a = BB_OFFSET(p[lo]);
7903 sector_t end = a + BB_LEN(p[lo]);
7904
7905 if (a < s) {
7906 /* we need to split this range */
7907 if (bb->count >= MD_MAX_BADBLOCKS) {
7908 rv = 0;
7909 goto out;
7910 }
7911 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7912 bb->count++;
7913 p[lo] = BB_MAKE(a, s-a, ack);
7914 lo++;
7915 }
7916 p[lo] = BB_MAKE(target, end - target, ack);
7917 /* there is no longer an overlap */
7918 hi = lo;
7919 lo--;
7920 }
7921 while (lo >= 0 &&
7922 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7923 /* This range does overlap */
7924 if (BB_OFFSET(p[lo]) < s) {
7925 /* Keep the early parts of this range. */
7926 int ack = BB_ACK(p[lo]);
7927 sector_t start = BB_OFFSET(p[lo]);
7928 p[lo] = BB_MAKE(start, s - start, ack);
7929 /* now low doesn't overlap, so.. */
7930 break;
7931 }
7932 lo--;
7933 }
7934 /* 'lo' is strictly before, 'hi' is strictly after,
7935 * anything between needs to be discarded
7936 */
7937 if (hi - lo > 1) {
7938 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7939 bb->count -= (hi - lo - 1);
7940 }
7941 }
7942
7943 bb->changed = 1;
7944 out:
7945 write_sequnlock_irq(&bb->lock);
7946 return rv;
7947 }
7948
7949 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
7950 {
7951 return md_clear_badblocks(&rdev->badblocks,
7952 s + rdev->data_offset,
7953 sectors);
7954 }
7955 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7956
7957 /*
7958 * Acknowledge all bad blocks in a list.
7959 * This only succeeds if ->changed is clear. It is used by
7960 * in-kernel metadata updates
7961 */
7962 void md_ack_all_badblocks(struct badblocks *bb)
7963 {
7964 if (bb->page == NULL || bb->changed)
7965 /* no point even trying */
7966 return;
7967 write_seqlock_irq(&bb->lock);
7968
7969 if (bb->changed == 0) {
7970 u64 *p = bb->page;
7971 int i;
7972 for (i = 0; i < bb->count ; i++) {
7973 if (!BB_ACK(p[i])) {
7974 sector_t start = BB_OFFSET(p[i]);
7975 int len = BB_LEN(p[i]);
7976 p[i] = BB_MAKE(start, len, 1);
7977 }
7978 }
7979 bb->unacked_exist = 0;
7980 }
7981 write_sequnlock_irq(&bb->lock);
7982 }
7983 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
7984
7985 /* sysfs access to bad-blocks list.
7986 * We present two files.
7987 * 'bad-blocks' lists sector numbers and lengths of ranges that
7988 * are recorded as bad. The list is truncated to fit within
7989 * the one-page limit of sysfs.
7990 * Writing "sector length" to this file adds an acknowledged
7991 * bad block list.
7992 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
7993 * been acknowledged. Writing to this file adds bad blocks
7994 * without acknowledging them. This is largely for testing.
7995 */
7996
7997 static ssize_t
7998 badblocks_show(struct badblocks *bb, char *page, int unack)
7999 {
8000 size_t len;
8001 int i;
8002 u64 *p = bb->page;
8003 unsigned seq;
8004
8005 if (bb->shift < 0)
8006 return 0;
8007
8008 retry:
8009 seq = read_seqbegin(&bb->lock);
8010
8011 len = 0;
8012 i = 0;
8013
8014 while (len < PAGE_SIZE && i < bb->count) {
8015 sector_t s = BB_OFFSET(p[i]);
8016 unsigned int length = BB_LEN(p[i]);
8017 int ack = BB_ACK(p[i]);
8018 i++;
8019
8020 if (unack && ack)
8021 continue;
8022
8023 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8024 (unsigned long long)s << bb->shift,
8025 length << bb->shift);
8026 }
8027 if (unack && len == 0)
8028 bb->unacked_exist = 0;
8029
8030 if (read_seqretry(&bb->lock, seq))
8031 goto retry;
8032
8033 return len;
8034 }
8035
8036 #define DO_DEBUG 1
8037
8038 static ssize_t
8039 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8040 {
8041 unsigned long long sector;
8042 int length;
8043 char newline;
8044 #ifdef DO_DEBUG
8045 /* Allow clearing via sysfs *only* for testing/debugging.
8046 * Normally only a successful write may clear a badblock
8047 */
8048 int clear = 0;
8049 if (page[0] == '-') {
8050 clear = 1;
8051 page++;
8052 }
8053 #endif /* DO_DEBUG */
8054
8055 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8056 case 3:
8057 if (newline != '\n')
8058 return -EINVAL;
8059 case 2:
8060 if (length <= 0)
8061 return -EINVAL;
8062 break;
8063 default:
8064 return -EINVAL;
8065 }
8066
8067 #ifdef DO_DEBUG
8068 if (clear) {
8069 md_clear_badblocks(bb, sector, length);
8070 return len;
8071 }
8072 #endif /* DO_DEBUG */
8073 if (md_set_badblocks(bb, sector, length, !unack))
8074 return len;
8075 else
8076 return -ENOSPC;
8077 }
8078
8079 static int md_notify_reboot(struct notifier_block *this,
8080 unsigned long code, void *x)
8081 {
8082 struct list_head *tmp;
8083 struct mddev *mddev;
8084 int need_delay = 0;
8085
8086 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8087
8088 printk(KERN_INFO "md: stopping all md devices.\n");
8089
8090 for_each_mddev(mddev, tmp) {
8091 if (mddev_trylock(mddev)) {
8092 /* Force a switch to readonly even array
8093 * appears to still be in use. Hence
8094 * the '100'.
8095 */
8096 md_set_readonly(mddev, 100);
8097 mddev_unlock(mddev);
8098 }
8099 need_delay = 1;
8100 }
8101 /*
8102 * certain more exotic SCSI devices are known to be
8103 * volatile wrt too early system reboots. While the
8104 * right place to handle this issue is the given
8105 * driver, we do want to have a safe RAID driver ...
8106 */
8107 if (need_delay)
8108 mdelay(1000*1);
8109 }
8110 return NOTIFY_DONE;
8111 }
8112
8113 static struct notifier_block md_notifier = {
8114 .notifier_call = md_notify_reboot,
8115 .next = NULL,
8116 .priority = INT_MAX, /* before any real devices */
8117 };
8118
8119 static void md_geninit(void)
8120 {
8121 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8122
8123 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8124 }
8125
8126 static int __init md_init(void)
8127 {
8128 int ret = -ENOMEM;
8129
8130 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8131 if (!md_wq)
8132 goto err_wq;
8133
8134 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8135 if (!md_misc_wq)
8136 goto err_misc_wq;
8137
8138 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8139 goto err_md;
8140
8141 if ((ret = register_blkdev(0, "mdp")) < 0)
8142 goto err_mdp;
8143 mdp_major = ret;
8144
8145 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8146 md_probe, NULL, NULL);
8147 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8148 md_probe, NULL, NULL);
8149
8150 register_reboot_notifier(&md_notifier);
8151 raid_table_header = register_sysctl_table(raid_root_table);
8152
8153 md_geninit();
8154 return 0;
8155
8156 err_mdp:
8157 unregister_blkdev(MD_MAJOR, "md");
8158 err_md:
8159 destroy_workqueue(md_misc_wq);
8160 err_misc_wq:
8161 destroy_workqueue(md_wq);
8162 err_wq:
8163 return ret;
8164 }
8165
8166 #ifndef MODULE
8167
8168 /*
8169 * Searches all registered partitions for autorun RAID arrays
8170 * at boot time.
8171 */
8172
8173 static LIST_HEAD(all_detected_devices);
8174 struct detected_devices_node {
8175 struct list_head list;
8176 dev_t dev;
8177 };
8178
8179 void md_autodetect_dev(dev_t dev)
8180 {
8181 struct detected_devices_node *node_detected_dev;
8182
8183 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8184 if (node_detected_dev) {
8185 node_detected_dev->dev = dev;
8186 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8187 } else {
8188 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8189 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8190 }
8191 }
8192
8193
8194 static void autostart_arrays(int part)
8195 {
8196 struct md_rdev *rdev;
8197 struct detected_devices_node *node_detected_dev;
8198 dev_t dev;
8199 int i_scanned, i_passed;
8200
8201 i_scanned = 0;
8202 i_passed = 0;
8203
8204 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8205
8206 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8207 i_scanned++;
8208 node_detected_dev = list_entry(all_detected_devices.next,
8209 struct detected_devices_node, list);
8210 list_del(&node_detected_dev->list);
8211 dev = node_detected_dev->dev;
8212 kfree(node_detected_dev);
8213 rdev = md_import_device(dev,0, 90);
8214 if (IS_ERR(rdev))
8215 continue;
8216
8217 if (test_bit(Faulty, &rdev->flags)) {
8218 MD_BUG();
8219 continue;
8220 }
8221 set_bit(AutoDetected, &rdev->flags);
8222 list_add(&rdev->same_set, &pending_raid_disks);
8223 i_passed++;
8224 }
8225
8226 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8227 i_scanned, i_passed);
8228
8229 autorun_devices(part);
8230 }
8231
8232 #endif /* !MODULE */
8233
8234 static __exit void md_exit(void)
8235 {
8236 struct mddev *mddev;
8237 struct list_head *tmp;
8238
8239 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8240 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8241
8242 unregister_blkdev(MD_MAJOR,"md");
8243 unregister_blkdev(mdp_major, "mdp");
8244 unregister_reboot_notifier(&md_notifier);
8245 unregister_sysctl_table(raid_table_header);
8246 remove_proc_entry("mdstat", NULL);
8247 for_each_mddev(mddev, tmp) {
8248 export_array(mddev);
8249 mddev->hold_active = 0;
8250 }
8251 destroy_workqueue(md_misc_wq);
8252 destroy_workqueue(md_wq);
8253 }
8254
8255 subsys_initcall(md_init);
8256 module_exit(md_exit)
8257
8258 static int get_ro(char *buffer, struct kernel_param *kp)
8259 {
8260 return sprintf(buffer, "%d", start_readonly);
8261 }
8262 static int set_ro(const char *val, struct kernel_param *kp)
8263 {
8264 char *e;
8265 int num = simple_strtoul(val, &e, 10);
8266 if (*val && (*e == '\0' || *e == '\n')) {
8267 start_readonly = num;
8268 return 0;
8269 }
8270 return -EINVAL;
8271 }
8272
8273 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8274 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8275
8276 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8277
8278 EXPORT_SYMBOL(register_md_personality);
8279 EXPORT_SYMBOL(unregister_md_personality);
8280 EXPORT_SYMBOL(md_error);
8281 EXPORT_SYMBOL(md_done_sync);
8282 EXPORT_SYMBOL(md_write_start);
8283 EXPORT_SYMBOL(md_write_end);
8284 EXPORT_SYMBOL(md_register_thread);
8285 EXPORT_SYMBOL(md_unregister_thread);
8286 EXPORT_SYMBOL(md_wakeup_thread);
8287 EXPORT_SYMBOL(md_check_recovery);
8288 MODULE_LICENSE("GPL");
8289 MODULE_DESCRIPTION("MD RAID framework");
8290 MODULE_ALIAS("md");
8291 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.378114 seconds and 5 git commands to generate.